JP4246412B2 - Exhaust gas treatment catalyst and exhaust gas purification method using the same - Google Patents
Exhaust gas treatment catalyst and exhaust gas purification method using the same Download PDFInfo
- Publication number
- JP4246412B2 JP4246412B2 JP2001204173A JP2001204173A JP4246412B2 JP 4246412 B2 JP4246412 B2 JP 4246412B2 JP 2001204173 A JP2001204173 A JP 2001204173A JP 2001204173 A JP2001204173 A JP 2001204173A JP 4246412 B2 JP4246412 B2 JP 4246412B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- catalyst
- powder
- oxide
- gas treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、排ガス処理触媒に関するものであり、詳しくは、排ガス中に含まれるダイオキシン類や窒素酸化物などの有害物質を効率よく除去でき、更に排ガス中にダストが多く含まれる排ガスに適した触媒であって、触媒が高強度で担持またはコートされた構造体およびこの触媒を用いた排ガス処理方法に関するものである。
【0002】
【従来の技術】
産業廃棄物や都市廃棄物を処理する焼却施設から発生する排ガス中にはダイオキシン類、PCB、クロロフェノールなどの極微量の毒性有機ハロゲン化合物や窒素酸化物、一酸化炭素が含まれており、特にダイオキシン類は微量であってもきわめて有毒であり、人体に重大な影響を及ぼすため、その除去技術が早急に求められている。また、石炭や重油を燃料とするボイラーから発生する排ガス中にも窒素酸化物や硫黄酸化物が含まれ、大気汚染の原因となっている。触媒分解法による有害物質の除去は最も有効な技術のひとつであり、粉末状の触媒そのものを成形したり、種々の構造体に触媒を担持またはコートすることによって様々な形状の触媒が製造される。しかし、種々の構造体に触媒を担持またはコートする場合、触媒組成によっては剥がれ落ちやすいなど接着強度において課題が残されている。特にセラミックフィルタに触媒を担持して排ガス処理に用いる場合、フィルタに堆積した煤塵を払い落とすために一定の時間間隔で排ガス流れと逆方向にエアパルスが吹き込まれるために、触媒層により高い接着強度が求められる。
【0003】
【発明が解決しようとする課題】
本発明の目的は、各種の構造体に排ガス処理触媒を担持またはコートする際、触媒層の接着強度を著しく高める方法を提供することである。
【0004】
【課題を解決するための手段】
上述の課題に対し、本発明は以下のように第一から第三の発明により特定される。
(1)ダストを含む排ガスを処理する排ガス処理触媒であって、バナジウム、モリブデン、チタンの中から少なくとも1種の元素を含む酸化物(以下、「活性酸化物」と称する)であってかつ当該酸化物の平均粒子径が0.05〜5μmである粉体と、当該酸化物の平均粒子径が5〜100μmである粉体と、平均直径が0.1〜50μmかつ平均長さが2〜1000μmである無機質繊維とを、当該粉体と当該無機質繊維との重量比が1:0.01〜1:0.2の範囲で混合して水性スラリーとし、耐火性三次元構造体に担持されてなり、当該耐火性三次元構造体がウォールフロータイプのセラミックフィルタであることを特徴とする排ガス処理触媒。
(2)第二の発明は、上記1記載の触媒に排ガスを通過させることを特徴とする排ガス浄化方法である。
(3)第三の発明は、請求項1記載の触媒に排ガスを通過させた後、0.1〜1気圧(101325Pa)の圧力で当該触媒の排ガス排出側からガスを流通されることを特徴とする排ガス処理触媒の再生方法である。
【0005】
【発明の実施の形態】
本発明のうち第一の発明は、ダストを含む排ガスを処理する排ガス処理触媒であって、バナジウム、モリブデン、チタンの中から少なくとも1種の元素を含む酸化物(以下、「活性酸化物」と称する)であってかつ当該酸化物の平均粒子径が0.05〜5μmである粉体と、当該酸化物の平均粒子径が5〜100μmである粉体と、平均直径が0.1〜50μmかつ平均長さが2〜1000μmである無機質繊維とを、当該粉体と当該無機質繊維との重量比が1:0.01〜1:0.2の範囲で混合して水性スラリーとし、耐火性三次元構造体に担持されてなり、当該耐火性三次元構造体がウォールフロータイプのセラミックフィルタであることを特徴とする排ガス処理触媒である。
【0006】
本発明に係るバナジウム、タングステン、モリブデン、チタン、ケイ素の中から少なくとも1種の元素を含む酸化物(以下、「活性酸化物」と称する)は、個々の元素の単独酸化物の他、個々の元素同士を組み合わせた複合酸化物であり、好ましくは、バナジウム−チタン、バナジウム−モリブデン−チタン、バナジウム−モリブデン−チタン−ケイ素、バナジウム−タングステン−チタン、バナジウム−タングステン−チタン−ケイ素の各複合酸化物である。
【0007】
当該酸化物は0.05〜5μmの平均粒子径をもつものと5〜100μmの平均粒子径をもつものとが混合され、好ましくは、0.5〜5μmの平均粒子径をもつものと5〜20μmの平均粒子径をもつものとが混合されているのがよい。0.05〜5μmの平均粒子径をもつものだけであると、触媒層が緻密になり、圧力損失が大きくなるため好ましくない。5〜100μmの平均粒子径をもつものだけであると触媒層の接着強度が低下するので好ましくない。平均粒子径の測定方法としては、通常の手段例えば、粒度計による測定、電子顕微鏡による測定などの方法を用いることができる。
【0008】
本発明に係る無機質繊維は、平均直径が0.1〜50μmかつ平均長さが2〜1000μmであり、好ましくは、平均直径が0.5〜20であり、平均長さが10〜100である。平均直径が0.1μm未満である場合には、無機質繊維が折れやすく、従って触媒層の接着強度が低い為好ましくは無く、50μmをこえる場合には、無機質繊維の体積が大きく触媒の重量比が相対的に小さくなる為好ましくはないからである。
【0009】
無機質繊維の平均長さが2μm未満である場合には、ひとつの無機繊維に接触する触媒粒子が少なく触媒層の接着強度が弱い為好ましくは無く、1000μmをこえる場合には、無機質繊維が折れやすく、従って触媒層の接着強度が低い為好ましくは無いからである。
【0010】
粉体と無機質繊維との重量比は1:0.01〜1:0.2、好ましくは1:0.02〜1:0.08である。無機質繊維が少ないと触媒層の接着強度が低くなり、無機質繊維が多いと相対的に触媒量が少なくなり触媒性能の低下につながる。
【0011】
耐火性三次元構造体は、セラミックフォーム、セラミックハニカム、ウォールフロータイプのハニカムモノリス(セラミックフィルタ)、メタルハニカム、ワイヤーメッシュ、金属発泡体である。
【0012】
本発明に係る触媒を調製する方法としては、粗粉砕した活性酸化物の粉体と、粗粉砕した無機質繊維と、活性酸化物の粉体を水分とともにアトライタで湿式粉砕したものを、混合して水性スラリーとし、耐火性三次元構造体に担持する方法である。さらに、触媒層の接着強度を増すために、活性酸化物の粉体の水性スラリーに、チタニアゾル、シリカゾル、アルミナゾルジルコニアゾル、可溶性ベーマイト、可溶性有機高分子化合物、硫酸の中から少なくとも1種を添加したものを耐火性三次元構造体に担持またはコートすることもできる。
【0013】
本発明のうち第ニの発明は、上記の触媒に排ガスを通過させてなる排ガス浄化方法である。排ガスは、当該触媒に対して空間速度で、500〜10000h-1が好ましい。特に排ガスは、ダイオキシン類や窒素酸化物など微量の有害物質を含有する排ガスの処理に好適に用いられる。
【0014】
本発明のうち第三の発明は、触媒の再生方法である。とりわけ、焼却炉から排出されるこれらの微量有害物質およびダストを含む排ガスの処理においては、触媒を再生し使用することができる。再生方法としては、耐火性三次元構造体に蓄積されたダストを払い落とすために定期的にガス流れの逆方向からエアパルスを吹き込む為、この衝撃に耐え得る触媒層の接着強度が要求される。当該排ガス処理触媒はこのような排ガス条件において好適に用いられる。本発明に係る触媒であれば十分な強度を有するので再生処理に耐えることができる。再生方法は0.1〜1(101325Pa)の圧力で、触媒の排ガス出口側からガス(通常は空気)のパルスを送ることで再生するものである。
【0015】
【実施例】
(実施例1)
日本ガイシ製のセラミックフィルタ(材質:コージェライト、平均細孔径:15μm、リブ厚:0.9mm、目開き:5.0mm、長さ:500mm)に触媒成分とガラス繊維を担持したサンプルを以下のように調製した。酸化チタン粉末とガラス繊維にバナジウム、モリブデンの水溶液を加え、ニーダーを用いて混練し、ペレット状に成形した。これを乾燥、焼成して排ガス処理触媒を得た。得られた触媒1kgをハンマーミルで粉砕し粉体(A)を得た。粉体(A)の平均粒子径は14μmであった。またガラス繊維の平均直径は3μm、平均長さは30μmであった。粉体(A)0.33kgに水2リットルを添加してアトライタで平均粒子径が1.5μmになるまで粉砕した。このようにして得られたスラリーに粉体(A)0.33gを加えた。このスラリーをセラミックフィルタに浸漬し、余剰のスラリーを除去した後、乾燥、450℃で焼成を行った。得られた触媒担持セラミックフィルタ(B)の担持された触媒量は85g/Lであった。
【0017】
(比較例1)
実施例1と同様に、粉体(A)0.5kgに水1.5リットルを添加してアトライタで平均粒子径が1.5μmになるまで粉砕し、得られたスラリーをセラミックフィルタに浸漬し、余剰のスラリーを除去した後、乾燥、450℃で焼成を行った。得られた触媒担持セラミックフィルタ(D)の担持された触媒量は81g/Lであった。走査型電子顕微鏡によりガラス繊維の状態を測定したが検出てせきなかったので、ほぼ5nm以下の長さであると考えられる。
これらのサンプル(B),(D)について、触媒層表面の電子顕微鏡写真を図に示した。また、それぞれのサンプルに圧力2kg重/cm2のエアパルスを1分間隔で1秒間吹き込み、300時間後の触媒層の剥離量を測定した。
【0018】
触媒担持セラミックフィルタ(B) 剥離量は担持成分重量の1%以下
触媒担持セラミックフィルタ(C) 剥離量は担持成分重量の5%
触媒担持セラミックフィルタ(D) 剥離量は担持成分重量の74%
【0019】
【発明の効果】
本発明に係る触媒は、触媒表面に特定の大きさを有する無機質繊維を有することで、触媒の剥離強度は向上し、特に同じ無機質繊維を触媒表面に被覆したものに比べ強度の向上が見られる。本発明係る触媒は、ダイオキシン類や窒素酸化物など微量の有害物質を含有する排ガスの処理に好適に用いられる。
【図面の簡単な説明】
【図1】 図1は、実施例1における(B)に係る触媒表面の走査型電子顕微鏡写真である。触媒表面にはガラス繊維が存在することが判る。
【図2】 図2は、比較例1における(D)に係る触媒表面の走査型電子顕微鏡写真である。触媒表面にはガラス繊維が見られないことが判る。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas treatment catalyst, and more specifically, a catalyst suitable for exhaust gas that can efficiently remove harmful substances such as dioxins and nitrogen oxides contained in the exhaust gas, and further contains a lot of dust in the exhaust gas. The present invention relates to a structure in which a catalyst is supported or coated with high strength and an exhaust gas treatment method using the catalyst.
[0002]
[Prior art]
Exhaust gas generated from incineration facilities that treat industrial and municipal waste contains trace amounts of toxic organic halogen compounds such as dioxins, PCBs, and chlorophenol, nitrogen oxides, and carbon monoxide. Dioxins are extremely toxic, even in trace amounts, and have serious effects on the human body, so there is an urgent need for their removal technology. Moreover, nitrogen oxides and sulfur oxides are also contained in exhaust gas generated from boilers that use coal or heavy oil as fuel, causing air pollution. Removal of harmful substances by catalytic decomposition is one of the most effective technologies, and various shapes of catalysts can be produced by forming a powdered catalyst itself or by loading or coating the catalyst on various structures. . However, when a catalyst is supported on or coated on various structures, problems remain in the adhesive strength, such as being easily peeled off depending on the catalyst composition. In particular, when a catalyst is supported on a ceramic filter and used for exhaust gas treatment, air pulses are blown in a direction opposite to the exhaust gas flow at regular intervals to remove dust accumulated on the filter. Desired.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for significantly increasing the adhesive strength of a catalyst layer when an exhaust gas treatment catalyst is supported or coated on various structures.
[0004]
[Means for Solving the Problems]
With respect to the above-described problems, the present invention is specified by the first to third inventions as follows.
(1) is the exhaust gas treatment catalyst for treating an exhaust gas containing dust, vanadium, Mo Ribuden, oxides containing at least one element among titanium emission (hereinafter, referred to as "active oxide") met In addition, a powder having an average particle diameter of the oxide of 0.05 to 5 μm, a powder having an average particle diameter of the oxide of 5 to 100 μm, an average diameter of 0.1 to 50 μm, and an average length An inorganic fiber having a diameter of 2 to 1000 μm is mixed in a weight ratio of the powder to the inorganic fiber in the range of 1: 0.01 to 1: 0.2 to form an aqueous slurry, and a fire-resistant three-dimensional structure Ri Na carried on, an exhaust gas treatment catalyst the refractory three-dimensional structure, wherein the ceramic filter der Rukoto of wall flow type.
(2) A second invention is an exhaust gas purification method characterized by allowing exhaust gas to pass through the catalyst described in the above item 1.
(3) The third invention is characterized in that after passing the exhaust gas through the catalyst according to claim 1, gas is circulated from the exhaust gas discharge side of the catalyst at a pressure of 0.1 to 1 atm (101325 Pa). This is a method for regenerating an exhaust gas treatment catalyst.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
First invention of the present invention, is the exhaust gas treatment catalyst for treating an exhaust gas containing dust, vanadium, Mo Ribuden, oxides containing at least one element among titanium emission (hereinafter, "active oxide A powder having an average particle diameter of the oxide of 0.05 to 5 μm, a powder having an average particle diameter of the oxide of 5 to 100 μm, and an average diameter of 0.1 μm. An inorganic fiber having an average length of 1 to 50 μm and an average length of 2 to 1000 μm is mixed in a weight ratio of the powder to the inorganic fiber of 1: 0.01 to 1: 0.2 to obtain an aqueous slurry. , Ri Na is supported on a refractory three-dimensional structure, the refractory three-dimensional structure is a exhaust gas treatment catalyst, wherein a ceramic filter der Rukoto of wall flow type.
[0006]
The oxide containing at least one element selected from vanadium, tungsten, molybdenum, titanium, and silicon according to the present invention (hereinafter referred to as “active oxide”) is not only a single oxide of each element but also an individual oxide. Complex oxides in which elements are combined, preferably, vanadium-titanium, vanadium-molybdenum-titanium, vanadium-molybdenum-titanium-silicon, vanadium-tungsten-titanium, vanadium-tungsten-titanium-silicon complex oxides It is.
[0007]
The oxide has an average particle diameter of 0.05 to 5 μm and an oxide having an average particle diameter of 5 to 100 μm, preferably those having an average particle diameter of 0.5 to 5 μm and 5 to 5 μm. It is preferable that a material having an average particle diameter of 20 μm is mixed. It is not preferred that the average particle diameter is only 0.05 to 5 μm because the catalyst layer becomes dense and the pressure loss increases. It is not preferable that the average particle diameter is only 5 to 100 μm because the adhesive strength of the catalyst layer is lowered. As a method for measuring the average particle size, a usual means such as a method using a particle size meter or a measurement using an electron microscope can be used.
[0008]
The inorganic fiber according to the present invention has an average diameter of 0.1 to 50 μm and an average length of 2 to 1000 μm, preferably an average diameter of 0.5 to 20 and an average length of 10 to 100. . If the average diameter is less than 0.1 μm, the inorganic fibers tend to break, and therefore the catalyst layer has a low adhesive strength, which is not preferable. If the average diameter exceeds 50 μm, the volume of the inorganic fibers is large and the catalyst weight ratio is high. This is because it is not preferable because it is relatively small.
[0009]
When the average length of the inorganic fibers is less than 2 μm, it is not preferable because the catalyst particles that contact one inorganic fiber are few and the adhesive strength of the catalyst layer is weak, and when the average length exceeds 1000 μm, the inorganic fibers easily break. Therefore, it is not preferable because the adhesive strength of the catalyst layer is low.
[0010]
The weight ratio of the powder to the inorganic fibers is 1: 0.01 to 1: 0.2, preferably 1: 0.02 to 1: 0.08. If there are few inorganic fibers, the adhesive strength of a catalyst layer will become low, and if there are many inorganic fibers, a catalyst amount will become relatively small and it will lead to the fall of catalyst performance.
[0011]
The fire-resistant three-dimensional structure is a ceramic foam, a ceramic honeycomb, a wall flow type honeycomb monolith (ceramic filter), a metal honeycomb, a wire mesh, or a metal foam.
[0012]
As a method of preparing the catalyst according to the present invention , coarsely pulverized active oxide powder, coarsely pulverized inorganic fiber, and wet pulverized active oxide powder together with moisture are mixed. In this method, an aqueous slurry is formed and supported on a fire-resistant three-dimensional structure . Furthermore, in order to increase the adhesive strength of the catalyst layer, at least one of titania sol, silica sol, alumina sol zirconia sol, soluble boehmite, soluble organic polymer compound, and sulfuric acid was added to the aqueous slurry of the active oxide powder. Things can also be carried or coated on a refractory three-dimensional structure.
[0013]
The second invention of the present invention is an exhaust gas purification method in which exhaust gas is passed through the catalyst. The exhaust gas is preferably at a space velocity of 500 to 10,000 h-1 with respect to the catalyst. In particular, the exhaust gas is suitably used for the treatment of exhaust gas containing a trace amount of harmful substances such as dioxins and nitrogen oxides.
[0014]
The third invention of the present invention is a method for regenerating a catalyst. In particular, the catalyst can be regenerated and used in the treatment of exhaust gas containing these trace harmful substances and dust discharged from the incinerator. As a regeneration method, an air pulse is periodically blown from the opposite direction of the gas flow in order to wipe off the dust accumulated in the fire-resistant three-dimensional structure, so that the adhesive strength of the catalyst layer that can withstand this impact is required. The exhaust gas treatment catalyst is suitably used under such exhaust gas conditions. Since the catalyst according to the present invention has sufficient strength, it can withstand regeneration treatment. In the regeneration method, regeneration is performed by sending a pulse of gas (usually air) from the exhaust gas outlet side of the catalyst at a pressure of 0.1 to 1 (101325 Pa).
[0015]
【Example】
Example 1
A sample in which a catalyst component and glass fiber are supported on a ceramic filter (material: cordierite, average pore diameter: 15 μm, rib thickness: 0.9 mm, aperture: 5.0 mm, length: 500 mm) manufactured by NGK It was prepared as follows. An aqueous solution of vanadium and molybdenum was added to the titanium oxide powder and glass fiber, kneaded using a kneader, and formed into a pellet. This was dried and calcined to obtain an exhaust gas treatment catalyst. 1 kg of the obtained catalyst was pulverized with a hammer mill to obtain a powder (A). The average particle size of the powder (A) was 14 μm. The average diameter of the glass fibers was 3 μm and the average length was 30 μm. 2 liters of water was added to 0.33 kg of the powder (A) and pulverized with an attritor until the average particle diameter became 1.5 μm. 0.33 g of the powder (A) was added to the slurry thus obtained. This slurry was immersed in a ceramic filter, and excess slurry was removed, followed by drying and firing at 450 ° C. The amount of catalyst supported on the obtained catalyst-supporting ceramic filter (B) was 85 g / L.
[0017]
(Comparative Example 1)
In the same manner as in Example 1, 1.5 liters of water was added to 0.5 kg of the powder (A) and pulverized with an attritor until the average particle size became 1.5 μm, and the resulting slurry was immersed in a ceramic filter. After removing the excess slurry, drying and baking at 450 ° C. were performed. The amount of catalyst supported on the obtained catalyst-supporting ceramic filter (D) was 81 g / L. Although the state of the glass fiber was measured with a scanning electron microscope but could not be detected, it is considered that the length is approximately 5 nm or less.
For these samples (B) and (D), electron micrographs of the catalyst layer surface are shown in the figure. Further, an air pulse with a pressure of 2 kgf / cm2 was blown into each sample for 1 second at 1 minute intervals, and the amount of catalyst layer peeled after 300 hours was measured.
[0018]
Catalyst supported ceramic filter (B) Stripping amount is 1% or less of supported component weight Catalyst supported ceramic filter (C) Stripped amount is 5% of supported component weight
Catalyst supported ceramic filter (D) Peeling amount is 74% of supported component weight
[0019]
【The invention's effect】
The catalyst according to the present invention has inorganic fibers having a specific size on the catalyst surface, so that the peel strength of the catalyst is improved, and in particular, the strength is improved as compared with the catalyst coated with the same inorganic fiber on the catalyst surface. . The catalyst according to the present invention is suitably used for the treatment of exhaust gas containing a trace amount of harmful substances such as dioxins and nitrogen oxides.
[Brief description of the drawings]
FIG. 1 is a scanning electron micrograph of a catalyst surface according to (B) in Example 1. FIG. It can be seen that glass fibers are present on the catalyst surface.
FIG. 2 is a scanning electron micrograph of the catalyst surface according to (D) in Comparative Example 1. It can be seen that no glass fiber is seen on the catalyst surface.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001204173A JP4246412B2 (en) | 2001-07-05 | 2001-07-05 | Exhaust gas treatment catalyst and exhaust gas purification method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001204173A JP4246412B2 (en) | 2001-07-05 | 2001-07-05 | Exhaust gas treatment catalyst and exhaust gas purification method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003010698A JP2003010698A (en) | 2003-01-14 |
JP4246412B2 true JP4246412B2 (en) | 2009-04-02 |
Family
ID=19040680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001204173A Expired - Fee Related JP4246412B2 (en) | 2001-07-05 | 2001-07-05 | Exhaust gas treatment catalyst and exhaust gas purification method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4246412B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7229597B2 (en) * | 2003-08-05 | 2007-06-12 | Basfd Catalysts Llc | Catalyzed SCR filter and emission treatment system |
KR101907147B1 (en) * | 2012-03-28 | 2018-10-12 | 현대중공업 주식회사 | Metallic filter for exhaust gas of marine |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0771634B2 (en) * | 1985-11-28 | 1995-08-02 | 株式会社日本触媒 | Exhaust gas purifying catalyst and its manufacturing method |
JPH02198634A (en) * | 1989-01-25 | 1990-08-07 | Babcock Hitachi Kk | Production of catalyst for removing nitrogen oxide |
JP3110033B2 (en) * | 1990-05-14 | 2000-11-20 | バブコツク日立株式会社 | Nitrogen oxide removal catalyst |
JPH05345134A (en) * | 1992-06-11 | 1993-12-27 | Babcock Hitachi Kk | Catalyst for removing nitrogen oxide and production thereof |
JP3093119B2 (en) * | 1994-11-15 | 2000-10-03 | 日揮化学株式会社 | Method for producing honeycomb structured catalyst for exhaust gas purification |
JPH08196914A (en) * | 1995-01-30 | 1996-08-06 | Babcock Hitachi Kk | Plate-shaped catalyst and its manufacture |
JP3782288B2 (en) * | 1999-06-04 | 2006-06-07 | エヌ・イーケムキャット株式会社 | Gas purification agent, production method thereof, gas purification method, gas purifier and gas purification apparatus |
JP3793675B2 (en) * | 1999-11-29 | 2006-07-05 | 株式会社東芝 | Ozone deodorizer |
JP2001246209A (en) * | 1999-12-28 | 2001-09-11 | Asahi Glass Co Ltd | Gas permeable member, method for manufacturing the same dust removing apparatus |
-
2001
- 2001-07-05 JP JP2001204173A patent/JP4246412B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003010698A (en) | 2003-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2358801C2 (en) | Catalyst carrier, catalyst and method of fume gas processing | |
JPWO2018047380A1 (en) | Denitration catalyst regeneration method | |
JP3979837B2 (en) | Method for producing dioxin removal catalyst | |
KR20150091343A (en) | Ammonia oxidation catalyst | |
CN107427771A (en) | The ceramic candle type filter and the method for cleaning tail gas or waste gas of catalysis | |
CN107427770A (en) | The ceramic candle type filter and the method for cleaning procedure tail gas or waste gas of catalysis | |
JP3389005B2 (en) | Nitrogen oxide removal catalyst | |
JP2001327818A (en) | Ceramic filter and filtration device | |
JP6576461B2 (en) | Catalytic ceramic candle filter and process off-gas or exhaust gas cleaning method | |
KR100518957B1 (en) | Process for purification of exhaust gases | |
TW562697B (en) | A method for preparing a catalyst for selective catalytic reduction of nitrogen oxides at high temperature window | |
JP2011011195A (en) | Particulate combustion catalyst | |
JP4246412B2 (en) | Exhaust gas treatment catalyst and exhaust gas purification method using the same | |
JP5804980B2 (en) | NOx removal catalyst for exhaust gas treatment and exhaust gas treatment method | |
JP2007014960A (en) | Production method of catalyst for removing nox in exhaust gas | |
JP2002159859A (en) | Catalyst for cleaning exhaust gas | |
JP3495591B2 (en) | Method for reduction treatment of nitrogen oxides and SO3 in exhaust gas | |
JP3795720B2 (en) | Exhaust gas treatment method | |
JP2014008460A (en) | Catalyst carrying bag filter | |
JP2006116537A (en) | Method for treating waste gas | |
JP4177661B2 (en) | Method for producing exhaust gas treatment catalyst | |
JP3825216B2 (en) | Exhaust gas treatment method and catalyst-carrying ceramic filter | |
JP3639790B2 (en) | Catalyst filter | |
JPS627448A (en) | Catalyst for purifying exhaust gas and its preparation | |
JP2006075834A (en) | Exhaust gas treatment method and catalyst carrying ceramic filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050805 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080311 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080617 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080808 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080812 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090106 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090108 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140116 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |