Nothing Special   »   [go: up one dir, main page]

JP4258737B2 - 誘導加熱調理器及び誘導加熱調理方法 - Google Patents

誘導加熱調理器及び誘導加熱調理方法 Download PDF

Info

Publication number
JP4258737B2
JP4258737B2 JP2005016026A JP2005016026A JP4258737B2 JP 4258737 B2 JP4258737 B2 JP 4258737B2 JP 2005016026 A JP2005016026 A JP 2005016026A JP 2005016026 A JP2005016026 A JP 2005016026A JP 4258737 B2 JP4258737 B2 JP 4258737B2
Authority
JP
Japan
Prior art keywords
operation mode
bridge operation
full
arms
sets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005016026A
Other languages
English (en)
Other versions
JP2006202705A (ja
Inventor
智 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Home Appliance Co Ltd, Mitsubishi Electric Corp filed Critical Mitsubishi Electric Home Appliance Co Ltd
Priority to JP2005016026A priority Critical patent/JP4258737B2/ja
Publication of JP2006202705A publication Critical patent/JP2006202705A/ja
Application granted granted Critical
Publication of JP4258737B2 publication Critical patent/JP4258737B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Induction Heating Cooking Devices (AREA)

Description

この発明は、一般家庭において使用される誘導加熱調理器及び誘導加熱調理方法に関するものである。
従来の誘導加熱調理器においては、鍋材質判別回路と、ハーフブリッジ回路としても機能するフルブリッジ回路を有するインバータ回路とを有し、鍋材質判別回路の判別結果に応じて、フルブリッジ回路とハーフブリッジ回路とを切り替える切替手段を備え、透磁率の異なる磁性、非磁性いずれの調理鍋も加熱できるようにしている(例えば、特許文献1参照)。
特開平5−251172号公報
上記の誘導加熱調理器では、鍋材質判別回路の判別結果に応じて、フルブリッジ回路とハーフブリッジ回路とを切り替えるので、鍋材質判別後の加熱動作中にインバータ回路の動作モードを切り替えることは無い。しかしながら、同一の調理鍋に対して、高加熱出力から低加熱出力まで広範囲の出力調整を高効率で行うためにフルブリッジ回路とハーフブリッジ回路との切り替えを適用する場合には、加熱動作中にインバータ回路の動作モードを切り替える必要がある。そうすると、そのインバータ回路の動作モード切替に際して、負荷回路への印加電圧が大きく変動し、加熱出力が大きく変動したり、インバータ回路に過電流が流れたりする問題点があった。
この発明は、上述のような問題を解決するためになされたもので、高加熱出力から低加熱出力まで広範囲の出力調整をスムースに行えるように制御性を改善した誘導加熱調理器を提供することを目的としている。
この発明に係る誘導加熱調理器は、交流電源を整流して直流に変換する直流電源回路の出力母線間直列に接続された2のスイッチング素子を含む2のアームにより形成されるフルブリッジ式インバータ回路と、前記フルブリッジ式インバータ回路の出力に接続される加熱コイル及び共振コンデンサを含む負荷回路と、加熱出力を調整するために前記フルブリッジ式インバータ回路のスイッチング素子へ出力する駆動信号を制御するインバータ制御手段とを有し、前記インバータ制御手段は、前記フルブリッジ式インバータ回路を形成する2のアームをそれぞれ高周波で駆動するフルブリッジ動作モードと、一方のアームを高周波で駆動するとともに他方のアームに含まれている前記スイッチング素子のうちいずれか一方をオン、他方をオフとして前記他方のアームを固定駆動するハーフブリッジ動作モードとを切り替え可能にした誘導加熱調理器において、前記フルブリッジ動作モードと前記ハーフブリッジ動作モードとの切り替えを加熱動作停止することなしに行い、前記フルブリッジ動作モードと前記ハーフブリッジ動作モードとの動作モード切替前後で、前記フルブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の通電率を制御し、前記ハーフブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の通電率を制御すること、又は、前記フルブリッジ動作モードにおいては、前記2組のアーム間の位相差を制御し、前記ハーフブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の通電率を制御すること、もしくは、前記フルブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の駆動周波数を制御し、前記ハーフブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の駆動周波数を制御すること、によって前記負荷回路に流れる高周波交流電流が増加しないように前記駆動信号に設定する駆動信号調整手段を有することを特徴とする。
また、この発明に係る誘導加熱調理方法は、フルブリッジ式インバータ回路を形成する2のアームをそれぞれ高周波で駆動するフルブリッジ動作モードと、一方のアームを高周波で駆動するとともに他方のアームに含まれている前記スイッチング素子のうちいずれか一方をオン、他方をオフとして他方のアームを固定駆動するハーフブリッジ動作モードとを切り替え可能にした誘導加熱調理方法において、前記フルブリッジ動作モードと前記ハーフブリッジ動作モードとの切り替えを加熱動作停止することなしに行い、前記フルブリッジ動作モードと前記ハーフブリッジ動作モードとの動作モード切替前後で、前記フルブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の通電率を制御し、前記ハーフブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の通電率を制御すること、又は、前記フルブリッジ動作モードにおいては、前記2組のアーム間の位相差を制御し、前記ハーフブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の通電率を制御すること、もしくは、前記フルブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の駆動周波数を制御し、前記ハーフブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の駆動周波数を制御すること、によって前記負荷回路に流れる高周波交流電流が増加しないように前記駆動信号に設定することを特徴とする。
この発明は、交流電源を整流して直流に変換する直流電源回路の出力母線間直列に接続された2のスイッチング素子を含む2のアームにより形成されるフルブリッジ式インバータ回路と、前記フルブリッジ式インバータ回路の出力に接続される加熱コイル及び共振コンデンサを含む負荷回路と、加熱出力を調整するために前記フルブリッジ式インバータ回路のスイッチング素子へ出力する駆動信号を制御するインバータ制御手段とを有し、前記インバータ制御手段は、前記フルブリッジ式インバータ回路を形成する2のアームをそれぞれ高周波で駆動するフルブリッジ動作モードと、一方のアームを高周波で駆動するとともに他方のアームに含まれている前記スイッチング素子のうちいずれか一方をオン、他方をオフとして前記他方のアームを固定駆動するハーフブリッジ動作モードとを切り替え可能にした誘導加熱調理器において、前記フルブリッジ動作モードと前記ハーフブリッジ動作モードとの切り替えを加熱動作停止することなしに行い、前記フルブリッジ動作モードと前記ハーフブリッジ動作モードとの動作モード切替前後で、前記フルブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の通電率を制御し、前記ハーフブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の通電率を制御すること、又は、前記フルブリッジ動作モードにおいては、前記2組のアーム間の位相差を制御し、前記ハーフブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の通電率を制御すること、もしくは、前記フルブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の駆動周波数を制御し、前記ハーフブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の駆動周波数を制御すること、によって前記負荷回路に流れる高周波交流電流が増加しないように前記駆動信号に設定する駆動信号調整手段を有するので、負荷回路の加熱コイルと磁気結合している調理鍋への加熱出力も略同等になり、スムースに加熱調整を行うことができる。また、出力電流も動作モード切替前と同等であるので、動作モード切替時にインバータ回路に過電流は流れない。
また、この発明は、フルブリッジ式インバータ回路を形成する2のアームをそれぞれ高周波で駆動するフルブリッジ動作モードと、一方のアームを高周波で駆動するとともに他方のアームに含まれている前記スイッチング素子のうちいずれか一方をオン、他方をオフとして他方のアームを固定駆動するハーフブリッジ動作モードとを切り替え可能にした誘導加熱調理方法において、前記フルブリッジ動作モードと前記ハーフブリッジ動作モードとの切り替えを加熱動作停止することなしに行い、前記フルブリッジ動作モードと前記ハーフブリッジ動作モードとの動作モード切替前後で、前記フルブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の通電率を制御し、前記ハーフブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の通電率を制御すること、又は、前記フルブリッジ動作モードにおいては、前記2組のアーム間の位相差を制御し、前記ハーフブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の通電率を制御すること、もしくは、前記フルブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の駆動周波数を制御し、前記ハーフブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の駆動周波数を制御すること、によって前記負荷回路に流れる高周波交流電流が増加しないように前記駆動信号に設定するので、負荷回路の加熱コイルと磁気結合している調理鍋への加熱出力も略同等になり、スムースに加熱調整を行うことが可能になる。
以下、本発明の実施の形態に係る誘導加熱調理器について図面に基づいて説明する。
実施の形態1.
図1は、実施の形態1に係る誘導加熱調理器50の電気的な構成を示すブロック図である。誘導加熱調理器50は、交流電源1に接続されており、交流電源1から供給される電力は直流電源回路2で直流電力に変換される。
直流電源回路2は、交流電力を整流する整流ダイオードブリッジ3と、リアクトル4と、平滑コンデンサ5とで構成されている。そして直流電源回路2へ入力される入力電力は、入力電流検出手段6と入力電圧検出手段7とによって検出される。電圧変動検出手段8は、交流電源1の交流電圧に同期した直流電圧変動を検出し、直流電圧が低下したタイミングで同期信号を出力するものである。直流電源回路2で直流電力に変換された電力はインバータ回路9に供給される。
インバータ回路9は、直流電源回路2の正負母線間に直列に接続された2つのスイッチング素子(IGBT)と、そのスイッチング素子とそれぞれ逆並列に接続されたダイオードとによって形成されるアーム2組(以下、2組のアームを、U相アーム10とV相アーム11と称する。また、各アームの正母線側スイッチング素子を上スイッチと、負母線側スイッチング素子を下スイッチとそれぞれ称する。)で形成されている。
U相アーム10は、上スイッチ12と、下スイッチ13と、上スイッチ12と逆並列に接続された上ダイオード14と、下スイッチ13と逆並列に接続された下ダイオード15とで構成されている。また、V相アーム11は、上スイッチ16と、下スイッチ17と、上スイッチ16と逆並列に接続された上ダイオード18と、下スイッチ17と逆並列に接続された下ダイオード19とで構成されている。
U相アーム10を構成する上スイッチ12と下スイッチ13とは、U相駆動回路20から出力される駆動信号によりオン/オフ駆動されるようになっている。また、V相アーム12を構成する上スイッチ16と下スイッチ17とは、V相駆動回路21から出力される駆動信号によりオン/オフ駆動されるようになっている。U相駆動回路20は、U相アーム10の上スイッチ12をオンさせている間は下スイッチ13をオフにし、上スイッチ12をオフさせている間は下スイッチ13をオンにするというように、上スイッチ12と下スイッチ13とを交互にオン/オフする駆動信号を出力するものである。また、V相駆動回路21も同様に、V相アーム11の上スイッチ16と下スイッチ17とを交互にオン/オフする駆動信号を出力するものである。
インバータ回路9における2つのアームの出力点間には、加熱コイル22と共振コンデンサ23とで構成されている負荷回路24が接続されている。加熱コイル22と共振コンデンサ23とは、直列共振回路を形成し共振周波数を有するが、インバータ回路9は、その共振周波数よりも高い周波数で駆動されるので、負荷回路24は誘導性特性を有するようになっている。
加熱出力制御手段25は、インバータ制御手段であるとともに誘導加熱調理器50全体を制御する機能を果たし、火力設定手段26において使用者が設定した火力指示に基づき、入力電流検出手段6と入力電圧検出手段7とからの検出値を使用して、U相アーム駆動回路20とV相アーム駆動回路21との両方から高周波駆動信号を出力させたフルブリッジ動作モードで、あるいは一方のアームを固定駆動とし、他方のアームから高周波駆動信号を出力させたハーフブリッジ動作モードで加熱出力を制御するようになっている。
駆動信号調整手段27は、インバータ回路9の動作モードをフルブリッジ動作モードからハーフブリッジ動作モードに切り替える場合や、ハーフブリッジ動作モードからフルブリッジ動作モードに切り替える場合に、その駆動信号調整値を生成する機能を有している。
図2は、誘導加熱調理器50のインバータ回路9のフルブリッジ動作モードにおけるスイッチング及び負荷回路24への印加電圧を示すタイミングチャートである。このフルブリッジ動作モードでは、インバータ回路9のU相アーム10とV相アーム11とは、180度位相をずらした状態であり、それぞれ一定周波数で高周波駆動されており、各アームの上スイッチ12、16と下スイッチ13、19との通電率(オン時間比)を調整することにより加熱出力を制御するようになっている。図2(a)は、各アームの上スイッチ12、16と、下スイッチ13、19との通電率が共にほぼ50%で最大出力状態になることを示している。また、図2(b)は、上スイッチ12、16の通電率を50%より小さくして加熱出力を抑制している状態を示している。
図3は、誘導加熱調理器50のインバータ回路9のハーフブリッジ動作モードにおけるスイッチング及び負荷回路24への印加電圧を示すタイミングチャートである。このハーフブリッジ動作モードでは、インバータ回路9のU相アーム10のみ高周波駆動され、V相アーム11は固定駆動(上スイッチ16オフ、下スイッチ19オン)されている。図3(a)は、U相アーム10の上スイッチ12と下スイッチ13との通電率を共に50%としたハーフブリッジ動作モードでの最大出力状態を示している。図3(b)は、U相アーム10の上スイッチ12の通電率を50%より小さく、下スイッチ13の通電率を50%より大きくして加熱出力を抑制した状態を示している。
次に、図4を用いてフルブリッジ動作モードと、ハーフブリッジ動作モードとの負荷回路24への印加電圧の比較について説明する。一定の周波数で駆動される誘導加熱調理器50において、加熱出力は加熱コイル22に流れる高周波電流の2乗にほぼ比例し、加熱コイル22に流れる電流は印加電圧に比例するので、実施の形態1では、上記のように通電率を制御することにより負荷回路24への印加電圧を調整し、加熱出力を制御している。
図4(a)は、フルブリッジ動作モードにおける負荷回路24への印加電圧波形を示しており、Tは高周波駆動周期、Δtは各アームの上スイッチ12、16の通電時間(駆動周期当たりの時間)、Eは直流電源回路2の正負母線間電圧をそれぞれ示している。期間I(Δt)では、U相アーム10の上スイッチ12がオン、V相アーム11の下スイッチ17がオンしている期間で、負荷回路24には電圧Eが印加されていることを示している。
期間III(Δt)では、U相アーム10の下スイッチ13がオン、V相アーム11の上スイッチ16がオンしている期間で、負荷回路24には電圧(−E)が印加されていることを示してしる。また、期間IIと期間IVとは、U相アーム10、V相アーム11ともに下スイッチ13、17がオンしている期間で、負荷回路24には電圧は印加されていないことを示している(負荷回路24の印加電圧は、V相アーム11の出力点電位を基準として、U相アーム10の出力点電位を示している)。したがって、負荷回路24に印加されている電圧実効値(Vfb)は、以下の式(1)で表される。
Figure 0004258737
ここで通電率を最大(50%)にすると、ΔtはTの2分の1なので、最大電圧実効値(maxVfb)は、以下の式(2)で表すことができる。
Figure 0004258737
このように、フルブリッジ動作モードでは、最大E(正負母線間電圧)の電圧印加が可能となっている。
図4(b)、(c)は、ハーフブリッジ動作モード(U相アーム10を高周波駆動、V相アーム11を固定駆動とする)における負荷回路24への印加電圧波形を示しており、ΔTはU相アーム10の上スイッチ12の通電時間(駆動周期当たりの時間)、Vavは印加電圧の直流成分をそれぞれ示している。印加電圧直流成分Vavは、U相アーム10の通電率(式(3))に比例し、以下の式(4)で表すことができる。
Figure 0004258737
Figure 0004258737
期間V(式(3))では、U相アーム10の上スイッチ12がオン、V相アーム11の下スイッチ17がオンしている状態で、負荷回路24に印加されている高周波(交流)電圧成分は式(5)で表される。
Figure 0004258737
期間VI(式(6))では、U相アーム10、V相アーム11ともに下スイッチ13、17がオンしている状態で、負荷回路24に印加されている高周波(交流)電圧成分は式(7)で表される。したがって、負荷回路24に印加されている電圧実効値(Vhb)は、式(8)で表すことができる。
Figure 0004258737
Figure 0004258737
Figure 0004258737
ここで、通電率を最大(50%)にすると、ΔTはTの2分の1なので、最大電圧実効値(maxVhb)は、以下の式(9)で表すことができる。
Figure 0004258737
このように、ハーフブリッジ動作モードでは、最大でEの2分の1の電圧印加が可能となっている。
フルブリッジ動作モードの負荷回路印加電圧(Vfb)と、ハーフブリッジ動作モードの負荷回路印加電圧(Vhb)とが同等になる通電率の関係は、式(1)と式(8)とにより、以下の式(10)で表すことができる。そうすると、式(11)の関係が成立する。
Figure 0004258737
Figure 0004258737
したがって、図5に示すようにフルブリッジ動作モードではフルブリッジ動作モードの通電率をハーフブリッジ動作モードの通電率の1/4〜1/2倍にすれば負荷回路24に同等の印加電圧を加えることができる。逆にハーフブリッジ動作モードではフルブリッジ動作モードの通電率の2〜4倍にすれば負荷回路24に同等の印加電圧を加えることができる。
図6は、設定火力に応じてフルブリッジ動作モードとハーフブリッジ動作モードとを切り替える加熱出力制御処理の流れの一例を示すフローチャートである。図6に基づいて、加熱出力制御処理の流れを説明する。最初にフルブリッジ動作モードであるかハーフブリッジ動作モードであるかの動作モード判定を行なう(ステップS101)。フルブリッジ動作モードであった場合には(ステップS101;フルブリッジ)、火力設定手段26で使用者に設定された設定火力とハーフブリッジ動作モード切替火力(HB切替火力)とを比較する(ステップS102)。
設定火力がHB切替火力以下の場合には(ステップS102;≦)、動作モードをハーフブリッジ動作モードに切り替える(ステップS103)。そして、上スイッチ通電率をA倍(但し、A倍後の上スイッチ通電率は50%以下とする)とする(ステップS104)。Aは、2〜4の数で、式(11)の関係をおおよそ満たす値とになるように駆動信号調整手段27が生成した駆動信号調整値である。ステップS103、ステップS104によるインバータ動作状態切替時のスイッチング及び負荷回路24への印加電圧の変化を示すタイミングチャートを図7(a)に示す。
一方、動作モードがハーフブリッジ動作モードであった場合には(ステップS101;ハーフブリッジ)、設定火力とフルブリッジ動作モード切替火力(FB切替火力)とを比較する(ステップS105)。設定火力がFB切替火力以上であれば(ステップS105;≧)、動作モードをフルブリッジ動作モードに切り替える(ステップS106)。そして、上スイッチ通電率をB倍とする(ステップS107)。Bは、1/4〜1/2の数で、式(11)の関係をおおよそ満たす値になるように駆動信号調整手段27が生成した駆動信号調整値である。ステップS106、ステップS107のハーフブリッジ動作モードからフルブリッジ動作モードへのインバータ動作状態切替時のスイッチング及び負荷回路24への印加電圧の変化を示すタイミングチャートを図7(b)に示す。
以上のステップで動作モードが確定すると、設定火力と入力電流検出手段6および入力電圧検出手段7の検出値から求めた入力電力とを比較する(ステップS108)。入力電力が小さい場合には(ステップS108;>)、上スイッチ通電率が上限値(50%)未満であるか判断する(ステップS109)。そして、通電率が上限値未満であれば(ステップS109;<)、上スイッチ通電率を増加させる(ステップS110)。設定火力より入力電力の方が大きい場合には(ステップS108;<)、上スイッチ通電率を下限値と比較する(ステップS111)。そして、下限値より大きい場合には(ステップS111;>)、上スイッチ通電率を減少させる(ステップS112)。
なお、加熱出力制御手段25によるインバータ回路動作モードの切替タイミングは、電圧変動検出手段8からの出力信号に同期して切り替えるものとする。こうすることにより、交流電源1の交流電圧に同期して変動する直流電源回路2の出力電圧が低下したタイミングでインバータ回路動作モードを切り替えることができる。
実施の形態1では、負荷回路24への印加電圧の実効値がインバータ回路動作モード切替時に略同等に制御する例を示したが、加熱コイル22と共振コンデンサ23との共振周波数より高い周波数でインバータ回路9を駆動するので、負荷回路24は誘導性の負荷特性を有しており、印加電圧の高周波成分については負荷回路24に電流が流れにくいため、印加電圧波形を駆動周波数でフーリエ級数展開し、その一次成分の実行値がほぼ同等となるように制御してもよい。
また、実施の形態1では、フルブリッジ動作モードからハーフブリッジ動作モードに切り替える場合には上スイッチ通電率を2〜4倍にし、ハーフブリッジ動作モードからフルブリッジ動作モードに切り替える場合には上スイッチ通電率を1/4〜1/2倍にしたが、フルブリッジ動作モードからハーフブリッジ動作モードへの切替時には通電率を変更せず、また、ハーフブリッジ動作モードからフルブリッジ動作モードへ切替時には通電率を1/4倍にすることによって、動作モード切替時に出力電流が増加しないようにして過電流の発生を防止するようにしても構わない。
以上のように、フルブリッジ動作モードとハーフブリッジ動作モードとを切り替える際に、負荷回路24への印加電圧を略同等に調整することによって、インバータ回路動作モード切替時の過電流発生を防ぎ、高加熱出力から低加熱出力までスムースな火力調整をすることができる。また、商用交流電源の交流電圧に同期した直流電源電圧低下時にフルブリッジ動作モードとハーフブリッジ動作モードとを切り替えることにより、切替時に負荷回路24の共振コンデンサ23の直流成分が小さく、過渡的な不安定な動作状態を発生しない装置を得ることが可能となる。
実施の形態2.
実施の形態2に係る誘導加熱調理器50aは、インバータ回路9のフルブリッジ動作モードにおいてはアーム間位相差制御により、また、インバータ回路9のハーフブリッジ動作モードにおいては通電率制御により加熱出力制御を行うものである。誘導加熱調理器50aは、実施の形態1に係る誘導加熱調理器50の回路構成と同様であるので、回路構成の説明は省略する。
図8は、誘導加熱調理器50aのインバータ回路9のフルブリッジ動作モードにおけるスイッチングおよび負荷回路24への印加電圧を示すタイミングチャートである。誘導加熱調理器50aは、インバータ回路9の各アームの上下スイッチの通電率を50%とし、U相アーム10とV相アーム11の駆動位相差を調整することにより加熱出力を制御するようになっている。図8(a)は、U相アーム10とV相アーム11の位相差がほぼ180度で最大出力状態となることを示している。また、図8(b)は、アーム間位相差を小さくして加熱出力を抑制している状態を示している。なお、ハーフブリッジ動作モードは実施の形態1で示した図3と同様であるので、説明を省略する。
図9は、誘導加熱調理器50aの加熱出力制御手段26が行う加熱出力制御処理の流れの一例を示すフローチャートである。図9に基づいて、この加熱出力制御処理の流れを説明する。最初にフルブリッジ動作モードであるかハーフブリッジ動作モードであるかの動作モード判定を行なう(ステップS201)。動作モードがフルブリッジ動作モードであった場合には(ステップS201;フルブリッジ)、火力設定手段26で使用者に設定された設定火力と、入力電流検出手段6および入力電圧検出手段7の検出値から求めた入力電力とを比較する(ステップS202)。そして、入力電力が小さい場合には(ステップS202;>)、アーム間位相差が上限(180度(半周期))未満であるか判断する(ステップS203)。アーム間位相差が上限未満であれば(ステップS203;<)、アーム間位相差を拡大させる(ステップS204)。
設定火力より入力電力の方が大きい場合には(ステップS202;<)、アーム間位相差が下限値より大きいかどうか判断する(ステップS205)。このアーム間位相差の下限値は、ターンオン時に負荷回路24に流れる電流の位相等との関係でスイッチング素子に過大電流が流れて破壊してしまわないレベルに設定するものとする。アーム間位相差が下限値より大きい場合には(ステップS205;>)、アーム間位相差を縮小させる(ステップS206)。アーム間位相差が下限値に到達していた場合には(ステップS205;≦)、動作モードをハーフブリッジ動作モードに切り替えてV相アーム11の上スイッチ16をオフ、下スイッチ17をオン状態に固定する(ステップS207)。そして、U相アーム10の上スイッチ12の通電率をアーム間位相差の2倍(但し、通電率の上限は50%)にする(ステップS208)。
動作モードがハーフブリッジモードあった場合にも(ステップS201;ハーフブリッジ)、火力設定手段26で使用者に設定された設定火力と、入力電流検出手段6および入力電圧検出手段7の検出値から求めた入力電力とを比較する(ステップS209)。そして、入力電力が小さい場合には(ステップS209;>)、上スイッチ通電率が上限(50%)未満であるか判断する(ステップS210)。通電率が上限未満であれば(ステップS210;<)、上スイッチ通電率をアップする(ステップS211)。上スイッチ通電率が上限値に到達していた場合には(ステップS210;≧)、動作モードをフルブリッジ動作モードに切り替え(ステップS212)、アーム間位相差を上スイッチ通電率の1/4倍にする(ステップS213)。
設定火力より入力電力の方が大きい場合には(ステップS209;<)、上スイッチ通電率が下限値より大きいか判断する(ステップS214)。この上スイッチ通電率の下限値は、アーム間位相差の下限値と同様にU相アーム10の上スイッチターンオン時に負荷回路24に流れる電流の位相等との関係でスイッチング素子に過大電流が流れて破壊してしまわないレベルに設定するものとする。上スイッチ通電率が下限値より大きい場合には(ステップS214;>)、上スイッチ通電率をダウンする(ステップS215)。
なお、実施の形態2では、インバータ回路9をフルブリッジ動作モードからハーフブリッジ動作モードに切り替える場合には、上スイッチ通電率を2倍にし(図10(a))、ハーフブリッジ動作モードからフルブリッジ動作モードに切り替える場合には、上スイッチ通電率を1/4にした(図10(b))が、インバータ回路9の動作モード切替時には、その切替前後で負荷回路24への印加電圧実効値が略同等となるように式(11)を成立させるようにするとよい。このように、上スイッチ通電率やアーム間位相差を設定すれば、動作モード切替時における出力電力変動を小さくすることが可能となる。
また、負荷回路24への印加電圧実効値を動作モード切替時に略同等に制御するのではなく、印加電圧波形を駆動周波数でフーリエ級数展開し、その一次成分の実行値がほぼ同等となるように制御しても構わない。
以上のように、高加熱出力時にはフルブリッジ動作モード及びアーム間位相差制御により加熱出力制御を行い、低加熱出力時にはハーフブリッジ動作モード及び通電率制御により加熱出力を制御する誘導加熱調理器50aにおいて、インバータ回路9の動作モード切替時に負荷回路24への印加電圧を増加させないように制御するので、切替時に出力過電流が流れず、安定して動作する装置を得ることができる。また、動作モード切替時に負荷回路24の印加電圧を略同等に制御した場合には、加熱出力も動作モード切替前後で同等となり、高加熱出力から低加熱出力までスムースな火力調整が可能な装置を得ることができる。
実施の形態3.
実施の形態3に係る誘導加熱調理器50bは、加熱出力制御をインバータ回路9の周波数制御により行うものである。図11は、誘導加熱調理器50bの電気的な構成を示すブロック図である。図11に基づいて、誘導加熱調理器50bの構成を説明する。なお、実施の形態1と同一または相当部分については同じ符号を付し、説明を省略するものとする。
出力電流検出手段28は、加熱コイル22と共振コンデンサ23とで構成される負荷回路24に流れる電流を検出するものである。データ記憶手段29は、フルブリッジ動作モードとハーフブリッジ動作モードとの切替時に動作モード切替前と同等の出力電流になる駆動周波数を得るための動作モード切替用データを記憶するものである。このデータは、予めフルブリッジ動作モードおよびハーフブリッジ動作モードで、各種調理鍋を使用して各種周波数で駆動し、その駆動周波数と入力電流、出力電流の測定値から生成したもので、加熱動作時に駆動周波数と入力電流検出手段6および出力電流検出手段28で検出した入力電流と、出力電流との値から使用している調理鍋の材質や大きさを判定し、動作モード切替時に略同等の出力電流になる駆動周波数を参照できるようにしたものである。
周波数制御では、インバータ回路9を加熱コイル22と共振コンデンサ23とで構成される負荷回路24の共振周波数より高い周波数で駆動するが、その駆動周波数を負荷回路24の共振周波数に近づけたり遠ざけたりして出力電流を調整し、加熱出力を制御するようになっている。インバータ回路9で発生する損失は、スイッチ導通時におけるオン損失と、ターンオン/タ−ンオフ時に発生するスイッチング損失とがあるが、低加熱出力にするために駆動周波数を高くした場合には、スイッチング回数が増加してスイッチング損失が増大して効率が悪化する。そこで、低加熱出力の場合にはハーフブリッジ動作モードに切り替えて駆動周波数をあまり高くしないようにしている。
図12は、誘導加熱調理器50bのインバータ回路9のフルブリッジ動作モードにおけるスイッチングおよび負荷回路24への印加電圧を示すタイミングチャートである。実施の形態3では、インバータ回路9のU相アーム10とV相アーム11を180度位相をずらし、各アームの上下スイッチの通電率を50%にした状態で高周波駆動されており、その高周波駆動の駆動周波数を調整することにより加熱出力を制御するようになっている。図12(a)は、各アームの上スイッチ12及び16、下スイッチ13及び17の駆動周波数を下限周波数にした最大出力状態を示している。また、図12(b)は、駆動周波数を下限周波数より高くして加熱出力を抑制している状態を示している。
図13は、インバータ回路9のハーフブリッジ動作モードにおけるスイッチングおよび負荷回路24への印加電圧を示すタイミングチャートである。この動作状態では、インバータ回路9のU相アーム10のみ高周波駆動され、V相アーム11は固定駆動(上スイッチオフ、下スイッチオン)されている。図13(a)は、U相アーム10の駆動周波数を下限周波数としたハーフブリッジ動作モードでの最大出力状態を示している。また、図13(b)は、U相アーム10の駆動周波数を高くして加熱出力を抑制した状態を示している。
図14は、加熱出力制御手段25がフルブリッジ動作モードとハーフブリッジ動作モードとを切り替えながら周波数制御により行なう加熱出力制御処理の流れの一例を示すフローチャートである。図14に基づいて、この加熱出力制御処理の流れを説明する。最初にフルブリッジ動作モードであるかハーフブリッジ動作モードであるかの動作モード判定を行なう(ステップS301)。フルブリッジ動作モード駆動であった場合には(ステップS301;フルブリッジ)、火力設定手段26で使用者に設定された設定火力と、入力電流検出手段6および入力電圧検出手段7の検出値から求めた入力電力とを比較する(ステップS302)。
入力電力が設定火力より小さい場合には(ステップS302;>)、インバータ駆動周波数が下限駆動周波数より高周波数であるか判断する(ステップS303)。そして、インバータ駆動周波数が下限駆動周波数より高周波数であれば(ステップS303;>)、インバータ駆動周波数をダウンする(ステップS304)。入力電力が設定火力より大きい場合には(ステップS302;<)、インバータ駆動周波数が上限駆動周波数より低いか判断する(ステップS305)。
インバータ駆動周波数は、高周波化するとスイッチング損失が増え効率が低下するため、上限値をあらかじめ設定している。インバータ駆動周波数が上限駆動周波数より低い場合には(ステップS305;<)、インバータ駆動周波数をアップする(ステップS306)。インバータ駆動周波数が上限駆動周波数に到達していた場合には(ステップS305;≧)、動作モードをハーフブリッジ動作モードに切り替え、入力電流検出手段6および出力電流検出手段28の値から動作モード切替用データ29を参照して駆動周波数を変更する(ステップS307)。
このときのフルブリッジ動作モードからハーフブリッジ動作モードへのインバータ動作状態切替時のスイッチングと負荷回路24への印加電圧の変化を図15(a1)に示す。なお、フルブリッジ動作モードからハーフブリッジ動作モードに切り替えた場合を図15(a2)に示す。このように、インバータ駆動周波数等を変更せずに切り替えた場合には、出力電流は減少してインバータ回路9の出力に過電流が流れることは無い。
一方、動作モードがハーフブリッジ動作モードあった場合にも(ステップS301;ハーフブリッジ)、火力設定手段26で使用者に設定された設定火力と、入力電流検出手段6および入力電圧検出手段7の検出値から求めた入力電力とを比較する(ステップS308)。そして、入力電力が設定火力より小さい場合には(ステップS308;>)、インバータ駆動周波数が下限駆動周波数より高周波数であるか判断する(ステップS309)。下限駆動周波数より高周波数である場合には(ステップS309;>)、インバータ駆動周波数をダウンする(ステップS310)。
インバータ駆動周波数が下限駆動周波数に到達していた場合には(ステップS309;≦)、フルブリッジ動作モードに切り替え、入力電流と出力電流との値から動作モード切替用データ29を参照して駆動周波数を変更する(ステップS311)。ハーフブリッジ動作モードからフルブリッジ動作モードへのインバータ動作状態切替時のスイッチングと負荷回路24への印加電圧の変化を図15(b)に示す。
入力電力が設定火力より大きい場合には(ステップS308;<)、インバータ駆動周波数が上限駆動周波数より低周波数であるか判断する(ステップS312)。そして、インバータ駆動周波数が上限駆動周波数より低周波数であれば(ステップS312;<)、インバータ駆動周波数をアップする(ステップS313)。
以上のように、周波数制御により加熱出力制御を行う場合において、高加熱出力時にはフルブリッジ動作モード、低加熱出力時にはハーフブリッジ動作モードに切り替えることにより、低加熱出力時にも比較的低い駆動周波数で加熱出力制御を行うことができ、スイッチング損失を低減した装置を得ることができる。また、インバータ駆動周波数と入力電流と出力電流とから調理鍋の材質や鍋径を判別し、動作モード切替時に大きな出力電流の変動が発生しない周波数に変換するようにしたので、高加熱出力から低加熱出力まで、高効率かつスムースな加熱出力調整が可能な装置を得ることができる。
実施の形態4.
実施の形態4に係る誘導加熱調理器50cは、加熱開始時にインバータ回路9をハーフブリッジ動作モードで起動して鍋判定処理を開始し、その後フルブリッジ動作モードに切り替えるものである。図16は、誘導加熱調理器50cの電気的な構成を示すブロック図である。なお、誘導加熱調理器50または誘導加熱調理器50bと同一または相当部分については同じ符号を付し、説明を省略するものとする。
鍋判定制御用データ記憶手段30は、加熱開始時に行う鍋判定時のインバータ回路駆動データ(図18、図19)や、鍋判定に使用するデータ(図20、図21)を記憶するものである。出力加熱制御手段25は、鍋判定制御用データ記憶手段30に記憶されているインバータ回路駆動データや、鍋判定に使用するデータに基づき鍋判定処理を実行するようになっている。
図17は、誘導加熱調理器50cの鍋判定処理の流れの一例を示すフローチャートである。図18及び図19は、鍋判定時のインバータ回路9におけるスイッチングの状態を示すタイミングチャートである。図20及び図21は、鍋判定に使用するデータを示す説明図である。これらの図に基づいて、鍋判定処理について説明する。
図18(a)は、起動時のスイッチング状態を示している。このときの動作モードは、ハーフブリッジ動作モードであり、駆動周波数をf1とする。図18(b)は、ハーフブリッジ動作モードで最初に鍋判定をする時のスイッチング状態を示している。このときの駆動周波数をf2とし、f1より低周波とする。図18(c)は、ハーフブリッジ動作モードで2回目の鍋判定をする時のスイッチング状態を示している。このときの駆動周波数をf3とし、f2よりさらに低周波とする。
図19(a)は、ハーフブリッジ動作モードからフルブリッジ動作モードに切り替えたときのスイッチング状態を示している。このときの駆動周波数は、f3と同様のままである。そして、アーム間位相差を調整して出力電流が大きく変動しないように設定している。このときのアーム間位相差をPh1とする。図19(b)は、フルブリッジ動作モードで3回目の鍋判定をする時のスイッチング状態を示している。このときのアーム間位相差をPh1より広げた状態であるPh2とする。図19(c)は、最後の鍋判定をする時のスイッチング状態を示している。このときのアーム間位相差をPh2よりさらに広げた状態であるPh3とする。
図20(a)、(b)及び図21(a)、(b)は、それぞれ1〜4回目の鍋判定用データを示しているものであり、それぞれの時点で検出する入力電流と出力電流との値から、アルミ鍋のような低効率の材質で加熱できない鍋(不適正鍋1)や、加熱すべきでないフォークやスプーン等の小物(不適正鍋2)や、加熱を行う磁性鍋及び非磁性鍋等を判別するためのものである。
図17に基づいて鍋判定処理の流れを説明する。加熱開始時にインバータ回路9をハーフブリッジ動作モード、周波数f1で起動する(ステップS401)。その後、駆動周波数を周波数f2まで下げる(ステップS402)。そして、入力電流検出手段6および出力電流検出手段28で検出する入力電流および出力電流と、鍋判定制御用データ記憶手段30に記憶されているのデータ(図20(a))とに基づいて鍋の判定を行う(ステップS403)。
出力電流が大きい場合には、アルミ鍋等の低インピーダンスの不適正鍋1であると判断し、また、入力電流が小さい場合には、無負荷状態やフォーク等の小物(不適正鍋2)と判断し(ステップS403;不適正鍋)、加熱停止する。入力電流や出力電流が所定の範囲に入った場合には、磁性鍋(大)や非磁性SUS鍋(大)(以下、非磁性SUS鍋は非磁性鍋と称する。)と判断し(ステップS403;磁性鍋・非磁性鍋)、加熱出力制御処理に移行する。入力電流や出力電流が比較的小さい値の場合には未定として次の鍋判定の処理に進む(ステップS403;未定)。
1回目の鍋判定(ステップS403)で鍋の種類が確定しなかった場合には、駆動周波数を周波数f3まで下げる(ステップS404)。そして、この時点で検出した入出力電流と、鍋判定制御用データ記憶手段30に記憶されているのデータ(図20(b))とから2回目の鍋判定を行う(ステップS405)。この判定において、出力電流が大きい場合には、アルミ鍋等の低インピーダンスの不適正鍋1と判定し、また、入力電流や出力電流の小さい場合は無負荷状態やフォーク等の小物(不適正鍋2)と判定し(ステップS405;不適正鍋)、加熱停止する。また、入力電流や出力電流が所定の範囲に入った場合には、磁性鍋(大)や非磁性鍋(中・大)と判断し(ステップS405;磁性鍋・非磁性鍋)、加熱出力制御処理に移行する。
入力電流や出力電流が比較的小さい値の場合には未定として次の鍋判定の処理に進む(ステップS405;未定)。2回目の鍋判定(ステップS405)で鍋の種類が確定しなかった場合には、ハーフブリッジ動作モードからフルブリッジ動作モードに切り替えて、図19(a)に示すように駆動周波数は変更せずに、出力電流が切替前後で略同等になるようにアーム間位相差をPh1に設定する(ステップS406)。その後、アーム間位相差をPh2まで広げる(ステップS407)。そして、この時点で検出した入出力電流と、鍋判定制御用データ記憶手段30に記憶されているのデータ(図21(a))とに基づいて3回目の鍋判定を行う(ステップS408)。
判定の結果、不適正鍋の場合には(ステップS408;不適正鍋)、加熱停止する。また、加熱可能な磁性鍋や非磁性鍋(小・中)の場合には(ステップS408;磁性鍋・非磁性鍋)、加熱出力制御処理に移行する。3回目の鍋判定でも鍋の種類が確定しなかった場合には(ステップS408;未定)、アーム間位相差をPh3まで広げる(ステップS409)。そして、この時点で検出した入出力電流と、鍋判定制御用データ記憶手段30に記憶されているのデータ(図21(b))とに基づいて最後の鍋判定を行う(ステップS410)。そして、不適正鍋の場合には(ステップS410;不適正鍋)、加熱停止する。また、加熱可能な磁性鍋や非磁性鍋の場合には(ステップS410;磁性鍋・非磁性鍋)、加熱出力制御処理に移行する。
アルミのような低インピーダンス材質の鍋を使用した場合には、負荷回路24のインピーダンスが小さくなり、インバータ回路9に過大な出力電流が流れやすくなる。しかしながら、ハーフブリッジ動作モードにより負荷回路24への印加電圧を下げ、また、高い駆動周波数で起動するので、過大電流を流すことなく安定して鍋判定をすることが可能になる。また、使用可能ではあるが小径の鍋のように加熱コイル22との磁気結合が小さい鍋に対しては、ハーフブリッジ動作モードや高周波駆動で入力電流や出力電流があまり流れない状態では正確な鍋判定ができない。しかしながら、フルブリッジ動作モードでアーム間位相差をPh3まで広げた場合には、負荷回路24に所定の電流を流すことができるので、正確な鍋判定を行うことが可能になる。
以上のように、負荷のインピーダンスが小さく、大きな負荷電流が流れる鍋に対しても安全に鍋判定を行うことが可能になるとともに、小径鍋と加熱すべきでないナイフ・フォーク等の小物を区別する負荷判定時にはフルブリッジ動作モードで駆動することにより正確に負荷の大きさを判定して、加熱するか否かを正確に判定できる。
実施の形態1に係る誘導加熱調理器の電気的構成を示すブロック図である。 フルブリッジ動作モードにおけるスイッチング及び負荷回路への印加電圧を示すタイミングチャートである。 ハーフブリッジ動作モードにおけるスイッチング及び負荷回路への印加電圧を示すタイミングチャートである。 フルブリッジ動作モード及びハーフブリッジ動作モードの負荷回路への印加電圧波形を示す説明図である。 ハーフブリッジ動作モードの通電率とフルブリッジ動作モードの通電率との関係を示す説明図である。 加熱出力制御処理の流れの一例を示すフローチャートである。 インバータ回路動作状態が切り替わった時のスイッチング及び負荷回路への印加電圧の変化を示すタイミングチャートである。 フルブリッジ動作モードにおけるスイッチング及び負荷回路への印加電圧を示すタイミングチャートである。 加熱出力制御処理の流れの一例を示すフローチャートである。 インバータ回路動作状態が切り替わった時のスイッチング及び負荷回路への印加電圧の変化を示すタイミングチャートである。 実施の形態3に係る誘導加熱調理器の電気的構成を示すブロック図である。 フルブリッジ動作モードにおけるスイッチング及び負荷回路への印加電圧を示すタイミングチャートである。 ハーフブリッジ動作モードにおけるスイッチング及び負荷回路への印加電圧を示すタイミングチャートである。 加熱出力制御処理の流れの一例を示すフローチャートである。 インバータ回路動作状態が切り替わった時のスイッチング及び負荷回路への印加電圧の変化を示すタイミングチャートである。 実施の形態4に係る誘導加熱調理器の電気的構成を示すブロック図である。 加熱出力制御処理の流れの一例を示すフローチャートである。 鍋判定処理時のインバータ回路におけるスイッチングの状態を示すタイミングチャートである。 鍋判定処理時のインバータ回路におけるスイッチングの状態を示すタイミングチャートである。 鍋判定に使用するデータを示す説明図である。 鍋判定に使用するデータを示す説明図である。
符号の説明
1 交流電源、2 直流電源回路、3 整流ダイオードブリッジ、4 リアクトル、5 平滑コンデンサ、6 入力電流検出手段、7 入力電圧検出手段、8 電圧変動検出手段、9 インバータ回路、10 U相アーム、11 V相アーム、12 上スイッチ、13 下スイッチ、14 上ダイオード、15 下ダイオード、16 上スイッチ、17 下スイッチ、18 上ダイオード、19 下ダイオード、20 U相駆動回路、21 V相駆動回路、22 加熱コイル、23 共振コンデンサ、24 負荷回路、25 加熱出力制御手段(インバータ制御手段)、26 火力設定手段、27 駆動信号調整手段、28 出力電圧検出手段、29 データ記憶手段、30 鍋判定制御用データ記憶手段、50 誘導加熱調理器、50a 誘導加熱調理器、50b 誘導加熱調理器、50c 誘導加熱調理器。

Claims (5)

  1. 交流電源を整流して直流に変換する直流電源回路の出力母線間直列に接続された2のスイッチング素子を含む2のアームにより形成されるフルブリッジ式インバータ回路と、
    前記フルブリッジ式インバータ回路の出力に接続される加熱コイル及び共振コンデンサを含む負荷回路と、
    加熱出力を調整するために前記フルブリッジ式インバータ回路のスイッチング素子へ出力する駆動信号を制御するインバータ制御手段とを有し、
    前記インバータ制御手段は、
    前記フルブリッジ式インバータ回路を形成する2のアームをそれぞれ高周波で駆動するフルブリッジ動作モードと、
    一方のアームを高周波で駆動するとともに他方のアームに含まれている前記スイッチング素子のうちいずれか一方をオン、他方をオフとして前記他方のアームを固定駆動するハーフブリッジ動作モードとを切り替え可能にした誘導加熱調理器において、
    前記フルブリッジ動作モードと前記ハーフブリッジ動作モードとの切り替えを加熱動作停止することなしに行い、
    前記フルブリッジ動作モードと前記ハーフブリッジ動作モードとの動作モード切替前後で、
    前記フルブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の通電率を制御し、前記ハーフブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の通電率を制御すること、
    又は、
    前記フルブリッジ動作モードにおいては、前記2組のアーム間の位相差を制御し、前記ハーフブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の通電率を制御すること、
    もしくは、
    前記フルブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の駆動周波数を制御し、前記ハーフブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の駆動周波数を制御すること、によって前記負荷回路に流れる高周波交流電流が増加しないように前記駆動信号に設定する駆動信号調整手段を有する
    ことを特徴とする誘導加熱調理器。
  2. 前記駆動信号調整手段は、
    前記負荷回路に流れる高周波交流電流を略同等とするような前記駆動信号を設定することで高周波交流電流を増加させないようにしている
    ことを特徴とする請求項1に記載の誘導加熱調理器。
  3. 前記インバータ制御手段は、
    前記フルブリッジ動作モードと前記ハーフブリッジ動作モードとの動作モード切替を、商用電源の交流電圧に同期して変動する前記直流電源回路の出力電圧の低下時に行う
    ことを特徴とする請求項1又は2に記載の誘導加熱調理器。
  4. 前記インバータ制御手段は、
    複数の駆動周波数で前記ハーフブリッジ動作モードを駆動すること、及び、前記2組のアーム間の位相差を複数回広げて前記フルブリッジ動作モードを駆動することによって鍋判定処理を実行してから、加熱出力制御に移行させる
    ことを特徴とする請求項1〜3のいずれかに記載の誘導加熱調理器。
  5. フルブリッジ式インバータ回路を形成する2のアームをそれぞれ高周波で駆動するフルブリッジ動作モードと、
    一方のアームを高周波で駆動するとともに他方のアームに含まれている前記スイッチング素子のうちいずれか一方をオン、他方をオフとして他方のアームを固定駆動するハーフブリッジ動作モードとを切り替え可能にした誘導加熱調理方法において、
    前記フルブリッジ動作モードと前記ハーフブリッジ動作モードとの切り替えを加熱動作停止することなしに行い、
    前記フルブリッジ動作モードと前記ハーフブリッジ動作モードとの動作モード切替前後で、
    前記フルブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の通電率を制御し、前記ハーフブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の通電率を制御すること、
    又は、
    前記フルブリッジ動作モードにおいては、前記2組のアーム間の位相差を制御し、前記ハーフブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の通電率を制御すること、
    もしくは、
    前記フルブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の駆動周波数を制御し、前記ハーフブリッジ動作モードにおいては、前記2組のアームを構成している前記2つのスイッチング素子の駆動周波数を制御すること、によって前記負荷回路に流れる高周波交流電流が増加しないように前記駆動信号に設定する
    ことを特徴とする誘導加熱調理方法。
JP2005016026A 2005-01-24 2005-01-24 誘導加熱調理器及び誘導加熱調理方法 Active JP4258737B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005016026A JP4258737B2 (ja) 2005-01-24 2005-01-24 誘導加熱調理器及び誘導加熱調理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005016026A JP4258737B2 (ja) 2005-01-24 2005-01-24 誘導加熱調理器及び誘導加熱調理方法

Publications (2)

Publication Number Publication Date
JP2006202705A JP2006202705A (ja) 2006-08-03
JP4258737B2 true JP4258737B2 (ja) 2009-04-30

Family

ID=36960503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005016026A Active JP4258737B2 (ja) 2005-01-24 2005-01-24 誘導加熱調理器及び誘導加熱調理方法

Country Status (1)

Country Link
JP (1) JP4258737B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4521337B2 (ja) * 2005-09-16 2010-08-11 日立アプライアンス株式会社 誘導加熱調理器
JP4521338B2 (ja) * 2005-09-16 2010-08-11 日立アプライアンス株式会社 誘導加熱調理器
JP4494397B2 (ja) * 2006-12-26 2010-06-30 三菱電機株式会社 誘導加熱装置
JP4781295B2 (ja) * 2007-02-20 2011-09-28 三菱電機株式会社 誘導加熱調理器
WO2012070320A1 (ja) * 2010-11-22 2012-05-31 三菱電機株式会社 誘導加熱調理器およびその制御方法
JPWO2012081221A1 (ja) * 2010-12-15 2014-05-22 パナソニック株式会社 マグネトロン駆動用電源およびそれを備えた高周波加熱装置
CN105007643B (zh) * 2011-02-21 2017-01-04 三菱电机株式会社 感应加热烹调器
JP2013027076A (ja) * 2011-07-15 2013-02-04 Panasonic Corp 非接触給電装置
JP6017804B2 (ja) * 2012-03-09 2016-11-02 シャープ株式会社 Dc/dcコンバータおよびシステム
JP6632308B2 (ja) * 2015-10-13 2020-01-22 ローム株式会社 ワイヤレス送電装置、その制御回路および制御方法、充電器
CN110855174B (zh) * 2018-07-27 2021-08-06 台达电子工业股份有限公司 逆变器装置及其控制方法

Also Published As

Publication number Publication date
JP2006202705A (ja) 2006-08-03

Similar Documents

Publication Publication Date Title
JP4900248B2 (ja) 誘導加熱装置
JP4258737B2 (ja) 誘導加熱調理器及び誘導加熱調理方法
EP3200560A1 (en) Induction cooking apparatus
KR20210123708A (ko) 유도 가열 장치 및 유도 가열 장치의 제어 방법
JP4193095B2 (ja) 誘導加熱調理器
JP2007335274A (ja) 誘導加熱調理器
JP4444243B2 (ja) 誘導加熱装置
JP5452162B2 (ja) 誘導加熱調理器
JP4384085B2 (ja) 誘導加熱調理器
JP2010267636A (ja) 誘導加熱調理器
JP4193154B2 (ja) 誘導加熱調理器
EP4132220A1 (en) Inductive heating device and method for controlling inductive heating device
JPH11121159A (ja) 電磁調理器
JP4887681B2 (ja) 誘導加熱装置
JP4431346B2 (ja) 誘導加熱調理器
JP2005293941A (ja) 誘導加熱調理器
JP4613687B2 (ja) 誘導加熱装置
JP6076040B2 (ja) 誘導加熱調理器
KR20210015322A (ko) 유도 가열 장치
JP2005093089A (ja) 誘導加熱調理器
EP3836753B1 (en) Method and system to control a qr-inverter in a induction cooking appliance
EP4117165A1 (en) Power conversion device and home appliance having same
JP2010055760A (ja) 誘導加熱装置
JP3931831B2 (ja) 誘導加熱調理器とその制御プログラム
CN114830823A (zh) 用于控制感应烹饪器具中的qr逆变器的方法和系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4258737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250