Nothing Special   »   [go: up one dir, main page]

JP4255416B2 - CO2 water heater and its non-frost operation method - Google Patents

CO2 water heater and its non-frost operation method Download PDF

Info

Publication number
JP4255416B2
JP4255416B2 JP2004206075A JP2004206075A JP4255416B2 JP 4255416 B2 JP4255416 B2 JP 4255416B2 JP 2004206075 A JP2004206075 A JP 2004206075A JP 2004206075 A JP2004206075 A JP 2004206075A JP 4255416 B2 JP4255416 B2 JP 4255416B2
Authority
JP
Japan
Prior art keywords
refrigerant
gas cooler
capillary tube
air
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004206075A
Other languages
Japanese (ja)
Other versions
JP2006029628A (en
Inventor
敏則 菅原
匠 橋詰
道生 佐々木
亨 斉藤
克己 藤間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Mayekawa Manufacturing Co
Original Assignee
Chubu Electric Power Co Inc
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Mayekawa Manufacturing Co filed Critical Chubu Electric Power Co Inc
Priority to JP2004206075A priority Critical patent/JP4255416B2/en
Publication of JP2006029628A publication Critical patent/JP2006029628A/en
Application granted granted Critical
Publication of JP4255416B2 publication Critical patent/JP4255416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、CO 冷媒循環ライン上にCO冷媒を圧縮する圧縮機、同圧縮機で圧縮されて高温・高圧となったガス状冷媒の冷却を行うガスクーラ、同ガスクーラで冷却されたCO冷媒を減圧するキャピラリチューブ部、及び同キャピラリチューブ部で減圧されて低温となったCO冷媒を蒸発させる蒸発器、を順次介装してヒートポンプサイクルが構成され、前記ガスクーラは給水ラインよりの供給水と前記CO 冷媒とを熱交換させて該供給水の加熱を行う給湯器であり、又前記蒸発器は外気と熱交換して該CO 冷媒を蒸発させる空気採熱型熱交換器であるCO 給湯装置と該給湯装置の寒期におけるノンフロスト運転方法に関する。 The present invention relates to a compressor that compresses a CO 2 refrigerant on a CO 2 refrigerant circulation line, a gas cooler that cools a gaseous refrigerant that has been compressed by the compressor to a high temperature and a high pressure, and CO 2 that is cooled by the gas cooler . A heat pump cycle is configured by sequentially interposing a capillary tube part that decompresses the refrigerant and an evaporator that evaporates the CO 2 refrigerant that has been decompressed and reduced in temperature by the capillary tube part , and the gas cooler is supplied from the water supply line A water heater that heats the supplied water by exchanging heat between the water and the CO 2 refrigerant, and the evaporator is an air heat collection type heat exchanger that exchanges heat with outside air to evaporate the CO 2 refrigerant. The present invention relates to a CO 2 hot water supply device and a non-frost operation method in the cold season of the hot water supply device .

従来ヒートポンプ式給湯器においては、蒸発器が空気採熱型熱交換器である場合に、寒期において同空気採熱型熱交換器の空気側伝熱面に着霜が生じたり、あるいは凍結したりして、能力が低下する問題がある。   In the conventional heat pump type water heater, when the evaporator is an air heat collection type heat exchanger, frost is formed on the air side heat transfer surface of the air heat collection type heat exchanger in the cold season or it is frozen. Or, there is a problem that the ability is reduced.

この対策として、たとえば特許文献1(特開2003−222391号公報)には、圧縮機からのホットガスを空気採熱型熱交換器に供給するためのデフロスト回路を備え、貯湯タンクの水循環用ポンプを停止した状態で、ホットガスを空気採熱型熱交換器に供給するデフロスト運転を可能としており、デフロスト運転を開始して所定時間以上継続したときに、水循環ポンプを駆動させている。   As a countermeasure, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2003-222391) includes a defrost circuit for supplying hot gas from a compressor to an air heat recovery heat exchanger, and a water circulation pump for a hot water storage tank. The defrosting operation in which hot gas is supplied to the air heat collection type heat exchanger is made possible in a state in which the water circulation pump is stopped. When the defrosting operation is started and continued for a predetermined time or more, the water circulation pump is driven.

特開2003−222391号公報JP 2003-222391 A

しかしながら、特許文献1に開示されたデフロスト運転では、圧縮機からのホットガスを空気採熱型熱交換器に供給するためのデフロスト回路及びデフロスト運転を実行するための制御装置を付設する必要があり、装置自体が複雑化し、かつ高価となるという問題点がある。   However, in the defrost operation disclosed in Patent Document 1, it is necessary to add a defrost circuit for supplying hot gas from the compressor to the air heat collecting heat exchanger and a control device for executing the defrost operation. However, there is a problem that the device itself is complicated and expensive.

従って、本発明はかかる従来技術の問題に鑑み、蒸発器が外気から採熱する空気採熱型熱交換器である場合において、寒期においても空気採熱熱交換器の空気側伝熱面の着霜及び凍結を装置の複雑化を招くことなく、安価にかつ効果的に防止できるノンフロスト運転方法を提供することを目的とする。   Therefore, in view of the problems of the prior art, the present invention provides an air collecting heat exchanger that collects heat from outside air, and the air-side heat transfer surface of the air collecting heat exchanger can be used even in the cold season. An object of the present invention is to provide a non-frost operation method capable of preventing frost formation and freezing at low cost and effectively without complicating the apparatus.

そこで、本発明はかかる課題を解決するために、CO 冷媒循環ライン上にCO冷媒を圧縮する圧縮機、同圧縮機で圧縮されて高温・高圧となったガス状冷媒の冷却を行うガスクーラ、同ガスクーラで冷却されたCO冷媒を減圧するキャピラリチューブ部、及び同キャピラリチューブ部で減圧されて低温となったCO冷媒を蒸発させる蒸発器、を順次介装してヒートポンプサイクルが構成され、前記ガスクーラは給水ラインよりの供給水と前記CO 冷媒とを熱交換させて該供給水の加熱を行う給湯器であり、又前記蒸発器は外気と熱交換して該CO 冷媒を蒸発させる空気採熱型熱交換器であるCO 給湯装置において、
外気温度の計測値に基づいて前記ガスクーラに供給する供給水の流量を調節可能に構成するとともに、前記ガスクーラの出口側とキャピラリチューブ部入口側間の冷媒循環ラインを分岐して緩衝タンクを設け、緩衝タンクで、空気採熱型熱交換器の負荷に対応してCO 冷媒の受け入れと戻しを行うことを特徴とする。
又本発明は、前記CO 給湯装置のノンフロスト運転方法において、
外気温度の計測値が低温になってくると前記ガスクーラに供給する供給水の流量を絞り、ガスクーラ出口温度を上昇させるとともに、前記ガスクーラの出口側とキャピラリチューブ部入口側間の冷媒循環ラインを分岐して緩衝タンクを設け、緩衝タンクで、空気採熱型熱交換器の負荷に対応してCO 冷媒の受け入れと戻しを行うことを特徴とする。
Therefore, in order to solve such problems, the present invention is a compressor that compresses the CO 2 refrigerant on the CO 2 refrigerant circulation line, and a gas cooler that cools the gaseous refrigerant compressed to the high temperature and high pressure by the compressor. A heat pump cycle is configured by sequentially interposing a capillary tube part for decompressing the CO 2 refrigerant cooled by the gas cooler and an evaporator for evaporating the CO 2 refrigerant depressurized by the capillary tube part and becoming a low temperature. the gas cooler is with said CO 2 refrigerant and the water supplied from the water supply line a water heater for heating the該供feedwater by heat exchange, also the evaporator evaporation the CO 2 refrigerant and outdoor air heat exchanger In the CO 2 hot water supply device that is an air heat collection type heat exchanger
The flow rate of the supply water supplied to the gas cooler can be adjusted based on the measured value of the outside air temperature, and a buffer tank is provided by branching a refrigerant circulation line between the outlet side of the gas cooler and the inlet side of the capillary tube, The buffer tank accepts and returns the CO 2 refrigerant in accordance with the load of the air heat collection heat exchanger .
The present invention also provides a method for non-frost operation of the CO 2 hot water supply device ,
When the measured value of the outside air temperature becomes low, the flow rate of the water supplied to the gas cooler is reduced to increase the gas cooler outlet temperature, and the refrigerant circulation line between the outlet side of the gas cooler and the inlet side of the capillary tube is branched. A buffer tank is provided, and the buffer tank receives and returns the CO 2 refrigerant in response to the load of the air heat collection heat exchanger .

前記構成を有するCO 給湯装置において、外気と熱交換して該CO 冷媒を蒸発させる空気採熱型熱交換器における外気(空気)から採熱される熱量Qaは、次の式で求められる。
Qa=(Ti−To)G×h
ただし、Ti:入口空気温度、To:出口空気温度、G:風量、h:空気エンタルピ係数
空気から採熱される熱量は、CO冷媒の採熱熱量と同じである。前記ガスクーラが具備した給湯器への供給水量を減少させることにより、同ガスクーラの出口側CO冷媒の温度が高くなり、CO冷媒の採熱量が減少する。
In the CO 2 hot water supply apparatus having the above-described configuration, the amount of heat Qa collected from the outside air (air) in the air heat collection type heat exchanger that exchanges heat with the outside air to evaporate the CO 2 refrigerant is obtained by the following equation.
Qa = (Ti−To) G × h
However, Ti: inlet air temperature, To: outlet air temperature, G: air volume, h: air enthalpy coefficient The amount of heat collected from the air is the same as the amount of heat collected from the CO 2 refrigerant. By reducing the supply amount of water to the water heater the gas cooler is provided, the temperature of the outlet side CO 2 refrigerant in the same gas cooler is increased, adopts heat of CO 2 refrigerant is reduced.

このため空気から採熱される熱量が減少し、これによって空気出口温度Toが上昇する。空気出口温度Toが上昇することによって、同空気採熱型熱交換器の空気側伝熱面に接する空気を露点温度以上にして、着霜及び凍結を防止する。
本発明方法が適用される前記構成のCO 給湯装置のように、前記蒸発器の負荷が変動するヒートポンプサイクルである場合は、寒期運転するに際し、外気の温度を検知して、同気象状態に基づいて前記給湯器に供給する給水量を減少させることにより、蒸発器出口温度の低下を未然に防止して、ノンフロスト運転が可能となる。
本発明は超臨界CO冷凍サイクルにおいても適用可能である。
For this reason, the amount of heat collected from the air is reduced, and thereby the air outlet temperature To rises. By increasing the air outlet temperature To, the air in contact with the air-side heat transfer surface of the air heat collecting heat exchanger is set to the dew point temperature or more to prevent frost formation and freezing.
As the CO 2 water heater of the structure to which the present invention method is applied, when the load of the evaporator is a heat pump cycle that varies, upon driving the cold season, to detect the outside air temperature, the weather By reducing the amount of water supplied to the water heater based on the state, a decrease in the evaporator outlet temperature can be prevented and non-frost operation can be performed.
The present invention can also be applied to a supercritical CO 2 refrigeration cycle.

また本発明方法が適用される前記構成のCO 給湯装置の減圧装置としては、キャピラリチューブ使用可能である。
キャピラリチューブの長さの求め方は、まず高圧側、すなわちキャピラリチューブ入口側の圧力・温度、質量流量、キャピラリチューブ内径を与え、設定した飽和圧力まで膨張させることができる長さを算定する。具体的には、各コントロールボリュームの圧力損失をあらかじめ与え、その圧力損失を得るために必要なコントロールボリューム長さを算出し、足し合わせることによってキャピラリチューブの長さとする。
As the decompressor of the CO 2 water heater of the structure to which the present invention method is applied, key Yapirarichubu can be used.
In order to obtain the length of the capillary tube, first, the pressure / temperature, mass flow rate, and capillary tube inner diameter on the high pressure side, that is, the capillary tube inlet side are given, and the length that can be expanded to the set saturation pressure is calculated. Specifically, the pressure loss of each control volume is given in advance, the control volume length required to obtain the pressure loss is calculated, and added to obtain the length of the capillary tube.

また好ましくは、本発明方法が適用されるCO給湯装置のように、前記蒸発器の負荷が変動するヒートポンプサイクルである場合は、キャピラリチューブを、複数のキャピラリチューブを並列配置したキャピラリチューブ並列構造で構成するとともに、前記複数のキャピラリチューブの夫々の上流側に開閉弁を設け、前記蒸発器の負荷に応じて前記開閉弁の開閉制御を行うようにする。
この場合にキャピラリチューブに設けた少なくとも1個の開閉弁は、運転停止等の際にCO 冷媒循環ラインの流れを遮断しないように開放しておくことが必要である。
なお1個のキャピラリチューブに開閉弁を設けないでおく理由は、運転停止時の際にCO冷媒循環ラインの冷媒の流れを遮断しないようにするためである。
また、前記ガスクーラの出口側とキャピラリチューブ部入口側間の冷媒循環ラインを分岐して緩衝タンクを設け、緩衝タンクで、空気採熱型熱交換器の負荷が小さい場合に余分なCO 冷媒を受け容れるとともに前記ヒートポンプサイクルの運転が止まったら、緩衝タンク6に溜まっているCO をヒートポンプサイクルのCO 冷媒循環ラインに戻すように、前記ガスクーラの出口側冷媒循環ラインに分岐管を設け、同分岐管にリリーフ弁を介在させて緩衝タンクを設け、同緩衝タンクから前記循環ラインに冷媒を戻す戻し管を開閉弁を介在させて設ける。
Also preferably, in the case of a heat pump cycle in which the load on the evaporator fluctuates, as in a CO 2 hot water supply apparatus to which the method of the present invention is applied, a capillary tube parallel structure in which a plurality of capillary tubes are arranged in parallel And an opening / closing valve is provided on the upstream side of each of the plurality of capillary tubes, and the opening / closing control of the opening / closing valve is performed according to the load of the evaporator.
In this case, it is necessary to open at least one on-off valve provided in the capillary tube so as not to block the flow of the CO 2 refrigerant circulation line when the operation is stopped .
The reason for not providing an on-off valve in one capillary tube is to prevent the refrigerant flow in the CO 2 refrigerant circulation line from being interrupted when the operation is stopped.
In addition, a buffer tank is provided by branching a refrigerant circulation line between the outlet side of the gas cooler and the inlet side of the capillary tube, and when the load of the air heat recovery heat exchanger is small in the buffer tank, excess CO 2 refrigerant is supplied. Once with receiving accommodate ceased operation of the heat pump cycle, the CO 2 accumulated in the buffer tank 6 back to the CO 2 refrigerant circulation line of the heat pump cycle, the branch pipe provided on the outlet side refrigerant circulation line of the gas cooler, the A buffer tank is provided in the branch pipe with a relief valve interposed, and a return pipe for returning the refrigerant from the buffer tank to the circulation line is provided with an open / close valve.

蒸発器の冷却負荷が変動するヒートポンプサイクルである場合は、1個のキャピラリチューブですべて対応することはできず、変動する負荷に対して前記開閉弁を開閉して対応可能な1個又は複数のキャピラリチューブを選択して減圧動作を行なわせる。
蒸発器の負荷が少ない場合、CO冷媒が過剰となる。すなわちガスクーラへの供給水量を減少させると、ガスクーラ出口側のCO冷媒の温度が高くなり、CO冷媒の採熱量(ガスクーラ内で流入CO冷媒の乾き度が高くなり)が減少する。ガスクーラ内での流入CO冷媒の乾き度が高くなることにより、低圧側のCO冷媒の保有量が減少する。これによって高圧側のCO冷媒保有量が増加し、高圧側の圧力が上昇する。
In the case of a heat pump cycle in which the cooling load of the evaporator fluctuates, it is not possible to deal with all by one capillary tube, and one or more that can cope with the fluctuating load by opening and closing the on-off valve. A capillary tube is selected and a decompression operation is performed.
When the evaporator load is small, the CO 2 refrigerant becomes excessive. That is, when the amount of water supplied to the gas cooler is decreased, the temperature of the CO 2 refrigerant on the gas cooler outlet side increases, and the amount of heat collected by the CO 2 refrigerant (the dryness of the inflow CO 2 refrigerant increases in the gas cooler ) decreases. As the dryness of the inflow CO 2 refrigerant in the gas cooler increases, the amount of CO 2 refrigerant on the low pressure side decreases. As a result, the amount of CO 2 refrigerant held on the high pressure side increases, and the pressure on the high pressure side increases.

このようにCO冷媒の圧力がある一定値を越えたときは、前記分岐管、緩衝タンク及び戻し管を設け、前記緩衝タンクにリリーフ弁を介して余剰のCOを逃がすようにリリーフ弁を設定する。その後蒸発器の負荷が大きくなってCOが足りなくなった場合は、前記開閉弁を開けて、緩衝タンク内のCOをヒートポンプサイクル側に戻す操作を行なう。 Thus, when the pressure of the CO 2 refrigerant exceeds a certain value, the branch pipe, the buffer tank, and the return pipe are provided, and a relief valve is provided in the buffer tank so as to allow excess CO 2 to escape through the relief valve. Set. Thereafter, when the load on the evaporator increases and the CO 2 becomes insufficient, the opening / closing valve is opened, and the operation of returning the CO 2 in the buffer tank to the heat pump cycle side is performed.

本発明によれば、CO 冷媒循環ライン上にCO冷媒を圧縮する圧縮機、同圧縮機で圧縮されて高温・高圧となったガス状冷媒の冷却を行うガスクーラ、同ガスクーラで冷却されたCO冷媒を減圧するキャピラリチューブ部、及び同キャピラリチューブ部で減圧されて低温となったCO冷媒と外気と熱交換して該CO冷媒を蒸発させる蒸発器、を順次介装して構成され、前記ガスクーラで給水ラインよりの供給水と前記CO 冷媒とを熱交換させて該供給水の加熱を行う給湯器を具備し、前記蒸発器出口温度の低下を未然に防止して、ノンフロスト運転を可能にしたCO 給湯装置のノンフロスト運転方法において、
寒期において外気温度の計測値が低温になってくると前記ガスクーラに供給する供給水の流量を絞り、ガスクーラ出口温度を上昇させて、前記給湯器に供給する給水量を減少させるとともに、前記ガスクーラの出口側とキャピラリチューブ部入口側間の冷媒循環ラインを分岐して緩衝タンクを設け、緩衝タンクで、空気採熱型熱交換器の負荷に対応してCO 冷媒の受け入れと戻しを行う(空気採熱型熱交換器の負荷が小さい場合に余分なCO 冷媒を受け容れるとともに前記ヒートポンプサイクルの運転が止まったら、緩衝タンク6に溜まっているCO をヒートポンプサイクルのCO 冷媒循環ラインに戻す)ことにより、外気の温度に敏感に対応した運転が可能となるため、確実なノンフロスト運転が可能となる。さらに余分な装置の付設を伴うことがなく、安価であり、簡単にノンフロスト運転を達成できる。
According to the present invention, a compressor for compressing a CO 2 refrigerant is CO 2 refrigerant circulation line on, is compressed in the compressor gas cooler for cooling the gaseous refrigerant to a high temperature and high pressure, is cooled in the same gas cooler capillary tube unit for reducing the pressure of CO 2 refrigerant, and an evaporator for evaporating the CO 2 refrigerant is depressurized by CO 2 refrigerant and the outside air heat exchange with a low temperature at the same capillary tube portion, sequentially interposed configuration A water heater that heats the feed water by exchanging heat between the feed water from the feed water line and the CO 2 refrigerant in the gas cooler, and prevents a decrease in the outlet temperature of the evaporator. In the non-frost operation method of the CO 2 hot water supply device that enables frost operation,
When the measured value of the outside air temperature becomes low in the cold season, the flow rate of the supply water supplied to the gas cooler is reduced, the gas cooler outlet temperature is raised, the amount of water supplied to the water heater is decreased, and the gas cooler The refrigerant circulation line between the outlet side and the capillary tube inlet side is branched to provide a buffer tank, and the buffer tank receives and returns the CO 2 refrigerant in accordance with the load of the air heat collection heat exchanger ( When the load of the air heat collection type heat exchanger is small, the excess CO 2 refrigerant is accepted, and when the operation of the heat pump cycle is stopped, the CO 2 accumulated in the buffer tank 6 is transferred to the CO 2 refrigerant circulation line of the heat pump cycle. (Returning) makes it possible to operate sensitively to the temperature of the outside air, so that reliable non-frost operation is possible. Furthermore, it is not accompanied by an extra device, is inexpensive, and can easily achieve non-frost operation.

本発明方法に適用されるCO給湯装置に使用される減圧装置は、前記キャピラリチューブを、複数のキャピラリチューブを並列配置したキャピラリチューブ並列構造で構成するとともに、前記複数のキャピラリチューブの夫々の上流側に開閉弁を設け、前記空気採熱型熱交換器の負荷に応じて前記開閉弁の開閉制御を行うとともに、少なくとも1個の開閉弁は、運転停止等の際にCO 冷媒循環ラインの流れを遮断しないように開放しておく、蒸発器の冷却負荷変動及び本発明の運転方法を実施することによる付加変動に対して、十分に対応可能である。 Vacuum device used in the CO 2 water heater used in the present invention method, the pre-Symbol capillary tube, as well as constituted by a capillary tube parallel structures arranged in parallel a plurality of capillary tubes, the plurality of capillary tubes each of An on-off valve is provided on the upstream side, and the on-off valve is controlled according to the load of the air heat recovery heat exchanger. At least one on-off valve has a CO 2 refrigerant circulation line when the operation is stopped. It is possible to sufficiently cope with the cooling load fluctuation of the evaporator and the additional fluctuation caused by carrying out the operation method of the present invention which are opened so as not to block the flow of the refrigerant.

また好ましくは、前記ガスクーラの出口側冷媒循環ラインに分岐管を設け、同分岐管にリリーフ弁を介在させて緩衝タンクを設け、同緩衝タンクから前記循環ラインに冷媒を戻す戻し管を開閉弁を介在させて設けることにより、前記と同様の付加変動に対して十分に対応できる。 Preferably, a branch pipe is provided in the outlet side refrigerant circulation line of the gas cooler , a buffer tank is provided by interposing a relief valve in the branch pipe, and a return pipe for returning the refrigerant from the buffer tank to the circulation line is provided with an opening / closing valve. By interposing, it can fully cope with the additional fluctuation similar to the above.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

本発明の第1実施例を図1〜2に基づいて説明する。図1は第1実施例として本発明を適用した超臨界CO冷凍サイクルの概略構成を示す図、図2は本実施例の前記超臨界CO冷凍サイクルのモリエル線図である。
ガスクーラ2を例えば給湯熱源として使用する場合に、その給湯温度及び給湯量に応じて圧縮機1の負荷も変動し、これに合わせて減圧膨張行程の入口温度も変動する。
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing a schematic configuration of a supercritical CO 2 refrigeration cycle to which the present invention is applied as a first embodiment, and FIG. 2 is a Mollier diagram of the supercritical CO 2 refrigeration cycle of the present embodiment.
When the gas cooler 2 is used as, for example, a hot water supply heat source, the load of the compressor 1 varies according to the hot water supply temperature and the amount of hot water supply, and the inlet temperature of the decompression / expansion stroke also varies accordingly.

そこで本実施例においては、図1に示すように、前記減圧膨張行程として機能するキャピラリチューブ部3を並列した複数のキャピラリチューブ31で構成し、それぞれのキャピラリチューブ31の上流側に電磁弁32を設け、ガスクーラ1の負荷に応じて、制御装置33で前記電磁弁32の開閉制御を行うように構成している。   Therefore, in this embodiment, as shown in FIG. 1, the capillary tube portion 3 that functions as the decompression / expansion stroke is composed of a plurality of capillary tubes 31 arranged in parallel, and an electromagnetic valve 32 is provided upstream of each capillary tube 31. The control device 33 is configured to perform opening / closing control of the electromagnetic valve 32 according to the load of the gas cooler 1.

4は、CO冷媒の蒸発潜熱で外気を冷却する空気採熱型熱交換器(蒸発器)で、外気は通常0から35℃の間を変動する。また5はガスクーラ2で熱交換によりCO冷媒を冷却するために供給される給水ラインで、たとえばCO冷媒の温度が15℃から130℃に変動する間に、CO冷媒との熱交換により熱交換後の温度が10℃から90℃の範囲に亘って変動する。また9は給水ライン5に介装された流量調整弁で、外気温度計10の測定値によって自動的に給水の流量を調整するようになっている。 4 is an air-collecting heat exchanger (evaporator) that cools the outside air with the latent heat of vaporization of the CO 2 refrigerant, and the outside air usually fluctuates between 0 and 35 ° C. Reference numeral 5 denotes a water supply line that is supplied to cool the CO 2 refrigerant by heat exchange in the gas cooler 2. For example, while the temperature of the CO 2 refrigerant fluctuates from 15 ° C. to 130 ° C., heat exchange with the CO 2 refrigerant is performed. The temperature after heat exchange varies over a range of 10 ° C to 90 ° C. Reference numeral 9 denotes a flow rate adjusting valve interposed in the water supply line 5, which automatically adjusts the flow rate of the supplied water according to the measured value of the outside air thermometer 10.

また6は、本冷凍サイクルのCO冷媒循環ラインと分岐管7で連絡された緩衝タンクで、空気採熱型熱交換器(蒸発器)4の負荷が小さい場合に余分なCO冷媒を受け容れる。7aはリリーフ弁で、たとえばCO冷媒循環ラインの圧力が11MPaを越えたら、開放されるように設定される。8は戻し管で、開閉弁8aが介装されている。 A buffer tank 6 is connected to the CO 2 refrigerant circulation line of the refrigeration cycle by the branch pipe 7 and receives excess CO 2 refrigerant when the load of the air heat collection heat exchanger (evaporator) 4 is small. It is acceptable. 7a is a relief valve, which is set to be opened when the pressure of the CO 2 refrigerant circulation line exceeds 11 MPa, for example. 8 is a return pipe, and an on-off valve 8a is interposed.

このように構成すれば、空気採熱型熱交換器4の入口側温度Dが変動しても、前記複数のキャピラリチューブ31夫々の上流側に設けた電磁弁32の開閉制御によりCOが通過するキャピラリチューブ31を並列構造の数に比例して整数倍に変化させることができ、結果として、キャピラリチューブ部3の下流側の蒸発温度を低くすることが可能となり、言い換えれば二相域での膨張過程の変動を吸収できる。即ちガスクーラ2の出口温度及び空気採熱型熱交換器4の温度及び圧力をみながら、電磁弁32の開閉を制御して、冷媒を通すキャピラリチューブを切り替えることにより、キャピラリチューブ部3入口側のガスクーラ2の負荷変動も、蒸発器4側の負荷変動のいずれに対しても対応可能となる。 If comprised in this way, even if the inlet side temperature D of the air heat collection type heat exchanger 4 fluctuates, CO 2 passes by the opening / closing control of the electromagnetic valve 32 provided on the upstream side of each of the plurality of capillary tubes 31. As a result, the evaporation temperature on the downstream side of the capillary tube section 3 can be lowered, in other words, in the two-phase region. Can absorb fluctuations in the expansion process. In other words, while monitoring the outlet temperature of the gas cooler 2 and the temperature and pressure of the air heat collection heat exchanger 4, the opening and closing of the solenoid valve 32 is controlled to switch the capillary tube through which the refrigerant passes, so that the capillary tube portion 3 inlet side is switched. The load fluctuation of the gas cooler 2 can cope with any load fluctuation on the evaporator 4 side.

すなわち本実施例の冷凍サイクルにおいて、ガスクーラ2の給湯負荷の変動によって、たとえば図2に示すモリエル線図上で、負荷がC、C、Cの3種に変動する場合、電磁弁32を開閉制御し、これらの負荷に対応可能な図1の並列構造のキャピラリチューブ31のいずれかを選定する。たとえばガスクーラ2の給湯負荷が大きいと(Cの場合)、液相に近いほうへ移行するので、CO冷媒の密度が大きくなり、従ってこの場合流量一定とすれば、キャピラリチューブの長さは長くなる。ガスクーラ12の給湯負荷が小さくなるほどCO冷媒の密度が小さくなり、したがって必要なキャピラリチューブは短くて済む。ガスクーラ2の給湯負荷が小さくなるほど、CO冷媒の密度が小さくなり、従って必要なキャピラリチューブの長さが長くなる。気相域においては、キャピラリチューブの内径を大きくし、かつ長さを長くする必要がある。 That is, in the refrigeration cycle of this embodiment, when the load fluctuates into three types of C 1 , C 2 , and C 3 on the Mollier diagram shown in FIG. 1 is selected, and one of the capillary tubes 31 having the parallel structure shown in FIG. 1 that can cope with these loads is selected. For example (in the case of C 1) hot water supply load of the gas cooler 2 is larger, since the transition to closer to the liquid phase, the density of the CO 2 refrigerant increases, thus if this constant flow rate, the length of the capillary tube become longer. The smaller the hot water supply load of the gas cooler 12, the lower the density of the CO 2 refrigerant, and thus the shorter capillary tube is required. The smaller the hot water supply load of the gas cooler 2, the lower the density of the CO 2 refrigerant, and thus the longer the required capillary tube length. In the gas phase region, it is necessary to increase the inner diameter and length of the capillary tube.

このように負荷の変動に応じて、その場合の負荷に十分対応できるキャピラリチューブに対応する部分の電磁弁32を開放する。また同時に、前記のようにガスクーラ2の出口温度及び空気採熱型熱交換器4の温度及び圧力をみながら、電磁弁32を切り替える。このように操作することによって、負荷変動に対応することができる。
従って代替手段として、ガスクーラ2の出口側に温度センサを設け、あるいは空気採熱型熱交換器4の入口側に温度センサ又は圧力センサを設け、これらのセンサの検出値に基づいて電磁弁32の開閉を自動的に制御するようにしてもよい。
Thus, according to the fluctuation | variation of load, the part of solenoid valve 32 corresponding to the capillary tube which can fully respond to the load in that case is opened. At the same time, the electromagnetic valve 32 is switched while observing the outlet temperature of the gas cooler 2 and the temperature and pressure of the air heat collection heat exchanger 4 as described above. By operating in this way, it is possible to cope with load fluctuations.
Therefore, as an alternative means, a temperature sensor is provided on the outlet side of the gas cooler 2, or a temperature sensor or a pressure sensor is provided on the inlet side of the air heat collecting heat exchanger 4, and the solenoid valve 32 is controlled based on the detection values of these sensors. The opening and closing may be automatically controlled.

なお少なくとも1個の電磁弁32は、運転停止等の際にCO冷媒循環ラインの流れを遮断しないように開放しておく。
また本冷凍サイクルのCO冷媒循環質量は最大容積で設定されている。そのためCの運転に移行した場合は、CO冷媒の密度が小さくなるため、CO冷媒量が余ってくる。
At least one solenoid valve 32 is opened so as not to block the flow of the CO 2 refrigerant circulation line when the operation is stopped.
Moreover, the CO 2 refrigerant circulation mass of this refrigeration cycle is set at the maximum volume. So when the process proceeds to the operation of the C 3, the density of the CO 2 refrigerant is decreased, CO 2 refrigerant quantity comes excess.

このまま運転を続けた場合、圧縮機1内の圧力が上がってくるので、余ったCO冷媒を分岐管7から緩衝タンク6に移す。たとえば実際の運転では、CO質量がDのサイクルで10Kg、Dで7Kg、Dで4〜5Kg必要である。従ってC、あるいはCのサイクルに移行すると、COが余るので、緩衝タンク6にCOを移す。そのためリリーフ弁7aをたとえばCO冷媒循環ラインの圧力が11MPaを越えたら、開放されるように設定する。
本冷凍サイクルの運転が止まったら、戻し管8の開閉弁8aを開けて、緩衝タンク6に溜まっているCOを冷凍サイクルの循環ラインに戻す。
When the operation is continued as it is, the pressure in the compressor 1 increases, so that excess CO 2 refrigerant is transferred from the branch pipe 7 to the buffer tank 6. For example, in actual operation, CO 2 mass is required 4~5Kg 10Kg, 7Kg at D 2, with D 3 in the cycles D 1. Therefore, when the cycle shifts to the cycle of C 2 or C 3 , since CO 2 remains, CO 2 is transferred to the buffer tank 6. Therefore, the relief valve 7a is set to be opened when the pressure of the CO 2 refrigerant circulation line exceeds 11 MPa, for example.
When the operation of the refrigeration cycle is stopped, the open / close valve 8a of the return pipe 8 is opened to return the CO 2 accumulated in the buffer tank 6 to the circulation line of the refrigeration cycle.

この第1実施例の装置によれば、キャピラリチューブ部3を、複数のキャピラリチューブ31を並設した構成とし、それぞれのキャピラリチューブ31に電磁弁32を介装し、ガスクーラ2の給湯負荷に応じて同電磁弁32を開閉制御するとともに、不要なCOを受け容れる緩衝タンク6を設け、負荷が小さい場合に不要なCOを緩衝タンク6に移送するようにしたことにより、すべての運転条件に対し、対応が可能となる。 According to the apparatus of the first embodiment, the capillary tube portion 3 has a configuration in which a plurality of capillary tubes 31 are arranged side by side, and electromagnetic valves 32 are interposed in the respective capillary tubes 31 in accordance with the hot water supply load of the gas cooler 2. The electromagnetic valve 32 is controlled to open and close, and a buffer tank 6 that accepts unnecessary CO 2 is provided to transfer unnecessary CO 2 to the buffer tank 6 when the load is small. Can be handled.

なお代替手段として、ガスクーラ2の出口側にCO冷媒温度を検知する温度センサを設け、分岐管7に同温度センサからの信号により作動する電磁弁を設け、前記温度センサの検出値に基づいて、同電磁弁を開放するようにしてもよい。
このように第1実施例によれば、膨張弁を不要とした安価なる構造で、負荷変動が大きい冷凍サイクルのあらゆる条件で運転が可能となる。またステップモータや電導膨張弁を組み合わせる等の複雑な制御系が不要なために、誤動作が一切なく経済的で信頼が高い。
As an alternative means, a temperature sensor that detects the CO 2 refrigerant temperature is provided on the outlet side of the gas cooler 2, and an electromagnetic valve that is actuated by a signal from the temperature sensor is provided in the branch pipe 7, based on the detection value of the temperature sensor. The electromagnetic valve may be opened.
As described above, according to the first embodiment, it is possible to operate under any conditions of the refrigeration cycle having a large load fluctuation with an inexpensive structure that does not require an expansion valve. Moreover, since a complicated control system such as a step motor or a conductive expansion valve is not required, there is no malfunction and it is economical and highly reliable.

かかる運転条件の変動及び負荷の変動に対応可能な第1実施例の装置を用いて、寒期における本発明のノンスロスト運転を行う場合を説明する。
寒期にガスクーラ2への供給水量を減少して、空気採熱熱交換器(蒸発器)4の空気側伝熱面が凍結することを防止する。本装置においては、外気温度計10の計測値に基づいて、流量調整弁9が自動的に給水ライン5の流量を調節する。
A case will be described in which the non-throttle operation of the present invention in the cold season is performed using the apparatus of the first embodiment that can cope with such fluctuations in operating conditions and loads.
The amount of water supplied to the gas cooler 2 is reduced in the cold season to prevent the air-side heat transfer surface of the air heat collection heat exchanger (evaporator) 4 from freezing. In this apparatus, the flow rate adjusting valve 9 automatically adjusts the flow rate of the water supply line 5 based on the measured value of the outside air thermometer 10.

すなわち流量調整弁9を絞るにつれて、ガスクーラ2への供給水量が減少すると、ガスクーラ2の出口側のCO冷媒温度が上昇し、図2のモリエル線図上で、冷凍サイクルが液相側から気相側に移行する。
すなわち図2における(A→B→C→D→A)運転、又は(A→B→C→D→A)運転を行う。この場合ガスクーラ2における給湯負荷が小さくなり、COが気相側に移行すると、本冷凍サイクルの圧縮器1内でのCO圧力が大きくなるので、CO圧力が一定値を超えると、リリーフ弁7aが作動して、余ったCO冷媒は分岐管7を介して緩衝タンク6に移送する。
That is, as the amount of water supplied to the gas cooler 2 decreases as the flow rate adjustment valve 9 is throttled, the CO 2 refrigerant temperature on the outlet side of the gas cooler 2 rises, and the refrigeration cycle is gasified from the liquid phase side on the Mollier diagram of FIG. Move to the phase side.
That performed (A → B 2 → C 2 → D 2 → A) operation in FIG. 2, or (A → B 3 → C 3 D 3 → A) operation. In this case the hot water supply load is reduced in the gas cooler 2, the CO 2 is transferred to the gas phase side, since CO 2 pressure is large in the compressor 1 of the present refrigeration cycle, the CO 2 pressure exceeds a predetermined value, the relief The valve 7 a is activated, and the excess CO 2 refrigerant is transferred to the buffer tank 6 via the branch pipe 7.

このように寒期において外気温度計10の検出値が低温になってくると、流量調整弁9の開度が自動的に絞られ、それによってガスクーラ2の出口側CO冷媒温度が上昇するので、ノンフロスト運転が容易に可能となる。
本実施例方法によれば、外気の温度を検知して、同温度計測値に基づいてガスクーラ2に供給する給水量を減少させることにより、外気の気象状態に敏感に対応した運転が可能となるため、確実なノンフロスト運転が可能となる。さらに余分な装置の付設を伴うことがなく、安価であり、簡単にノンフロスト運転を達成できる。
なお外気の温度を検知する以外に、外気の湿度、雨、雪等の気象条件のうち一つ以上を計測して、それらの値に基づいて運転を制御するようにしてもよい。
In this way, when the detected value of the outside air thermometer 10 becomes low in the cold season, the opening degree of the flow rate adjusting valve 9 is automatically throttled, thereby increasing the CO 2 refrigerant temperature on the outlet side of the gas cooler 2. Non-frost operation can be easily performed.
According to the method of the present embodiment, it is possible to operate sensitively to the weather condition of the outside air by detecting the temperature of the outside air and reducing the amount of water supplied to the gas cooler 2 based on the measured temperature value. Therefore, reliable non-frost operation is possible. Furthermore, it is not accompanied by an extra device, is inexpensive, and can easily achieve non-frost operation.
In addition to detecting the temperature of the outside air, one or more weather conditions such as humidity, rain, and snow may be measured and the operation may be controlled based on those values.

以上記載のごとく本発明によれば、空気採熱型熱交換器(蒸発器)を使用し、ガスクーラがCO冷媒を冷却する給湯器を具備したCO給湯装置のノンフロスト運転方法において、外気の温度状態を検知して、同温度状態に基づいて前記給湯器に供給する給水量を減少させることにより、余分な装置を付設することなく、簡単かつ安価にして、外気条件に即応した寒期におけるノンフロスト運転を容易に行うことができる。 As described above, according to the present invention, in the non-frost operation method of a CO 2 hot water supply apparatus using an air heat collecting heat exchanger (evaporator) and having a water heater whose gas cooler cools the CO 2 refrigerant, the temperature state by detecting the, by reducing the water amount to be supplied to the water heater on the basis of the same temperature condition, without attached an extra device, simply and with inexpensive and responsive to ambient conditions Non-frost operation in the cold season can be easily performed.

本発明方法の第1の実施例を適用した超臨界CO冷凍サイクルを示す概略構成図である。Supercritical CO 2 refrigeration cycle according to the first embodiment of the present invention a method is a schematic configuration diagram showing. 前記第1実施例を適用した超臨界CO冷凍サイクルのモリエル線図である。It is a Mollier diagram of a supercritical CO 2 refrigeration cycle to which the first embodiment is applied.

符号の説明Explanation of symbols

1 圧縮機
2 ガスクーラ
3 キャピラリチューブ部
4 空気採熱型熱交換器(蒸発器)
5 給水ライン
6 緩衝タンク
7 分岐管
7a リリーフ弁
8 戻し管
8a 開閉弁
9 流量調整弁
10 外気温度計
32 電磁弁
33 制御装置
DESCRIPTION OF SYMBOLS 1 Compressor 2 Gas cooler 3 Capillary tube part 4 Air collection type heat exchanger (evaporator)
5 Water supply line 6 Buffer tank 7 Branch pipe 7a Relief valve 8 Return pipe 8a On-off valve 9 Flow control valve 10 Outside air thermometer 32 Electromagnetic valve 33 Control device

Claims (4)

CO 冷媒循環ライン上にCO冷媒を圧縮する圧縮機、同圧縮機で圧縮されて高温・高圧となったガス状冷媒の冷却を行うガスクーラ、同ガスクーラで冷却されたCO冷媒を減圧するキャピラリチューブ部、及び同キャピラリチューブ部で減圧されて低温となったCO冷媒を蒸発させる蒸発器、を順次介装してヒートポンプサイクルが構成され、前記ガスクーラは給水ラインよりの供給水と前記CO 冷媒とを熱交換させて該供給水の加熱を行う給湯器であり、又前記蒸発器は外気と熱交換して該CO 冷媒を蒸発させる空気採熱型熱交換器であるCO 給湯装置において、
外気温度の計測値に基づいて前記ガスクーラに供給する供給水の流量を調節可能に構成するとともに、前記ガスクーラの出口側とキャピラリチューブ部入口側間の冷媒循環ラインを分岐して緩衝タンクを設け、緩衝タンクで、空気採熱型熱交換器の負荷に対応してCO 冷媒の受け入れと戻しを行うことを特徴とするCO 給湯装置
CO 2 compressor for compressing CO 2 refrigerant on the refrigerant circulation line, is compressed in the compressor gas cooler for cooling the gaseous refrigerant to a high temperature and high pressure, reducing the pressure of the CO 2 refrigerant cooled in the same gas cooler A heat pump cycle is configured by sequentially interposing a capillary tube section and an evaporator for evaporating CO 2 refrigerant that has been depressurized and cooled to a low temperature in the capillary tube section , and the gas cooler is configured to supply water from the water supply line and the CO 2 2 a refrigerant by heat exchange a water heater for heating the該供water supply, also the evaporator CO 2 water heater is an air adoption thermal heat exchanger for evaporating the CO 2 refrigerant and outdoor air heat exchanger In the device
The flow rate of the supply water supplied to the gas cooler can be adjusted based on the measured value of the outside air temperature, and a buffer tank is provided by branching a refrigerant circulation line between the outlet side of the gas cooler and the inlet side of the capillary tube, A CO 2 hot water supply apparatus that receives and returns a CO 2 refrigerant in response to a load of an air heat recovery heat exchanger in a buffer tank .
前記キャピラリチューブを、複数のキャピラリチューブを並列配置したキャピラリチューブ並列構造で構成し、前記複数のキャピラリチューブの夫々の上流側に開閉弁を設け、前記空気採熱型熱交換器の負荷に応じて前記開閉弁の開閉制御を行うとともに、少なくとも1個の開閉弁は、運転停止等の際にCO 冷媒循環ラインの流れを遮断しないように開放しておくことを特徴とする請求項1記載のCO 給湯装置Said capillary tube, constituted by a capillary tube parallel structures arranged in parallel a plurality of capillary tubes, the on-off valve provided on the upstream side of each of the plurality of capillary tubes, depending on the load of the air adoption thermal heat exchanger The open / close control of the open / close valve is performed , and at least one open / close valve is opened so as not to interrupt a flow of the CO 2 refrigerant circulation line when the operation is stopped . CO 2 water heater . CO 冷媒循環ライン上にCO冷媒を圧縮する圧縮機、同圧縮機で圧縮されて高温・高圧となったガス状冷媒の冷却を行うガスクーラ、同ガスクーラで冷却されたCO冷媒を減圧するキャピラリチューブ部、及び同キャピラリチューブ部で減圧されて低温となったCO冷媒と外気と熱交換して該CO冷媒を蒸発させる蒸発器、を順次介装して構成され、前記ガスクーラで給水ラインよりの供給水と前記CO 冷媒とを熱交換させて該供給水の加熱を行う給湯器を具備し、前記蒸発器出口温度の低下を未然に防止して、ノンフロスト運転を可能にしたCO 給湯装置のノンフロスト運転方法において、
寒期において外気温度の計測値が低温になってくると前記ガスクーラに供給する供給水の流量を絞り、ガスクーラ出口温度を上昇させるとともに、前記ガスクーラの出口側とキャピラリチューブ部入口側間の冷媒循環ラインを分岐して緩衝タンクを設け、緩衝タンクで、空気採熱型熱交換器の負荷に対応してCO 冷媒の受け入れと戻しを行うことを特徴とするCO 給湯装置のノンフロスト運転方法。
CO 2 compressor for compressing CO 2 refrigerant on the refrigerant circulation line, is compressed in the compressor gas cooler for cooling the gaseous refrigerant to a high temperature and high pressure, reducing the pressure of the CO 2 refrigerant cooled in the same gas cooler A capillary tube unit and a CO 2 refrigerant that has been decompressed and cooled to a low temperature in the capillary tube unit and an evaporator that exchanges heat with the outside air to evaporate the CO 2 refrigerant are sequentially disposed, and water is supplied by the gas cooler. Provided with a water heater that heats the feed water by exchanging heat between the feed water from the line and the CO 2 refrigerant, thereby preventing a decrease in the evaporator outlet temperature and enabling a non-frost operation. In the non-frost operation method of the CO 2 water heater ,
When the measured value of the outside air temperature becomes low in the cold season, the flow rate of the supply water supplied to the gas cooler is reduced to raise the gas cooler outlet temperature, and the refrigerant circulation between the outlet side of the gas cooler and the inlet side of the capillary tube section A non-frost operating method for a CO 2 hot water supply apparatus characterized in that a buffer tank is provided by branching a line, and CO 2 refrigerant is received and returned in response to the load of the air heat recovery heat exchanger. .
前記キャピラリチューブを、複数のキャピラリチューブを並列配置したキャピラリチューブ並列構造で構成し、前記複数のキャピラリチューブの夫々の上流側に開閉弁を設け、前記空気採熱型熱交換器の負荷に応じて前記開閉弁の開閉制御を行うとともに、少なくとも1個の開閉弁は、運転停止等の際にCO 冷媒循環ラインの流れを遮断しないように開放しておくことを特徴とする請求項3記載のCO 給湯装置のノンフロスト運転方法。 Said capillary tube, constituted by a capillary tube parallel structures arranged in parallel a plurality of capillary tubes, the on-off valve provided on the upstream side of each of the plurality of capillary tubes, depending on the load of the air adoption thermal heat exchanger The open / close control of the open / close valve is performed , and at least one open / close valve is opened so as not to interrupt a flow of the CO 2 refrigerant circulation line when the operation is stopped . Non-frost operation method for CO 2 water heater .
JP2004206075A 2004-07-13 2004-07-13 CO2 water heater and its non-frost operation method Expired - Fee Related JP4255416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004206075A JP4255416B2 (en) 2004-07-13 2004-07-13 CO2 water heater and its non-frost operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004206075A JP4255416B2 (en) 2004-07-13 2004-07-13 CO2 water heater and its non-frost operation method

Publications (2)

Publication Number Publication Date
JP2006029628A JP2006029628A (en) 2006-02-02
JP4255416B2 true JP4255416B2 (en) 2009-04-15

Family

ID=35896207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004206075A Expired - Fee Related JP4255416B2 (en) 2004-07-13 2004-07-13 CO2 water heater and its non-frost operation method

Country Status (1)

Country Link
JP (1) JP4255416B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102933923A (en) * 2010-06-09 2013-02-13 Bsh博世和西门子家用电器有限公司 Compression heat pump, in particular for applications near households
US20230184469A1 (en) * 2021-08-24 2023-06-15 Nihon Itomic Co., Ltd. Heat pump device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105509377A (en) * 2015-12-22 2016-04-20 珠海格力电器股份有限公司 Trans critical co2Circulating system, heat pump water heater and defrosting method
CN108917188B (en) * 2018-07-04 2021-01-12 安徽原上草节能环保科技有限公司 Automatic energy-conserving water heater of outage
CN117109195B (en) * 2023-10-19 2024-01-05 逸励柯环境科技(江苏)有限公司 Transcritical carbon dioxide cold and hot combined supply unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102933923A (en) * 2010-06-09 2013-02-13 Bsh博世和西门子家用电器有限公司 Compression heat pump, in particular for applications near households
US20230184469A1 (en) * 2021-08-24 2023-06-15 Nihon Itomic Co., Ltd. Heat pump device
US11965680B2 (en) * 2021-08-24 2024-04-23 Nihon Itomic Co., Ltd. Heat pump device

Also Published As

Publication number Publication date
JP2006029628A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
US7028494B2 (en) Defrosting methodology for heat pump water heating system
KR900003052B1 (en) Refrigerant flow control system for use with refrigerator
JP4969608B2 (en) Air conditioner
US8020393B2 (en) Heat pump type hot water supply outdoor apparatus
EP2588818B1 (en) A method for operating a vapour compression system using a subcooling value
EP2224191B1 (en) Air conditioner and method of controlling the same
US7210303B2 (en) Transcritical heat pump water heating system using auxiliary electric heater
EP1856458B1 (en) Control of a refrigeration circuit with an internal heat exchanger
US20110146313A1 (en) Refrigeration circuit
JPH0799297B2 (en) Air conditioner
JPH0226155B2 (en)
CN204301351U (en) Heat pump-type hot-water supply device
JP4462435B2 (en) Refrigeration equipment
US20060230773A1 (en) Method for determining optimal coefficient of performance in a transcritical vapor compression system
JP4255416B2 (en) CO2 water heater and its non-frost operation method
JP4082434B2 (en) Refrigeration equipment
JP2002181420A (en) Compression refrigerating apparatus
JP2964705B2 (en) Air conditioner
JP4292525B2 (en) Refrigerant amount detection method for vapor compression refrigeration cycle
JPH0730979B2 (en) Air conditioner
JP5200120B2 (en) Valve check method for refrigeration circuit
JP3303689B2 (en) Binary refrigeration equipment
JP2004205142A (en) Refrigerating and air conditioning apparatus and its operation control method
JP2004061056A (en) Oil level detecting method and device for compressor
JP4699176B2 (en) Refrigeration circuit and refrigeration apparatus equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090123

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees