Nothing Special   »   [go: up one dir, main page]

JP4261169B2 - Translucent thin film solar cell and method for producing translucent thin film solar cell module - Google Patents

Translucent thin film solar cell and method for producing translucent thin film solar cell module Download PDF

Info

Publication number
JP4261169B2
JP4261169B2 JP2002351769A JP2002351769A JP4261169B2 JP 4261169 B2 JP4261169 B2 JP 4261169B2 JP 2002351769 A JP2002351769 A JP 2002351769A JP 2002351769 A JP2002351769 A JP 2002351769A JP 4261169 B2 JP4261169 B2 JP 4261169B2
Authority
JP
Japan
Prior art keywords
region
translucent
thin film
solar cell
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002351769A
Other languages
Japanese (ja)
Other versions
JP2004186443A (en
Inventor
年信 中田
英雄 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2002351769A priority Critical patent/JP4261169B2/en
Publication of JP2004186443A publication Critical patent/JP2004186443A/en
Application granted granted Critical
Publication of JP4261169B2 publication Critical patent/JP4261169B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、集積型薄膜太陽電池及びその製造方法に関するものであり、特に、透光性を有し、外観及び生産性に優れた薄膜太陽電池及びその製造方法に関するものである。
【0002】
【従来の技術】
一般に薄膜太陽電池は、ガラス等の絶縁透光性基板上にスパッタ、CVD等の方法を用い順次、透明導電膜、半導体の光電変換膜、裏面電極膜を積層することで形成される。透明導電膜としては、ZnO、SnO2、ITO等が、金属電極材としては、Ag、Al等が主に用いられる。さらに大面積の薄膜太陽電池では、エッチング、レーザスクライブ等のパターニングと各膜の積層とを繰り返し実施することで形成される、複数の光電変換セルが、透明導電膜、裏面電極膜及び接続領域を介して直列接続された、いわゆる集積構造とすることが一般的である。
【0003】
ところで、近年用途によっては、このような大面積薄膜太陽電池に透光性が要求されるようになった。
【0004】
集積構造を有する大面積薄膜太陽電池モジュールに透光性を付与する方法として、絶縁透光性基板上の、透明導電膜、非晶質シリコン系半導体からなる光電変換膜、及び裏面電極膜からなる積層体に対して、レーザ光を照射しつつ走査することにより、光電変換膜及び裏面電極膜を除去し、透光性を有する開口溝を設ける方法が提案されている(例えば、特許文献1参照。)。
【0005】
【特許文献1】
特開平05−251723号公報
【0006】
【発明が解決しようとする課題】
しかしながら、このような大面積透光性薄膜太陽電池において、十分な透光性を得るためには、透光性開口溝の太陽電池に対する面積比率を一定以上確保する必要があり、レーザ光を照射しつつ走査することで、光電変換膜及び裏面電極膜を除去し、透光性開口溝を設ける方法で形成する場合、レーザ光の照射及び走査を行ういわゆるレーザスクライブ工程の負荷つまり装置コストや加工時間が、製造工程上過大となるという問題があった。
【0007】
【課題を解決するための手段】
本発明者等は上記課題に鑑み鋭意検討を行った結果、絶縁透光性基板の一主面上に順に積層された透明導電膜、非晶質及び/又は多結晶シリコン系半導体からなる光電変換膜、裏面電極膜を含む多層膜を含み、直列接続された複数の光電変換セルを含むセル領域と、光電変換膜及び裏面電極が除去された透光性開口溝と、接続領域とを含み、前記透光性開口溝の形成が、同時に複数のレーザ光を前記多層膜が積層された基板上のそれぞれ異なる部分に照射することによりなされることを特徴とする透光性薄膜太陽電池とすることで、レーザスクライブ工程の負荷を大幅に低下することができることを見出した。同時に複数のレーザ光を基板上のそれぞれ異なる部分に照射することにより、複数の透光性開口溝が同時に形成され、透光性開口溝の面積比率が大きい透光性薄膜太陽電池を、低装置コストで短時間に形成することができる。
【0008】
ところで、各透光性開口溝は、夫々を形成したレーザ光の状態を反映し、個々異なる形態を有する。そして、レーザ光の状態はレーザ光出射ヘッドが同じなら若干の時間変動を除き一定である。従って、上記のように同時に複数のレーザ光を照射し複数の透光性開口溝を形成する場合には、同一のレーザ光出射ヘッドから出射されたレーザ光により形成された透光性開口溝が隣接している領域は、周囲と異なった外観に見えるという問題がある。
【0009】
このため、隣り合う前記透光性開口溝が同一のレーザ光出射ヘッドからのレーザ光により形成された前記基板上の領域の数が、前記複数のレーザ光の数よりも大きくすることが有効である。このようにすると、同一のレーザ光出射ヘッドから出射されたレーザ光により形成された透光性開口溝が隣接している領域が、一枚の基板内で少なくとも2領域以上、間隔をもって、つまり別領域を挟んで離れて存在しているので、外観上平均化して一様に見える効果がある。ここで、別領域とは、上記と異なる、同一のレーザ光出射ヘッドから出射されたレーザ光により形成された透光性開口溝が隣接している領域のことである。
【0010】
さらに、隣り合う前記透光性開口溝が異なるレーザ光出射ヘッドからのレーザ光により形成されるようにすることが効果的である。このようにすると、同一のレーザ光出射ヘッドから出射されたレーザ光により形成された透光性開口溝が隣接している領域自体が存在しないので、基板内で透光性開口溝形成に伴う領域としての外観ムラを皆無にすることができる。
【0011】
また、前記透光性開口溝が直線状に形成されてなる薄膜太陽電池とすると、同時に複数のレーザ光を前記多層膜が積層された基板上のそれぞれ異なる部分に照射するレーザスクライブ工程により、高い生産性が得られ、また外観上も好ましいものとなる。
【0012】
さらに、隣り合う前記透光性開口溝間の間隔が実質的に等間隔である薄膜太陽電池とすると、外観に優れた透光性薄膜太陽電池となり好ましい。
【0013】
特に、接続領域と直線状に形成された前記透光性開口溝との関係は、直線状に形成された前記透光性開口溝が、光電変換セルの直列接続方向と平行であることことが、外観上また実生産上さらには施工上好ましい。一般に光電変換セルの直列接続方向は、短冊状に形成される個々の光電変換セルの端部に形成される直線状の個々の接続領域に直角な方向となる。
【0014】
上記のような透光性薄膜太陽電池の前記多層膜上に、高い透過率及び耐候性を有するフッ素系樹脂又はガラスを裏面封止材料として配することにより、信頼性優れた透光性の高い透光性薄膜太陽電池モジュールを得ることができる。
【0015】
【発明の実施の形態】
以下、本発明の実施形態について、図面を参照しながらより詳細に説明する。なお、本願の各図において同一の参照符号は同一部分または相当部分を示し、重複する説明は繰り返されない。
【0016】
図1は、本発明の透光性薄膜太陽電池1を説明するための斜視図である。図1に示すように、透光性薄膜太陽電池1の光電変換セル10は、絶縁透光性基板2上に、透明導電膜3、光電変換膜4、及び裏面電極膜5を順次積層した構造を有している。すなわち、この透光性薄膜太陽電池1は、絶縁透光性基板2側から入射する光を、光電変換膜4によって光電変換するものである。
【0017】
次に、この透光性薄膜太陽電池1の各構成要素について説明する。
【0018】
絶縁透光性基板2としては、例えば、ガラス板や透明樹脂フィルムなどを用いることができる。ガラス板としては、大面積な板が安価に入手可能で透明性、絶縁性が高い、SiO2、Na2O及びCaOを主成分とする両主面が平滑なフロート板ガラスを用いることができる。
【0019】
透明導電膜3は、ITO膜、SnO2膜、或いはZnO膜のような透明導電性酸化物層等で構成することができる。透明導電膜3は、蒸着法、CVD法、或いはスパッタリング法等それ自体既知の気相堆積法を用いて形成することができる。
【0020】
光電変換膜4は非晶質及び/又は多結晶シリコン系半導体光電変換層を備えており、例えば、透明導電膜3側からp型シリコン系半導体層、i型シリコン系半導体層、及びn型シリコン系半導体層を順次積層した構造を有する。これらp型半導体層、i型半導体層、及びn型半導体層はいずれもプラズマCVD法により形成することができる。また、これらpin構造を2段積層したタンデム構造、3段積層したトリプル構造等の構造であってもよい。
【0021】
光電変換膜4を構成するp型半導体層は、例えば、シリコンまたはシリコンカーバイドやシリコンゲルマニウム等のシリコン合金に、ボロンやアルミニウム等のp導電型決定不純物原子をドープすることにより形成することができる。また、i型半導体層は、非晶質シリコン系半導体材料及び結晶質シリコン系半導体材料でそれぞれ形成することができ、そのような材料としては、真性半導体のシリコン(水素化シリコン等)やシリコンカーバイド及びシリコンゲルマニウム等のシリコン合金等を拳げることができる。また、光電変換機能を十分に備えていれば、微量の導電型決定不純物を含む弱p型もしくは弱n型のシリコン系半導体材料も用いられ得る。さらに、n型半導体層は、シリコンまたはシリコンカーバイドやシリコンゲルマニウム等のシリコン合金に、燐や窒素等のn導電型決定不純物原子をドープすることにより形成することができる。
【0022】
裏面電極膜5は電極としての機能を有するだけでなく、絶縁透光性基板2から光電変換膜4に入射し裏面電極膜5に到着した光を反射して光電変換膜4に再入射させる反射層としての機能も有している。裏面電極膜5は、銀やアルミニウム等を用いて、蒸着法やスパッタ法等により、例えば200nm〜400nm程度の厚さに形成することができる。
【0023】
なお、裏面電極膜5と光電変換膜4との間には、例えば両者の間の接着性を向上させるために、ZnOのような非金属材料からなる透明電導性薄膜(図示せず)を設けることができる。
【0024】
透光性薄膜太陽電池1の絶縁透光性基板2に形成された各光電変換セル10は、封止樹脂層6(図示せず)を介して裏面封止材料7により封止されている。この封止樹脂層6は、裏面封止材料7をこれらセル10に接着することが可能な樹脂が用いられる。そのような樹脂としては、例えば、EVA(エチレン・ビニルアセテート共重合体)、PVB(ポリビニルブチラール)、PIB(ポリイソブチレン)、及びシリコーン樹脂等を用いることができる。また、裏面封止材料7としては、ポリフッ化ビニルフィルム(例えば、テドラーフィルム(登録商標名))のようなフッ素樹脂系フィルム或いはガラスのような耐湿性や耐水性に優れた透光性絶縁材料が用いられる。これら封止樹脂層6/裏面封止材料7は、真空ラミネート法により透光性薄膜太陽電池1の裏面側に同時に貼着することができる。
【0025】
図1に示すように、透光性薄膜太陽電池1には、上記薄膜を分割する第1、第2の分離溝21、22と接続溝23とが設けられている。これら第1、第2の分離溝21、22及び接続溝23は、互いに平行であって、図1の斜視図の紙面右上方向に延在している。また、図1に示すように、透光性薄膜太陽電池1には、上記薄膜を分割する透光性開口溝8が設けられている。この透光性開口溝8は、互いに平行であって、図1の斜視図の紙面左右方向に延在している。
【0026】
第1の分離溝21は、透明導電膜3をそれぞれのセル10に対応して分割しており、透明導電膜3と光電変換膜4との界面に開口を有し且つ絶縁透光性基板2の表面を底面としている。この第1の分離溝21は、光電変換膜4を構成するシリコン系薄膜によって埋め込まれており、隣り合う透明導電膜3同士を電気的に絶縁している。
【0027】
第2の分離溝22は、第1の分離溝21から離れた位置に設けられている。第2の分離溝22は、光電変換膜4、及び裏面電極膜5をそれぞれのセル10に対応して分割しており、裏面電極膜5と樹脂封止層6との界面に開口を有し且つ透明導電膜3の表面を底面としている。この第2の分離溝22は、封止樹脂層6によって埋め込まれており、隣り合うセル10間で裏面電極膜5同士を電気的に絶縁している。
【0028】
接続溝23は、第1の分離溝21と第2の分離溝22との間に設けられている。接続溝23は、光電変換膜4を分割しており、光電変換膜4と裏面電極膜5との界面に開口を有し且つ透明導電膜3の表面を底面としている。この接続溝23は、裏面電極膜5を構成する金属材料で埋め込まれており、隣り合うセル10の一方の裏面電極膜5と他方の透明導電膜3とを電気的に接続している。すなわち、接続溝23及びそれを埋め込む金属材料は、絶縁透光性基板2上に並置されたセル10同士を直列接続する役割を担っている。
【0029】
これら第1、第2の分離溝21と22とにより挟まれ接続溝23を各々1本含む領域は一般に光電変換に寄与しない接続領域9と呼ばれる。
【0030】
透光性開口溝8は、透光性薄膜太陽電池1に透光性を付与するために、光電変換膜4、及び裏面電極膜5を分割しており、裏面電極膜5と樹脂封止層6との界面に開口を有し且つ透明導電膜3の表面を底面としている。この透光性開口溝8は、封止樹脂層6によって埋め込まれている。
【0031】
引き続き、この透光性薄膜太陽電池1の製造方法について説明する。
【0032】
最初に、絶縁透光性基板2の一方の全面に透明導電膜3を製膜した後、例えばYAG基本波レーザ光を照射して透明導電膜3を短冊状に分割する第1の分離溝21を形成する。
【0033】
次に、第1の分離溝21が形成された透明導電膜3にわたって光電変換膜4としてアモルファスシリコン及び/又は多結晶シリコンを、プラズマCVD法等でp型、i型、n型の順に1回以上積層した後、例えばYAG第2高調波レーザ光を照射して光電変換膜4を短冊状に分割する接続溝23を形成する。
【0034】
引き続き、接続溝23が形成された光電変換膜4にわたって裏面電極膜5として透明電導性薄膜及び金属膜を、この順にスパッタ法等で製膜した後、例えばYAG第2高調波レーザ光を絶縁透光性基板2側から照射して裏面電極膜5を短冊状に分割する第2の分離溝22を形成する。
【0035】
このようにして、絶縁透光性基板2の一主面上に順に積層された透明導電膜3、非晶質及び/又は多結晶シリコン系半導体からなる光電変換膜4、裏面電極膜5を含む多層膜を含み、直列接続された複数の光電変換セルを含むセル領域と、接続領域9とを含む、複数の同一形状の短冊状光電変換セルが直列接続したいわゆる集積型薄膜太陽電池が形成される。
【0036】
最後に、前記のように形成された集積型薄膜太陽電池の絶縁透光性基板2側からYAG第2高調波レーザ光を走査し、前記の裏面電極膜5の分割と同様の方法で、図1に示す透光性開口溝8が形成される。この透光性開口溝8のセル領域に対する面積比率は、透光性薄膜太陽電池1の発電に係わる面積効率を極端に低下させない範囲の1/5から1/20である。
【0037】
また、透光性開口溝8は直線状で、非連続であってもよいが、透光性を高めるために、連続して設けることが好ましい。
【0038】
さて、このような透光性薄膜太陽電池1の透光性開口溝8の形成を、本発明では、同時に複数のレーザ光を前記多層膜が積層された絶縁透光性基板2上のそれぞれ異なる部分に照射することにより実施する。1枚の絶縁透光性基板2に対し1つのレーザ光のみを照射し透光性開口溝8を形成する場合には、このレーザスクライブ工程に長時間を要し、製造工程上大きな負担となる。逆に、同時に照射するレーザ光の数が極端に多くなると、レーザスクライブ装置の構造が複雑になる。従って、1枚の絶縁透光性基板2に対し同時に照射するレーザ光の数は10以下が好ましく、さらに好ましくは8以下である。
【0039】
上記のように、1枚の絶縁透光性基板2に対し同時に複数のレーザ光を照射し透光性開口溝8を形成する場合、隣り合う前記透光性開口溝8が同一のレーザ光出射ヘッドからのレーザ光により形成された前記基板2上の領域の数が前記複数のレーザ光の数よりも大きくすること、つまり、同一のレーザ光出射ヘッドからのレーザ光を用いて加工した前記透光性開口溝8が2本以上連続して隣接してなる領域があり、複数のレーザ光の数よりも該領域の数が大きいようにすることが有効である。
【0040】
以下、図2の平面図を用いて説明する。例えば、2つの異なるレーザ光出射ヘッド31及びレーザ光出射ヘッド32からのレーザ光の走査によって透光性開口溝8が形成される場合、図2のようにレーザ光出射ヘッド31のレーザ光の走査により隣接して透光性開口溝8が形成される領域311と、レーザ光出射ヘッド32のレーザ光の走査により隣接して透光性開口溝8が形成される領域312とが、隣り合っていると、2つのレーザ光出射ヘッド31と32とから出射されるレーザ光の状態の違いに起因して、これら2つの領域311と321との境界12が目視上顕著に認識され、透光性薄膜太陽電池1の外観が大きく損なわれる。
【0041】
そこで、図3及び図4のように、レーザ光出射ヘッド31のレーザ光の走査により隣接して透光性開口溝8が形成される領域311と、レーザ光出射ヘッド32のレーザ光の走査により隣接して透光性開口溝8が形成される領域312とを一枚の絶縁透光性基板2上に、少なくとも一方の領域を別な領域を挟んで複数、配置し、これら領域311と領域321との差異を全体として平均化することで、透光性薄膜太陽電池1の外観を改善することができる。
【0044】
6に示すように、一枚の絶縁透光性基板2上に、第1のレーザ光出射ヘッド31のレーザ光の走査により隣接して透光性開口溝が形成される第1領域311と、第2のレーザ光出射ヘッド32のレーザ光の走査により隣接して透光性開口溝が形成される第2領域312とが存在する場合、それぞれ第1のレーザ光出射ヘッド31から出射されるレーザ光の走査により形成する第1種透光性開口溝811と、第2のレーザ光出射ヘッド32から出射されるレーザ光の走査により形成する第2種透光性開口溝821とを交互に配置した領域を介して、第1領域311と第2領域321を存在させること好ましい。
【0045】
さらに、同一のレーザ光出射ヘッドから出射されるレーザ光の走査により隣接して透光性開口溝8が形成される領域と、異なるレーザ光出射ヘッドから出射されるレーザ光の走査により形成する透光性開口溝8とを、特定の配置方法に従い配置することにより、透光性薄膜太陽電池1全体として外観を向上させることができる。
【0046】
例えば、図7に示すように、一枚の絶縁透光性基板2上に、第1のレーザ光出射ヘッド31のレーザ光の走査により隣接して透光性開口溝8が形成される第1領域311と、第2のレーザ光出射ヘッド32のレーザ光の走査により隣接して透光性開口溝8が形成される第2領域321とが、一定距離離れて存在する場合にその挟まれる領域では、第1領域311の近くでは第1のレーザ光出射ヘッド31から出射されるレーザ光の走査により形成される第1種透光性開口溝811を多くし、第2領域321の近くでは第2のレーザ光出射ヘッド32から出射されるレーザ光の走査により形成される第2種透光性開口溝821を多くすることで、第1領域311から第2領域321へ外観の急激な変化を伴わず緩やかに移行することができる。
【0047】
上記の配置方法は、3つ以上のレーザ光を走査して透光性開口溝8を形成させる場合についても同様に適用できる。
【0048】
同一のレーザ光出射ヘッドから出射されるレーザ光の走査により隣接して透光性開口溝8が形成される領域311は、レーザ光走査を容易にするために、10本以上の透光性開口溝8が連続して隣接する領域であることが好ましい。特に好ましくは30本以上である。
【0049】
以上の述べてきた透光性薄膜太陽電池1をモジュールにする際には、絶縁透光性基板2側から入射した太陽光等の光の一部が透光性開口溝8を介して透光性薄膜太陽電池1の裏面電極膜5側から見えるように、また耐候性を高めるために、EVA(Ethylene Vinyl Acetate)等の透光性を有する封止樹脂層6と、ガラス、弗素樹脂フィルム等の、色彩のない透光性を有する裏面封止材料7とを用い、ラミネート封入による防湿処理仕上げをすると良い。
【0050】
【実施例】
以下、本発明を比較例とともにいくつかの実施例に基づいて詳細に説明するが、本発明はその趣旨を超えない限り以下の記載例に限定されるものではない。
【0051】
上述した実施の形態に従い、4つのレーザ光出射ヘッドを使用して透光性開口溝8を有する透光性薄膜太陽電池1を作製した。
【0052】
まず、910mm×910mmの面積と5mmの厚さを有するガラス基板2上に、透明導電膜3として、熱CVD法による厚さ約700nmのSnO2膜を製膜した。このSnO2膜3に対して、SnO2膜3側からYAG基本波レーザ光ビームを照射することにより、第1の分離溝21をパターンニング加工形成した。次に、加工により生じた微粉などを洗浄除去した後、ガラス基板2がをプラズマCVD製膜装置に搬入し、厚さ約300nmのアモルファスシリコンからなる光電変換膜4を製膜した。CVD装置からガラス基板2を搬出した後、光電変換膜4にガラス基板2側からYAG第二高調波レーザ光を照射して接続溝23を形成した。
【0053】
次に裏面電極膜5として、厚さ約80nmのZnO膜と厚さ約300nmのAg膜をこの順でスパッタ法で光電変換膜4上に製膜した。さらに、裏面電極膜5にガラス基板2側からYAG第二高調波レーザ光を照射して短冊上に分割し第2の分離溝22を形成した。セル領域と接続領域とをガラス基板2周囲から絶縁するために、ガラス基板2の周辺に沿ってYAGレーザ光を照射して、SnO2膜3、アモルファスシリコン光電変換膜4、及び裏面電極膜5を除去した。以上のようにして、面積がほぼ79.21cm2の光電変換セル10が100個直列接続した集積型薄膜太陽電池を得た。
【0054】
次に、裏面電極膜5を短冊状に分割し第2の分離溝22を形成したのと同様に、4つのレーザ光出射ヘッドを使用して透光性開口溝8を上記集積型薄膜太陽電池に形成した。透光性開口溝8は合計889本、長さ888mmにて1mm間隔で、集積型薄膜太陽電池の集積方向11とほぼ平行に配置した。
【0055】
これら透光性開口溝8の配置方法の概略を図8に示す。この図では、レーザ光出射ヘッド31から出射されるレーザ光の走査により形成される透光性開口溝8を透光性開口溝811、隣接して透光性開口溝811が形成される領域を領域311とし、また領域311と領域321とに挟まれた領域を領域123とした。図9に領域123に配置したレーザ光出射ヘッド31による透光性開口溝811とレーザ光出射ヘッド32による透光性開口溝821との組み合わせ配置パターンを示す。
【0056】
最後に、電力取り出し用の電極を両端の光電変換セル10付近に配し、封止樹脂層6としてEVAと、裏面封止材料7として910mm×910mmの面積と5mmの厚さを有するガラス板とを、裏面電極膜5上に順に重ね合わせた状態で真空ラミネーション装置を用い加熱真空封止を行なった。この透光性薄膜太陽電池1をモジュール化した透光性薄膜太陽電池モジュールの太陽電池性能を測定した。
【0057】
この透光性薄膜太陽電池モジュールの、全ての光電変換セル10、全ての透光性開口溝8、及び全ての接続領域9の合計面積は890mm×888mmである。
【0058】
AM1.5(100mW/cm2)のスペクトル及び光量の光を照射し、25℃で測定した結果、短絡電流0.114A、開放電圧86.5V、曲線因子0.596、最大出力58.8Wという良好な出力が得られた。
【0059】
また、4つの異なるレーザ光出射ヘッドから出射されたレーザビームの状態差に起因する透光性開口溝8の外観上の差異は、図8及び図9に示した透光性開口溝8の配置により大きく抑制され、透光性薄膜太陽電池モジュール全体としての良好な外観を有していた。
【0060】
【発明の効果】
以上説明したように、本発明によれば、優れた透光性を有し、且つ、外観に優れた大面積集積型薄膜太陽電池モジュールを、高生産性で製造可能な、透光性薄膜太陽電池及び透光性薄膜太陽電池モジュールを提供することができる。
【図面の簡単な説明】
【図1】本発明の透光性薄膜太陽電池を説明の概念斜視図
【図2】境界が目視上顕著に認識される加工例の平面図
【図3】本発明の1つの加工例を概念的に示す平面図
【図4】本発明の1つの加工例を概念的に示す平面図
【図5】本発明の1つの加工例を概念的に示す平面図
【図6】本発明の1つの加工例を概念的に示す平面図
【図7】本発明の1つの加工例を概念的に示す平面図
【図8】本発明の1つの加工例を概念的に示す平面図
【図9】図8の一部分の拡大図で、本発明の1つの加工例を概念的に示す平面図
【符号の説明】
1 透光性薄膜太陽電池
2 絶縁透光性基板
3 透明導電膜
4 光電変換膜
5 裏面電極膜
6 封止樹脂層
7 裏面封止材料
8 透光性開口溝
9 接続領域
10 光電変換セル
11 集積方向
12 境界
21 第1の分離溝
22 第2の分離溝
23 接続溝
31 レーザ光出射ヘッド
32 レーザ光出射ヘッド
311 レーザ光出射ヘッド31による形成領域
321 レーザ光出射ヘッド32による形成領域
123 領域311と領域321とに挟まれた領域
811 レーザ光出射ヘッド31による透光性開口溝
821 レーザ光出射ヘッド32による透光性開口溝
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an integrated thin film solar cell and a method for manufacturing the same, and more particularly to a thin film solar cell having translucency and excellent appearance and productivity and a method for manufacturing the same.
[0002]
[Prior art]
In general, a thin film solar cell is formed by sequentially laminating a transparent conductive film, a semiconductor photoelectric conversion film, and a back electrode film on a light-transmitting insulating substrate such as glass using a method such as sputtering or CVD. ZnO, SnO 2 , ITO, etc. are mainly used as the transparent conductive film, and Ag, Al, etc. are mainly used as the metal electrode material. Furthermore, in a large-area thin film solar cell, a plurality of photoelectric conversion cells formed by repeatedly performing patterning such as etching and laser scribing and lamination of each film include a transparent conductive film, a back electrode film, and a connection region. In general, a so-called integrated structure is connected in series.
[0003]
In recent years, depending on the application, such a large-area thin film solar cell has been required to have translucency.
[0004]
As a method for imparting translucency to a large-area thin-film solar cell module having an integrated structure, a transparent conductive film, a photoelectric conversion film made of an amorphous silicon-based semiconductor, and a back electrode film on an insulating translucent substrate There has been proposed a method in which a photoelectric conversion film and a back electrode film are removed by scanning a laminated body while irradiating a laser beam, and an opening groove having translucency is provided (for example, see Patent Document 1). .)
[0005]
[Patent Document 1]
JP 05-251723 A [0006]
[Problems to be solved by the invention]
However, in such a large area translucent thin film solar cell, in order to obtain sufficient translucency, it is necessary to ensure a certain area ratio of the translucent opening groove to the solar cell, and laser light irradiation is performed. However, in the case of forming by a method of removing the photoelectric conversion film and the back electrode film by scanning and providing a translucent opening groove, the load of a so-called laser scribing process for performing laser light irradiation and scanning, that is, the apparatus cost and processing There is a problem that time is excessive in the manufacturing process.
[0007]
[Means for Solving the Problems]
As a result of intensive studies in view of the above problems, the present inventors have made a photoelectric conversion comprising a transparent conductive film, an amorphous and / or a polycrystalline silicon-based semiconductor sequentially laminated on one main surface of an insulating translucent substrate. Film, including a multilayer film including a back electrode film, including a cell region including a plurality of photoelectric conversion cells connected in series, a translucent opening groove from which the photoelectric conversion film and the back electrode have been removed, and a connection region, The translucent thin film solar cell is characterized in that the translucent opening groove is formed by simultaneously irradiating a plurality of laser beams to different portions on the substrate on which the multilayer film is laminated. Thus, it has been found that the load of the laser scribing process can be greatly reduced. By simultaneously irradiating different portions on the substrate with a plurality of laser beams, a plurality of light-transmitting opening grooves are simultaneously formed, and a light-transmitting thin-film solar cell having a large area ratio of the light-transmitting opening grooves is reduced. It can be formed in a short time at a cost.
[0008]
By the way, each translucent opening groove reflects the state of the laser beam which formed each, and has a respectively different form. If the laser beam emission head is the same, the state of the laser beam is constant except for some time fluctuation. Therefore, when a plurality of light-transmitting aperture grooves are formed by simultaneously irradiating a plurality of laser beams as described above, the light-transmitting aperture grooves formed by the laser light emitted from the same laser light emitting head are There is a problem that adjacent areas look different from the surroundings.
[0009]
For this reason, it is effective that the number of regions on the substrate in which the adjacent translucent aperture grooves are formed by the laser beam from the same laser beam emitting head is larger than the number of the plurality of laser beams. is there. In this case, the region where the translucent opening grooves formed by the laser light emitted from the same laser light emitting head are adjacent to each other is separated by at least two regions in one substrate, that is, different from each other. Since they are located apart from each other, there is an effect that the appearance is averaged and uniform. Here, the different region is a region adjacent to a translucent opening groove formed by laser light emitted from the same laser light emitting head, which is different from the above.
[0010]
Furthermore, it is effective that the adjacent translucent opening grooves are formed by laser beams from different laser beam emitting heads. In this case, since there is no region where the transparent aperture groove formed by the laser beam emitted from the same laser beam emitting head is adjacent, the region accompanying the formation of the transparent aperture groove in the substrate As a result, there can be no uneven appearance.
[0011]
In addition, when the light-transmitting opening groove is a thin film solar cell formed in a straight line, the laser scribe process of simultaneously irradiating different portions on the substrate on which the multilayer film is laminated with a plurality of laser beams is high. Productivity is obtained and the appearance is also favorable.
[0012]
Furthermore, a thin film solar cell having a substantially equal spacing between adjacent translucent opening grooves is preferable because a translucent thin film solar cell having an excellent appearance is obtained.
[0013]
In particular, the relationship between the connection region and the translucent opening groove formed linearly is that the translucent opening groove formed linearly is parallel to the series connection direction of the photoelectric conversion cells. From the viewpoint of appearance, actual production and construction. In general, the series connection direction of the photoelectric conversion cells is a direction perpendicular to each linear connection region formed at the end of each photoelectric conversion cell formed in a strip shape.
[0014]
On the multilayer film of the translucent thin film solar cell as described above, a fluororesin or glass having a high transmittance and weather resistance is disposed as a back surface sealing material, thereby providing a highly translucent material with excellent reliability. A translucent thin film solar cell module can be obtained.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings. In the drawings of the present application, the same reference numerals indicate the same or corresponding parts, and redundant description is not repeated.
[0016]
FIG. 1 is a perspective view for explaining a translucent thin film solar cell 1 of the present invention. As shown in FIG. 1, the photoelectric conversion cell 10 of the translucent thin film solar cell 1 has a structure in which a transparent conductive film 3, a photoelectric conversion film 4, and a back electrode film 5 are sequentially stacked on an insulating translucent substrate 2. have. That is, the translucent thin film solar cell 1 photoelectrically converts light incident from the side of the insulating translucent substrate 2 by the photoelectric conversion film 4.
[0017]
Next, each component of this translucent thin film solar cell 1 is demonstrated.
[0018]
As the insulating translucent substrate 2, for example, a glass plate or a transparent resin film can be used. As the glass plate, it is possible to use a float plate glass which can be obtained at a low cost, has high transparency and insulation, and has smooth both main surfaces mainly composed of SiO 2 , Na 2 O and CaO.
[0019]
The transparent conductive film 3 can be composed of a transparent conductive oxide layer such as an ITO film, a SnO 2 film, or a ZnO film. The transparent conductive film 3 can be formed using a known vapor deposition method such as an evaporation method, a CVD method, or a sputtering method.
[0020]
The photoelectric conversion film 4 includes an amorphous and / or polycrystalline silicon-based semiconductor photoelectric conversion layer. For example, a p-type silicon-based semiconductor layer, an i-type silicon-based semiconductor layer, and an n-type silicon from the transparent conductive film 3 side. It has a structure in which system-based semiconductor layers are sequentially stacked. These p-type semiconductor layer, i-type semiconductor layer, and n-type semiconductor layer can all be formed by a plasma CVD method. Moreover, a tandem structure in which these pin structures are stacked in two stages, a triple structure in which three stages are stacked, or the like may be used.
[0021]
The p-type semiconductor layer constituting the photoelectric conversion film 4 can be formed, for example, by doping silicon or a silicon alloy such as silicon carbide or silicon germanium with p-conductivity determining impurity atoms such as boron or aluminum. The i-type semiconductor layer can be formed of an amorphous silicon-based semiconductor material and a crystalline silicon-based semiconductor material, respectively. Examples of such a material include intrinsic semiconductor silicon (such as silicon hydride) and silicon carbide. In addition, silicon alloys such as silicon germanium can be fisted. In addition, if the photoelectric conversion function is sufficiently provided, a weak p-type or weak n-type silicon-based semiconductor material containing a small amount of a conductivity type determining impurity may be used. Furthermore, the n-type semiconductor layer can be formed by doping silicon or a silicon alloy such as silicon carbide or silicon germanium with n-conductivity determining impurity atoms such as phosphorus or nitrogen.
[0022]
The back electrode film 5 not only has a function as an electrode, but also reflects light that enters the photoelectric conversion film 4 from the insulating translucent substrate 2 and arrives at the back electrode film 5 and re-enters the photoelectric conversion film 4. It also functions as a layer. The back electrode film 5 can be formed to a thickness of, for example, about 200 nm to 400 nm by vapor deposition or sputtering using silver, aluminum, or the like.
[0023]
A transparent conductive thin film (not shown) made of a nonmetallic material such as ZnO is provided between the back electrode film 5 and the photoelectric conversion film 4 in order to improve the adhesion between them, for example. be able to.
[0024]
Each photoelectric conversion cell 10 formed on the insulating translucent substrate 2 of the translucent thin-film solar cell 1 is sealed with a back surface sealing material 7 via a sealing resin layer 6 (not shown). For the sealing resin layer 6, a resin capable of bonding the back surface sealing material 7 to the cells 10 is used. As such a resin, for example, EVA (ethylene / vinyl acetate copolymer), PVB (polyvinyl butyral), PIB (polyisobutylene), silicone resin, and the like can be used. Moreover, as the back surface sealing material 7, the translucent insulation excellent in moisture resistance and water resistance like a fluororesin type film like a polyvinyl fluoride film (for example, Tedlar film (trademark name)) or glass. Material is used. These sealing resin layer 6 / back surface sealing material 7 can be simultaneously attached to the back surface side of the translucent thin film solar cell 1 by a vacuum laminating method.
[0025]
As shown in FIG. 1, the translucent thin film solar cell 1 is provided with first and second separation grooves 21 and 22 and a connection groove 23 for dividing the thin film. The first and second separation grooves 21 and 22 and the connection groove 23 are parallel to each other and extend in the upper right direction of the drawing in the perspective view of FIG. Moreover, as shown in FIG. 1, the translucent thin film solar cell 1 is provided with the translucent opening groove 8 which divides | segments the said thin film. The translucent opening grooves 8 are parallel to each other and extend in the left-right direction on the paper surface of the perspective view of FIG.
[0026]
The first separation groove 21 divides the transparent conductive film 3 corresponding to each cell 10, has an opening at the interface between the transparent conductive film 3 and the photoelectric conversion film 4, and has the insulating translucent substrate 2. The surface is the bottom. The first separation groove 21 is embedded with a silicon-based thin film that constitutes the photoelectric conversion film 4 and electrically insulates the adjacent transparent conductive films 3 from each other.
[0027]
The second separation groove 22 is provided at a position away from the first separation groove 21. The second separation groove 22 divides the photoelectric conversion film 4 and the back electrode film 5 corresponding to each cell 10, and has an opening at the interface between the back electrode film 5 and the resin sealing layer 6. The surface of the transparent conductive film 3 is the bottom surface. The second separation groove 22 is buried with the sealing resin layer 6 and electrically insulates the back electrode films 5 between the adjacent cells 10.
[0028]
The connection groove 23 is provided between the first separation groove 21 and the second separation groove 22. The connection groove 23 divides the photoelectric conversion film 4, has an opening at the interface between the photoelectric conversion film 4 and the back electrode film 5, and uses the surface of the transparent conductive film 3 as the bottom surface. The connection groove 23 is embedded with a metal material constituting the back electrode film 5 and electrically connects one back electrode film 5 and the other transparent conductive film 3 of the adjacent cells 10. That is, the connection groove 23 and the metal material filling the connection groove 23 serve to connect the cells 10 juxtaposed on the insulating translucent substrate 2 in series.
[0029]
A region sandwiched between the first and second separation grooves 21 and 22 and including one connection groove 23 is generally called a connection region 9 that does not contribute to photoelectric conversion.
[0030]
The translucent opening groove 8 divides the photoelectric conversion film 4 and the back electrode film 5 in order to impart translucency to the translucent thin film solar cell 1, and the back electrode film 5 and the resin sealing layer 6 has an opening at the interface with the surface of the transparent conductive film 3 as the bottom surface. The translucent opening groove 8 is embedded with the sealing resin layer 6.
[0031]
Then, the manufacturing method of this translucent thin film solar cell 1 is demonstrated.
[0032]
First, after forming the transparent conductive film 3 on one whole surface of the insulating translucent substrate 2, the first separation groove 21 for dividing the transparent conductive film 3 into strips by irradiating, for example, YAG fundamental wave laser light. Form.
[0033]
Next, amorphous silicon and / or polycrystalline silicon is once applied in the order of p-type, i-type, and n-type by the plasma CVD method or the like as the photoelectric conversion film 4 over the transparent conductive film 3 in which the first separation groove 21 is formed. After the above lamination, for example, YAG second harmonic laser light is irradiated to form connection grooves 23 that divide the photoelectric conversion film 4 into strips.
[0034]
Subsequently, after forming a transparent conductive thin film and a metal film as a back electrode film 5 in this order over the photoelectric conversion film 4 in which the connection groove 23 is formed by a sputtering method or the like, for example, YAG second harmonic laser light is insulated and transmitted. A second separation groove 22 that irradiates from the optical substrate 2 side and divides the back electrode film 5 into strips is formed.
[0035]
Thus, the transparent conductive film 3, the photoelectric conversion film 4 made of an amorphous and / or polycrystalline silicon semiconductor, and the back electrode film 5 are sequentially stacked on one main surface of the insulating translucent substrate 2. A so-called integrated thin-film solar cell in which a plurality of strip-shaped photoelectric conversion cells having the same shape, including a multilayer region and including a plurality of series-connected photoelectric conversion cells and a connection region 9 are connected in series is formed. The
[0036]
Finally, the YAG second harmonic laser beam is scanned from the insulating translucent substrate 2 side of the integrated thin-film solar cell formed as described above, and the method is the same as the division of the back electrode film 5 described above. 1 is formed. The area ratio of the translucent opening groove 8 to the cell region is 1/5 to 1/20 of a range in which the area efficiency related to power generation of the translucent thin film solar cell 1 is not extremely reduced .
[0037]
Further, the light-transmitting opening groove 8 for straight linear, may be non-contiguous, in order to improve transparency, it is preferable to provide continuously.
[0038]
Now, in the present invention, the formation of the translucent opening groove 8 of the translucent thin film solar cell 1 is different from each other on the insulating translucent substrate 2 on which the multilayer film is laminated simultaneously. This is done by irradiating the part. When only one laser beam is irradiated to one insulating translucent substrate 2 to form the translucent opening groove 8, this laser scribing process takes a long time and becomes a heavy burden in the manufacturing process. . On the contrary, if the number of laser beams simultaneously irradiated becomes extremely large, the structure of the laser scribing apparatus becomes complicated. Therefore, the number of laser beams simultaneously irradiated on one insulating translucent substrate 2 is preferably 10 or less, more preferably 8 or less.
[0039]
As described above, when a plurality of laser beams are simultaneously irradiated to one insulating translucent substrate 2 to form the translucent opening grooves 8, the adjacent translucent opening grooves 8 emit the same laser light. The number of regions on the substrate 2 formed by the laser light from the head is larger than the number of the plurality of laser lights, that is, the transmission processed using the laser light from the same laser light emitting head. There is a region where two or more optical aperture grooves 8 are continuously adjacent to each other, and it is effective to make the number of the regions larger than the number of laser beams.
[0040]
Hereinafter, description will be made with reference to the plan view of FIG. For example, when the translucent opening groove 8 is formed by scanning laser beams from two different laser beam emitting heads 31 and 32, the laser beam scanning of the laser beam emitting head 31 as shown in FIG. A region 311 in which the light-transmitting opening groove 8 is formed adjacent to each other and a region 312 in which the light-transmitting opening groove 8 is formed adjacent to each other by scanning of the laser light of the laser light emitting head 32 are adjacent to each other. If there is, the boundary 12 between these two regions 311 and 321 is noticeably recognized visually due to the difference in the state of the laser light emitted from the two laser light emitting heads 31 and 32, and the light transmitting property The appearance of the thin film solar cell 1 is greatly impaired.
[0041]
Therefore, as shown in FIG. 3 and FIG. 4, the region 311 in which the translucent opening groove 8 is formed adjacently by the laser beam scanning of the laser beam emitting head 31 and the laser beam scanning of the laser beam emitting head 32. A plurality of adjacent regions 312 in which the light-transmitting opening grooves 8 are formed are arranged on a single insulating light-transmitting substrate 2 with at least one region sandwiching another region. By averaging the differences from 321 as a whole, it is possible to improve the appearance of the translucent thin film solar cell 1.
[0044]
As shown in FIG. 6, a first region 311 in which a translucent opening groove is formed adjacent to the insulating translucent substrate 2 by scanning the laser beam of the first laser beam emitting head 31. When there is a second region 312 in which a translucent opening groove is formed adjacent to each other by the scanning of the laser light of the second laser light emitting head 32, the light is emitted from the first laser light emitting head 31, respectively . alternately a first type translucent opening groove 811 formed by scanning the laser beam, and a second type translucent opening groove 821 formed by scanning of the laser beam emitted from the second laser beam emitting head 32 It is preferable that the first region 311 and the second region 321 exist through the arranged region.
[0045]
Further, a region where the translucent opening groove 8 is formed adjacently by scanning of laser light emitted from the same laser light emitting head, and a transparent formed by scanning of laser light emitted from different laser light emitting heads. By disposing the optical opening groove 8 according to a specific arrangement method, the appearance of the translucent thin film solar cell 1 as a whole can be improved.
[0046]
For example, as shown in FIG. 7, a first transparent light-transmitting groove 8 is formed on a single insulating light-transmissive substrate 2 adjacent to each other by scanning with laser light from the first laser light emitting head 31 . The region 311 and the region sandwiched between the second region 321 in which the translucent opening groove 8 is formed adjacently by the scanning of the laser beam of the second laser beam emitting head 32 exists at a certain distance So in the vicinity of the first region 311 and a number of the first kind light transmitting opening groove 811 formed by the scanning of the laser beam emitted from the first laser beam emitting head 31, in the vicinity of the second region 321 second by increasing the second type translucent open groove 821 which is formed by the scanning of the laser light emitted from the second laser beam emitting head 32, an abrupt change in appearance from the first region 311 to the second area 321 It is possible to move slowly without accompanying.
[0047]
The above arrangement method can be similarly applied to the case where the translucent opening groove 8 is formed by scanning three or more laser beams.
[0048]
In order to facilitate laser beam scanning, the region 311 in which the transparent aperture grooves 8 are formed adjacent to each other by scanning of the laser beam emitted from the same laser beam emitting head has 10 or more transparent apertures. It is preferable that the groove 8 is a continuously adjacent region. Particularly preferred is 30 or more.
[0049]
When the above-described translucent thin film solar cell 1 is made into a module, a part of light such as sunlight incident from the side of the insulating translucent substrate 2 is transmitted through the translucent opening groove 8. In order to be visible from the back electrode film 5 side of the conductive thin-film solar cell 1 and to improve the weather resistance, a sealing resin layer 6 having translucency such as EVA (Ethylene Vinyl Acetate) and the like, glass, fluorine resin film, etc. It is preferable to use a non-colored light-transmitting back surface sealing material 7 and finish the moisture-proof treatment by enclosing the laminate.
[0050]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on some Examples with a comparative example, this invention is not limited to the following description examples, unless the meaning is exceeded.
[0051]
According to the above-described embodiment, a light-transmitting thin film solar cell 1 having a light-transmitting opening groove 8 was manufactured using four laser light emitting heads.
[0052]
First, on the glass substrate 2 having an area of 910 mm × 910 mm and a thickness of 5 mm, an SnO 2 film having a thickness of about 700 nm was formed as a transparent conductive film 3 by a thermal CVD method. By irradiating this SnO 2 film 3 with a YAG fundamental wave laser beam from the SnO 2 film 3 side, a first separation groove 21 was formed by patterning. Next, after the fine powder generated by the processing was washed and removed, the glass substrate 2 was carried into a plasma CVD film forming apparatus, and a photoelectric conversion film 4 made of amorphous silicon having a thickness of about 300 nm was formed. After unloading the glass substrate 2 from the CVD apparatus, the photoelectric conversion film 4 was irradiated with YAG second harmonic laser light from the glass substrate 2 side to form connection grooves 23.
[0053]
Next, as the back electrode film 5, a ZnO film having a thickness of about 80 nm and an Ag film having a thickness of about 300 nm were formed on the photoelectric conversion film 4 in this order by a sputtering method. Furthermore, the back electrode film 5 was irradiated with YAG second harmonic laser light from the glass substrate 2 side, and divided into strips to form second separation grooves 22. In order to insulate the cell region and the connection region from the periphery of the glass substrate 2, YAG laser light is irradiated along the periphery of the glass substrate 2, and the SnO 2 film 3, the amorphous silicon photoelectric conversion film 4, and the back electrode film 5. Was removed. As described above, an integrated thin film solar cell in which 100 photoelectric conversion cells 10 having an area of approximately 79.21 cm 2 were connected in series was obtained.
[0054]
Next, similarly to the case where the back electrode film 5 is divided into strips and the second separation grooves 22 are formed, the translucent opening grooves 8 are formed in the integrated thin film solar cell using four laser light emitting heads. Formed. A total of 889 light-transmitting opening grooves 8 having a length of 888 mm and intervals of 1 mm were arranged substantially parallel to the integration direction 11 of the integrated thin film solar cell.
[0055]
The outline of the arrangement method of these translucent opening grooves 8 is shown in FIG. In this figure, a translucent opening groove 811 formed by scanning a laser beam emitted from the laser beam emitting head 31 is formed as a translucent opening groove 811 and a region where the translucent opening groove 811 is formed adjacently. A region 311 was set, and a region sandwiched between the region 311 and the region 321 was set as a region 123. FIG. 9 shows a combination arrangement pattern of the translucent opening groove 811 by the laser beam emitting head 31 and the translucent opening groove 821 by the laser beam emitting head 32 arranged in the region 123.
[0056]
Finally, an electrode for power extraction is arranged in the vicinity of the photoelectric conversion cells 10 at both ends, EVA as the sealing resin layer 6, and a glass plate having an area of 910 mm × 910 mm and a thickness of 5 mm as the back surface sealing material 7; Were vacuum-sealed using a vacuum lamination device in a state of being sequentially stacked on the back electrode film 5. The solar cell performance of the translucent thin film solar cell module obtained by modularizing the translucent thin film solar cell 1 was measured.
[0057]
The total area of all the photoelectric conversion cells 10, all the translucent opening grooves 8, and all the connection regions 9 of this translucent thin film solar cell module is 890 mm × 888 mm.
[0058]
As a result of irradiating light with a spectrum and light amount of AM 1.5 (100 mW / cm 2 ) and measuring at 25 ° C., the short-circuit current is 0.114 A, the open-circuit voltage is 86.5 V, the fill factor is 0.596, and the maximum output is 58.8 W. Good output was obtained.
[0059]
Further, the difference in appearance of the translucent opening groove 8 due to the difference in the state of the laser beams emitted from four different laser beam emitting heads is the arrangement of the translucent opening groove 8 shown in FIGS. Therefore, the translucent thin film solar cell module as a whole had a good appearance.
[0060]
【The invention's effect】
As described above, according to the present invention, a translucent thin film solar cell capable of producing a large area integrated thin film solar cell module having excellent translucency and excellent in appearance with high productivity. A battery and a translucent thin film solar cell module can be provided.
[Brief description of the drawings]
FIG. 1 is a conceptual perspective view for explaining a translucent thin film solar cell of the present invention. FIG. 2 is a plan view of a processing example in which a boundary is remarkably recognized visually. FIG. 3 is a concept of one processing example of the present invention. Fig. 4 is a plan view conceptually showing one processing example of the present invention. Fig. 5 is a plan view conceptually showing one processing example of the present invention. FIG. 7 is a plan view conceptually showing one processing example of the present invention. FIG. 8 is a plan view conceptually showing one processing example of the present invention. 8 is an enlarged view of a part of FIG. 8, and is a plan view conceptually showing one processing example of the present invention.
DESCRIPTION OF SYMBOLS 1 Translucent thin film solar cell 2 Insulating translucent substrate 3 Transparent conductive film 4 Photoelectric conversion film 5 Back surface electrode film 6 Sealing resin layer 7 Back surface sealing material 8 Translucent opening groove 9 Connection area 10 Photoelectric conversion cell 11 Integration Direction 12 Boundary 21 First separation groove 22 Second separation groove 23 Connection groove 31 Laser light emission head 32 Laser light emission head 311 Formation region 321 by laser light emission head 31 Formation region 123 by laser light emission head 32 Region 311 Region 811 sandwiched between regions 321 Translucent opening groove 821 by laser light emitting head 31 Translucent opening groove by laser light emitting head 32

Claims (3)

絶縁透光性基板の一主面上に、透明導電膜、非晶質及び/又は多結晶シリコン系半導体からなる光電変換膜、裏面電極膜を含む多層膜が順に積層され、直列接続された複数の光電変換セルを含むセル領域と、光電変換膜及び裏面電極膜が除去された透光性開口溝と、接続領域とを含む透光性薄膜太陽電池の製造方法であって、
前記透光性開口溝は、レーザスクライブ工程により光電変換セルの直列接続方向と平行かつ等間隔に直線状に、光電変換膜および裏面電極膜を分割するように形成され、その開口面積は、前記セル領域に対する、面積比率が1/5から1/20であり、
前記レーザスクライブ工程において、第1のレーザ光出射ヘッドおよび第2のレーザ光出射ヘッドを含む2以上の複数のレーザ光出射ヘッドから出射される2以上の複数のレーザ光を、前記多層膜が積層された絶縁透光性基板上のそれぞれ異なる部分に同時に照射することで、前記透光性開口溝が形成され、
第1のレーザ光出射ヘッドのレーザ光の走査により形成された複数の第1種透光性開口溝が隣接する第1領域と、第2のレーザ光出射ヘッドのレーザ光の走査により形成された複数の第2種透光性開口溝が隣接する第2領域とが、一定距離離れて存在し、
前記第1領域と前記第2領域の間に挟まれる領域内において、第1領域の近くでは第1種透光性開口溝を多くし、第2の領域の近くでは第2種透光性開口溝を多くすることで、第1領域と第2領域との透光性の外観上の差異を平均化することを特徴とする、透光性薄膜太陽電池の製造方法。
On one principal surface of the insulating translucent substrate, Toru Akirashirubedenmaku, amorphous and / or polycrystalline silicon comprises a semiconductor photoelectric conversion layer, the multilayer film including a back electrode film are laminated in this order, were connected in series a cell region including a plurality of photoelectric conversion cells, and the photoelectric conversion layer and a back electrode film is removed translucent opening groove, and a connection region to a method for producing a free MuToruhikari thin film solar cells,
The translucent opening groove is formed by a laser scribing process so as to divide the photoelectric conversion film and the back electrode film in a straight line parallel to the series connection direction of the photoelectric conversion cells and at equal intervals. The area ratio to the cell region is 1/5 to 1/20,
In the laser scribing step, the multilayer film stacks two or more laser beams emitted from two or more laser beam emitting heads including the first laser beam emitting head and the second laser beam emitting head. By simultaneously irradiating different portions on the insulated translucent substrate, the translucent opening groove is formed,
A plurality of first-type translucent opening grooves formed by scanning the laser beam of the first laser beam emitting head are formed by scanning the laser beam of the second laser beam emitting head and the adjacent first region. The second region where the plurality of second-type translucent opening grooves are adjacent to each other exists at a certain distance,
Within the region sandwiched between the first region and the second region, the number of first-type translucent opening grooves is increased near the first region, and the second-type translucent opening is disposed near the second region. A method of manufacturing a translucent thin film solar cell , characterized by averaging the translucent appearance difference between the first region and the second region by increasing the number of grooves .
前記第1の領域は第1種透光性開口溝が10本以上隣接して形成され、かつ、前記第2の領域は第2種透光性開口溝が10本以上隣接して形成されることを特徴とする、請求項1記載の透光性薄膜太陽電池の製造方法。The first region is formed with 10 or more first-type translucent opening grooves adjacent to each other, and the second region is formed with 10 or more second-type translucent opening grooves adjacent to each other. The manufacturing method of the translucent thin film solar cell of Claim 1 characterized by the above-mentioned. 請求項1または2記載の方法により透光性薄膜太陽電池を製造し、前記多層膜上に、裏面封止材料としてフッ素系樹脂又はガラスを備える、透光性薄膜太陽電池モジュールの製造方法 To produce a thin film solar by the method of claim 1, wherein, on the multilayer film, Ru with a fluorine-based resin or glass as the back sealing material, manufacturing method of the thin film solar module.
JP2002351769A 2002-12-03 2002-12-03 Translucent thin film solar cell and method for producing translucent thin film solar cell module Expired - Fee Related JP4261169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351769A JP4261169B2 (en) 2002-12-03 2002-12-03 Translucent thin film solar cell and method for producing translucent thin film solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002351769A JP4261169B2 (en) 2002-12-03 2002-12-03 Translucent thin film solar cell and method for producing translucent thin film solar cell module

Publications (2)

Publication Number Publication Date
JP2004186443A JP2004186443A (en) 2004-07-02
JP4261169B2 true JP4261169B2 (en) 2009-04-30

Family

ID=32753590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351769A Expired - Fee Related JP4261169B2 (en) 2002-12-03 2002-12-03 Translucent thin film solar cell and method for producing translucent thin film solar cell module

Country Status (1)

Country Link
JP (1) JP4261169B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4340246B2 (en) 2005-03-07 2009-10-07 シャープ株式会社 Thin film solar cell and manufacturing method thereof
JP2008205063A (en) * 2007-02-19 2008-09-04 Sanyo Electric Co Ltd Solar battery module
DE102007062620A1 (en) * 2007-12-22 2009-07-09 Schott Solar Gmbh Method and device for producing a semitransparent photovoltaic module
US8941160B2 (en) 2009-02-27 2015-01-27 Kyocera Corporation Photoelectric conversion module and method of manufacturing the same
CN102610579B (en) * 2011-01-24 2016-08-31 朱慧珑 The board structure manufactured for semiconductor device and manufacture method thereof
DE112013002119T5 (en) * 2012-04-18 2014-12-31 Guardian Industries Corp. Improved photovoltaic modules for use in vehicle roofs and / or methods of making same

Also Published As

Publication number Publication date
JP2004186443A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
EP1583155A1 (en) Transparent thin-film solar cell module and its manufacturing method
JP5934328B2 (en) Solar cell
JP5400946B2 (en) Integrated thin film photoelectric conversion device and manufacturing method thereof
JP2003273383A (en) Solar cell element and manufacturing method therefor
JP2002261308A (en) Thin-film photoelectric conversion module
US8507310B2 (en) Method for manufacturing thin-film photoelectric conversion device
JP4558646B2 (en) Integrated thin film photoelectric conversion device
JP3655025B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
JP2009289817A (en) Photoelectric conversion device and method of manufacturing the same
JP2002118273A (en) Integrated hybrid thin film photoelectric conversion device
JP4261169B2 (en) Translucent thin film solar cell and method for producing translucent thin film solar cell module
JP4579436B2 (en) Thin film photoelectric conversion module
JPH09162431A (en) Parallel integrated solar battery
JP2005353836A (en) Solar cell element and solar cell module using the same
JP2007059799A (en) Solar cell and its manufacturing method
JP5559913B2 (en) Integrated thin film photoelectric conversion device and manufacturing method thereof
JPH0779004A (en) Thin film solar cell
JP2001267613A (en) Integral thin-film solar battery and its manufacturing method
JP2001068714A (en) Silicon thin film photoelectric conversion module and manufacture thereof
JP2003298090A (en) Solar cell element and its fabricating method
JPH11298020A (en) Thin-film solar cell module
JP2630657B2 (en) Manufacturing method of integrated multilayer amorphous solar cell
JP4358493B2 (en) Solar cell
JP2001085720A (en) Thin-film photoelectric conversion module and manufacturing method of the same
JP4173692B2 (en) Solar cell element and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081111

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4261169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees