Nothing Special   »   [go: up one dir, main page]

JP4250479B2 - Magnetic resonance imaging system - Google Patents

Magnetic resonance imaging system Download PDF

Info

Publication number
JP4250479B2
JP4250479B2 JP2003288457A JP2003288457A JP4250479B2 JP 4250479 B2 JP4250479 B2 JP 4250479B2 JP 2003288457 A JP2003288457 A JP 2003288457A JP 2003288457 A JP2003288457 A JP 2003288457A JP 4250479 B2 JP4250479 B2 JP 4250479B2
Authority
JP
Japan
Prior art keywords
coil
magnetic field
magnetic resonance
component
shim
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003288457A
Other languages
Japanese (ja)
Other versions
JP2005013702A5 (en
JP2005013702A (en
Inventor
伸 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2003288457A priority Critical patent/JP4250479B2/en
Publication of JP2005013702A publication Critical patent/JP2005013702A/en
Publication of JP2005013702A5 publication Critical patent/JP2005013702A5/ja
Application granted granted Critical
Publication of JP4250479B2 publication Critical patent/JP4250479B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

本発明は、核磁気共鳴現象を利用して被検体である人体の所望部位の断層画像を撮影する磁気共鳴イメージング装置に関し、特にRFコイルとシムコイルの磁気的な干渉を低減する技術に関する。   The present invention relates to a magnetic resonance imaging apparatus that captures a tomographic image of a desired part of a human body as a subject using a nuclear magnetic resonance phenomenon, and more particularly to a technique for reducing magnetic interference between an RF coil and a shim coil.

磁気共鳴イメージング装置は、傾斜磁場コイルとRFコイルを備えて、RFコイルを通して被検体に高周波磁場を照射して被検体を構成する水素原子核であるプロトンに核磁気共鳴現象を誘起し、その核磁気共鳴現象によって被検体から発生する核磁気共鳴信号に、傾斜磁場コイルによって発生される傾斜磁場を印加して、位置情報を付与する。   The magnetic resonance imaging apparatus includes a gradient magnetic field coil and an RF coil, and irradiates a subject with a high-frequency magnetic field through the RF coil to induce a nuclear magnetic resonance phenomenon in protons that are hydrogen nuclei constituting the subject. Gradient magnetic field generated by the gradient magnetic field coil is applied to the nuclear magnetic resonance signal generated from the subject due to the resonance phenomenon to give position information.

しかし、この傾斜磁場コイルとRFコイルとが磁気的な干渉を起こしRFコイルのQ値を低下させる。一般に、Q1/2に比例して受信信号のSNが向上するので、Q値の低下は信号のSN低下を招く。これを防止するために、[特許文献1] と[特許文献2] では、RFコイルと傾斜磁場コイルの間に高周波磁場を遮蔽するRFシールドを挿入して、傾斜磁場コイルとRFコイルを磁気的に遮蔽している。 However, this gradient magnetic field coil and the RF coil cause magnetic interference to lower the Q value of the RF coil. In general, since the SN of the received signal is improved in proportion to Q 1/2 , a decrease in the Q value causes a decrease in the SN of the signal. In order to prevent this, in [Patent Document 1] and [Patent Document 2], an RF shield that shields a high-frequency magnetic field is inserted between the RF coil and the gradient magnetic field coil so that the gradient magnetic field coil and the RF coil are magnetically connected. Shielded.

また、磁気共鳴イメージング装置は静磁場の不均一をアクティブに補正する手段としてシムコイルも装備する。このシムコイルは、それぞれが特定の空間成分のみを持つ磁場を出力するコイルの集合体であって、各コイルに流す電流を調整することにより静磁場の不均一を成分毎に補正する。あるいは、[特許文献3]に記載されている様に、傾斜磁場コイルもそれぞれ独立な磁場成分を発生するので、傾斜磁場コイルに流すパルス電流にオフセット電流を追加して流すことで静磁場の不均一補正を行うことができる。このため、アクティブな静磁場不均一補正として、シムコイルと傾斜磁場コイルのオフセット電流を組み合わせて行われるのが一般的である。   The magnetic resonance imaging apparatus is also equipped with a shim coil as means for actively correcting static magnetic field inhomogeneities. This shim coil is an assembly of coils each outputting a magnetic field having only a specific spatial component, and corrects the non-uniformity of the static magnetic field for each component by adjusting the current flowing through each coil. Alternatively, as described in [Patent Document 3], each gradient magnetic field coil also generates an independent magnetic field component. Therefore, by adding an offset current to the pulse current flowing in the gradient magnetic field coil, Uniform correction can be performed. Therefore, the active static magnetic field nonuniformity correction is generally performed by combining the offset currents of the shim coil and the gradient magnetic field coil.

あるいは、静磁場発生装置が対向配置された一対の永久磁石型磁気共鳴イメージング装置の場合、[特許文献4] に記載されているように、RFシールドをRFコイルの外側にある傾斜磁場コイルとさらに外側に配置された磁極との間に配置して、RFコイルと磁石もしくは磁石に接した磁極との干渉によるRFコイルのQ値低下を防いでいる。
特開平9-238919号公報 特開平8-103426号公報 特開2002-052003号公報 特許第3170309号公報
Alternatively, in the case of a pair of permanent magnet type magnetic resonance imaging apparatuses in which the static magnetic field generator is disposed to face the RF shield, as described in [Patent Document 4], the RF shield is further connected to the gradient magnetic field coil outside the RF coil. It arrange | positions between the magnetic poles arrange | positioned on the outer side, and the Q value fall of the RF coil by interference with an RF coil and a magnet or the magnetic pole which touched the magnet is prevented.
JP-A-9-238919 JP-A-8-103426 Japanese Patent Laid-Open No. 2002-052003 Japanese Patent No. 3170309

以上の様に、RFシールドをRFコイルと傾斜磁場コイルとの間に挿入する場合は、RFコイルと傾斜磁場コイルの外側に配置されたシムコイル間の磁気的干渉は低減されるが、RFコイルとRFシールド間の距離が近くなって、RFシールドによって高周波磁場が歪んでしまうため均一な励起がされず、RFコイルの性能を低下させてしまう。この対策としては、RFコイルとRFシールド間の距離を大きくすることが望ましいが、 [特許文献1]、[特許文献2]にはこの点が考慮されていない。   As described above, when the RF shield is inserted between the RF coil and the gradient coil, magnetic interference between the RF coil and the shim coil arranged outside the gradient coil is reduced. The distance between the RF shields is reduced, and the RF shield distorts the high-frequency magnetic field, so that uniform excitation is not performed and the performance of the RF coil is degraded. As a countermeasure, it is desirable to increase the distance between the RF coil and the RF shield, but [Patent Document 1] and [Patent Document 2] do not consider this point.

さらに、RFコイルはシムコイルとも磁気的に干渉して、RFコイルの性能が低下してしまう。上記の様に、シムコイルと傾斜磁場コイルのオフセット電流で静磁場不均一補正を行う場合は、シムコイルと傾斜磁場コイルが一体もしくは接する様な配置となり、RFコイルとシムコイルとの間に高周波磁場の遮蔽体であるRFシールドがない構成となってしまう。そのため、RFコイルとシムコイルとが磁気的に干渉してRFコイルの性能を劣化させてしまう。[特許文献3]にはこの点が考慮されていない。   Further, the RF coil magnetically interferes with the shim coil, and the performance of the RF coil is degraded. As described above, when correcting static magnetic field inhomogeneity with the offset current of the shim coil and gradient magnetic field coil, the shim coil and gradient magnetic field coil are arranged so that they are integrated or in contact with each other, and the high frequency magnetic field is shielded between the RF coil and shim coil. It becomes the structure without the RF shield which is a body. For this reason, the RF coil and shim coil interfere magnetically and deteriorate the performance of the RF coil. [Patent Document 3] does not consider this point.

また、RFシールドをRFコイルの外側にある傾斜磁場コイルとさらに外側に配置された磁極との間に挿入する構成を記載している[特許文献4]には、シムコイルに関する記載がなく、RFコイルとシムコイルの磁気的干渉によるRFコイルの性能の低下が考慮されてない。   In addition, [Patent Document 4] describes a configuration in which an RF shield is inserted between a gradient magnetic field coil on the outside of an RF coil and a magnetic pole disposed further on the outside. The degradation of the RF coil performance due to the magnetic interference of the shim coil is not considered.

そこで本発明は、RFコイルとシムコイルとの磁気的干渉を低減することによってRFコイルの性能を維持して、RFコイルによる高周波磁場を被検体に適正に印加することを目的とする。   Therefore, an object of the present invention is to maintain the performance of the RF coil by reducing magnetic interference between the RF coil and the shim coil, and to appropriately apply a high-frequency magnetic field from the RF coil to the subject.

前記課題を解決するために、本発明は以下の様に構成される。
被検体が配置される計測空間内に静磁場を与える静磁場発生手段と、前記静磁場発生手段の前記計測空間側に配置され、前記静磁場の不均一を補正するシムコイルと、前記シムコイルの前記計測空間側に配置され、X ,Y,Zの3軸方向に傾斜磁場を発生する傾斜磁場コイルと、前記傾斜磁場コイルの前記計測空間側に配置され、前記被検体内の水素原子核であるプロトンに核磁気共鳴を起こさせるための高周波磁場を照射するRFコイルを有する送信手段と、核磁気共鳴により放出される核磁気共鳴信号を検出する受信手段と、受信した前記核磁気共鳴信号を用いて画像再構成演算を行う信号処理手段と、前記核磁気共鳴信号を計測するパルスシーケンスを制御するパルスシーケンス制御手段とを備える磁気共鳴イメージング装置において、
前記シムコイルと、前記傾斜磁場コイルの間に、前記高周波磁場を遮蔽する遮蔽部材を有する。
In order to solve the above problems, the present invention is configured as follows.
A static magnetic field generating means for applying a static magnetic field in a measurement space in which the subject is arranged; a shim coil which is arranged on the measurement space side of the static magnetic field generating means and corrects the non-uniformity of the static magnetic field; and the shim coil A gradient coil that is arranged on the measurement space side and generates a gradient magnetic field in the X, Y, and Z directions, and a proton that is arranged on the measurement space side of the gradient coil and is a hydrogen nucleus in the subject. Using a transmission means having an RF coil for irradiating a high-frequency magnetic field for causing nuclear magnetic resonance, a receiving means for detecting a nuclear magnetic resonance signal emitted by nuclear magnetic resonance, and using the received nuclear magnetic resonance signal In a magnetic resonance imaging apparatus comprising: signal processing means for performing image reconstruction calculation; and pulse sequence control means for controlling a pulse sequence for measuring the nuclear magnetic resonance signal ,
A shielding member that shields the high-frequency magnetic field is provided between the shim coil and the gradient coil.

これにより、RFコイルとシムコイルとの磁気的干渉を低減することができ、RFコイルの性能を維持して、RFコイルによる高周波磁場を被検体に適正に印加することができる。   Thereby, the magnetic interference between the RF coil and the shim coil can be reduced, and the RF coil can be appropriately applied to the subject while maintaining the performance of the RF coil.

好ましい一実施態様によれば、被検体が配置される計測空間内に静磁場を与える静磁場発生手段と、前記静磁場の不均一を補正するシムコイルと、X,Y,Zの3軸方向に傾斜磁場を発生する傾斜磁場コイルと、前記被検体内の水素原子核であるプロトンに核磁気共鳴を起こさせるための高周波磁場を照射するRFコイルと、核磁気共鳴により放出される核磁気共鳴信号を検出する受信手段と、受信した前記核磁気共鳴信号を用いて画像再構成演算を行う信号処理手段と、前記核磁気共鳴信号を計測するパルスシーケンスを制御するパルスシーケンス制御手段とを備える磁気共鳴イメージング装置において、
前記シムコイルを、前記RFコイルとの磁気的な干渉が少ないシムコイルからなる第一の成分コイル群と前記RFコイルとの磁気的な干渉が多いシムコイルからなる第二の成分コイル群とに分離し、前記第一の成分コイル群と前記第二の成分コイル群との間に前記高周波磁場の遮蔽部材を挿入し、前記第一の成分コイル群を前記第二の成分コイル群よりも前記計測空間側に配置する。
According to a preferred embodiment, a static magnetic field generating means for applying a static magnetic field in a measurement space in which the subject is arranged, a shim coil for correcting the non-uniformity of the static magnetic field, and three axis directions of X, Y, and Z A gradient coil that generates a gradient magnetic field, an RF coil that irradiates a high-frequency magnetic field for causing nuclear magnetic resonance to protons that are hydrogen nuclei in the subject, and a nuclear magnetic resonance signal emitted by nuclear magnetic resonance. Magnetic resonance imaging comprising: receiving means for detecting; signal processing means for performing image reconstruction calculation using the received nuclear magnetic resonance signal; and pulse sequence control means for controlling a pulse sequence for measuring the nuclear magnetic resonance signal In the device
Separating the shim coil into a first component coil group consisting of shim coils with little magnetic interference with the RF coil and a second component coil group consisting of shim coils with much magnetic interference with the RF coil; The high-frequency magnetic field shielding member is inserted between the first component coil group and the second component coil group, and the first component coil group is located closer to the measurement space than the second component coil group. To place.

これにより、RFコイルとRFシールド間の距離をより多く離すことができるので、RFコイルとシムコイルとの磁気的干渉を低減しつつ、RFコイルとRFシールドとの干渉も低減できる。また、第一の成分コイル群の内径(トンネル型)またはコイル間距離(対向配置型)が縮まるので、これらの補正磁場強度を弱められるため、これらのシムコイルパターンを簡略化することが可能となる。   As a result, the distance between the RF coil and the RF shield can be further increased, so that interference between the RF coil and the RF shield can be reduced while reducing magnetic interference between the RF coil and the shim coil. Further, since the inner diameter (tunnel type) or the inter-coil distance (opposite arrangement type) of the first component coil group is reduced, these correction magnetic field strengths can be weakened, so that these shim coil patterns can be simplified. .

また、好ましい一実施態様によれば、前記第一の成分コイル群を、シムコイルの内Zn成分のみを補正する成分コイルとし、前記第二の成分コイル群を該第一の成分コイル群以外のコイルとする。
これにより、RFコイルと磁気的な干渉が比較的少ないZn系シムコイルのコイルパターンを簡略化でき、RFコイルとの磁気的な干渉の多い他の成分コイルとRFコイルとの磁気的な干渉を低減することができる。
Moreover, according to a preferred embodiment, said first component coils, the component coils to correct only the inner Z n components of shim coils, other than the second said first component coils ingredients coil group A coil.
Thus, it is possible to simplify the coil pattern of the magnetic interference and RF coil is relatively small Z n system shim coils, the magnetic interference between the magnetic Other ingredients coil and RF coil with much interference with RF coil Can be reduced.

また、好ましい一実施態様によれば、本発明の磁気共鳴イメージング装置を、一対の前記静磁場発生手段と一対の前記シムコイルと一対の前記RFコイルと一対の前記傾斜磁場コイルがそれぞれ前記計測空間を間に挟んで対向配置されて構成され、一方の静磁場発生手段から他方の静磁場発生手段に向かう方向に静磁場を発生する構成とする。
これにより、磁気共鳴イメージング装置の開放性を高めつつ、RFコイルとシムコイルやRFシールドとの磁気的干渉を低減することが可能になる。
According to a preferred embodiment, the magnetic resonance imaging apparatus of the present invention includes a pair of the static magnetic field generating means, a pair of shim coils, a pair of the RF coils, and a pair of the gradient magnetic field coils. It is configured so as to be opposed to each other and generate a static magnetic field in a direction from one static magnetic field generation unit to the other static magnetic field generation unit.
Thereby, it becomes possible to reduce the magnetic interference between the RF coil, the shim coil, and the RF shield while improving the openness of the magnetic resonance imaging apparatus.

また、好ましい一実施態様によれば、対向配置構成の磁気共鳴イメージング装置に於いて、一方の前記第一の成分コイル群と他方の前記第一の成分コイル群との間に前記成分コイル毎にLC並列回路が挿入されて直列接続され、該LC並列回路は前記RFコイルが発生する前記高周波磁場の周波数で高インピーダンスとなる特性を備える。
これにより、イメージングに重要な周波数において第一の成分コイル群が高インピーダンスとなり、その周波数でRFコイルと第一の成分コイル群との間で、磁気的な干渉を低減することができる。
According to a preferred embodiment, in the magnetic resonance imaging apparatus having the opposed arrangement, each component coil is disposed between one of the first component coil groups and the other first component coil group. An LC parallel circuit is inserted and connected in series, and the LC parallel circuit has a characteristic of high impedance at the frequency of the high-frequency magnetic field generated by the RF coil.
Thereby, the first component coil group becomes high impedance at a frequency important for imaging, and magnetic interference can be reduced between the RF coil and the first component coil group at the frequency.

また、好ましい一実施態様によれば、さらに、一方の前記第二の成分コイル群と他方の前記第二の成分コイル群との間に前記成分コイル毎にLC並列回路が挿入されて直列接続され、該LC並列回路はRFコイルが発生する高周波磁場の周波数で高インピーダンスとなる特性を備える。
これにより、イメージングに重要な周波数において第二の成分コイル群が高インピーダンスとなり、その周波数でRFコイルと第二の成分コイル群との間で、磁気的な干渉を低減することができる。
According to a preferred embodiment, an LC parallel circuit is further inserted in series between each of the second component coil groups and the other second component coil group for each of the component coils. The LC parallel circuit has a characteristic of high impedance at the frequency of the high frequency magnetic field generated by the RF coil.
Thereby, the second component coil group has a high impedance at a frequency important for imaging, and magnetic interference can be reduced between the RF coil and the second component coil group at the frequency.

以上、本発明によれば、RFコイルとシムコイルとの磁気的干渉を低減することができる。この効果によりRFコイルの性能を維持して損ねることがないので、高周波磁場を被検体に適正に印加でき、画質劣化の低減を図ることができる。このため、RFコイル性能に負荷をかけずに済むので、RFコイルの設計が容易になり、またRFパワーアンプなどの電源供給源にも負荷がかからない分、コンパクトにすることができる。   As described above, according to the present invention, magnetic interference between the RF coil and the shim coil can be reduced. This effect maintains the performance of the RF coil and does not impair it, so that a high-frequency magnetic field can be appropriately applied to the subject and image quality degradation can be reduced. For this reason, since it is not necessary to put a load on the RF coil performance, the design of the RF coil is facilitated, and the power supply source such as the RF power amplifier is not loaded, so that it can be made compact.

さらに、RFコイルと磁気的な干渉が少ないシムコイル成分をRFシールドよりもRFコイル側、つまり計測空間側に配置した場合には、これらのシムコイルパターンを簡略化することが可能となると同時に、RFコイルとRFシールド間の距離を離すことができ、RFコイルとRFシールド間の干渉による高周波磁場の歪みを低減することができる。   In addition, if shim coil components with little magnetic interference with the RF coil are placed on the RF coil side, that is, the measurement space side of the RF shield, these shim coil patterns can be simplified, and at the same time, the RF coil The distance between the RF shield and the RF shield can be increased, and distortion of the high-frequency magnetic field due to interference between the RF coil and the RF shield can be reduced.

さらに、RFコイルとシムコイル間の磁気的干渉が無視できない程度であっても、従来であればRFシールドの下に配置しなければならなかったシムコイルを、イメージングのための高周波磁場の周波数で高インピーダンスとなるようなLC並列共振回路を間に挿入して上下のシムコイルを成分毎に連結することにより、RFコイルの下にRFコイルと磁気的干渉の少ない成分コイル群を配置することが出来る。これにより、RFコイルとRFシールドとの距離が広がるためRFコイルの性能が向上する。   Furthermore, even if the magnetic interference between the RF coil and the shim coil is not negligible, the shim coil that had to be placed under the RF shield in the past has a high impedance at the frequency of the high-frequency magnetic field for imaging. By inserting an LC parallel resonant circuit between the upper and lower shim coils for each component, a component coil group with less magnetic interference with the RF coil can be arranged under the RF coil. As a result, the distance between the RF coil and the RF shield increases, so that the performance of the RF coil is improved.

以下、本発明の実施例を添付図面に基づいて説明する。なお、発明の実施の形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。   Embodiments of the present invention will be described below with reference to the accompanying drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment of the invention, and the repetitive description thereof is omitted.

図1に本発明に係る磁気共鳴イメージング(以下、「MRI」という)装置の全体斜視図を示す。MRI装置は核磁気共鳴(以下、「NMR」という)現象を利用して被検体の検査部位の断層像を得るものであり、被検体の周りに静磁場を発生させる静磁場発生装置10と、被検体を構成する水素原子核にNMR現象を誘起させるための高周波磁場を照射する主に頭部用のRFコイル11と、被検体から発せられるNMR信号に位置情報を与えるための傾斜磁場を発生する傾斜磁場コイル(図1には省略してある)と、信号処理装置12を備えて構成される。   FIG. 1 shows an overall perspective view of a magnetic resonance imaging (hereinafter referred to as “MRI”) apparatus according to the present invention. The MRI apparatus uses a nuclear magnetic resonance (hereinafter referred to as “NMR”) phenomenon to obtain a tomographic image of an examination site of a subject, and generates a static magnetic field around the subject. An RF coil 11 for the head that irradiates a high-frequency magnetic field to induce an NMR phenomenon in the hydrogen nuclei constituting the subject, and a gradient magnetic field for giving positional information to NMR signals emitted from the subject are generated. A gradient magnetic field coil (not shown in FIG. 1) and a signal processing device 12 are provided.

図2に図1のMRI装置の断面図を示す。静磁場発生装置10は、被検体が挿入される計測空間Aを間に挟んで、極性の異なる一対の永久磁石1a,1bが上下に対向配置(aは下側、bは上側を表す。以下同じ)され、さらに永久磁石1a,1bの外面には継鉄板2a,2bが設置されている。また、継鉄棒3が所定の距離に隔てられた継鉄板2a,2bと機械的かつ磁気的に接続され、磁石1a,1bと共に継鉄板2a,2bを支持する構造となっている。また、静磁場の均一性確保及び高効率な静磁場発生のために永久磁石の計測空間A側に磁極4a,4bが配置され、さらに、静磁場の不均一を補正するためにシムコイル9a,9bが磁極4a,4bの内側に配置されている。このように形成された静磁場発生装置は、計測空間A中に均一な静磁場を形成する。   FIG. 2 shows a cross-sectional view of the MRI apparatus of FIG. In the static magnetic field generating apparatus 10, a pair of permanent magnets 1a and 1b having different polarities are vertically opposed to each other with a measurement space A into which a subject is inserted (a is a lower side and b is an upper side. Furthermore, yoke plates 2a and 2b are installed on the outer surfaces of the permanent magnets 1a and 1b. Further, the yoke rod 3 is mechanically and magnetically connected to the yoke plates 2a, 2b separated by a predetermined distance, and supports the yoke plates 2a, 2b together with the magnets 1a, 1b. Further, magnetic poles 4a and 4b are arranged on the measurement space A side of the permanent magnet in order to ensure the uniformity of the static magnetic field and to generate a high-efficiency static magnetic field, and shim coils 9a and 9b are used to correct the non-uniformity of the static magnetic field. Is arranged inside the magnetic poles 4a and 4b. The static magnetic field generator thus formed forms a uniform static magnetic field in the measurement space A.

また、磁極4a,4bの計測空間A側の窪みには傾斜磁場コイル5a,5bがそれぞれ設置され、さらにその計測空間A側には、被検体の水素原子核にNMR現象を誘起させるための高周波磁場を与える主に全身用のRFコイル6a,6bが設置されている。この傾斜磁場コイル5a,5bにパルス電流を印加することにより、X・Y・Zの三軸方向に傾斜磁場を形成し、計測対象から発せられるNMR信号に位置情報を与える。
さらにRFコイル6a,6bの計測空間A側には、MRI装置の外周部を覆うようにカバー7が設置されている。このカバー7は、美観および絶縁などの安全面において必要なものである。
Further, gradient magnetic field coils 5a and 5b are respectively installed in the depressions on the measurement space A side of the magnetic poles 4a and 4b, and on the measurement space A side, a high-frequency magnetic field for inducing an NMR phenomenon in the hydrogen nucleus of the subject. The main body RF coils 6a and 6b are installed. By applying a pulse current to the gradient magnetic field coils 5a and 5b, a gradient magnetic field is formed in the three-axis directions of X, Y, and Z, and position information is given to NMR signals emitted from the measurement object.
Further, a cover 7 is installed on the measurement space A side of the RF coils 6a and 6b so as to cover the outer periphery of the MRI apparatus. This cover 7 is necessary in terms of safety such as aesthetics and insulation.

ここで、一般的に、垂直磁場方式のMRI装置では、上下の磁石間隔が狭い方が製造コストと装置重量を低減でき、静磁場発生がしやすくなる。一方、上下の磁石間隔が広い方が開放性が増し、RFコイルとRFシールドや傾斜磁場コイルおよびシムコイルとの距離をより多く離して、相互の干渉によるRFコイルの性能低下を防止することができる。そこで、実際の装置の設計においては、現実的な磁石間隔を設定した後に、より広い計測空間を確保できるように各種コイルとRFシールドの配置を工夫する。   Here, in general, in a vertical magnetic field type MRI apparatus, the one where the distance between the upper and lower magnets is narrower can reduce the manufacturing cost and the weight of the apparatus, so that a static magnetic field is easily generated. On the other hand, the wider the gap between the upper and lower magnets, the greater the openness and the greater the distance between the RF coil and the RF shield, gradient magnetic field coil, and shim coil, and the lowering of the RF coil performance due to mutual interference can be prevented. . Therefore, in the actual device design, after setting the realistic magnet spacing, the arrangement of various coils and RF shields is devised so that a wider measurement space can be secured.

次に、上記の様なMRI装置に適用された本発明の好ましい第1の実施例を図3に示す。図3は本実施例のMRI装置における静磁場発生装置の下側部分の断面の拡大図である。計測空間A側から順に、カバー7,RFコイル6a,6b、傾斜磁場コイル5a,5b、RFシールド8a,8b、シムコイル91〜96(図2のシムコイル9を詳細に示したもので、特定の空間成分のみを持つ磁場を出力するコイルの集合体であることを明確に示したもの)、磁極4a,4b、永久磁石1a,1bが配置される。つまり、傾斜磁場コイル5a,5bと磁気的な干渉をするシムコイル91〜96の間に高周波磁場の遮蔽体であるRFシールド8a,8bを配置する。   Next, FIG. 3 shows a first preferred embodiment of the present invention applied to the MRI apparatus as described above. FIG. 3 is an enlarged view of a cross section of the lower portion of the static magnetic field generator in the MRI apparatus of the present embodiment. In order from the measurement space A side, cover 7, RF coils 6a and 6b, gradient coils 5a and 5b, RF shields 8a and 8b, shim coils 91 to 96 (showing shim coil 9 in FIG. 2 in detail, a specific space The magnetic poles 4a and 4b and the permanent magnets 1a and 1b are disposed. That is, the RF shields 8a and 8b, which are high-frequency magnetic field shields, are arranged between the shim coils 91 to 96 that magnetically interfere with the gradient magnetic field coils 5a and 5b.

このような配置にすることにより、RFコイルとRFシールドとの距離をより大きくすることができるので、RFコイルとRFシールドとの干渉を低減でき、高周波磁場が歪まずに被検体に適正に印加される。また、RFシールドによって高周波磁場が遮蔽されるので、シムコイル91〜96とRFコイル6a,6bとが磁気的に干渉しにくくなり、RFコイルの性能を維持して損ねることがない。
以上の第1の実施例の構成は、シムコイルと傾斜磁場コイルのオフセット電流で静磁場不均一補正を行う場合にも適用可能である。つまり、傾斜磁場コイルのオフセット電流で補正できない静磁場不均一成分の補正をシムコイルで行う場合に、傾斜磁場コイルとシムコイルとの間にRFシールドを挿入することにより、上記と同様の効果を発揮することができる。
With this arrangement, the distance between the RF coil and the RF shield can be further increased, so that interference between the RF coil and the RF shield can be reduced, and the high-frequency magnetic field is appropriately applied to the subject without distortion. Is done. Further, since the high-frequency magnetic field is shielded by the RF shield, the shim coils 91 to 96 and the RF coils 6a and 6b are less likely to interfere magnetically, and the performance of the RF coil is not impaired and lost.
The configuration of the first embodiment described above can also be applied to the case where static magnetic field inhomogeneity correction is performed using offset currents of shim coils and gradient magnetic field coils. In other words, when correcting the static magnetic field inhomogeneous component that cannot be corrected by the offset current of the gradient magnetic field coil with the shim coil, the same effect as described above is exhibited by inserting an RF shield between the gradient magnetic field coil and the shim coil. be able to.

あるいは、図4に示す本発明の好ましい第2の実施例では、シムコイルをRFコイルとの磁気的な干渉性に応じて分離して、RFコイルと磁気的な干渉が比較的少ない成分のシムコイル群(第一の成分コイル群)をRFシールドの内側(つまり計測空間A側)に配置し、RFコイルと磁気的な干渉が比較的多い成分のシムコイル群(第二の成分コイル群)をRFシールドの外側(つまり磁極側)に配置する。ただし、第一の成分コイル群が一次成分(X,Y,Zシムコイル)であれば、これらを傾斜磁場コイルと一体として、傾斜磁場コイルのオフセット電流で補正するようにしても良い。   Alternatively, in the second preferred embodiment of the present invention shown in FIG. 4, the shim coils are separated according to the magnetic coherence with the RF coil, and the shim coil group having a component with relatively little magnetic interference with the RF coil. The (first component coil group) is placed inside the RF shield (that is, the measurement space A side), and the shim coil group (second component coil group) that has a relatively large amount of magnetic interference with the RF coil is RF shielded. Outside (ie, on the magnetic pole side). However, if the first component coil group is a primary component (X, Y, Z shim coil), these may be integrated with the gradient coil and corrected with the offset current of the gradient coil.

具体的には、RFコイルと磁気的な干渉が比較的少ないZn系シムコイル95,96は、従来と同様に傾斜磁場コイル5a,5bと一体とするか若しくは傾斜磁場コイル5a,5bに隣接配置する。従って、Zn系シムコイル95,96はRFシールド8a,8bよりもRFコイル6a,6b側(つまり計測空間A側)に配置され、シムコイル95,96とRFコイル6a,6bの間にRFシールドは存在しない。そして、RFコイルと干渉するその他のシムコイル91〜94(例えばZX・ZY・X2−Y2・XYシムコイル)は、RFシールド8a,8bより磁極4a,4b側に配置する。この様な配置の結果、これらシムコイル91〜94とRFコイルとの間にのみRFシールドが存在する。このような配置でも、RFコイル性能の損失を最小限に抑えることができる。 Specifically, magnetic interference and RF coil is relatively small Z n system shim coils 95 and 96, similarly to the conventional gradient coils 5a, 5b and whether or gradient coil 5a and integrally disposed adjacent to 5b To do. Thus, Z n system shim coils 95 and 96 RF shield 8a, RF coils 6a than 8b, disposed 6b side (i.e. the measurement space A side), the shim coil 95, 96 and RF coils 6a, 6b are RF shield between the not exist. Then, it interferes with RF coils other shim coils 91 to 94 (e.g., ZX · ZY · X 2 -Y 2 · XY shim coil) is disposed RF shield 8a, than 8b poles 4a, and 4b side. As a result of such an arrangement, an RF shield exists only between the shim coils 91 to 94 and the RF coil. Even with such an arrangement, loss of RF coil performance can be minimized.

つまり、RFコイルとRFシールドとの距離をより多く離すことができるので、RFコイルとRFシールドとの干渉を低減でき、高周波磁場が歪まずに被検体に適正に印加される。また、RFコイルと磁気的な干渉が比較的多い第二の成分コイル群をRFシールドの外側に配置するのでRFコイルと第二の成分コイル群との磁気的干渉も低減できる。さらに、RFコイルと干渉しない上下のZn系シムコイル成分間の距離が縮まるので、これらの補正磁場強度を弱められるため、これらのシムコイルパターンを簡略化することが可能となる。 In other words, since the distance between the RF coil and the RF shield can be further increased, interference between the RF coil and the RF shield can be reduced, and the high-frequency magnetic field is appropriately applied to the subject without distortion. Further, since the second component coil group having a relatively large amount of magnetic interference with the RF coil is disposed outside the RF shield, magnetic interference between the RF coil and the second component coil group can also be reduced. Further, since the distance between the upper and lower Z n system shim coils components which do not interfere with the RF coil is shortened, because the weakened these corrective magnetic field strength, it is possible to simplify these shim coil pattern.

次に、上記第2の実施例の構成においてさらに磁気的干渉を低減する構成について説明する。図4に示した第2実施例においては、傾斜磁場コイルと一体もしくは接する様に配置された第一の成分コイル群の場合、RFコイルと第一の成分コイル群との間に高周波磁場の遮蔽体であるRFシールドがない構成となっている。そのため、RFコイルと第一の成分コイル群とが僅かながら磁気的に干渉してしまいRFコイルの性能劣化が無視できない場合も生じる可能性がある。また、RFコイルと第二の成分コイル群との間に遮蔽体であるRFシールドが配置されているが、RFシールドの性能が不十分の場合、RFコイルと第二の成分コイル群とが磁気的に干渉してしまいRFコイルの性能を劣化させてしまう場合も生じる可能性がある。なお、図4において、傾斜磁場コイル5aがシムコイル95,96の磁極側に配置されているが、逆に、シムコイル95,96を傾斜磁場コイル5aよりも磁極側に配置しても良い。   Next, a configuration for further reducing magnetic interference in the configuration of the second embodiment will be described. In the second embodiment shown in FIG. 4, in the case of the first component coil group arranged so as to be integral with or in contact with the gradient magnetic field coil, the high-frequency magnetic field is shielded between the RF coil and the first component coil group. It has a configuration without the RF shield that is the body. For this reason, there is a possibility that the RF coil and the first component coil group slightly interfere with each other magnetically and the performance deterioration of the RF coil cannot be ignored. In addition, an RF shield, which is a shield, is placed between the RF coil and the second component coil group, but if the RF shield performance is insufficient, the RF coil and the second component coil group are magnetic. In some cases, it may cause interference and deteriorate the performance of the RF coil. In FIG. 4, the gradient magnetic field coil 5a is arranged on the magnetic pole side of the shim coils 95 and 96. Conversely, the shim coils 95 and 96 may be arranged on the magnetic pole side of the gradient magnetic field coil 5a.

そこで、RFコイルと第一の成分コイル群との磁気的干渉をさらに低減する本発明の好ましい第3の実施例を図5, 6に示す。図5は本実施例のMRI装置におけるシムコイルの回路図を示したものである。図6は第一の成分コイル群の結線を示したものである。シムコイルは、シムコイル電源および制御装置55から下(上)側シムコイル51a(51b)を通り、上(下)側シムコイル51b(51a)へと直列に接続されている。この上下シムコイルの間にインダクタ53とキャパシタ54からなるLC並列回路52を挿入している。このLC並列回路52は特定の周波数に対してのみ高インピーダンスを有する様にインダクタ53とキャパシタ54を調整する。つまり、本実施例のLC並列回路は、前記RFコイル6a,6bから発生される高周波磁場の周波数のみ高インピーダンスとなるように設定される。図6に示した様に、この図5に示された回路を第一の成分コイル群(31a,31b)の各成分コイル毎に適用する。このような構成とすることで、RFコイル6a,6bと第一の成分コイル群(31a,31b)とが磁気的に干渉しにくくなり、RFコイル6a,6bの性能が低減されない。   A preferred third embodiment of the present invention for further reducing the magnetic interference between the RF coil and the first component coil group is shown in FIGS. FIG. 5 shows a circuit diagram of a shim coil in the MRI apparatus of the present embodiment. FIG. 6 shows the connection of the first component coil group. The shim coil is connected in series from the shim coil power supply and control device 55 to the upper (lower) shim coil 51b (51a) through the lower (upper) shim coil 51a (51b). An LC parallel circuit 52 including an inductor 53 and a capacitor 54 is inserted between the upper and lower shim coils. The LC parallel circuit 52 adjusts the inductor 53 and the capacitor 54 so as to have a high impedance only for a specific frequency. That is, the LC parallel circuit of this embodiment is set so that only the frequency of the high frequency magnetic field generated from the RF coils 6a and 6b has a high impedance. As shown in FIG. 6, the circuit shown in FIG. 5 is applied to each component coil of the first component coil group (31a, 31b). With such a configuration, the RF coils 6a and 6b and the first component coil group (31a and 31b) do not easily interfere with each other, and the performance of the RF coils 6a and 6b is not reduced.

さらに、第3の実施例に記載の構成に加えて上記LC回路52を第二の成分コイル群(32a,32b)の各成分コイル毎にも適用した本発明の好ましい第4の実施例を図7に示す。図7では、第一の成分コイル群(31a,31b)と第二の成分コイル群(32a,32b)の両方にLC並列回路52を各成分コイル毎に適用している。このように構成することで、RFコイル6a,6bと第一の成分コイル群(31a,31b)及び第二の成分コイル群(32a,32b)の両方間とで、共に磁気的に干渉しにくくなり、RFコイル6a,6bの性能が低減されない。なお、第一の成分コイル群(31a,31b)にはLC並列回路52を挿入せず、第二の成分コイル群(32a,32b)に対してのみLC並列回路52を挿入する構成でも良い。   Further, in addition to the configuration described in the third embodiment, the LC circuit 52 is also applied to each component coil of the second component coil group (32a, 32b). 7 shows. In FIG. 7, the LC parallel circuit 52 is applied to both the first component coil group (31a, 31b) and the second component coil group (32a, 32b) for each component coil. By configuring in this way, it is difficult for both the RF coils 6a and 6b and the first component coil group (31a, 31b) and the second component coil group (32a, 32b) to interfere with each other magnetically. Thus, the performance of the RF coils 6a and 6b is not reduced. The LC parallel circuit 52 may be inserted only into the second component coil group (32a, 32b) without inserting the LC parallel circuit 52 into the first component coil group (31a, 31b).

なお、第3,4の実施例で示したシムコイルの成分コイル毎に上下の成分コイル間にLC並列回路を挿入する構成は、第1の実施例におけるシムコイルの各成分コイルに対しても同様に適用できる。     The configuration in which the LC parallel circuit is inserted between the upper and lower component coils for each component coil of the shim coils shown in the third and fourth embodiments is the same for each component coil of the shim coil in the first embodiment. Applicable.

以上は、静磁場発生源として永久磁石を用いた垂直磁場方式のMRI装置に本発明を適用した実施形態を説明したが、本発明のMRI装置は上記実施形態に限定されず、種々の変更が可能である。例えば、静磁場発生源として超電導コイルや常電導コイルを用いることも可能である。また、MRI装置の各構成要素を左右に対向配置して水平方向の静磁場を発生する場合にも適用可能である。さらに、静磁場発生方式も、垂直磁場方式でなくトンネル型と言われる水平磁場方式にも適応可能である。   The above describes the embodiment in which the present invention is applied to a vertical magnetic field type MRI apparatus using a permanent magnet as a static magnetic field generation source. However, the MRI apparatus of the present invention is not limited to the above embodiment, and various modifications can be made. Is possible. For example, a superconducting coil or a normal conducting coil can be used as a static magnetic field generation source. Further, the present invention can also be applied to a case where a horizontal static magnetic field is generated by disposing the respective components of the MRI apparatus facing left and right. Furthermore, the static magnetic field generation method can be applied not only to the vertical magnetic field method but also to a horizontal magnetic field method called a tunnel type.

MRI装置の全体斜視図。The whole perspective view of an MRI apparatus. MRI装置の断面図。Sectional drawing of an MRI apparatus. 本発明の第一の実施例を示す要部断面図。The principal part sectional drawing which shows the 1st Example of this invention. 本発明の第二の実施例を示す要部断面図。The principal part sectional drawing which shows the 2nd Example of this invention. 本発明の第三の実施例の要部を示す断面図。Sectional drawing which shows the principal part of the 3rd Example of this invention. 本発明の第三の実施例を示す要部断面図。The principal part sectional drawing which shows the 3rd Example of this invention. 本発明の第四の実施例を示す要部断面図。The principal part sectional drawing which shows the 4th Example of this invention.

符号の説明Explanation of symbols

1a,1b…永久磁石、2a,2b…継鉄版、3…継鉄棒、4a,4b…磁極、5a,5b…傾斜磁場コイル、6a,6b…照射コイル、7…カバー、8a,8b…RFシールド、9a,9b…シムコイル、91…ZXシムコイル、92…ZYシムコイル、93…X2−Y2シムコイル、94…XYシムコイル、95…Z2シムコイル、96…Z3シムコイル、10…静磁場発生装置、11…頭部用のRFコイル、12…信号処理装置、A…空間、51…シムコイル、52…LC並列共振回路、53…インダクタ、54…キャパシタ 1a, 1b ... permanent magnet, 2a, 2b ... yoke plate, 3 ... yoke rod, 4a, 4b ... magnetic pole, 5a, 5b ... gradient coil, 6a, 6b ... irradiation coil, 7 ... cover, 8a, 8b ... RF shield, 9a, 9b ... shim, 91 ... ZX shim, 92 ... ZY shim, 93 ... X 2 -Y 2 shim coil, 94 ... XY shim coil, 95 ... Z 2 shim, 96 ... Z 3 shim coils, 10 ... static magnetic field generating device 11 ... RF coil for head, 12 ... Signal processing device, A ... Space, 51 ... Shim coil, 52 ... LC parallel resonance circuit, 53 ... Inductor, 54 ... Capacitor

Claims (4)

被検体が配置される計測空間内に静磁場を与える静磁場発生手段と、前記静磁場の不均一を補正するシムコイルと、X,Y,Zの3軸方向に傾斜磁場を発生する傾斜磁場コイルと、前記被検体内の水素原子核であるプロトンに核磁気共鳴を起こさせるための高周波磁場を照射するRFコイルと、核磁気共鳴により放出される核磁気共鳴信号を検出する受信手段と、受信した前記核磁気共鳴信号を用いて画像再構成演算を行う信号処理手段と、前記核磁気共鳴信号を計測するパルスシーケンスを制御するパルスシーケンス制御手段とを備える磁気共鳴イメージング装置において、
前記シムコイルを、前記RFコイルとの磁気的な干渉があるシムコイルからなる第一の成分コイル群と、前記RFコイルとの磁気的な干渉が前記第一の成分コイル群より多いシムコイルからなる第二の成分コイル群とに分離し、前記第一の成分コイル群と前記第二の成分コイル群との間に前記高周波磁場の遮蔽部材を挿入し、前記第一の成分コイル群を前記第二の成分コイル群よりも前記計測空間側に配置したことを特徴とする磁気共鳴イメージング装置。
Static magnetic field generating means for applying a static magnetic field in a measurement space in which the subject is arranged, a shim coil for correcting non-uniformity of the static magnetic field, and a gradient magnetic field coil for generating a gradient magnetic field in the three-axis directions of X, Y, and Z An RF coil that irradiates a high-frequency magnetic field for causing nuclear magnetic resonance to protons that are hydrogen nuclei in the subject, and a receiving means that detects a nuclear magnetic resonance signal emitted by the nuclear magnetic resonance, In a magnetic resonance imaging apparatus, comprising: a signal processing unit that performs image reconstruction calculation using the nuclear magnetic resonance signal; and a pulse sequence control unit that controls a pulse sequence for measuring the nuclear magnetic resonance signal.
The shim coil includes a first component coil group including a shim coil having magnetic interference with the RF coil, and a second component coil including a shim coil having more magnetic interference with the RF coil than the first component coil group. And separating the first component coil group between the first component coil group and the second component coil group, and inserting the first component coil group into the second component coil group. A magnetic resonance imaging apparatus, wherein the magnetic resonance imaging apparatus is disposed closer to the measurement space than a component coil group.
請求項に記載の磁気共鳴イメージング装置に於いて、前記第一の成分コイル群を、シムコイルの内Zn成分のみを補正する成分コイルとし、前記第二の成分コイル群を該第一の成分コイル群以外のコイルとしたことを特徴とする磁気共鳴イメージング装置。 2. The magnetic resonance imaging apparatus according to claim 1 , wherein the first component coil group is a component coil that corrects only a Z n component of a shim coil, and the second component coil group is the first component coil. A magnetic resonance imaging apparatus characterized in that a coil other than the coil group is used. 請求項1乃至のいずれか一項に記載の磁気共鳴イメージング装置に於いて、一対の前記静磁場発生手段と一対の前記シムコイルと一対の前記RFコイルと一対の前記傾斜磁場コイルがそれぞれ前記計測空間を間に挟んで対向配置されて構成され、一方の静磁場発生手段から他方の静磁場発生手段に向かう方向に静磁場を発生することを特徴とする磁気共鳴イメージング装置。 3. The magnetic resonance imaging apparatus according to claim 1, wherein a pair of the static magnetic field generating means, the pair of shim coils, the pair of RF coils, and the pair of gradient magnetic field coils are respectively used for the measurement. A magnetic resonance imaging apparatus characterized in that a static magnetic field is generated in a direction from one static magnetic field generating means to the other static magnetic field generating means. 被検体が配置される計測空間内に静磁場を与える静磁場発生手段と、前記静磁場の不均一を補正するシムコイルと、X,Y,Zの3軸方向に傾斜磁場を発生する傾斜磁場コイルと、前記被検体内の水素原子核であるプロトンに核磁気共鳴を起こさせるための高周波磁場を照射するRFコイルと、核磁気共鳴により放出される核磁気共鳴信号を検出する受信手段と、受信した前記核磁気共鳴信号を用いて画像再構成演算を行う信号処理手段と、前記核磁気共鳴信号を計測するパルスシーケンスを制御するパルスシーケンス制御手段とを備える磁気共鳴イメージング装置において、
前記シムコイルの間に前記高周波磁場の遮蔽部材を挿入したことを特徴とする磁気共鳴イメージング装置。
Static magnetic field generating means for applying a static magnetic field in a measurement space in which the subject is arranged, a shim coil for correcting non-uniformity of the static magnetic field, and a gradient magnetic field coil for generating a gradient magnetic field in the three-axis directions of X, Y, and Z An RF coil that irradiates a high-frequency magnetic field for causing nuclear magnetic resonance to protons that are hydrogen nuclei in the subject, and a receiving means that detects a nuclear magnetic resonance signal emitted by the nuclear magnetic resonance, In a magnetic resonance imaging apparatus, comprising: a signal processing unit that performs image reconstruction calculation using the nuclear magnetic resonance signal; and a pulse sequence control unit that controls a pulse sequence for measuring the nuclear magnetic resonance signal.
A magnetic resonance imaging apparatus, wherein the high-frequency magnetic field shielding member is inserted between the shim coils.
JP2003288457A 2003-06-04 2003-08-07 Magnetic resonance imaging system Expired - Lifetime JP4250479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003288457A JP4250479B2 (en) 2003-06-04 2003-08-07 Magnetic resonance imaging system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003159161 2003-06-04
JP2003288457A JP4250479B2 (en) 2003-06-04 2003-08-07 Magnetic resonance imaging system

Publications (3)

Publication Number Publication Date
JP2005013702A JP2005013702A (en) 2005-01-20
JP2005013702A5 JP2005013702A5 (en) 2006-09-21
JP4250479B2 true JP4250479B2 (en) 2009-04-08

Family

ID=34196722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003288457A Expired - Lifetime JP4250479B2 (en) 2003-06-04 2003-08-07 Magnetic resonance imaging system

Country Status (1)

Country Link
JP (1) JP4250479B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026003A (en) * 2006-07-18 2008-02-07 Jeol Ltd Nmr probe
WO2017079487A1 (en) 2015-11-06 2017-05-11 Cedars-Sinai Medical Center Unified coil (unic) systems and method for next generation magnetic resonance coils

Also Published As

Publication number Publication date
JP2005013702A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
BR112020021872A2 (en) b0 magnet methods and apparatus for an MRI system
US7414401B1 (en) System and method for shielded dynamic shimming in an MRI scanner
US20100060282A1 (en) Three-dimensional asymmetric transverse gradient coils
US10890637B2 (en) Magnetic resonance gradient coil for generating a magnetic field gradient and a magnetic field of a higher order
US20080272784A1 (en) Magnetic Resonance Imaging Device and Method for Operating a Magnetic Resonance Imaging Device
JP2001327478A (en) Gradient coil for mri
US20140184226A1 (en) System and apparatus for active high order shimming
US8258903B2 (en) Superconducting, actively shielded magnet
KR20130055538A (en) Gradient-independent shim coil for a local coil of a magnetic resonance device
US20140184222A1 (en) Matrix shim coil apparatus
US7230426B2 (en) Split-shield gradient coil with improved fringe-field
JP4250479B2 (en) Magnetic resonance imaging system
JP4607297B2 (en) Magnetic resonance imaging apparatus and variable magnetic field correction method
JP4191839B2 (en) Coil device for magnetic resonance diagnostic equipment
US11946992B2 (en) Magnetic resonance apparatus with a main magnet disposed between examination rooms
JP4334599B2 (en) Magnetic resonance diagnostic equipment
US12099104B2 (en) Passive shield for magnetic resonance imaging gradient coils
JP4392978B2 (en) Gradient magnetic field coil and magnetic resonance imaging apparatus using the same
US20240004011A1 (en) Gradient Coil Unit Free of Active Screening
US10859649B2 (en) Vibration reduction for a magnetic resonance imaging apparatus
JP4651236B2 (en) Magnetic resonance imaging system
JPH10262947A (en) Magnetic resonance examination system
JP5010623B2 (en) Coil device for magnetic resonance diagnostic equipment
JP2019118781A (en) Magnetic resonance imaging device
JP3325981B2 (en) Inspection device using magnetic resonance

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060803

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4250479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term