Nothing Special   »   [go: up one dir, main page]

JP4245583B2 - Control device, control method, program, and recording medium of distributed energy system - Google Patents

Control device, control method, program, and recording medium of distributed energy system Download PDF

Info

Publication number
JP4245583B2
JP4245583B2 JP2005118343A JP2005118343A JP4245583B2 JP 4245583 B2 JP4245583 B2 JP 4245583B2 JP 2005118343 A JP2005118343 A JP 2005118343A JP 2005118343 A JP2005118343 A JP 2005118343A JP 4245583 B2 JP4245583 B2 JP 4245583B2
Authority
JP
Japan
Prior art keywords
value
energy
predicted
prediction
evaluation value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005118343A
Other languages
Japanese (ja)
Other versions
JP2006304402A (en
Inventor
章 竹内
満 工藤
朗 中澤
靖史 平岡
雅人 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005118343A priority Critical patent/JP4245583B2/en
Publication of JP2006304402A publication Critical patent/JP2006304402A/en
Application granted granted Critical
Publication of JP4245583B2 publication Critical patent/JP4245583B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、1つまたは複数のエネルギー発生装置と、1つまたは複数のエネルギー貯蔵装置と、1つまたは複数のエネルギー負荷を有するエネルギーシステムにおける、エネルギー発生装置および/またはエネルギー負荷の予測値を用いて運転計画の評価値が最良となるようにエネルギー発生装置およびエネルギー貯蔵装置の運転計画を作成する分散型エネルギーシステムの制御装置および方法に関する。   The present invention uses predicted values of energy generators and / or energy loads in an energy system having one or more energy generators, one or more energy storage devices, and one or more energy loads. The present invention relates to a control apparatus and method for a distributed energy system that creates an operation plan for an energy generation device and an energy storage device so that an evaluation value of the operation plan is the best.

分散型エネルギーシステムのエネルギーを有効に利用し低コストな運転制御を行なう方法として、特許文献1に記載されている「分散型エネルギーコミュニティーシステムとその制御方法」がある。これは、制御センタが、分散エネルギーシステムの制御装置から通信線を介して燃料電池の発電量と蓄電池のエネルギー貯蔵量と負荷の電力消費量のデータを受信して、各分散エネルギーシステムに発電電力値および受送電電力値を指令して、電力需要の日負荷特性が異なる複数の分散エネルギーシステム間において電力線を介しての電力需給を補完制御するシステムである。   As a method for performing low-cost operation control by effectively using the energy of the distributed energy system, there is a “distributed energy community system and its control method” described in Patent Document 1. This is because the control center receives data on the power generation amount of the fuel cell, the energy storage amount of the storage battery, and the power consumption amount of the load from the control device of the distributed energy system via the communication line, and generates the generated power in each distributed energy system. This is a system for commanding a value and a received / transmitted power value and complementarily controlling power supply and demand through a power line between a plurality of distributed energy systems having different daily load characteristics of power demand.

エネルギーシステムの制御を行なうために必要なエネルギー需要を予測する技術として、回帰分析やニューラルネットワークを用いる手法がある。しかしながら、上記エネルギーシステムのように、一般家庭における世帯別の電力/給湯等のエネルギー需要は、需要家の不規則な生活行動に依存するため精度の良い予測は困難である。給湯需要は、需要が全く無い時間帯が多く単発的に需要ピークが発生するため、さらに予測が困難である。   As a technique for predicting the energy demand necessary for controlling the energy system, there are techniques using regression analysis and a neural network. However, as in the above energy system, the demand for energy such as electric power / hot water supply for each household in a general household depends on the irregular living behavior of the consumer, and thus it is difficult to predict with high accuracy. The demand for hot water supply is more difficult to predict because there are many times when there is no demand and a demand peak occurs once.

一方、太陽光や風力等の自然エネルギーを利用した発電システムは、気温や天気等の気象情報を用いて予測を行なうため、その予測確度に大きく依存する。
特開2002−44870号公報
On the other hand, a power generation system using natural energy such as sunlight and wind power makes a prediction using meteorological information such as temperature and weather, and therefore greatly depends on its prediction accuracy.
JP 2002-44870 A

上記のようなエネルギーシステムにおいては、例えばある世帯において給湯需要がほとんど無い日が不規則に発生する、あるいは天気予報が急変し予測していた太陽光発電電力がほとんど得られない日が出現するといった予測の大きな逸脱が懸念される。このようなシステムの運転計画を作成する場合、予測された1パターンに対してだけ最適であっても、予測が外れた場合にコストが増大する等の問題がある。これを回避するため過剰に余裕を持たせた制約条件で最適化を行なうと、予測誤差が少なかった日の最適性が低下する。   In the above energy system, for example, a day when there is almost no demand for hot water supply in a certain household occurs irregularly, or a day when the forecasted photovoltaic power generation is hardly obtained due to a sudden change in the weather forecast. There are concerns about large deviations in forecasts. When creating an operation plan for such a system, there is a problem that even if it is optimal for only one predicted pattern, the cost increases when the prediction is lost. In order to avoid this, if optimization is performed under a constraint condition that has an excessive margin, the optimality of a day with a small prediction error is reduced.

上記のような予測不確実性を考慮する方法として、多数の予測パターンに対して評価値を算出する方法、確率モデルとして期待値を算出する方法等がある。ところが実際の運転においては、予測が外れた時間帯の運転計画値を修正したり、予測が外れたと判断できた時点で最適計画を再スケジューリングしたりすることによって制御を行なうシステムが多い。前述の従来方法では、運転パターンは計画通りとして評価しているため、評価関数が実際の運転に対して正確とは言えない。   As a method for taking into account the prediction uncertainty as described above, there are a method for calculating an evaluation value for a large number of prediction patterns, a method for calculating an expected value as a probability model, and the like. However, in actual operation, there are many systems that perform control by correcting an operation plan value in a time zone in which the prediction is out of date or rescheduling an optimal plan when it is determined that the prediction has been out of date. In the above-described conventional method, since the operation pattern is evaluated as planned, the evaluation function is not accurate with respect to the actual operation.

本発明の目的は、予測の確度や不確実性だけでなく、予測逸脱に対応した制御動作を考慮した最適運転計画を作成する分散型エネルギーシステムの制御装置および方法を提供することにある。   An object of the present invention is to provide a control apparatus and method for a distributed energy system that creates an optimal operation plan that takes into account not only the accuracy and uncertainty of prediction but also the control operation corresponding to the prediction deviation.

上記の目的を達成するために、本発明による分散型エネルギーシステムの制御装置は、
前記予測値が一定値以上外れる予測逸脱パターンおよびその発生確率を算出する予測部と、
前記予測逸脱パターンが発生すると判断可能な時刻から運転計画を修正したシミュレーションを行なうシミュレーション部と、
このシミュレーションにおける評価値を算出し、この評価値に前記予測逸脱パターンの発生確率に応じた重み付けをし、前記予測値の条件で最適運転計画通りに運転した場合の評価値に、該重み付けした評価値を加算する評価値計算を、所定の最適探索終了条件が満たされるまで行なう評価値計算部と、
前記評価値のうち、最良の評価値の運転計画を最適運転計画と決定する最適運転計画作成部と
を有する。
In order to achieve the above object, a controller for a distributed energy system according to the present invention comprises:
A prediction unit that calculates a predicted deviation pattern in which the predicted value deviates by a certain value or more and its occurrence probability;
A simulation unit that performs a simulation in which an operation plan is corrected from a time at which it can be determined that the predicted deviation pattern occurs;
An evaluation value in this simulation is calculated, the evaluation value is weighted according to the occurrence probability of the predicted deviation pattern, and the evaluation value when the driving is performed according to the optimal driving plan under the condition of the prediction value is used. An evaluation value calculation unit that performs evaluation value calculation for adding values until a predetermined optimum search termination condition is satisfied;
An optimum operation plan creation unit that determines an operation plan having the best evaluation value among the evaluation values as an optimum operation plan is provided.

また、本発明の分散型エネルギーシステムの制御方法は、
前記予測値が一定値以上外れる予測逸脱パターンおよびその発生確率を算出する予測ステップと、
前記予測逸脱パターンが発生すると判断可能な時刻から運転計画を修正したシミュレーションを行なうシミュレーションステップと、
このシミュレーションにおける評価値を算出し、この評価値に前記予測逸脱パターンの発生確率に応じた重み付けをし、前記予測値の条件で最適運転計画通りに運転した場合の評価値に、該重み付けした評価値を加算する評価値計算を、所定の最適探索終了条件が満たされるまで行なう評価値計算ステップと、
前記評価値のうち、最良の評価値の運転計画を最適運転計画と決定する最適運転計画作成ステップと
を有する。
Further, the control method of the distributed energy system of the present invention includes:
A prediction step of calculating a predicted deviation pattern in which the predicted value deviates by a predetermined value or more and its occurrence probability;
A simulation step of performing a simulation in which the operation plan is corrected from a time at which it can be determined that the predicted deviation pattern occurs,
An evaluation value in this simulation is calculated, the evaluation value is weighted according to the occurrence probability of the predicted deviation pattern, and the evaluation value when the driving is performed according to the optimal driving plan under the condition of the prediction value is used. An evaluation value calculation step for performing evaluation value calculation for adding values until a predetermined optimum search termination condition is satisfied;
An optimum operation plan creating step for determining an operation plan having the best evaluation value among the evaluation values as an optimum operation plan;

最適運転計画に用いる予測が大幅に外れる典型的なパターンとその発生確率、およびそれに対応した制御動作シミュレーションを用いて、評価値を計算する。すなわち、予測の逸脱が判断できた時点で発電量を増減させる等によりコスト等の評価値の悪化を抑制できるパターンであればそれに見合った評価を行なうため、予測逸脱時においても制御により対応可能な最適運転計画を作成することができる。また、予測逸脱パターンの発生確率に応じて評価するため、予測的中時においても最適性を失わない。   An evaluation value is calculated using a typical pattern and its occurrence probability that greatly deviate from the prediction used in the optimum operation plan, and a control operation simulation corresponding to the pattern. In other words, if a pattern that can suppress the deterioration of the evaluation value such as cost by increasing or decreasing the amount of power generation when the deviation from the prediction can be determined, the evaluation is commensurate with that, so it can be handled by the control even at the time of the deviation from the prediction. An optimal operation plan can be created. Further, since the evaluation is performed according to the occurrence probability of the predicted deviation pattern, the optimality is not lost even during predictive intermediate time.

本発明の実施態様によれば、予測値は自然エネルギーを利用したエネルギー発生装置のものであり、気象予報とその実績および前記気象予報を用いた予測値とこの実測値を季節別にデータベースとして蓄積ステップを有し、予測ステップはこのデータベースおよび対象日の気象情報を用いて前記予測逸脱の発生確率を算出し、シミュレーションステップはこの予測逸脱パターンの発生確率と逸脱時予測値を用いてシミュレーションを行なう。   According to the embodiment of the present invention, the predicted value is that of an energy generator using natural energy, and the weather forecast and its results, the predicted value using the weather forecast and the measured value as a database for each season are stored. The predicting step calculates the probability of occurrence of the predicted deviation using the database and the weather information of the target date, and the simulation step performs simulation using the probability of occurrence of the predicted deviation pattern and the predicted value at the time of deviation.

気象情報の予報と実績を季節別に蓄積したデータを用いて算出した予測逸脱発生確率を用いて最適運転計画を作成するため、季節により変動する気象予報の不確実性度合いを最適評価に柔軟に取り入れることができる。   In order to create an optimal operation plan using the predicted deviation occurrence probability calculated using the weather information forecast and actual data accumulated by season, the degree of uncertainty of the weather forecast that varies depending on the season can be flexibly incorporated into the optimal evaluation. be able to.

本発明の他の実施態様によれば、予測値は前記エネルギー負荷のものであり、この負荷の需要データを計測および蓄積し、一日単位の実績値と予測値との誤差が一定値以上である日の実測データを不規則モデル用データとして登録するステップを有し、需要予測に用いるデータの内この不規則モデル用データの比率を前記予測逸脱パターンの発生確率として算出し、この予測逸脱パターンの発生確率と前記不規則モデル用データを用いて算出した不規則時予測値とを用いてシミュレーションを行なう。   According to another embodiment of the present invention, the predicted value is that of the energy load, the demand data of this load is measured and accumulated, and the error between the actual value of the daily unit and the predicted value is a certain value or more. A step of registering actual measurement data of a certain day as irregular model data, and calculating a ratio of the irregular model data out of data used for demand prediction as an occurrence probability of the predicted deviation pattern; A simulation is performed using the probability of occurrence of irregularity and the predicted value at irregularity calculated using the irregular model data.

エネルギー需要データを分析し、需要家の生活行動が規則的であった日と不規則であった日を選別して、予測パターンと発生確率を用いるため、いずれのパターンにも制御動作で対応可能な最適運転計画を作成することができる。   Analyzing energy demand data, selecting the days when consumers' daily behavior was regular and irregular, and using the predicted pattern and occurrence probability, both patterns can be handled with control action It is possible to create an optimal operation plan.

以上説明したように、本発明によれば、予測の確度や不確実性だけでなく、予測逸脱に対応した制御動作を考慮した最適運転計画を作成することがきる。   As described above, according to the present invention, it is possible to create an optimum operation plan that considers not only the accuracy and uncertainty of prediction but also the control operation corresponding to the prediction deviation.

次に、本発明の実施の形態について図面を参照して説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態による分散型エネルギーコミュニティーシステムの構成を示している。本分散型エネルギーコミュニティーシステムは複数の需要家11、12、・・・、1nと、制御装置2から構成されている。 FIG. 1 shows a configuration of a distributed energy community system according to an embodiment of the present invention. This distributed energy community system is composed of a plurality of consumers 1 1 , 1 2 ,..., 1 n and a control device 2.

各需要家11〜1nはエネルギー発生装置としての太陽電池11および燃料電池12と、エネルギー蓄積装置としての蓄電池13および貯湯槽15と、電力負荷14と、熱負荷16を有している。燃料電池12と蓄電池13と電力負荷14は電力線4によって電力系統3に接続されている。また、貯湯槽15と熱負荷16は熱配管17によって燃料電池12に接続されている。なお、エネルギー発生装置およびエネルギー貯蔵装置は、上記に挙げたものに限定されるものではなく、他の種類のエネルギー発生装置およびエネルギー貯蔵装置を用いてもよい。 Each consumer 1 1 to 1 n has a solar cell 11 and a fuel cell 12 as energy generators, a storage battery 13 and a hot water tank 15 as energy storage devices, a power load 14, and a heat load 16. The fuel cell 12, the storage battery 13, and the power load 14 are connected to the power system 3 by the power line 4. The hot water tank 15 and the heat load 16 are connected to the fuel cell 12 by a heat pipe 17. The energy generation device and the energy storage device are not limited to those described above, and other types of energy generation devices and energy storage devices may be used.

制御装置2は、これらエネルギー発生装置およびエネルギー貯蔵装置に接続される系統電力3や負荷電力14等を計測し、燃料電池12の発電量や蓄電池13の充放電量の制御を行なうもので、通信部21と、予側部22と、予測DB(データベース)23と、シミュレーション部24と、評価値計算部25と、最適運転計画作成部26を有している。   The control device 2 measures the system power 3 and the load power 14 connected to the energy generation device and the energy storage device, and controls the power generation amount of the fuel cell 12 and the charge / discharge amount of the storage battery 13. The unit 21, the preparatory unit 22, the prediction DB (database) 23, the simulation unit 24, the evaluation value calculation unit 25, and the optimum operation plan creation unit 26 are included.

通信部21は、インターネット等に接続して、気象予報やエネルギー価格、イベント等に関する情報を得ることができる。予側部22はこれら情報等を用いて、太陽電池11の発電量、電力負荷14の需要、および熱負荷である貯湯槽15の需要の時系列値を予測し、結果を予測DB23に格納する。最適運転計画作成部26は、制御可能なエネルギー発生装置およびエネルギー貯蔵装置である燃料電池12の発電、蓄電池13の充放電の指令スケジュールを作成する。これは、発電パターンおよび充放電パターンの最良の組み合わせを探索することであり、候補とした発電/充放電スケジュールは、電力やガス等のエネルギー価格の情報と、予測部22による一日の電力/熱負荷需要予測および発電予測を用いてその評価値が計算される。これを行なう評価計算部25においては、シミュレーション部24を用いて予測逸脱時の制御動作を考慮したシミュレーション計算を行ない、コスト等の評価値が最良となる発電/充放電スケジュールを選定する。この発電/充放電スケジュールは例えば一日単位あるいは現時刻あるいはその所定時刻経過後から24時間先まで作成され、所定の時間間隔毎、例えば一時間毎に随時更新される。   The communication unit 21 can connect to the Internet or the like to obtain information on weather forecasts, energy prices, events, and the like. The predicting unit 22 uses these information and the like to predict the power generation amount of the solar cell 11, the demand of the power load 14, and the time series value of the demand of the hot water storage tank 15 that is a heat load, and stores the result in the prediction DB 23. . The optimum operation plan creation unit 26 creates a command schedule for power generation of the fuel cell 12, which is a controllable energy generation device and energy storage device, and charge / discharge of the storage battery 13. This is to search for the best combination of the power generation pattern and the charge / discharge pattern. The candidate power generation / charge / discharge schedule includes information on energy prices such as power and gas and the power / day of the prediction by the prediction unit 22. The evaluation value is calculated using the heat load demand forecast and the power generation forecast. In the evaluation calculation unit 25 that performs this, the simulation unit 24 is used to perform simulation calculation in consideration of the control operation at the time of predicted deviation, and the power generation / charge / discharge schedule with the best evaluation value such as cost is selected. This power generation / charge / discharge schedule is created, for example, on a daily basis, the current time, or 24 hours after the predetermined time elapses, and is updated as needed at predetermined time intervals, for example, every hour.

図2は、図1のシステムにおける制御装置2の処理の流れを示す。   FIG. 2 shows a processing flow of the control device 2 in the system of FIG.

まず、予測部22における処理を説明する。現在の次の時間帯から24時間先までの電力負荷14、熱負荷16の需要量および太陽電池11の発電量の時系列値を予測する(ステップ102)。予測した結果およびそれに対応した予測情報を、実測値とともに予測DB23に蓄積する。この予測DB23の情報から、予測値が一定値以上外れるパターンとその発生確率を算出する(ステップ103)。   First, the process in the prediction unit 22 will be described. A time series value of the demand amount of the power load 14 and the thermal load 16 and the power generation amount of the solar cell 11 from the current next time zone to 24 hours ahead is predicted (step 102). The prediction result and the prediction information corresponding thereto are stored in the prediction DB 23 together with the actual measurement value. From the information in the prediction DB 23, a pattern in which the predicted value deviates by a certain value or more and its occurrence probability are calculated (step 103).

次に、最適運転計画作成部26は初期解であるスケジュール(初期運転スケジュール)を設定する(ステップ104)。この初期解は、前回の探索で最適解として得られたスケジュール等を用い、複数であってもよい。   Next, the optimum operation plan creation unit 26 sets a schedule (initial operation schedule) which is an initial solution (step 104). There may be a plurality of initial solutions using the schedule obtained as the optimal solution in the previous search.

ここで、この解の集合を評価計算部25により評価する。例えば、エネルギーコストを目的関数とし、この目的関数の値(評価値)が最小となるスケジュールを最適解とする。エネルギーコストは、電力コストや燃料コスト等からなり、燃料コストは燃料電池12の効率特性、起動特性や応答特性等をモデル化し、発電電力目標パターンにおける発電電力に対する燃料流量から算出する。蓄電池13や貯湯槽15は充放電ロスや放熱ロス等を考慮してモデル化し、その残容量を算出しておき、蓄電池13や貯湯槽15の一日におけるバランスをとるために、充電コストや貯湯コストの一日における差分をペナルティー関数として目的関数に加算する。   Here, this set of solutions is evaluated by the evaluation calculation unit 25. For example, an energy cost is an objective function, and a schedule that minimizes the value (evaluation value) of the objective function is an optimal solution. The energy cost includes an electric power cost, a fuel cost, and the like, and the fuel cost is calculated from the fuel flow rate with respect to the generated power in the generated power target pattern by modeling the efficiency characteristics, start-up characteristics, response characteristics, etc. The storage battery 13 and the hot water storage tank 15 are modeled in consideration of charging / discharging loss, heat dissipation loss, etc., and the remaining capacity is calculated in order to balance the storage battery 13 and the hot water storage tank 15 in one day. The difference in cost in one day is added to the objective function as a penalty function.

次に、予測値が逸脱した場合のシミュレーションをシミュレーション部24により行なう(ステップ106)。これは単に予測パターンを逸脱したパターンに入れ替えて計算するだけでなく、その逸脱したパターンに対応した制御動作を考慮する。すなわち対象とする制御システムにおいて行なっている、予測が外れた時に運転計画値を修正したり、一定時間毎に最適計画を再スケジューリングしたりといった制御動作をシミュレーションする。ただし、最適運転計画を実際と同様にシミュレーションすると、制御対象の数によっては膨大な計算量を要する場合もあるので、最適運転計画の実績データの中から同じような条件の結果を用いたりする等により簡易的に模擬してもよい。   Next, simulation when the predicted value deviates is performed by the simulation unit 24 (step 106). This is not only calculated by replacing the predicted pattern with a pattern that deviates, but also takes into account the control operation corresponding to the deviated pattern. In other words, the control operation performed in the target control system is simulated, such as correcting the operation plan value when the prediction is lost or rescheduling the optimum plan at regular intervals. However, if the optimal operation plan is simulated in the same way as the actual one, a huge amount of calculation may be required depending on the number of controlled objects, so the results of the same conditions are used from the actual operation plan data. May be simplified.

この予測逸脱時においても先の予測的中時と同様に評価し、総合的な評価値を次のように算出する。   At the time of the deviation from the prediction, the evaluation is performed in the same manner as the previous predictive middle, and a comprehensive evaluation value is calculated as follows.

(評価値)=α×(予測的中時の評価値)+β×(発電予測逸脱時の評価値)
+γ×(需要予測逸脱時の評価値)+・・・
ここで、α、β、γはそれぞれの予測逸脱の発生確率による重み付け係数である。こうすることによって、予測的中時の評価値がほぼ同じ様々なパターンの運転計画のうち、予測逸脱時の評価値が良いものの評価が高くなる。また、発電予測逸脱や需要予測の確率が複数種類あっても、同様に重み付け加算すればよい。発電予測逸脱と需要予測逸脱が同時に発生する場合についても、同様に加算することが可能である。
(Evaluation value) = α × (Evaluation value at predictive time) + β × (Evaluation value when deviation from power generation prediction)
+ Γ × (Evaluation value when deviation from demand forecast) + ・ ・ ・
Here, α, β, and γ are weighting coefficients based on the occurrence probability of each prediction deviation. By doing so, among the operation plans having various patterns having the same evaluation value at the predictive intermediate time, the evaluation value with a good evaluation value at the time of prediction deviation is high. Further, even when there are a plurality of types of power generation prediction deviations and demand prediction probabilities, weighting addition may be performed similarly. It is possible to add in the same way also when the power generation prediction deviation and the demand prediction deviation occur simultaneously.

続いて、最適化手法を用いて次に評価するスケジュールを決定する(ステップ109)。本発明においては制御動作シミュレーションを含むため、適用する最適化手法としては、非線形・不連続関数を容易に扱うことができるタブーサーチや遺伝的アルゴリズム等のメタヒューリスティック手法が適する。   Subsequently, a schedule to be evaluated next is determined using an optimization method (step 109). Since the present invention includes a control operation simulation, a metaheuristic method such as a tabu search or a genetic algorithm that can easily handle a nonlinear / discontinuous function is suitable as an optimization method to be applied.

最適運転計画作成部26は、以上のような評価するスケジュールの生成および予測逸脱シミュレーションを含む評価値計算を、計算時間や繰り返し回数、あるいは一定の繰り返し回数内で最適解が更新されない等による最適探索終了条件が満たされるまでに行なって得られた最良な評価値の解であるスケジュールを最適運転計画とし、これに従い各エネルギー発生装置およびエネルギー貯蔵装置の出力を指令する(ステップ110)。   The optimum operation plan creation unit 26 performs the optimum search based on the calculation time, the number of iterations, or the optimum solution is not updated within a certain number of iterations, including the generation of the schedule to be evaluated and the prediction deviation simulation as described above. The schedule which is the solution of the best evaluation value obtained until the termination condition is satisfied is set as the optimum operation plan, and the output of each energy generator and energy storage device is commanded in accordance with this schedule (step 110).

以下に、予測逸脱パターンおよびその発生確率の算出方法について、いくつかの例を示して説明する。   Hereinafter, the prediction deviation pattern and the calculation method of the occurrence probability will be described with some examples.

図3に、太陽光発電量予測における予測逸脱確率の算出例を示す。図3に示すような月別天気概況の予報と実況の組み合わせ毎の確率を、予測情報DB23を用いて集計しておく。ある月において、翌日午後の予報が晴れであったときに、実際には曇りや雨であった場合が予測逸脱確率とする。3時間予報等を用いてもう少し細かく集計してもよい。その他、降水確率等の予報情報を用いて算出あるいは補正を行なってもよい。月別等季節毎に集計することで、予報が外れやすい季節の特徴を反映させることができる。ある期間運転し予測値と実績値のデータが蓄積された場合には、図3に示すように、例えば一日の総発電量(kWh)について数段階に分けて、予測値と実績値に一定値以上差が生じた場合を予測逸脱確率とすることもできる。   In FIG. 3, the example of calculation of the prediction deviation probability in photovoltaic power generation amount prediction is shown. The probabilities for each combination of forecasts and actual conditions of monthly weather conditions as shown in FIG. 3 are tabulated using the prediction information DB 23. In a certain month, when the forecast for the afternoon of the next day is clear, when it is actually cloudy or rainy, the predicted deviation probability is set. It may be a little more detailed using a 3-hour forecast. In addition, calculation or correction may be performed using forecast information such as precipitation probability. By summing up every season, such as by month, it is possible to reflect the characteristics of the season where forecasts are easily lost. When the predicted value and the actual value data are accumulated for a certain period of time, as shown in FIG. 3, for example, the total power generation amount (kWh) per day is divided into several stages, and the predicted value and the actual value are constant. A case where a difference of more than the value occurs can be set as a predicted deviation probability.

図4に、太陽光発電量予測における予測逸脱パターンの作成と、それを用いた最適運転計画の修正シミュレーションの例を示す。太陽光発電は、例えば月毎に晴れ、曇り、雨等の天気別に平均的な日射量パターンを算出しておき、これを基に発電量を計算する。図4には、予報が晴れの場合に午後から曇りとなったケースにおける最適運転計画の修正のイメージを示す。予測逸脱の判断時刻は、図4に示すような天気予報が発表される11時頃が考えられるが、これに限ることなく午前中の発電量実績から判断した場合等も同様に実施できる。予測逸脱を判断できたと想定した時刻から、最適運転計画の修正シミュレーションを行なう。この例においては、図4に示すように、太陽光発電量の減少に対応して蓄電池13の放電量および充電量を増加させる運転パターンに修正される等が想定される。実際の制御における再スケジューリングは、この時刻から24時間先まで行なう場合も考えられるが、予測逸脱のシミュレーションにおける評価値の算出においては、当初計画の時間幅で評価する。   FIG. 4 shows an example of the creation of a predicted deviation pattern in the prediction of the amount of photovoltaic power generation and the simulation for correcting the optimum operation plan using the pattern. In solar power generation, for example, an average solar radiation amount pattern is calculated for each weather such as sunny, cloudy, and rainy every month, and the power generation amount is calculated based on this pattern. FIG. 4 shows an image of the correction of the optimum operation plan in a case where the forecast is clear and it becomes cloudy from the afternoon. The forecast deviation judgment time is considered to be around 11:00 when the weather forecast as shown in FIG. 4 is announced, but is not limited to this, and can be similarly implemented when judged from the amount of power generation in the morning. The simulation for correcting the optimum operation plan is performed from the time when it is assumed that the predicted deviation can be determined. In this example, as shown in FIG. 4, it is assumed that the operation pattern is corrected to increase the discharge amount and the charge amount of the storage battery 13 in response to the decrease in the amount of photovoltaic power generation. Rescheduling in actual control may be performed up to 24 hours ahead from this time, but in the calculation of the evaluation value in the prediction deviation simulation, evaluation is performed with the time width of the initial plan.

図5に、給湯需要予測における予測逸脱確率の算出例を示す。図5に示す給湯需要の例のように、需要家別に一日毎の気温と給湯需要積算量の相関関係から、不規則モデルのデータを選別する。この相関関係を用いた予測値と実績値の差から不規則モデルのデータを選別してもよい。季節や曜日等で分類したり、需要予測に用いる対象日から過去数十日間のデータを用いたりして集計し、図5に示すような各需要家の予測逸脱確率を求める。   FIG. 5 shows a calculation example of the predicted departure probability in the hot water supply demand prediction. As in the example of the hot water supply demand shown in FIG. 5, the irregular model data is selected from the correlation between the daily temperature and the accumulated amount of hot water demand for each consumer. The irregular model data may be selected from the difference between the predicted value and the actual value using this correlation. The forecast deviation probability of each consumer as shown in FIG. 5 is obtained by classifying by the season, day of the week, etc., or by using data for the past several tens of days from the target date used for demand prediction.

図6に、給湯需要予測における予測逸脱パターンと、それを用いた最適運転計画の修正シミュレーションの例を示す。給湯需要の場合には、外出や入浴しない等により典型的な不規則パターンとなるケースが考えられる。このような場合には、通常の予測モデルに用いた範囲に相当する不規則モデルの実績値を時間帯別に平均して不規則パターンとする等により、比較的簡単に予測逸脱時パターンを作成すればよい。図6に示すシミュレーション例においては、通常発生している給湯需要がほとんど無い不規則パターンであると判断できた時点で、燃料電池12の出力を低下させたり停止させたりする制御が行なわれると想定している。このように当初の最適運転計画を作成した24時間のうち、修正して運転制御を行なった時間帯についてシミュレーションを行ない、目的とする評価値は運転計画を作成している24時間について算出する。   FIG. 6 shows an example of a predicted deviation pattern in hot water supply demand prediction and a correction simulation of an optimum operation plan using the predicted deviation pattern. In the case of hot water supply demand, there may be a case where a typical irregular pattern is caused by going out or not bathing. In such a case, the predicted deviation pattern can be created relatively easily, for example, by averaging the actual values of the irregular model corresponding to the range used in the normal prediction model for each time period to create an irregular pattern. That's fine. In the simulation example shown in FIG. 6, it is assumed that control for reducing or stopping the output of the fuel cell 12 is performed when it is determined that the irregular pattern has almost no hot water supply demand that is normally generated. is doing. In this way, among the 24 hours when the initial optimum operation plan is created, a simulation is performed for the time zone in which the operation control is performed with correction, and the target evaluation value is calculated for the 24 hours when the operation plan is created.

多数の予測逸脱のパターンが想定されるケースもあるが、例えば需要家が多数ある場合には、予測逸脱確率が一定値以上の需要家に限定してシミュレーションを行なってもよい。また、最適探索における初期段階の評価計算においては、予測逸脱シミュレーションを省略する等の計算量削減の対策も可能である。以上のように、予測逸脱シミュレーションを典型的なパターンに適切に絞り込んで行なえば、計算量・計算時間を過大に増加させることなく、予測逸脱時に対応可能でありつつ予測的中時における最適性も失わない最適運転計画を作成することができる。   There are cases where a large number of prediction deviation patterns are assumed, but for example, when there are a large number of consumers, the simulation may be performed by limiting the prediction deviation probability to consumers having a certain value or more. Further, in the initial stage evaluation calculation in the optimum search, it is possible to take measures for reducing the calculation amount, such as omitting the prediction deviation simulation. As mentioned above, if the prediction deviation simulation is appropriately narrowed down to typical patterns, it is possible to cope with the prediction deviation without excessively increasing the amount of calculation and the calculation time, but also the optimality in the predictive middle. It is possible to create an optimal operation plan that will not be lost.

なお、以上説明した制御装置2の機能は、その機能を実現するためのプログラムを、コンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータに読み込ませ、実行するものであってもよい。コンピュータ読み取り可能な記録媒体とは、フレキシブルディスク、光磁気ディスク、CD−ROM等の記録媒体、コンピュータシステムに内蔵されるハードディスク装置等の記憶装置を指す。さらに、コンピュータ読み取り可能な記録媒体は、インターネットを介してプログラムを送信する場合のように、短時間、動的にプログラムを保持するもの(伝送媒体もしくは伝送波)、その場合のサーバとなるコンピュータ内の揮発性メモリのように、一定時間プログラムを保持しているものを含む。   The function of the control device 2 described above is executed by recording a program for realizing the function on a computer-readable recording medium, causing the computer to read the program recorded on the recording medium, and executing the program. It may be. The computer-readable recording medium refers to a recording medium such as a flexible disk, a magneto-optical disk, and a CD-ROM, and a storage device such as a hard disk device built in a computer system. Further, the computer-readable recording medium is a medium that dynamically holds the program for a short time (transmission medium or transmission wave) as in the case of transmitting the program via the Internet, and in the computer serving as a server in that case Such as a volatile memory that holds a program for a certain period of time.

本発明の一実施形態の分散型エネルギーコミュニティーシステムの構成図である。It is a block diagram of the distributed energy community system of one Embodiment of this invention. 図1のシステムにおける制御装置の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the control apparatus in the system of FIG. 太陽光発電量予測における予測逸脱確率の算出例を示す図である。It is a figure which shows the example of calculation of the prediction deviation probability in photovoltaic power generation amount prediction. 太陽光発電の予測逸脱パターン例とそれに対する最適運転計画を修正したシミュレーション例を示す図である。It is a figure which shows the example of a simulation which corrected the example of the prediction deviation pattern of photovoltaic power generation, and the optimal driving | operation plan with respect to it. 給湯需要予測における不規則モデルとその発生確率の算出例を示す図である。It is a figure which shows the example of calculation of the irregular model in the hot water supply demand prediction, and its occurrence probability. 給湯需要の予測逸脱パターン例とそれに対する最適運転計画を修正したシミュレーション例を示す図である。It is a figure which shows the example of a simulation which corrected the example of the prediction deviation pattern of hot water supply demand, and the optimal driving | operation plan with respect to it.

符号の説明Explanation of symbols

1〜1n 需要家
2 制御装置
3 電力系統
4 電力線
11 太陽電池
12 燃料電池
13 蓄電池
14 電力負荷
15 貯湯槽
16 熱負荷
17 熱配管
21 通信部
22 予測部
23 予測DB
24 シミュレーション部
25 評価計算部
26 最適運転計画作成部
23 予測DB
101〜110 ステップ
1 1 to 1 n consumer 2 control device 3 power system 4 power line 11 solar cell 12 fuel cell 13 storage battery 14 power load 15 hot water tank 16 thermal load 17 thermal piping 21 communication unit 22 prediction unit 23 prediction DB
24 simulation unit 25 evaluation calculation unit 26 optimum operation plan creation unit 23 prediction DB
101-110 steps

Claims (6)

1つまたは複数のエネルギー発生装置と、1つまたは複数のエネルギー貯蔵装置と、1つまたは複数のエネルギー負荷を有するエネルギーシステムにおける、前記エネルギー発生装置および/または前記エネルギー負荷の予測値を用いて運転計画の評価値が最良となるように前記エネルギー発生装置およびエネルギー貯蔵装置の運転計画を作成する分散型エネルギーシステムの制御装置において、
前記予測値が一定値以上外れる予測逸脱パターンおよびその発生確率を算出する予測部と、
前記予測逸脱パターンが発生すると判断可能な時刻から運転計画を修正したシミュレーションを行なうシミュレーション部と、
このシミュレーションにおける評価値を算出し、この評価値に前記予測逸脱パターンの発生確率に応じた重み付けをし、前記予測値の条件で最適運転計画通りに運転した場合の評価値に、該重み付けした評価値を加算する評価値計算を、所定の最適探索終了条件が満たされるまで行なう評価値計算部と、
前記評価値のうち、最良の評価値の運転計画を最適運転計画と決定する最適運転計画作成部と
を有することを特徴とする分散型エネルギーシステムの制御装置。
Operating in the energy system with one or more energy generators, one or more energy storage devices and one or more energy loads, using the energy generator and / or the predicted value of the energy loads In a control device for a distributed energy system that creates an operation plan for the energy generation device and the energy storage device so that the evaluation value of the plan is the best,
A prediction unit that calculates a predicted deviation pattern in which the predicted value deviates by a certain value or more and its occurrence probability;
A simulation unit that performs a simulation in which an operation plan is corrected from a time at which it can be determined that the predicted deviation pattern occurs;
An evaluation value in this simulation is calculated, the evaluation value is weighted according to the occurrence probability of the predicted deviation pattern, and the evaluation value when the driving is performed according to the optimal driving plan under the condition of the prediction value is used. An evaluation value calculation unit that performs evaluation value calculation for adding values until a predetermined optimum search termination condition is satisfied;
A control apparatus for a distributed energy system, comprising: an optimum operation plan creation unit that determines an operation plan having the best evaluation value among the evaluation values as an optimum operation plan.
1つまたは複数のエネルギー発生装置と、1つまたは複数のエネルギー貯蔵装置と、1つまたは複数のエネルギー負荷を有するエネルギーシステムにおける、前記エネルギー発生装置および/または前記エネルギー負荷の予測値を用いて運転計画の評価値が最良となるように前記エネルギー発生装置およびエネルギー貯蔵装置の運転計画を作成する分散型エネルギーシステムの制御方法において、
前記予測値が一定値以上外れる予測逸脱パターンおよびその発生確率を算出する予測ステップと、
前記予測逸脱パターンが発生すると判断可能な時刻から運転計画を修正したシミュレーションを行なうシミュレーションステップと、
このシミュレーションにおける評価値を算出し、この評価値に前記予測逸脱パターンの発生確率に応じた重み付けをし、前記予測値の条件で最適運転計画通りに運転した場合の評価値に、該重み付けした評価値を加算する評価値計算を、所定の最適探索終了条件が満たされるまで行なう評価値計算ステップと、
前記評価値のうち、最良の評価値の運転計画を最適運転計画と決定する最適運転計画作成ステップと
を有することを特徴とする分散型エネルギーシステムの制御方法。
Operating in the energy system with one or more energy generators, one or more energy storage devices and one or more energy loads, using the energy generator and / or the predicted value of the energy loads In a control method of a distributed energy system for creating an operation plan of the energy generation device and the energy storage device so that an evaluation value of a plan is the best,
A prediction step of calculating a predicted deviation pattern in which the predicted value deviates by a predetermined value or more and its occurrence probability;
A simulation step of performing a simulation in which the operation plan is corrected from a time at which it can be determined that the predicted deviation pattern occurs,
An evaluation value in this simulation is calculated, the evaluation value is weighted according to the occurrence probability of the predicted deviation pattern, and the evaluation value when the driving is performed according to the optimal driving plan under the condition of the prediction value is used. An evaluation value calculation step for performing evaluation value calculation for adding values until a predetermined optimum search termination condition is satisfied;
A control method for a distributed energy system, comprising: an optimum operation plan creating step for determining an operation plan having the best evaluation value among the evaluation values as an optimum operation plan.
前記予測値は自然エネルギーを利用したエネルギー発生装置のものであり、気象予報とその実績および前記気象予報を用いた予測値とこの実測値を季節別にデータベースとして蓄積するステップを有し、前記予測ステップは前記データベースおよび対象日の気象情報を用いて前記予測逸脱パターンの発生確率を算出し、前記シミュレーションステップは前記予測逸脱パターンの発生確率と逸脱時予測値を用いて前記シミュレーションを行なう、請求項2記載の分散型エネルギーシステムの制御方法。   The predicted value is that of an energy generator using natural energy, and includes a step of accumulating a weather forecast and its results, a predicted value using the weather forecast, and this measured value as a database for each season, the predicting step 3. The occurrence probability of the predicted deviation pattern is calculated using the database and weather information of the target date, and the simulation step performs the simulation using the occurrence probability of the predicted deviation pattern and the predicted value at the time of deviation. A method for controlling a distributed energy system as described. 前記予測値は前記エネルギー負荷のものであり、該負荷の需要データを計測および蓄積し、一日単位の実績値と予測値との誤差が一定値以上である日の実測データを不規則モデル用データとして登録するステップを有し、前記予測ステップは需要予測に用いるデータの内前記不規則モデル用データの比率を前記予測逸脱パターンの発生確率として算出し、前記シミュレーションステップはこの予測逸脱パターンの発生確率と、前記不規則モデル用データを用いて算出した不規則時予測値とを用いて前記シミュレーションを行なう、請求項2記載の分散型エネルギーシステムの制御方法。   The predicted value is that of the energy load, demand data of the load is measured and accumulated, and the actual measurement data on the day when the error between the actual value of the daily unit and the predicted value is a certain value or more is used for the irregular model. A step of registering as data, wherein the prediction step calculates a ratio of the irregular model data among data used for demand prediction as an occurrence probability of the prediction deviation pattern, and the simulation step generates the prediction deviation pattern The method of controlling a distributed energy system according to claim 2, wherein the simulation is performed using a probability and a predicted value at irregular time calculated using the irregular model data. 請求項2から4のいずれか1項に記載の、分散型エネルギーシステムの制御方法をコンピュータに実行させるためのプログラム。   The program for making a computer perform the control method of a distributed energy system of any one of Claim 2 to 4. 請求項5に記載のプログラムを記録した、コンピュータ読取り可能な記録媒体。

A computer-readable recording medium on which the program according to claim 5 is recorded.

JP2005118343A 2005-04-15 2005-04-15 Control device, control method, program, and recording medium of distributed energy system Expired - Fee Related JP4245583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005118343A JP4245583B2 (en) 2005-04-15 2005-04-15 Control device, control method, program, and recording medium of distributed energy system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005118343A JP4245583B2 (en) 2005-04-15 2005-04-15 Control device, control method, program, and recording medium of distributed energy system

Publications (2)

Publication Number Publication Date
JP2006304402A JP2006304402A (en) 2006-11-02
JP4245583B2 true JP4245583B2 (en) 2009-03-25

Family

ID=37472049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005118343A Expired - Fee Related JP4245583B2 (en) 2005-04-15 2005-04-15 Control device, control method, program, and recording medium of distributed energy system

Country Status (1)

Country Link
JP (1) JP4245583B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9425636B2 (en) 2011-03-18 2016-08-23 Fujitsu Limited Operation plan preparation method, operation plan preparation device, and recording medium
US9727036B2 (en) 2012-03-12 2017-08-08 Fujitsu Limited Operation plan creating method, computer product, and operation plan creating apparatus
US11539213B2 (en) 2017-11-20 2022-12-27 Ihi Corporation Microgrid power plan for optimizing energy performance resulting from proportional predictive demand

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141918A (en) * 2006-12-05 2008-06-19 Nippon Telegr & Teleph Corp <Ntt> Device, method, and program for evaluating photovoltaic power generation system
JP5268458B2 (en) * 2008-07-09 2013-08-21 株式会社東芝 Supply and demand control equipment for small power systems
JP4808754B2 (en) * 2008-08-28 2011-11-02 三菱電機株式会社 Natural energy power generation control system
JP5215822B2 (en) * 2008-11-21 2013-06-19 日本電信電話株式会社 Energy system control device and control method
FR2941328B1 (en) * 2009-01-19 2012-11-02 Commissariat Energie Atomique METHOD FOR PREDICTING THE ELECTRIC PRODUCTION OF A PHOTOVOLTAIC DEVICE
JP2010193594A (en) * 2009-02-17 2010-09-02 Tokyo Electric Power Co Inc:The Maximum power generation amount estimating method for photovoltaic power generation system, method for controlling power distribution system, and distribution system control apparatus
JP2010193605A (en) * 2009-02-18 2010-09-02 Tokyo Electric Power Co Inc:The Load estimating method of power distribution section and power distribution system control method
JP4770954B2 (en) 2009-03-16 2011-09-14 Tdk株式会社 Multiple power supply integration device, multiple power supply integration system, and multiple power supply integration program
JP5271162B2 (en) * 2009-06-11 2013-08-21 日本電信電話株式会社 Equipment plan creation device and equipment plan creation method
JP2011002929A (en) * 2009-06-17 2011-01-06 Nippon Telegr & Teleph Corp <Ntt> Distributed power supply system and method of controlling the same
JP5576085B2 (en) * 2009-10-13 2014-08-20 株式会社日立製作所 Distributed computer system and operation method thereof
JP2011114945A (en) * 2009-11-26 2011-06-09 Fuji Electric Systems Co Ltd Power supply planning system, and program of the same
JP5659486B2 (en) * 2009-12-17 2015-01-28 富士電機株式会社 Power generation plan creation method and power generation plan creation system
JP5606114B2 (en) * 2010-03-19 2014-10-15 株式会社東芝 Power generation amount prediction device, prediction method, and prediction program
WO2011121815A1 (en) * 2010-03-29 2011-10-06 株式会社日立製作所 Energy management system, energy management apparatus, and energy management method
JP5509004B2 (en) * 2010-09-10 2014-06-04 株式会社日立製作所 Power sale adjustment server and method
WO2012057307A1 (en) * 2010-10-29 2012-05-03 三洋電機株式会社 Control device for power management
JP5411183B2 (en) * 2011-03-07 2014-02-12 三菱電機株式会社 Community energy management system and method
JP5789662B2 (en) * 2011-06-17 2015-10-07 株式会社日立製作所 Micro grid control system
WO2013080308A1 (en) * 2011-11-29 2013-06-06 株式会社日立製作所 Consumer energy management system and consumer energy management method
JPWO2013080308A1 (en) * 2011-11-29 2015-04-27 株式会社日立製作所 Consumer energy management system and consumer energy management method
JP5813544B2 (en) * 2012-03-22 2015-11-17 株式会社東芝 ENERGY MANAGEMENT DEVICE, ITS MANAGEMENT METHOD, AND ENERGY MANAGEMENT PROGRAM
US9535474B2 (en) 2012-03-22 2017-01-03 Kabushiki Kaisha Toshiba Renewable energy management using weighted load patterns
JP5934041B2 (en) * 2012-07-10 2016-06-15 京セラ株式会社 Power system, apparatus and method
JP5978865B2 (en) * 2012-09-05 2016-08-24 沖電気工業株式会社 Power supply / demand control device, power supply / demand system, power supply / demand control method, and program
JP6042184B2 (en) * 2012-11-21 2016-12-14 株式会社東芝 Energy management system, energy management method, program, server device, and local server
US9727929B2 (en) 2012-11-21 2017-08-08 Kabushiki Kaisha Toshiba Energy management system, energy management method, program, server apparatus, and local server
JP6009976B2 (en) * 2013-03-07 2016-10-19 株式会社東芝 Energy management system, energy management method, program, and server
JP6166599B2 (en) * 2013-06-28 2017-07-19 株式会社エヌエフ回路設計ブロック Power storage system and its operation method
JP6365069B2 (en) * 2014-07-28 2018-08-01 株式会社Ihi Energy management system, power supply / demand plan optimization method, and power supply / demand plan optimization program
JP2016040997A (en) * 2014-08-13 2016-03-24 株式会社Ihi Energy management system, power supply and demand plan optimization method, and power supply and demand plan optimization program
WO2016027618A1 (en) * 2014-08-22 2016-02-25 日本電気株式会社 Management device, management method, and program
CN104571068B (en) * 2015-01-30 2017-06-30 中国华电集团科学技术研究总院有限公司 The operating and optimization control method and system of a kind of distributed energy resource system
WO2017098631A1 (en) 2015-12-10 2017-06-15 三菱電機株式会社 Power control device, operation plan planning method, and program
KR101785344B1 (en) * 2015-12-30 2017-10-17 주식회사 효성 Method and System for power supplying
EP3509184A4 (en) * 2016-08-31 2020-03-04 Kyocera Corporation Power management method, power management server, local control apparatus, and power management system
CN111433694A (en) * 2017-11-29 2020-07-17 三菱日立电力系统株式会社 Operation condition evaluation device, operation condition evaluation method, and control system for power generation facility
CN108960500A (en) * 2018-06-28 2018-12-07 香港中文大学(深圳) The control method and electronic device of battery energy storage system
JP6562491B1 (en) 2019-01-18 2019-08-21 株式会社ヒデ・ハウジング Precise power generation prediction method by expected value calculation, power generation precise prediction system by expected value calculation, and power generation precise prediction program by expected value calculation
WO2020148940A1 (en) 2019-01-18 2020-07-23 株式会社ヒデ・ハウジング Solar irradiance occurrence probability distribution analysis method, solar irradiance occurrence probability distribution analysis system, solar irradiance occurrence probability distribution analysis program, solar irradiance normalization statistical analysis system, solar irradiance normalization statistical analysis method, and solar irradiance normalization statistical analysis program
DE102019200738A1 (en) * 2019-01-22 2020-07-23 Siemens Aktiengesellschaft Computer-aided procedure for the simulation of an operation of an energy system as well as an energy management system
JP2020171217A (en) * 2019-04-09 2020-10-22 株式会社セラク Method, apparatus and program for predicting yield
CN114154706B (en) * 2021-11-29 2022-07-15 江南大学 Single-ton energy consumption estimation precision evaluation method and system in rectification process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9425636B2 (en) 2011-03-18 2016-08-23 Fujitsu Limited Operation plan preparation method, operation plan preparation device, and recording medium
US9727036B2 (en) 2012-03-12 2017-08-08 Fujitsu Limited Operation plan creating method, computer product, and operation plan creating apparatus
US11539213B2 (en) 2017-11-20 2022-12-27 Ihi Corporation Microgrid power plan for optimizing energy performance resulting from proportional predictive demand

Also Published As

Publication number Publication date
JP2006304402A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4245583B2 (en) Control device, control method, program, and recording medium of distributed energy system
JP6765567B2 (en) Power generation system and energy generation system
JP5215822B2 (en) Energy system control device and control method
JP4064334B2 (en) Energy system control device and control method
US10901476B2 (en) Method for predicting power demand and controlling ESS charge/discharge based on the predicted demand, and apparatus using the same
JP3980541B2 (en) Distributed energy community control system, central controller, distributed controller, and control method thereof
JP2023129546A (en) System and method for optimal control of energy storage system
US9568901B2 (en) Multi-objective energy management methods for micro-grids
EP2941809B1 (en) System and method for energy distribution
US20140350743A1 (en) Tiered power management system for microgrids
Kang et al. Scheduling-based real time energy flow control strategy for building energy management system
CN103377400A (en) Power plant operation enhancement
JP2010057262A (en) Natural energy power generation control system
Rahmani-Andebili et al. Price-controlled energy management of smart homes for maximizing profit of a GENCO
KR102396712B1 (en) Energy management system and method for minimizing the power purchase cost of microgrid using the same
JP5078128B2 (en) Operation method, prediction error compensation device, meteorological power generation planning device, and program
JP2007028739A (en) Method of planning adaptive start and stoppage of generator corresponding to change in load demand
Qi et al. Energyboost: Learning-based control of home batteries
JP2016093016A (en) Operation plan generating device, operation plan generation device and program
KR101793149B1 (en) System and Method of operating Microgrid
CN117833319A (en) Electric power peak regulation system based on Internet of things
KR102592162B1 (en) Method for controlling the exchange of energy between energy sub-systems under coordinated and harmonized conditions; control center; energy system; computer program; and storage medium
JP2005304118A (en) Controller and control method of distributed energy system
JPH09273795A (en) Thermal load estimating device
US20240088655A1 (en) Methods and systems for controlling a chp device in a microgrid

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees