JP4240281B2 - Method for producing water-absorbing composite - Google Patents
Method for producing water-absorbing composite Download PDFInfo
- Publication number
- JP4240281B2 JP4240281B2 JP2002259208A JP2002259208A JP4240281B2 JP 4240281 B2 JP4240281 B2 JP 4240281B2 JP 2002259208 A JP2002259208 A JP 2002259208A JP 2002259208 A JP2002259208 A JP 2002259208A JP 4240281 B2 JP4240281 B2 JP 4240281B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- prepolymer
- monomer
- base material
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002131 composite material Substances 0.000 title claims description 74
- 238000004519 manufacturing process Methods 0.000 title claims description 29
- 239000000178 monomer Substances 0.000 claims description 131
- 239000000463 material Substances 0.000 claims description 89
- 239000000758 substrate Substances 0.000 claims description 67
- 239000011261 inert gas Substances 0.000 claims description 43
- 239000002250 absorbent Substances 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 35
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 27
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 21
- 239000003999 initiator Substances 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 13
- 239000003431 cross linking reagent Substances 0.000 claims description 12
- 230000000379 polymerizing effect Effects 0.000 claims description 10
- 239000012298 atmosphere Substances 0.000 claims description 9
- 150000003839 salts Chemical class 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 230000035699 permeability Effects 0.000 claims description 3
- 239000002585 base Substances 0.000 description 78
- 229920005989 resin Polymers 0.000 description 54
- 239000011347 resin Substances 0.000 description 54
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 51
- 229910001868 water Inorganic materials 0.000 description 50
- 238000010521 absorption reaction Methods 0.000 description 43
- -1 alkali metal salts Chemical class 0.000 description 34
- 238000006116 polymerization reaction Methods 0.000 description 31
- 239000007864 aqueous solution Substances 0.000 description 24
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 23
- 229940048053 acrylate Drugs 0.000 description 23
- 239000007789 gas Substances 0.000 description 18
- 239000004088 foaming agent Substances 0.000 description 17
- 229920000642 polymer Polymers 0.000 description 17
- 230000002745 absorbent Effects 0.000 description 15
- 238000000576 coating method Methods 0.000 description 15
- 239000011248 coating agent Substances 0.000 description 14
- 239000004743 Polypropylene Substances 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 13
- 229920001155 polypropylene Polymers 0.000 description 13
- 239000002518 antifoaming agent Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 239000004745 nonwoven fabric Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 239000004698 Polyethylene Substances 0.000 description 8
- 229920000573 polyethylene Polymers 0.000 description 8
- 239000000835 fiber Substances 0.000 description 7
- 239000000499 gel Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 239000002562 thickening agent Substances 0.000 description 5
- LEJBBGNFPAFPKQ-UHFFFAOYSA-N 2-(2-prop-2-enoyloxyethoxy)ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOC(=O)C=C LEJBBGNFPAFPKQ-UHFFFAOYSA-N 0.000 description 4
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 239000001099 ammonium carbonate Substances 0.000 description 4
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000005187 foaming Methods 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000005303 weighing Methods 0.000 description 4
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 3
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 150000002978 peroxides Chemical class 0.000 description 3
- 238000010526 radical polymerization reaction Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- UWFRVQVNYNPBEF-UHFFFAOYSA-N 1-(2,4-dimethylphenyl)propan-1-one Chemical compound CCC(=O)C1=CC=C(C)C=C1C UWFRVQVNYNPBEF-UHFFFAOYSA-N 0.000 description 2
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 2
- QMYCJCOPYOPWTI-UHFFFAOYSA-N 2-[(1-amino-1-imino-2-methylpropan-2-yl)diazenyl]-2-methylpropanimidamide;hydron;chloride Chemical compound Cl.NC(=N)C(C)(C)N=NC(C)(C)C(N)=N QMYCJCOPYOPWTI-UHFFFAOYSA-N 0.000 description 2
- LDQYWNUWKVADJV-UHFFFAOYSA-N 2-[(1-amino-2-methyl-1-oxopropan-2-yl)diazenyl]-2-methylpropanamide;dihydrate Chemical compound O.O.NC(=O)C(C)(C)N=NC(C)(C)C(N)=O LDQYWNUWKVADJV-UHFFFAOYSA-N 0.000 description 2
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 2
- 125000004200 2-methoxyethyl group Chemical group [H]C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 2
- SXIFAEWFOJETOA-UHFFFAOYSA-N 4-hydroxy-butyl Chemical group [CH2]CCCO SXIFAEWFOJETOA-UHFFFAOYSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 244000028419 Styrax benzoin Species 0.000 description 2
- 235000000126 Styrax benzoin Nutrition 0.000 description 2
- 235000008411 Sumatra benzointree Nutrition 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 2
- 235000012501 ammonium carbonate Nutrition 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229960002130 benzoin Drugs 0.000 description 2
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 2
- 239000012965 benzophenone Substances 0.000 description 2
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 2
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000007646 gravure printing Methods 0.000 description 2
- 235000019382 gum benzoic Nutrition 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 238000007759 kiss coating Methods 0.000 description 2
- 229910052743 krypton Inorganic materials 0.000 description 2
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 229910052754 neon Inorganic materials 0.000 description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920000151 polyglycol Polymers 0.000 description 2
- 239000010695 polyglycol Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229920000247 superabsorbent polymer Polymers 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- AKMXALUKLMSKMK-UHFFFAOYSA-N (4-benzoylphenyl)methyl-trimethylazanium Chemical compound C1=CC(C[N+](C)(C)C)=CC=C1C(=O)C1=CC=CC=C1 AKMXALUKLMSKMK-UHFFFAOYSA-N 0.000 description 1
- MSAHTMIQULFMRG-UHFFFAOYSA-N 1,2-diphenyl-2-propan-2-yloxyethanone Chemical compound C=1C=CC=CC=1C(OC(C)C)C(=O)C1=CC=CC=C1 MSAHTMIQULFMRG-UHFFFAOYSA-N 0.000 description 1
- DKEGCUDAFWNSSO-UHFFFAOYSA-N 1,8-dibromooctane Chemical compound BrCCCCCCCCBr DKEGCUDAFWNSSO-UHFFFAOYSA-N 0.000 description 1
- PQUXFUBNSYCQAL-UHFFFAOYSA-N 1-(2,3-difluorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(F)=C1F PQUXFUBNSYCQAL-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- PIZHFBODNLEQBL-UHFFFAOYSA-N 2,2-diethoxy-1-phenylethanone Chemical compound CCOC(OCC)C(=O)C1=CC=CC=C1 PIZHFBODNLEQBL-UHFFFAOYSA-N 0.000 description 1
- BJELTSYBAHKXRW-UHFFFAOYSA-N 2,4,6-triallyloxy-1,3,5-triazine Chemical compound C=CCOC1=NC(OCC=C)=NC(OCC=C)=N1 BJELTSYBAHKXRW-UHFFFAOYSA-N 0.000 description 1
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 1
- AVTLBBWTUPQRAY-UHFFFAOYSA-N 2-(2-cyanobutan-2-yldiazenyl)-2-methylbutanenitrile Chemical compound CCC(C)(C#N)N=NC(C)(CC)C#N AVTLBBWTUPQRAY-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- 229920000536 2-Acrylamido-2-methylpropane sulfonic acid Polymers 0.000 description 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- AOBIOSPNXBMOAT-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)ethoxymethyl]oxirane Chemical compound C1OC1COCCOCC1CO1 AOBIOSPNXBMOAT-UHFFFAOYSA-N 0.000 description 1
- KMNCBSZOIQAUFX-UHFFFAOYSA-N 2-ethoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCC)C(=O)C1=CC=CC=C1 KMNCBSZOIQAUFX-UHFFFAOYSA-N 0.000 description 1
- ZEERWUUHFUFJJT-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1.CC(C)(O)C(=O)C1=CC=CC=C1 ZEERWUUHFUFJJT-UHFFFAOYSA-N 0.000 description 1
- BQZJOQXSCSZQPS-UHFFFAOYSA-N 2-methoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OC)C(=O)C1=CC=CC=C1 BQZJOQXSCSZQPS-UHFFFAOYSA-N 0.000 description 1
- HFCUBKYHMMPGBY-UHFFFAOYSA-N 2-methoxyethyl prop-2-enoate Chemical compound COCCOC(=O)C=C HFCUBKYHMMPGBY-UHFFFAOYSA-N 0.000 description 1
- QENRKQYUEGJNNZ-UHFFFAOYSA-N 2-methyl-1-(prop-2-enoylamino)propane-1-sulfonic acid Chemical compound CC(C)C(S(O)(=O)=O)NC(=O)C=C QENRKQYUEGJNNZ-UHFFFAOYSA-N 0.000 description 1
- AUZRCMMVHXRSGT-UHFFFAOYSA-N 2-methylpropane-1-sulfonic acid;prop-2-enamide Chemical compound NC(=O)C=C.CC(C)CS(O)(=O)=O AUZRCMMVHXRSGT-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 239000004604 Blowing Agent Substances 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 229920002148 Gellan gum Polymers 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- NQSMEZJWJJVYOI-UHFFFAOYSA-N Methyl 2-benzoylbenzoate Chemical compound COC(=O)C1=CC=CC=C1C(=O)C1=CC=CC=C1 NQSMEZJWJJVYOI-UHFFFAOYSA-N 0.000 description 1
- 229920001730 Moisture cure polyurethane Polymers 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Chemical class 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- LXEKPEMOWBOYRF-UHFFFAOYSA-N [2-[(1-azaniumyl-1-imino-2-methylpropan-2-yl)diazenyl]-2-methylpropanimidoyl]azanium;dichloride Chemical compound Cl.Cl.NC(=N)C(C)(C)N=NC(C)(C)C(N)=N LXEKPEMOWBOYRF-UHFFFAOYSA-N 0.000 description 1
- DBHQYYNDKZDVTN-UHFFFAOYSA-N [4-(4-methylphenyl)sulfanylphenyl]-phenylmethanone Chemical compound C1=CC(C)=CC=C1SC1=CC=C(C(=O)C=2C=CC=CC=2)C=C1 DBHQYYNDKZDVTN-UHFFFAOYSA-N 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium peroxydisulfate Substances [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 1
- VAZSKTXWXKYQJF-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)OOS([O-])=O VAZSKTXWXKYQJF-UHFFFAOYSA-N 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- LWMFAFLIWMPZSX-UHFFFAOYSA-N bis[2-(4,5-dihydro-1h-imidazol-2-yl)propan-2-yl]diazene Chemical compound N=1CCNC=1C(C)(C)N=NC(C)(C)C1=NCCN1 LWMFAFLIWMPZSX-UHFFFAOYSA-N 0.000 description 1
- LBSPZZSGTIBOFG-UHFFFAOYSA-N bis[2-(4,5-dihydro-1h-imidazol-2-yl)propan-2-yl]diazene;dihydrochloride Chemical compound Cl.Cl.N=1CCNC=1C(C)(C)N=NC(C)(C)C1=NCCN1 LBSPZZSGTIBOFG-UHFFFAOYSA-N 0.000 description 1
- QDVNNDYBCWZVTI-UHFFFAOYSA-N bis[4-(ethylamino)phenyl]methanone Chemical compound C1=CC(NCC)=CC=C1C(=O)C1=CC=C(NCC)C=C1 QDVNNDYBCWZVTI-UHFFFAOYSA-N 0.000 description 1
- HXTBYXIZCDULQI-UHFFFAOYSA-N bis[4-(methylamino)phenyl]methanone Chemical compound C1=CC(NC)=CC=C1C(=O)C1=CC=C(NC)C=C1 HXTBYXIZCDULQI-UHFFFAOYSA-N 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000012986 chain transfer agent Substances 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013530 defoamer Substances 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- KGGOIDKBHYYNIC-UHFFFAOYSA-N ditert-butyl 4-[3,4-bis(tert-butylperoxycarbonyl)benzoyl]benzene-1,2-dicarboperoxoate Chemical compound C1=C(C(=O)OOC(C)(C)C)C(C(=O)OOC(C)(C)C)=CC=C1C(=O)C1=CC=C(C(=O)OOC(C)(C)C)C(C(=O)OOC(C)(C)C)=C1 KGGOIDKBHYYNIC-UHFFFAOYSA-N 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethyl mercaptane Natural products CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 235000010492 gellan gum Nutrition 0.000 description 1
- 239000000216 gellan gum Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910052806 inorganic carbonate Inorganic materials 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000014380 magnesium carbonate Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 1
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 description 1
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 description 1
- VXRNYQMFDGOGSI-UHFFFAOYSA-N n-(1,3-dihydroxy-2-methylpropan-2-yl)-2-[[1-[(1,3-dihydroxy-2-methylpropan-2-yl)amino]-2-methyl-1-oxopropan-2-yl]diazenyl]-2-methylpropanamide Chemical compound OCC(C)(CO)NC(=O)C(C)(C)N=NC(C)(C)C(=O)NC(C)(CO)CO VXRNYQMFDGOGSI-UHFFFAOYSA-N 0.000 description 1
- WVFLGSMUPMVNTQ-UHFFFAOYSA-N n-(2-hydroxyethyl)-2-[[1-(2-hydroxyethylamino)-2-methyl-1-oxopropan-2-yl]diazenyl]-2-methylpropanamide Chemical compound OCCNC(=O)C(C)(C)N=NC(C)(C)C(=O)NCCO WVFLGSMUPMVNTQ-UHFFFAOYSA-N 0.000 description 1
- QYZFTMMPKCOTAN-UHFFFAOYSA-N n-[2-(2-hydroxyethylamino)ethyl]-2-[[1-[2-(2-hydroxyethylamino)ethylamino]-2-methyl-1-oxopropan-2-yl]diazenyl]-2-methylpropanamide Chemical compound OCCNCCNC(=O)C(C)(C)N=NC(C)(C)C(=O)NCCNCCO QYZFTMMPKCOTAN-UHFFFAOYSA-N 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000002903 organophosphorus compounds Chemical class 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229960000292 pectin Drugs 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical class [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- HPAFOABSQZMTHE-UHFFFAOYSA-N phenyl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)C1=CC=CC=C1 HPAFOABSQZMTHE-UHFFFAOYSA-N 0.000 description 1
- LYXOWKPVTCPORE-UHFFFAOYSA-N phenyl-(4-phenylphenyl)methanone Chemical compound C=1C=C(C=2C=CC=CC=2)C=CC=1C(=O)C1=CC=CC=C1 LYXOWKPVTCPORE-UHFFFAOYSA-N 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229960003975 potassium Drugs 0.000 description 1
- 235000007686 potassium Nutrition 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 229940086066 potassium hydrogencarbonate Drugs 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- VWQXLMJSFGLQIT-UHFFFAOYSA-N prop-2-enoyl bromide Chemical compound BrC(=O)C=C VWQXLMJSFGLQIT-UHFFFAOYSA-N 0.000 description 1
- QLNJFJADRCOGBJ-UHFFFAOYSA-N propionamide Chemical compound CCC(N)=O QLNJFJADRCOGBJ-UHFFFAOYSA-N 0.000 description 1
- 229940080818 propionamide Drugs 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- 229940047670 sodium acrylate Drugs 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 1
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Absorbent Articles And Supports Therefor (AREA)
- Orthopedics, Nursing, And Contraception (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Laminated Bodies (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、紙おむつ、生理用ナプキン等に代表される吸水性物品の製造に使用される、シート状基材に吸水性樹脂を固着させた吸水性複合体の製造方法に関する。
【0002】
【従来の技術】
水分吸収性の素材として、自重の数十倍から数百倍の水を吸収する吸収性樹脂(または高吸収性樹脂、SAP:Super Absorbent Polymer)が開発されており、生理用品や紙おむつ(使い捨て紙おむつ)等の衛生材料をはじめとして、農園芸用分野、鮮度保持等の食品分野、結露防止剤等の産業分野において幅広く利用されている。このような水分吸収性素材は、シート状の基材に吸収性樹脂を固着して製造した吸水性複合体として多く利用されている。
【0003】
このような吸水性複合体は、紙、パルプ、多孔性フィルムあるいは不織布等の基材シート上に、架橋されたポリアクリル酸等からなる吸収性樹脂粉末を、均一に分散させ固着させるという方法で製造されることが一般的に行われている。基材シートに対する吸収性樹脂の固着方法としては、例えば吸収性樹脂をティッシュ、綿等でサンドイッチにする方法や、パルプと吸収性樹脂粉末を混合した後にエンボス加工等の圧着処理を行う方法等が採用されている。
【0004】
しかし、これらの製造方法においては、樹脂粉末を基材上に均一に分散させる必要があるが、基材上に安定性よく固定することが困難であり、分散後も一部局所に集合化することが多く、また基材から粉末が漏れやすい上、吸水後の膨潤ゲルが流動して使用感を悪化させることがあった。このような樹脂の移動を防ぐために、吸収性樹脂を接着剤等で基材に接着させることも考えられたが、この場合接着剤によって樹脂が吸水膨潤してしまい、吸水性能が発揮できなくなってしまう。さらに、樹脂を粉末として用いるため、製造時の取り扱いが煩雑で、また基材上への均一な分散を効率よく行うプロセスは製造コストも割高であった。
【0005】
そこで、このような問題を改善した吸水性複合体の製造方法として、例えば、アクリル酸およびアクリル酸塩と、熱分解型ラジカル重合開始剤等を含む単量体混合物の水溶液を基材シート上に塗工し、不活性ガス雰囲気中で加熱処理あるいは電磁放射線の照射を行って単量体を重合させ、基材シートに吸収性ポリマーが固着された吸水性複合材を製造する方法が知られている(例えば、特許文献1参照)。
【0006】
【特許文献1】
特開昭62−22810号公報(第3−5頁)
【0007】
【発明が解決しようとする課題】
しかし上記特許文献1の製造方法では、アクリル酸塩等の単量体の重合反応に時間を要するため、吸水性樹脂が形成されるまでの間に、単量体が基材シートの内部に拡散してしまう。その場合、重合が十分行われずに、形成される吸収性樹脂には単量体の残存量(残存モノマー量)が多い上、製造される吸水性複合体では水分等が基材表面の吸水性樹脂にしか吸収されないため、吸水性能が劣るという問題があった。
【0008】
本発明の課題は、残存モノマーが少なく、吸水性能に優れる吸水性複合体の製造方法を提供することである。
【0009】
【課題を解決するための手段】
以上の課題を解決するための本発明による手段は、
アクリル酸および/またはその塩を主成分とする水溶性単量体と、光重合開始剤と、架橋剤と、を含む組成物を、通気性を有するシート状基材の表面に塗工する第1の工程と、
不活性ガス雰囲気下で、前記シート状基材に紫外線を照射して前記水溶性単量体を重合させる第2の工程と、
を有する吸水性複合体の製造方法において、
前記第1の工程後に、前記シート状基材の裏面側から表面側に向けて不活性ガス流を流すことを特徴とする。
【0010】
本発明によれば、第1の工程後に、シート状基材の裏面側から表面側に向けて不活性ガス流を流すことにより、シート状基材内部の空気が速やかに、且つ確実に不活性ガスで置換される。また、シート状基材表面に塗布された組成物が、シート状基材内部に拡散するのを防止することができる。従って、重合反応を好適に、且つ速やかに実施することができ、残存モノマー量が少なく吸収性能のよい吸水性複合体を製造することができる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
〔第1の実施の形態〕
本実施の形態において、吸水性複合体は、主に、アクリル酸および/またはアクリル酸塩(以下、アクリル酸系単量体という)を主体とする水溶性単量体と、光重合開始剤と、架橋剤と、シート状基材(以下、基材という。)とを用いて、図1にフローチャートで示す製造工程を経て製造される。
【0012】
即ち、水溶性単量体と光重合開始剤との混合水溶液を調製し(ステップS1)、当該水溶液に紫外線を照射することにより、水溶性単量体の一部を重合させたプレポリマーAを作製する(ステップS2)。このステップS2で作製したプレポリマーAに、架橋剤、および光重合開始剤を添加する(ステップS3)。そして、ステップS3において添加物を加えたプレポリマーAを、基材上に塗工する(第1の工程、ステップS4)。さらに、プレポリマーAが塗工された基材に、不活性ガス雰囲気下で紫外線を照射し(第2の工程、ステップS5)、プレポリマーAを重合・架橋させて硬化させる。その結果、基材上に固着された状態の吸水性樹脂が形成され、基材と吸水性樹脂とで構成される吸水性複合体が製造される。
この吸水性複合体の製造工程のうち、第2の工程前或いは第2の工程時までのいずれかの時点において、基材に向けて不活性ガス流を流し(送風し)、基材内部に含まれる空気を不活性ガスで置換する。この不活性ガス流を流すことについては、製造工程のうち、第1の工程前(プレポリマーAを基材に塗工する前)に実施すれば、基材に対するガスの通気性がよく、また置換される空気がプレポリマーAに影響を与える可能性も極めて小さくなるため最も好ましいが、第2の工程時までに実施すれば、いずれの時点で行ってもよい。また、基材に不活性ガスを流した時点以後は、紫外線照射によるステップS5の重合が終了するまで、基材を不活性ガス雰囲気下に置くようにする。
【0013】
本実施の形態における吸水性複合体の製造に用いられる各物質について説明する。
【0014】
水溶性モノマーとして使用されるアクリル酸系単量体は、架橋性単量体の共存下に重合することにより、吸水性樹脂を与える物質である。アクリル酸系単量体としては、アクリル酸の20〜90モル%を塩基で部分中和して得られるアクリル酸およびアクリル酸塩(例えば、ナトリウム塩・カリウム塩のようなアルカリ金属塩、アンモニウム塩等)の単量体混合物とすると、吸水性能の優れたポリマーが得られるので好ましい。
【0015】
アクリル酸系単量体とともに併用し得る単量体(以下、その他の単量体という)としては、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸等のアニオン性モノマーやその塩;(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-メトキシプロピル(メタ)アクリレート、4-メトキシブチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、等のノニオン性親水性基含有モノマー;N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、ジアリールジメチルアンモニウムクロライド等のアミノ基含有不飽和モノマーやそれらの4級化合物等が挙げられる。
【0016】
上記のその他の単量体のうち、好ましい単量体は、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸(塩)、(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-メトキシプロピル(メタ)アクリレート、4-メトキシブチル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレートおよびメトキシポリエチレングリコール(メタ)アクリレートからなる群から選ばれる単量体である。
【0017】
アクリル酸系単量体だけでは得られる重合体と単量体水溶液とが分離し易いのに対して、その他の単量体を使用する場合には、得られる重合体と単量体水溶液との相溶性が向上し、相分離が起こり難い。従って、アクリル酸系単量体とその他の単量体とを併用することが好ましい。
その他の単量体の好ましい使用割合は、その他の単量体とアクリル酸系単量体の合計量を基準にして、1〜30重量%(w/w%)である。その他の単量体の使用割合が全単量体中の30重量%を超えた場合のプレポリマーAから形成される吸水性樹脂は、吸水性能が不足し易いためである。
また、水溶性単量体と、それを溶解する水性媒体の使用割合は、水溶性単量体の濃度として20〜60重量%が好ましい。水溶性単量体濃度を20重量%以下として吸水性樹脂に加工した場合、水分除去に多大な労力が必要となるからである。また水溶性単量体濃度を60重量%以上とすると、単量体水溶液中の単量体が析出して系全体がスラリーとなりやすく、取り扱いが困難となるからである。
【0018】
本実施の形態において光重合開始剤は、アゾ系、ベンゾイル系等の公知のものが使用できる。光重合開始剤の好ましい使用量は、単量体と重合体の合計の100質量部あたり0.001〜0.1質量部である。光重合開始剤の量が0.001質量部未満であると、プレポリマーAを得るのに長時間を要し、一方、光重合開始剤の量が0.1重量部を超えると、重合のプロセスにおいてプレポリマーA中のポリマー含有量を制御することが難しくなる。
【0019】
ベンゾイル基を有するラジカル系光重合開始剤の具体例としては、ベンゾイン、ベンジル、アセトフェノン、ベンゾフェノン、およびこれらの誘導体が挙げられる。
該誘導体の例としては、ベンゾイン系のものとして、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、アセトフェノン系のものとして、ジエトキシアセトフェノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-メチル-1-(4-(メイチルチオ)フェニル)-2-モンフォリノプロパン-1,2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタノン-1,2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-(4-(2-ヒドロキシエトキシ)-フェニル)-2-ヒドロキシジー2-メチルー1-プロパンー1-オン等が挙げられる。
【0020】
またベンゾフェノン系のものとして、Oーベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4'-メチルジフェニルサルファイド、3,3',4,4'-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-ベンゾイル-N,N-ジメチル-N-[2-(1-オキシ-2-プロペニルオキシ)エチル]ベンゼンメタナミウムブロミド、(4-ベンゾイルベンジル)トリメチルアンモニウムクロリド、4,4'-ジメチルアミノベンゾフェノン、4,4'-ジエチルアミノベンゾフェノン等が挙げられる。
【0021】
アゾ系光重合開始剤の具体例としては、2,2'-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2'-アゾビス(2-メチルプロピオンアミド)ジハイドレート、2,2'-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)エチル]プロピオンアミド}、2,2'-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド]、2,2'-アゾビス(2-アミジノプロパン)塩酸塩、2,2'-アゾビス(2-メチルブチロニトリル)、および2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]が好ましい。
【0022】
光重合に際して、単量体水溶液中に次亜燐酸ソーダ、メルカプトエタノール、イソプロパノール等の連鎖移動剤を添加してもよい。連鎖移動材の好ましい使用量は、全単量体に対して0.0001〜0.5重量%であり、さらに好ましくは0.0001〜0.1重量%である。連鎖移動材の使用量が全単量体に対して0.5重量%を超えて使用されると、プレポリマーの成分となる重合体の重合度が低くなるため好ましくない。
また本実施の形態においては、プレポリマーをさらに重合させて硬化させる際に、所望により、熱によりラジカルを発生する過酸化物、過流酸塩化合物を加えてもよい。過酸化物の例としては、過酸化ベンゾイル、過酸化ラウロイル、クメンヒドロペルオキシド、t-ブチルヒドロペルオキシドおよびジクミルペルオキシド等が挙げられる。過硫酸塩化合物の例としては、過硫酸アンモニウム、過硫酸カリウムおよび過硫酸ナトリウム等が挙げられる。
【0023】
また、プレポリマーAに加えられる架橋剤としては、メチレンビスアクリルアミド、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパン、トリアリルシアヌレート等の、1分子中にラジカル重合性基を複数個有する架橋性単量体(以下、ラジカル重合型架橋性単量体という)や、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル等の、1分子中に反応性官能基を複数個有する架橋性単量体(以下、官能基型架橋性単量体という)が挙げられる。
本発明においては、ラジカル重合型架橋性単量体および官能基型架橋性単量体を併用することが好ましい。架橋性単量体の好ましい使用量は、全単量体に対して0.001〜1.0重量%である。架橋性単量体の使用量が全単量体に対して1.0重量%を超えて使用されると、ゲル強度は高くなるが、吸水性の乏しい吸水性樹脂となるため好ましくない。
【0024】
本発明で用いる基材(シート状基材)は、シート状の繊維質基材、あるいはシート状の多孔質基材のいずれでもよい。尚、本発明においては、ステップS5において、紫外線照射により基材に塗工した水溶性単量体を重合・硬化させるにあたり、後述するように基材に不活性ガスを流通させるため、通気性のある基材を使用する。
【0025】
繊維質基材を用いる場合、素材としては、紙、不織布、織布等の繊維組成物を用いることができ、天然繊維、合成繊維、のいずれを用いてもよい。
天然繊維の例としては、綿、セルロース(木材パルプ)、羊毛、絹等が挙げられる。また合成繊維としては、ポリプロピレン(PP)、ポリエチレン(PE)、ナイロン、ポリエステル(PET等)、アクリル等が挙げられ、PE /PP、PE /PETなどのバイコンポーネント繊維も用いられる。
しかし、親水性の高い基材の場合、水溶性単量体やプレポリマーを塗布した際に滲みや染み込みが大きく、水溶性単量体やプレポリマーが基材中に浸透しすぎてしまうため、疎水性、または撥水性の高い基材を用いることが好ましい。従って、上記の中では、ポリプロピレン(PP)、ポリエステル(PET等)、ポリエチレン(PE)、PE /PP、PE /PETが好ましい。また、PPセルロース系混合繊維や、PP等に部分親水化処理を施した不織布などを用いてもよい。
【0026】
好適な基材の目付け(秤量)は、8〜80g/m2(gsm)であり、特に10〜50 g/m2のものが好ましい。8 g/m2未満では裏抜けしやすく、80 g/m2以上では吸水性複合体の厚みがでてくること、またSAP(高吸水性樹脂)の含有割合が少なくなるため好ましくない。
不織布の繊維径は、1〜6dtx(デシテックス)のものが好ましい。6dtx以上では、繊維質基材が疎になりすぎるため、十分な量のSAPを固定することができないからである。また1dtx以下では、吸水性複合体中の液の拡散が不十分となるからである。
また以上のほか、スポンジ、多孔性フィルム等を基材として使用してもよい。
【0027】
尚、製造される吸水性樹脂を多孔質な構造にして吸収速度の高い吸水性複合体を得る目的で、プレポリマーAに発泡剤を配合した上で、重合・硬化させることもできる。発泡剤としては、従来公知の無機系、有機系発泡剤から任意に選択して使用することが可能である。
中でも無機系炭酸塩が好適であり、その例としては、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、炭酸アンモニウム、炭酸水素アンモニウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム等、およびこれらの水和物等が挙げられ、それらの1種または2種以上を用いる。特に、本実施の形態において好ましい炭酸塩は、1価カチオン、例えば、ナトリウム、カリウム、アンモニウムの炭酸塩または炭酸水素塩である。
【0028】
炭酸塩系発泡剤のプレポリマーA溶液に対する添加量は、プレポリマーA固形分に対し、0.01〜10.0重量%であるのが好ましく、より好ましくは0.1〜5.0重量%である。炭酸塩発泡剤の添加量が0.01重量%より少ない場合は、得られる吸水性樹脂を多孔質構造にすることができないため、吸収速度の高い吸水性複合体を得ることができない。また、発泡剤を10重量%以上添加しても、それ以上の多孔質化が困難であるばかりか、未発泡の炭酸塩発泡剤が吸水性複合体中に存在するため吸水性樹脂と基材との密着性に影響を与えることとなる。
【0029】
また、アゾ系化合物が有機系発泡剤として有効である。アゾ系化合物は、低温でプレポリマーAを重合・硬化させることができ、しかも重合・硬化時に分解して窒素ガスを発生するので、発泡剤として好適である。このようなアゾ系化合物としては、アゾニトリル化合物、アゾアミジン化合物、アゾアミド化合物、アルキルアゾ化合物等が好ましい。10時間半減期温度が100℃以下のものが特に好ましく、具体的には、2,2'-アゾビス(2-アミジノプロパン)二塩酸塩、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2'-アゾビスイソブチルアミド二水和物などが挙げられる。
【0030】
アゾ系化合物を有機発泡剤として使用する場合には、プレポリマーAの固形分に対して0.001〜1重量%であるのが好ましく、より好ましくは0.01〜0.5重量%である。添加量が0.001重量%より少ない場合は、得られる吸水性樹脂を多孔質構造にすることができないため、吸収速度の高い吸水性複合体を得ることができない。また、発泡剤を1重量%以上添加しても、それ以上の多孔質化が困難であるばかりか、重合して得られる吸水性樹脂の分子量が低下するため、ゲル強度が低く吸水ゲルにぬめりが生じるため、使用感の悪い吸水性複合体となる。
また発泡剤は、紫外線照射前に添加することが好ましく、添加方法としては、発泡剤をそのまま添加するか、或いは任意の溶媒中に溶かし込み、発泡剤溶液として添加してもよい。
【0031】
発泡剤添加の際には、気泡径および発泡時期をコントロールする目的で、任意の消泡剤を併用することも可能である。消泡剤としては特に限定されるものではなく、一般的に破泡剤、抑泡剤、整泡剤等として知られているものを任意に選択することができ、1種または2種以上組み合わせて用いることもできる。
消泡剤の具体的な成分としては、油脂類、脂肪酸類、低級アルコール類、高級アルコール類、金属石鹸類、シリコーン類、疎水性シリカ・シリコーンコンパウンド類、脂肪酸エステル類、ポリグリコール類、ポリグリコールエステル類、ポリエーテル類、変成シリコーン類、油溶系ポリマー類、有機リン系化合物、硫酸化脂肪酸類、ポリエーテル誘導体、シリカ・変成シリコーンコンパウンド類、等が挙げられる。
【0032】
消泡剤のプレポリマーA溶液に対する添加量は、プレポリマーA固形分に対し、0.0001〜0.1重量%であるのが好ましい。消泡剤の添加量が0.0001重量%未満であると、十分な気泡径、発泡時期のコントロールが不可能となる。また、0.1重量%以上添加しても、添加量に見合うだけの効果は期待できず、またコスト的にも好ましくないと思われるので、なるべく少量の消泡剤を使用すべきである。
消泡剤は、発泡添加前にプレポリマーA水溶液に添加することが好ましく、添加方法としては、消泡剤をそのまま添加するか、或いは任意の溶媒中に溶解または分散させ、消泡剤溶液または消泡剤分散液として添加してもよい。
【0033】
次に、本実施の形態における吸水性複合体の製造方法を詳細に説明する。
まず、前述のアクリル酸系単量体等の水溶性単量体と、光重合開始剤とを、前述のような割合で水に混合する(図1、ステップS1)。この混合水溶液に紫外線を照射して、単量体の一部を重合させる(ステップS2)。
【0034】
ここで、この混合水溶液中の水溶性単量体を重合させる手段としては、紫外線以外にも電子線やガンマ線等を用いる方法もあるが、紫外線はそれらに比して装置が安価であり、また重合転換率の制御が容易であって、さらに重合に要する時間も短いため、好ましい。
【0035】
ステップS2において、混合水溶液に照射させる紫外線の好ましい照度は、0.1〜10mW/cm2である。照度が10mW/cm2を超えると、重合反応と同時に架橋反応が併発し、ゲル化が起こり易いからである。
照射光量すなわち照射エネルギーは、上記照度に時間を乗ずることにより得られるが、好ましい照射光量は、10〜10,000mj/cm2である。この照射光量は、照度0.1〜10mW/cm2の光であれば、1〜120分照射することにより得られる。
紫外線の光源としては、例えば、蛍光ケミカルランプ、蛍光青色ランプ、メタルハライドランプまたは高圧水銀ランプ等を使用することができる。
【0036】
ステップS2の工程においては、紫外線が照射される混合水溶液を、反応中攪拌することが好ましい。この攪拌方法は特に限定されず、例えば攪拌羽根を用いることができる。この攪拌により、効率よく重合反応を進行させることができる。反応液を覆う雰囲気としては、酸素の存在が重合反応に影響を与えるため不活性ガス雰囲気下(酸素濃度<1%、より好ましくは<0.1%)とする。不活性ガスとしては、窒素、アルゴン、ヘリウム、二酸化炭素、ネオン、クリプトン、キセノン、等が挙げられ、工業的に安価な点で窒素ガスが好ましい。
【0037】
ステップ2の光重合によって、単量体とポリマーとが水性媒体に溶解したプレポリマーAが得られる。
プレポリマーAに含まれるポリマーは、水溶性単量体(前述のアクリル酸系単量体もしくはその他の単量体)を重合して得られるものであって、重量平均分子量は50万以上、より好ましくは100万以上である。ポリマーの重量平均分子量が50万未満であると、プレポリマーAを重合・硬化して得られる吸水性樹脂の吸水性が劣るからである。
また、プレポリマーAに含まれるポリマーの量は、上記単量体とポリマーとの合計量を基準にして、0.1〜50重量%であり、好ましくは1〜25重量%である。ポリマーの割合が0.1重量%未満であると、プレポリマーAの粘度が低すぎて、プレポリマーAの使用に制約が生じる。一方、ポリマーの割合が50重量%を超えると、プレポリマーAから得られる吸水性樹脂の吸水性が劣るからである。
プレポリマーAの好ましい粘度は、繊維状基材に塗布された場合に基材に含浸する程度が大きくなく、且つ取り扱いが容易である点を鑑み、1,000〜50,000mPa・S(B型粘度計、25℃で測定)とし、より好ましくは1,500〜30,000 mPa・Sである。
【0038】
ステップ2において作製されたプレポリマーAに、架橋剤、光重合開始剤、また所望により発泡剤・消泡剤を添加して溶解させる(ステップS3)。さらに、この架橋剤等が加えられたプレポリマーA水溶液を、前述の基材の表面に塗工する(ステップS4)。
プレポリマーAを基材に塗工する(塗布する)方法としては、スクリーン印刷、グラビア印刷等の公知の印刷方法や、スプレーを用いて吹き付ける方法、ノズルを介して流しかける方法、キス塗布、等のいずれの方法を用いてもよい。
【0039】
ここで、プレポリマーAを基材上に塗工する形状について説明する。
プレポリマーAを基材上に全面塗工すると、基材の柔軟性が損われ、またプレポリマーAの表面積が小さくなり、十分な吸収力を発揮できない。従って、基材上には、プレポリマーAを所定の間隔を設けて不連続な点状に塗布することが好ましい。
【0040】
基材にプレポリマーAを塗布する塗工パターンの一例を、図2に示す。図2では、プレポリマーAが基材2に規則的な略円形の点状(点状部1)に塗工された様子を示している。
このように不連続に塗工する場合、略円形の直径aは、0.1<直径a(mm)<5とするのが好ましい。点状部1の直径aが5mmより大きいと、吸水性樹脂が吸水膨潤した際に、吸水性複合体の感触に違和感が生じたり、柔軟性が低下したりする等の不具合を生じるだけでなく、吸水性樹脂の表面積も不十分となり吸水性も劣るためである。また、直径aが0.1mmより小さいと、吸水性樹脂の量が少なく十分な吸収力を発揮できないからである。
【0041】
点状部1の直径aを上記範囲とした場合、点状部1と点状部1との間隔をbとして、0.05<間隔b(mm)<2となるようにプレポリマーAを塗布するか、或いは基材の単位面積1m2当たりの点状部1の数をc個として、4<c(個/ cm2)<4,000となるようにプレポリマーAを塗布することが好ましい。
間隔bが2mm以上、或いは1cm2当たりの点状部1の数が4個以下となると、基材上の樹脂の固着面積の割合が小さくなり、吸収力が低下するからである。一方、間隔bが0.05mm以下、或いは1cm2当たりの点状部1の数が4,000個以上となると、プレポリマーAを基材に塗工する工程において、隣接する液滴(プレポリマーA)同士が接触しやすくなるため、塗工パターンの再現が困難になるばかりか、吸水膨潤時に、隣接する含水ゲル同士が互いに接触して(接近しすぎて)吸水性が妨げられるためである。
尚、塗工パターンについては、図2の形状に限定されるものではなく、プレポリマーは、楕円形、三角形、四辺形等、任意の形状に塗布してよい。その場合上記の直径aとしては、当該点状部の面積に略相当する円の直径とすればよい。
【0042】
続いて、基材に塗布されたプレポリマーAに紫外線を照射して、プレポリマーを重合・架橋させ、吸水性樹脂を形成させる(第2の工程、ステップS5)。
このステップS5における紫外線の照度は、プレポリマーを構成する単量体の種類やプレポリマーAの粘度等を考慮して決定されるが、好ましくは1〜10,000mW/cmである。また、重合時のプレポリマーAの温度は5〜95℃が好ましい。
【0043】
尚、前述のように、ステップS5のプレポリマーAを重合させる工程までの間に、プレポリマーAが塗布された基材内部に含まれる空気も速やかに不活性ガスで置換されるように、基材に向かって不活性ガスを流す。
基材に不活性ガスを流す時点としては、プレポリマーA塗工前(第1の工程前)、塗工後から紫外線照射前(第1の工程と第2の工程との間)、紫外線照射時(第2の工程時)等が挙げられる。また、このいずれかの時点でガス流を流すことを開始し、その後、第1または第2の工程に亘って継続して行ってもよい。また、前述のように、第1の工程前に実施または開始することが好ましい。
【0044】
不活性ガスを基材に流す方法としては、基材面の一方の側から他方の側にガスが流通可能な状態にする。その具体的な方法としては、基材を、通気性の部材で構成した載置台等の上に載置して、載置台の下方から上方(あるいは上方から下方)にガスが流れるように、不活性ガスを流す方法が挙げられる。通気性の部材としては、金属製(例えばステンレス)または繊維製の網、通気性の良好な織布または不織布、多数の通気孔を有する板(金属板、樹脂板等)などを用いることができる。
また、その他の方法として、基材の数箇所を支持して(基材の数箇所を挟持するか、または下方から基材を支持する等によって)、基材面の一方の側から他方にガスが流れるようにしてもよい。
さらに、例えば繊維質基材をロール状に形成し、その基材をローラ等で把持して延伸させ、連続的にプレポリマーAの塗布と重合処理等を行って吸水性複合体を製造する場合においては、重合処理が実施されるまでに基材が通過する何処かの位置(例えば基材を挟持または支持するローラ間のいずれかの位置等)で、不活性ガス流を基材に吹き付けるように流す方法が挙げられる。
【0045】
不活性ガスを流す方向については、基材の周囲から基材面に対してガス流が当たるようにすればよいが、基材内部の空気をより効率的に置換するために、基材の表裏面の一方から他方の側に向けて(一方向に)流すとよい。また、プレポリマーAの塗布後に基材にガスを流す場合、基材表面に塗布されたプレポリマーAが基材内部に拡散することを防止するため、基材の裏面側から表面側に向かって不活性ガスを流すとより好ましい。さらに、不活性ガスを基材面に対して略垂直方向に流せば、より速やかに基材内部の空気の置換を行うことができ好ましい。
【0046】
基材に向けて流すガス、およびステップ5において使用する不活性ガスとしては、ステップS2と同様であって、窒素、二酸化炭素、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等公知の不活性ガスを用いることができ、好ましくは窒素である。
【0047】
不活性ガスの流速(または流量)については、基材の厚さ(目付け量)、素材等によって基材内の気体の通過速度が異なるため、適宜設定する。ガス流量の一例としては、目付け(秤量)25g/m2のポリプロピレン不織布の場合、基材1m2当たり流量0.0001〜10m3程度で行う。
流量0.0001 m3以下であると、基材内のガスの交換に時間がかかり、流量10m3程度であれば、十分効果的にガス交換を行うことができるからである。
このように基材に向けて不活性ガスを流すことにより、基材内部の空気を不活性ガスで速やかに、且つ確実に置換することができ、より酸素の少ない環境を形成してプレポリマーAの重合を好適に行うことができる。
【0048】
ステップS5において基材上でプレポリマーAを重合・硬化させることにより、基材の表面上に吸水性樹脂が固着された吸水性複合体が形成される。吸水性複合体の形成後、必要に応じて乾燥を行う。
【0049】
以上の吸水性複合体の製造方法によれば、基材上に塗布したプレポリマーAを紫外線照射により重合・架橋させるので、重合を速やかに行うことができる。
また、プレポリマーAの重合の工程において、基材に向けて不活性ガス流を流すことにより、基材内部のガス交換を確実且つ速やかに行うことができる。
従って、酸素のより少ない環境を速やかに形成できるので、プレポリマーAの重合反応をより好適に行うことができる。また、それによって重合工程を速やかに実施できるので、プレポリマーAが基材内部に含浸することを防止できる。従って、プレポリマーAに、より好適に紫外線を照射できるので好適に重合させることができ、また吸水性樹脂が基材表面に固着された吸水性樹脂を形成できるので、表面積が大きく、且つ残存モノマーの少ない吸水性樹脂を形成することができ、吸水性能のよい吸水性複合体を製造できる。
さらに、プレポリマーAが基材に含浸して樹脂を形成することも防止できるので、基材の柔軟性を損うことも低減できる。
【0050】
加えて、プレポリマーAが不連続に基材状に塗布されるので、形成される吸水性樹脂の表面積が大きくなり、吸水性能が向上する。また、基材上を樹脂が覆って柔軟性を損ったり、製造される吸水性樹脂が吸水膨潤した際に吸水性複合体の感触に違和感を生じたりすることも低減される。従って、吸水性能がよく感触等の使用感のよい吸水性複合体を製造できる。
【0051】
〔第2の実施の形態〕
第2の実施の形態では、上記第1の実施の形態におけるプレポリマーAの変わりに、アクリル酸および/またはアクリル酸塩(以下、アクリル酸系単量体という)を主体とする水溶性単量体と、親水性増粘剤と、を混合して調整されるプレポリマー(プレポリマーBとする)を用いて吸水性複合体を製造する方法について説明する。
【0052】
プレポリマーBは、アクリル酸および/またはその塩を主成分とする水溶性単量体(第1の実施の形態で示したアクリル酸系単量体を主体とする水溶性単量体)に対し、親水性増粘剤を、0.01〜15重量%(より好ましくは0.1〜15重量%)添加して調整する。添加量が15%以上となると、重合後に得られる樹脂はゲル強度が弱く、また吸水後のゲルがべたつき感などの不快感を与えることとなるからである。また、添加量が0.01%より少ないと、単量体水溶液全体の粘度が低くなるため、塗布した単量体水溶液は重合前に基材内部に含浸してしまう。すると、単量体の重合が十分に行われず、製造された吸水性複合体に残存する単量体の量が多くなり、また基材の柔軟性は損われる上、使用の際、水分は基材表面の吸水性樹脂には吸収されるが、基材内部に含浸した樹脂には極めて吸収され難いため、吸収力が乏しくなるからである。
【0053】
本発明に使用される親水性増粘剤としては、前記アクリル系単量体水溶液に溶解もしくは膨潤して、アクリル系単量体水溶液に粘度を与えるものであれば、無機系、有機系の制限なく使用できる。これら親水性増粘剤の具体例としては、ベントナイト、バーミキュライト、水酸化アルミニウム、ケイ酸アルミニウムマグネシウム、粉末シリカ、等に代表される無機物質、ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、エチルセルロース、等に代表されるセルロース誘導体、キサンタンガム、ジェランガム、グアガム、アルギン酸ナトリウム、カラギーナン、ペクチン、等、およびそれらの誘導体に代表される天然高分子化合物、ポリアクリルアミド、ポリエチレンオキサイド、ポリビニルアルコール、ヒドロキシアルキルアクリレート重合体、アルコキシアルキルアクリレート重合体、等、非イオン性合成高分子化合物、アクリル酸、メタクリル酸、2-アクリルアミド-2-メチルプロパンスルホン酸、およびそれらのアルカリ金属塩、およびアンモニウム塩等を重合して得られるアニオン性合成高分子化合物が挙げられる。
【0054】
プレポリマーBの好ましい粘度は、繊維状基材に塗布された場合に、基材に含浸する程度が大きくなく、且つ取り扱いが容易である点を鑑み、500〜100,000mPa・S(B型粘度計、25℃で測定)とし、より好ましくは1,500〜30,000mPa・Sである。
【0055】
この第2の実施の形態において、吸水性複合体の製造に用いる光重合開始剤、架橋剤、シート状基材、および必用に応じて加えられる発泡剤、過酸化物、過流酸塩化合物等は、上記第1の実施の形態と同様である。
【0056】
また第2の実施の形態による吸水性複合体の製造方法は、水溶性単量体と、親水性増粘剤との混合水溶液であるプレポリマーBを調整した後は、上記第1の実施の形態における、ステップS3以後と同様である。即ち、プレポリマーBに架橋剤、および光重合開始剤を上記実施の形態に記載と同様の量で添加し、また所望により発泡剤を添加する。その後、プレポリマーBを基材上に塗工する(第1の工程)。塗工方法、また塗工パターンについても、第1の実施の形態と同様である。
【0057】
その後、第1の実施の形態におけるステップS5と同様にして、不活性ガス雰囲気下で基材上のプレポリマーBに紫外線を照射して(第2の工程)、プレポリマーBを重合・架橋させることにより、硬化させる。その結果、基材に吸水性樹脂が固着された吸水性複合体が形成される。吸水性複合体形成後、必要に応じて乾燥を施す。
またこの第2の実施の形態においても、第1の実施の形態と同様にして、第2の工程前或いは第2の工程時に、基材に対して不活性ガス流を流す。それによって、基材内部に含まれる空気が不活性ガスで速やかに、且つ確実に置換される。
【0058】
第2の実施の形態によれば、第1の実施の形態と同様に、残存モノマーが少なく、基材の柔軟性も損われず、また吸水性能のよい吸水性複合体を製造できる。
【0059】
〔第3の実施の形態〕
第3の実施の形態では、前記プレポリマーA,Bの変わりに、第1の実施の形態におけるステップS1の工程で製造される水溶性単量体水溶液と、光重合開始剤と、架橋剤と、所望により発泡材等とを添加した単量体水溶液を用いて吸水性複合体を製造する方法を説明する。
この単量体水溶液を、基材上に噴霧あるいは塗布により施し(第1の工程)、上記第1と第2の実施の形態と同様に、不活性ガス雰囲気下で基材に紫外線を照射し(第2の工程)、基材に施された単量体の重合を行って、吸水性複合体を製造する。
【0060】
この第3の実施の形態においても、第1及び第2の実施の形態と同様に、吸水性複合体の製造時における第2の工程前或いは第2の工程時に、不活性ガスを基材に向けて流す。それによって、基材内部のガス交換を速やかに、且つ確実に行うことができるので、単量体の重合反応を速やかに、好適に実施できる。
【0061】
尚、第3の実施の形態で用いる単量体水溶液を基材上に施す方法としては、この水溶液は低粘度ではあるが水よりも粘度を有しているため、第1の実施の形態と同様に、スクリーン印刷、グラビア印刷等の公知の印刷方法や、スプレーを用いて噴霧する方法、ノズルを介して滴下する方法、キス塗布、等の方法を用いることができる。
また、基材上に単量体水溶液を塗工するパターンも、第1の実施の形態と同様の形状・大きさで施すと、基材上の樹脂の固着面積や吸水性等の点において、第1の実施の形態と同様の効果を奏することができる。
【0062】
第3の実施の形態の吸水性複合体の製造方法によれば、残存モノマーが少なく、基材の柔軟性も損われず、また吸水性能のよい吸水性複合体を製造できる。
【0063】
尚、上記第1〜第3の実施の形態で製造される吸水性複合体は、使い捨て紙おむつや生理用品の吸収体として利用できるほか、土壌の保水剤等の農園芸用品や、食品(例えば魚・肉類等)の保鮮シート、結露防止剤、乾燥剤、調湿剤等の用途に利用することができる。
【0064】
【実施例】
以下に、実施例および具体例を挙げることにより、本発明をさらに具体的に説明する。
<実施例1>
実施の形態で説明した製造方法に従って、吸水性複合体を形成した。
ガラス製ビーカーに、36%アクリル酸ナトリウム水溶液347.6g、アクリル酸41.1g、2-メトキシエチルアクリレート8.8g、水102.5gからなる単量体水溶液を入れ、25℃に調整した。
次いで、光重合開始剤として、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン 0.005重量%(対単量体成分)を添加した後、ガラスビーカー側面から6Wブラックライトを用いて、5分間紫外線を照射した。そして反応液の入ったビーカーを氷浴中で冷却し、液状物を得た。得られた液状物は、増粘成分としてポリマー成分を1.4重量%、モノマー成分を33.6重量%含有し、粘度11,000mPa・s(B型粘度、25℃)の、均質な溶液であった。この溶液を、プレポリマー1とする。
【0065】
プレポリマー1に、架橋性単量体としてエチレングリコールジグリシジルエーテルと、ジエチレングリコールジアクリレートを、それぞれプレポリマー1中の単量体と重合体の合計量に対して0.05重量%添加した。さらに、光重合開始剤である2,2-ジメトキシ-1,2-ジフェニルエタン-1-オンを、プレポリマー1に0.01重量%添加して得た混合液を、ポリプロピレン不織布(秤量25g/m2)上に、直径(図2のa)0.6mmの円形で、間隔(図2のb)0.6mmの不連続なパターン(この塗工パターンを、パターンAとする)で塗布し、塗工物を得た。
この塗工物をステンレス製の金網上に、プレポリマー1が塗布された面を上側にして載置した。そして、金網の下方から上方に向かって基材1m2当たり約○m3の流量で流れる窒素ガス流を形成した状態で、400w高圧水銀灯を用いて紫外線を3分間照射した。その後、120℃で10分間乾燥を行って、吸水性複合体を得た。
【0066】
得られた吸水性複合体について、吸水量および残存モノマー量の測定を行った。
▲1▼吸水量の測定方法
5×5cmに切り取った吸水性複合体を、200meshナイロン製袋に封入し、生理食塩水に3時間浸漬後、5分間水切りした。水切り後、ナイロン製袋ごと重量を測定し、得られた測定値から袋の重量を引き、吸水性複合体のサンプル重量で割ることにより、単位重量当たりの吸水量(g/g)を算出した。
▲2▼残存モノマーの測定方法
5×5cmに切り取った吸水性複合体を更に細かく細断して、200mlの生理食塩水に入れて攪拌し、分散させた。3時間攪拌後、当該分散液をメンブランフィルターで濾過し、濾液中の残存モノマーをHPLC(:高速液体クロマトグラフィー)で測定した。
【0067】
測定の結果、本実施例1で得られた吸水性複合体の性能は、吸水量は42(g/g)、残存モノマーは160ppmであった。
【0068】
<実施例2>
実施例2では、前記実施例1におけるプレポリマー1を、ポリプロピレン不織布上に直径a2.0mm、間隔b2.0mmのパターン(この塗工パターンを、パターンBとする)で塗布し、他は実施例1と同一条件で吸水性複合体を製造した。
この吸水性複合体の性能を実施例1と同様の方法で測定したところ、吸水量は41(g/g)、残存モノマー90ppmであった。
【0069】
<実施例3>
実施例3では、前記実施例1におけるプレポリマー1を、ポリプロピレン不織布上に直径a2.0mm、間隔b1.5mmのパターン(この塗工パターンを、パターンCとする)で塗布し、他は実施例1と同一条件で吸水性複合体を製造した。
この吸水性複合体の性能を実施例1と同様の方法で測定したところ、吸水量は38(g/g)、残存モノマー110ppmであった。
【0070】
<実施例4>
実施例4では、前記実施例1において用いた2,2-ジメトキシ-1,2-ジフェニルエタン-1-オンの変わりに、2,2'-アゾビス(2-アミジノプロパン)ハイドロクロリドを重合開始材としてプレポリマー1に添加し、他は実施例1と同一条件で吸水性複合体を製造した。
この吸水性複合体の性能を実施例1と同様の方法で測定したところ、吸水量は42(g/g)、残存モノマー100ppmであった。
【0071】
<実施例5>
本実施例では、アクリル酸の70モル%が水酸化ナトリウムいよって中和された、濃度40重量%のアクリル酸部分ナトリウム塩水溶液を調製した。この水溶液に、架橋材としてジエチレングリコールジアクリレートを単量体成分に対して0.05重量%添加し、さらに光重合開始剤として2,2-ジメトキシ-1,2-ジフェニルエタン-1-オンを0.01重量%添加した。得られた混合液を、ポリプロピレン不織布(秤量25g/m2)上に、スプレーノズルで噴霧塗工した。
この塗工物を、実施例1と同様の方法で、金網に載置して、窒素雰囲気下、紫外線を照射し、その後乾燥を行って吸水性複合体を得た。
得られた吸水性複合体の性能を実施例1と同様の方法で測定したところ、吸水量は42(g/g)、残存モノマー200ppmであった。
【0072】
<比較例1>
比較例1では、実施例1においてプレポリマー1の重合の際に用いた金網の変わりにステンレス板を使用し、基材に向けて不活性ガス流が流れない状態とし、を他は実施例1と同一条件で吸収請求項複合体を製造した。
得られた吸水性複合体の性能を実施例1と同様の方法で測定したところ、吸水量は29(g/g)、残存モノマー1500ppmであった。
【0073】
<比較例2>
比較例2では、実施例4においてプレポリマー1の重合の際に用いた金網の変わりにステンレス板を使用し、基材に向けて不活性ガス流が流れない状態とし、他は実施例4と同一条件で吸収請求項複合体を製造した。
得られた吸水性複合体の性能を実施例1と同様の方法で測定したところ、吸水量は28(g/g)、残存モノマー1200ppmであった。
【0074】
<比較例3>
比較例3では、実施例5において不織布に塗布した混合液を重合させる際に、金網の変わりにステンレス板を使用し、基材に向けて不活性ガス流が流れない状態とし、他は実施例5と同一条件で吸収請求項複合体を製造した。
得られた吸水性複合体の性能を実施例1と同様の方法で測定したところ、吸水量は30(g/g)、残存モノマー6500ppmであった。
【0075】
以上の実施例1〜5および比較例1〜3の結果を、以下の表1で示す。
【表1】
【0076】
実施例1〜4では、吸水量が良好で、残存モノマーも少ない吸水性複合体が得られている。実施例5では、やや残存モノマーが多くなっている。これは製造過程においてプレポリマーを調製せず、粘度の小さい単量体混合液を基材に塗工したため、単量体が基材に含浸したことが考えられる。
ここで、吸水性複合体においては、吸水性樹脂に含まれる残存モノマーの基準値が1,000ppm以下であり、良好な吸収特性を発揮するためには実質的に200ppm以下が好ましいと考えられている。これを鑑みると、実施例1〜5による吸水性複合体の製造方法では、いずれも吸水量・残存モノマー量が良好な値となっており、吸水性能のよい吸水性複合体が好適に製造されている。
【0077】
実施例1と比較例1とを比較すると、比較例1では吸水量が小さくなり、残存モノマー量も大幅に増加して基準値の1,000ppmを上回っている。
従って、プレポリマー1の重合の際、不活性ガスを基材の裏面側から表面側に流すことにより、重合が好適に行われ、残存モノマーが少なく吸収性能のよい吸水性複合体が得られることがわかる。
これは、実施例4と比較例2との比較においても同様である。
【0078】
さらに実施例5では、上記のように良好な吸水性複合体が得られるのに対し、基材に不活性ガスを流さずに重合を行った比較例3では吸水性能も低くなり、残存モノマー量も非常に多くなっている。これは、実施例5において、基材内部の空気が不活性ガスで速やかに且つ確実に置換されたこと、また、基材の下方から上方にガスが流れて単量体混合物の基材への含浸がより抑制されたことにより、基材表面において好適に単量体の重合が行われたと考えられる。
従って、粘度の小さい単量体混合液を基材に塗布して吸水性複合体を製造する場合でも、単量体の重合過程において基材に不活性ガスを流うことにより、吸水性よく残存モノマーの少ない吸水性複合体を製造できることが分かる。
【0079】
【発明の効果】
本発明の吸水性複合体の製造方法によれば、アクリル酸及び/またはその塩を主成分とする水溶性単量体と、光重合開始剤、架橋剤を含む組成物をシート状基材に塗工した後、シート状基材の裏面側から表面側に向けて不活性ガスを流すことにより、基材内部のガス交換を確実且つ速やかに行うことができる。また、シート状基材表面に塗布された組成物が、シート状基材内部に拡散するのを防止することができる。
従って、酸素のより少ない環境を速やかに形成することにより、水溶性単量体の重合反応をより好適に行うことができる。また、速やかにガス交換ができるので、重合工程をより速やかに行うことができ、水溶性単量体が基材内部に含浸することを防止できる。その結果、水溶性単量体に、より好適に紫外線を照射して重合させることができ、基材表面において表面積が大きく、残存モノマーの少ない吸水性樹脂を形成できるので、吸水性能のよい吸水性複合体を製造できる。
【0080】
加えて、水溶性単量体が不連続に基材上に塗工されるので、形成される吸水性樹脂の表面積が大きくなる。また、基材上を樹脂が覆って柔軟性を損ったり、製造される吸水性樹脂が吸水膨潤した際に吸水性複合体の感触に違和感を生じたりすることも低減される。従って、吸水性能がよく感触等の使用感のよい吸水性複合体を製造できる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態による吸水性複合体の製造方法を示すフローチャートである。
【図2】プレポリマーAを基材表面に不連続に塗布する塗工パターンの一例を示す図である。
【符号の説明】
1 点状部(組成物)
2 基材(シート状基材)
a 直径
b 間隔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a water-absorbing composite in which a water-absorbing resin is fixed to a sheet-like base material, which is used in the production of water-absorbing articles typified by paper diapers and sanitary napkins.
[0002]
[Prior art]
Absorbent resin (or super absorbent polymer, SAP: Super Absorbent Polymer), which absorbs water several tens to several hundred times its own weight, has been developed as a moisture-absorbing material. Sanitary products and disposable diapers (disposable disposable diapers ) And other sanitary materials, agricultural and horticultural fields, food fields such as freshness preservation, and industrial fields such as anti-condensation agents. Such a water-absorbing material is widely used as a water-absorbing composite produced by adhering an absorbent resin to a sheet-like base material.
[0003]
Such a water-absorbent composite is obtained by uniformly dispersing and fixing an absorbent resin powder made of crosslinked polyacrylic acid or the like on a base sheet such as paper, pulp, porous film or nonwoven fabric. It is generally manufactured. Examples of the method for fixing the absorbent resin to the base sheet include a method in which the absorbent resin is sandwiched with tissue, cotton, etc., a method in which the pulp and the absorbent resin powder are mixed and then a pressure-bonding process such as embossing is performed. It has been adopted.
[0004]
However, in these production methods, it is necessary to uniformly disperse the resin powder on the base material, but it is difficult to stably fix the resin powder on the base material, and a part of the powder is aggregated locally after dispersion. In many cases, the powder easily leaks from the base material, and the swollen gel after water absorption flows to deteriorate the feeling of use. In order to prevent such movement of the resin, it was considered that the absorbent resin was adhered to the base material with an adhesive or the like, but in this case, the resin was absorbed and swollen by the adhesive, and the water absorption performance could not be exhibited. End up. Furthermore, since the resin is used as a powder, handling during production is complicated, and a process for efficiently performing uniform dispersion on the base material is expensive.
[0005]
Therefore, as a method for producing a water-absorbent composite that has improved such problems, for example, an aqueous solution of a monomer mixture containing acrylic acid and acrylate, a thermal decomposition radical polymerization initiator, and the like is applied onto a base sheet. A method for producing a water-absorbing composite material in which an absorbent polymer is fixed to a substrate sheet by coating and polymerizing monomers by heat treatment or irradiation with electromagnetic radiation in an inert gas atmosphere is known. (For example, refer to Patent Document 1).
[0006]
[Patent Document 1]
JP 62-22810 A (page 3-5)
[0007]
[Problems to be solved by the invention]
However, in the production method of Patent Document 1, it takes time for the polymerization reaction of the monomer such as acrylate, so that the monomer diffuses inside the base sheet until the water absorbent resin is formed. Resulting in. In that case, polymerization is not sufficiently performed, and the formed absorbent resin has a large amount of residual monomer (residual monomer amount), and in the produced water-absorbing composite, moisture or the like is absorbed on the surface of the substrate. Since it was absorbed only by resin, there was a problem that water absorption performance was inferior.
[0008]
The subject of this invention is providing the manufacturing method of the water absorptive composite_body | complex which has few residual monomers and is excellent in water absorption performance.
[0009]
[Means for Solving the Problems]
Means according to the present invention for solving the above problems are as follows:
A composition comprising a water-soluble monomer mainly composed of acrylic acid and / or a salt thereof, a photopolymerization initiator, and a crosslinking agent, Breathable A first step of coating on the surface of the sheet-like substrate;
A second step of polymerizing the water-soluble monomer by irradiating the sheet-like substrate with ultraviolet rays under an inert gas atmosphere;
In a method for producing a water-absorbent composite having
After the first step And the sheet-like base material From the back side to the front side It is characterized by flowing an inert gas stream toward
[0010]
According to the present invention, After the first step, Sheet substrate From the back side to the front side The air inside the sheet-like substrate is quickly and surely replaced with the inert gas by flowing the inert gas flow toward. Moreover, it can prevent that the composition apply | coated to the sheet-like base material surface diffuses inside the sheet-like base material. Therefore, it is possible to carry out the polymerization reaction suitably and promptly, and it is possible to produce a water-absorbing composite having a small amount of residual monomer and good absorption performance.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[First Embodiment]
In the present embodiment, the water-absorbing composite mainly includes a water-soluble monomer mainly composed of acrylic acid and / or acrylate (hereinafter referred to as acrylic acid monomer), a photopolymerization initiator, Using a crosslinking agent and a sheet-like base material (hereinafter referred to as a base material), it is manufactured through the manufacturing steps shown in the flowchart of FIG.
[0012]
That is, a mixed aqueous solution of a water-soluble monomer and a photopolymerization initiator is prepared (step S1), and the aqueous solution is irradiated with ultraviolet rays, thereby prepolymer A obtained by polymerizing a part of the water-soluble monomer. It is produced (step S2). A crosslinking agent and a photopolymerization initiator are added to the prepolymer A prepared in step S2 (step S3). And the prepolymer A which added the additive in step S3 is coated on a base material (1st process, step S4). Further, the base material coated with the prepolymer A is irradiated with ultraviolet rays in an inert gas atmosphere (second step, step S5), and the prepolymer A is polymerized and crosslinked to be cured. As a result, a water-absorbing resin fixed on the substrate is formed, and a water-absorbing composite composed of the substrate and the water-absorbing resin is produced.
In the manufacturing process of the water-absorbent composite, at any time before the second step or until the second step, an inert gas flow is flowed (blowed) toward the base material, and the inside of the base material is The contained air is replaced with an inert gas. If this inert gas flow is conducted before the first step (before applying the prepolymer A to the base material) in the manufacturing process, the gas permeability to the base material is good. Although it is most preferable because the possibility that the air to be substituted affects the prepolymer A is extremely small, it may be performed at any time as long as it is performed by the time of the second step. In addition, after the time when the inert gas is allowed to flow through the substrate, the substrate is placed in an inert gas atmosphere until the polymerization in step S5 by ultraviolet irradiation is completed.
[0013]
Each substance used for manufacturing the water-absorbing composite in the present embodiment will be described.
[0014]
The acrylic acid monomer used as the water-soluble monomer is a substance that gives a water-absorbing resin by polymerization in the presence of a crosslinkable monomer. Acrylic acid monomers include acrylic acid and acrylates obtained by partially neutralizing 20 to 90 mol% of acrylic acid with a base (for example, alkali metal salts such as sodium and potassium salts, ammonium salts). Etc.) is preferable because a polymer having excellent water absorption performance can be obtained.
[0015]
Monomers that can be used in combination with acrylic monomers (hereinafter referred to as other monomers) include anionic monomers such as 2- (meth) acrylamido-2-methylpropanesulfonic acid and salts thereof; ) Acrylamide, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-methoxypropyl (meth) acrylate, 4- Nonionic hydrophilic group-containing monomers such as methoxybutyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, and polyethylene glycol (meth) acrylate; N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylacrylamide , N, N-dimethylaminopropyl (meth) acrylic Bromide, diaryl dimethyl ammonium chloride and the like amino group-containing unsaturated monomers and quaternary compounds thereof and the like.
[0016]
Among the above other monomers, preferred monomers are 2- (meth) acrylamide-2-methylpropanesulfonic acid (salt), (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, 2-hydroxy Propyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-methoxypropyl (meth) acrylate, 4-methoxybutyl (meth) acrylate, polyethylene glycol (meth) acrylate and methoxy It is a monomer selected from the group consisting of polyethylene glycol (meth) acrylate.
[0017]
The polymer and monomer aqueous solution are easily separated from the acrylic monomer alone, whereas when other monomers are used, the resulting polymer and monomer aqueous solution Compatibility is improved and phase separation hardly occurs. Therefore, it is preferable to use an acrylic acid monomer in combination with another monomer.
A preferred use ratio of the other monomer is 1 to 30% by weight (w / w%) based on the total amount of the other monomer and the acrylic acid monomer. This is because the water-absorbing resin formed from the prepolymer A when the proportion of other monomers used exceeds 30% by weight in the total monomers is likely to have insufficient water absorption performance.
The use ratio of the water-soluble monomer and the aqueous medium in which it is dissolved is preferably 20 to 60% by weight as the concentration of the water-soluble monomer. This is because when the water-soluble monomer concentration is 20% by weight or less and processed into a water-absorbing resin, a great deal of labor is required to remove moisture. Further, when the water-soluble monomer concentration is 60% by weight or more, the monomer in the aqueous monomer solution is precipitated, and the entire system tends to become a slurry, which makes handling difficult.
[0018]
In the present embodiment, known photopolymerization initiators such as azo-based and benzoyl-based can be used. The preferable use amount of the photopolymerization initiator is 0.001 to 0.1 parts by mass per 100 parts by mass of the total of the monomer and the polymer. When the amount of the photopolymerization initiator is less than 0.001 part by mass, it takes a long time to obtain the prepolymer A. On the other hand, when the amount of the photopolymerization initiator exceeds 0.1 part by weight, the prepolymer is used in the polymerization process. It becomes difficult to control the polymer content in A.
[0019]
Specific examples of the radical photopolymerization initiator having a benzoyl group include benzoin, benzyl, acetophenone, benzophenone, and derivatives thereof.
Examples of the derivatives include benzoin-based compounds such as benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, and acetophenone-based compounds such as diethoxyacetophenone, 2,2-dimethoxy-1,2-diphenyl. Ethan-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-methyl-1- (4- (methylthio) phenyl) -2-montforinopropane-1,2-benzyl-2-dimethylamino-1 -(4-morpholinophenyl) butanone-1,2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1- (4- (2-hydroxyethoxy) -phenyl) -2-hydroxydi-2 -Methyl-1-propan-1-one and the like.
[0020]
Also, benzophenone-based compounds include methyl O-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4'-methyldiphenyl sulfide, 3,3 ', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 2,4,6-trimethylbenzophenone, 4-benzoyl-N, N-dimethyl-N- [2- (1-oxy-2-propenyloxy) ethyl] benzenemethanam bromide, (4-benzoylbenzyl) trimethylammonium Examples include chloride, 4,4′-dimethylaminobenzophenone, 4,4′-diethylaminobenzophenone, and the like.
[0021]
Specific examples of the azo photopolymerization initiator include 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 2,2′-azobis (2-methylpropionamide) dihydrate, 2,2'-azobis {2-methyl-N- [1,1-bis (hydroxymethyl) ethyl] propionamide}, 2,2'-azobis {2-methyl-N- [1,1-bis (hydroxy Methyl) -2-hydroxyethyl] propionamide], 2,2'-azobis (2-amidinopropane) hydrochloride, 2,2'-azobis (2-methylbutyronitrile), and 2,2'-azobis [ 2- (2-imidazolin-2-yl) propane] is preferred.
[0022]
In the photopolymerization, a chain transfer agent such as sodium hypophosphite, mercaptoethanol, isopropanol or the like may be added to the aqueous monomer solution. The amount of chain transfer material used is preferably 0.0001 to 0.5% by weight, more preferably 0.0001 to 0.1% by weight, based on the total monomer. If the chain transfer material is used in an amount exceeding 0.5% by weight based on the total amount of monomers, the degree of polymerization of the polymer as the prepolymer component will be low, such being undesirable.
In the present embodiment, when the prepolymer is further polymerized and cured, a peroxide that generates radicals by heat or a persulfate compound may be added as desired. Examples of peroxides include benzoyl peroxide, lauroyl peroxide, cumene hydroperoxide, t-butyl hydroperoxide and dicumyl peroxide. Examples of persulfate compounds include ammonium persulfate, potassium persulfate, and sodium persulfate.
[0023]
Moreover, as a crosslinking agent added to the prepolymer A, radical polymerization is carried out in one molecule such as methylene bisacrylamide, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, trimethylolpropane, triallyl cyanurate. A plurality of reactive functional groups in one molecule such as a crosslinkable monomer having a plurality of functional groups (hereinafter referred to as radical polymerization type crosslinkable monomer), ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, etc. One crosslinkable monomer (hereinafter referred to as a functional group type crosslinkable monomer).
In the present invention, it is preferable to use a radical polymerization type crosslinkable monomer and a functional group type crosslinkable monomer in combination. A preferred use amount of the crosslinkable monomer is 0.001 to 1.0% by weight based on the total monomers. If the crosslinkable monomer is used in an amount exceeding 1.0% by weight based on the total monomer, the gel strength is increased, but it is not preferable because it becomes a water-absorbing resin with poor water absorption.
[0024]
The substrate (sheet-like substrate) used in the present invention may be either a sheet-like fibrous substrate or a sheet-like porous substrate. In the present invention, in step S5, when the water-soluble monomer applied to the substrate by ultraviolet irradiation is polymerized and cured, an inert gas is circulated through the substrate as described later. A substrate is used.
[0025]
When using a fibrous base material, as a raw material, fiber compositions, such as paper, a nonwoven fabric, and a woven fabric, can be used, and any of a natural fiber and a synthetic fiber may be used.
Examples of natural fibers include cotton, cellulose (wood pulp), wool, silk and the like. Synthetic fibers include polypropylene (PP), polyethylene (PE), nylon, polyester (PET, etc.), acrylic, and bicomponent fibers such as PE / PP, PE / PET, and the like.
However, in the case of a highly hydrophilic base material, when the water-soluble monomer or prepolymer is applied, bleeding and soaking are large, and the water-soluble monomer or prepolymer penetrates too much into the base material. It is preferable to use a substrate having high hydrophobicity or high water repellency. Accordingly, among the above, polypropylene (PP), polyester (PET, etc.), polyethylene (PE), PE / PP, and PE / PET are preferable. Further, PP cellulose-based mixed fibers, non-woven fabric obtained by subjecting PP or the like to partial hydrophilization treatment, or the like may be used.
[0026]
Suitable substrate weight (weighing) is 8-80 g / m 2 (Gsm), especially 10-50 g / m 2 Are preferred. 8 g / m 2 Less than 80g / m 2 The above is not preferable because the thickness of the water-absorbing composite is increased and the content ratio of SAP (high water-absorbing resin) decreases.
The fiber diameter of the nonwoven fabric is preferably 1 to 6 dtx (decitex). This is because when 6dtx or more, the fibrous base material becomes too sparse, and a sufficient amount of SAP cannot be fixed. In addition, if it is 1 dtx or less, the diffusion of the liquid in the water-absorbent composite becomes insufficient.
In addition to the above, a sponge, a porous film or the like may be used as a base material.
[0027]
For the purpose of obtaining a water-absorbent composite having a high absorption rate by making the produced water-absorbent resin into a porous structure, the prepolymer A may be blended with a foaming agent and then polymerized and cured. As the foaming agent, it is possible to arbitrarily select and use conventionally known inorganic and organic foaming agents.
Among them, inorganic carbonates are preferable, and examples thereof include sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, ammonium carbonate, ammonium hydrogen carbonate, magnesium carbonate, calcium carbonate, barium carbonate, and water thereof. A Japanese thing etc. are mentioned and those 1 type or 2 types or more are used. Particularly preferred carbonates in the present embodiment are monovalent cations such as sodium, potassium, ammonium carbonate or bicarbonate.
[0028]
The amount of carbonate-based blowing agent added to the prepolymer A solution is preferably 0.01 to 10.0% by weight, more preferably 0.1 to 5.0% by weight, based on the prepolymer A solid content. When the amount of the carbonate foaming agent added is less than 0.01% by weight, the resulting water-absorbent resin cannot be made into a porous structure, so that a water-absorbent composite having a high absorption rate cannot be obtained. Further, even if a foaming agent is added in an amount of 10% by weight or more, it is difficult to make the porous material further porous, and a non-foamed carbonate foaming agent is present in the water absorbent composite, so that the water absorbent resin and the substrate It will affect the adhesion.
[0029]
An azo compound is effective as an organic foaming agent. The azo compound is suitable as a foaming agent because it can polymerize and cure the prepolymer A at a low temperature and decomposes during polymerization and curing to generate nitrogen gas. As such an azo compound, an azonitrile compound, an azoamidine compound, an azoamide compound, an alkylazo compound, and the like are preferable. Those having a 10-hour half-life temperature of 100 ° C. or less are particularly preferred. Specifically, 2,2′-azobis (2-amidinopropane) dihydrochloride, 2,2′-azobis [2- (2-imidazoline- 2-yl) propane] dihydrochloride, 2,2′-azobisisobutyramide dihydrate, and the like.
[0030]
When an azo compound is used as the organic foaming agent, it is preferably 0.001 to 1% by weight, more preferably 0.01 to 0.5% by weight, based on the solid content of the prepolymer A. When the amount added is less than 0.001% by weight, the resulting water-absorbent resin cannot be made into a porous structure, so that a water-absorbent composite having a high absorption rate cannot be obtained. In addition, even if 1% by weight or more of a foaming agent is added, it is not only difficult to make it more porous, but also the molecular weight of the water-absorbing resin obtained by polymerization decreases, so the gel strength is low and the water-absorbing gel is slimmed. Therefore, it becomes a water-absorbing composite having a poor usability.
Moreover, it is preferable to add a foaming agent before ultraviolet irradiation, and as an addition method, you may add a foaming agent as it is, or dissolve in arbitrary solvents, and may add as a foaming agent solution.
[0031]
When adding the foaming agent, an arbitrary antifoaming agent can be used in combination for the purpose of controlling the bubble diameter and the foaming time. The antifoaming agent is not particularly limited, and generally known as an antifoaming agent, an antifoaming agent, an antifoaming agent, etc. can be selected, and one or a combination of two or more types can be selected. Can also be used.
Specific components of the antifoaming agent include fats and oils, fatty acids, lower alcohols, higher alcohols, metal soaps, silicones, hydrophobic silica / silicone compounds, fatty acid esters, polyglycols, polyglycols Examples include esters, polyethers, modified silicones, oil-soluble polymers, organic phosphorus compounds, sulfated fatty acids, polyether derivatives, silica / modified silicone compounds, and the like.
[0032]
The amount of the antifoaming agent added to the prepolymer A solution is preferably 0.0001 to 0.1% by weight based on the solid content of the prepolymer A. When the addition amount of the antifoaming agent is less than 0.0001% by weight, it is impossible to sufficiently control the bubble diameter and the foaming time. Further, even if added in an amount of 0.1% by weight or more, an effect corresponding to the amount added cannot be expected, and it seems that it is not preferable in terms of cost. Therefore, a defoamer as small as possible should be used.
The antifoaming agent is preferably added to the prepolymer A aqueous solution before foaming addition. As an addition method, the antifoaming agent is added as it is, or dissolved or dispersed in an arbitrary solvent, and the antifoaming agent solution or You may add as an antifoamer dispersion liquid.
[0033]
Next, a method for producing the water-absorbing composite in the present embodiment will be described in detail.
First, a water-soluble monomer such as the above-mentioned acrylic monomer and a photopolymerization initiator are mixed with water in the above-described proportion (FIG. 1, step S1). The mixed aqueous solution is irradiated with ultraviolet rays to polymerize a part of the monomer (step S2).
[0034]
Here, as means for polymerizing the water-soluble monomer in the mixed aqueous solution, there is a method using electron beam, gamma ray, etc. in addition to ultraviolet rays. It is preferable because the polymerization conversion rate can be easily controlled and the time required for the polymerization is short.
[0035]
In step S2, the preferable illuminance of ultraviolet rays irradiated to the mixed aqueous solution is 0.1 to 10 mW / cm. 2 It is. Illuminance is 10mW / cm 2 This is because the crosslinking reaction occurs simultaneously with the polymerization reaction, and gelation tends to occur.
The irradiation light amount, that is, the irradiation energy is obtained by multiplying the above illuminance by time, but the preferable irradiation light amount is 10 to 10,000 mj / cm. 2 It is. The irradiation light intensity is 0.1-10mW / cm. 2 Can be obtained by irradiation for 1 to 120 minutes.
As the ultraviolet light source, for example, a fluorescent chemical lamp, a fluorescent blue lamp, a metal halide lamp, a high-pressure mercury lamp, or the like can be used.
[0036]
In the step S2, it is preferable to stir the mixed aqueous solution irradiated with ultraviolet rays during the reaction. This stirring method is not specifically limited, For example, a stirring blade can be used. By this stirring, the polymerization reaction can efficiently proceed. The atmosphere covering the reaction solution is an inert gas atmosphere (oxygen concentration <1%, more preferably <0.1%) because the presence of oxygen affects the polymerization reaction. Examples of the inert gas include nitrogen, argon, helium, carbon dioxide, neon, krypton, xenon, and the like, and nitrogen gas is preferred from the viewpoint of being industrially inexpensive.
[0037]
The photopolymerization in
The polymer contained in the prepolymer A is obtained by polymerizing a water-soluble monomer (the aforementioned acrylic acid monomer or other monomer), and has a weight average molecular weight of 500,000 or more. Preferably it is 1 million or more. This is because if the weight average molecular weight of the polymer is less than 500,000, the water-absorbing resin obtained by polymerizing and curing the prepolymer A is poor.
The amount of the polymer contained in the prepolymer A is 0.1 to 50% by weight, preferably 1 to 25% by weight, based on the total amount of the monomer and the polymer. When the proportion of the polymer is less than 0.1% by weight, the viscosity of the prepolymer A is too low, and the use of the prepolymer A is restricted. On the other hand, when the proportion of the polymer exceeds 50% by weight, the water absorbent resin obtained from the prepolymer A has poor water absorbability.
The preferable viscosity of the prepolymer A is 1,000 to 50,000 mPa · S (B-type viscometer, in view of the point that the substrate is not so much impregnated when applied to the fibrous substrate and is easy to handle. Measured at 25 ° C), more preferably 1,500-30,000 mPa · S.
[0038]
A cross-linking agent, a photopolymerization initiator, and, if desired, a foaming agent / antifoaming agent are added to the prepolymer A prepared in
As a method of applying (applying) the prepolymer A to the substrate, a known printing method such as screen printing or gravure printing, a method of spraying using a spray, a method of pouring through a nozzle, a kiss coating, etc. Any of these methods may be used.
[0039]
Here, the shape which coats the prepolymer A on a base material is demonstrated.
When the prepolymer A is applied on the entire surface of the substrate, the flexibility of the substrate is impaired, and the surface area of the prepolymer A is reduced, so that sufficient absorption power cannot be exhibited. Therefore, it is preferable to apply the prepolymer A in a discontinuous point form with a predetermined interval on the substrate.
[0040]
An example of the coating pattern which apply | coats the prepolymer A to a base material is shown in FIG. FIG. 2 shows a state in which the prepolymer A is applied to the
When coating is performed discontinuously in this way, it is preferable that the substantially circular diameter a is 0.1 <diameter a (mm) <5. If the diameter a of the dot-like part 1 is larger than 5 mm, not only will the water-absorbing composite feel uncomfortable or the flexibility may be reduced when the water-absorbing resin swells. This is because the surface area of the water-absorbent resin is also insufficient and the water-absorbency is poor. Further, if the diameter a is smaller than 0.1 mm, the amount of the water-absorbing resin is small and sufficient absorbing power cannot be exhibited.
[0041]
If the diameter a of the point-like part 1 is in the above range, the distance between the point-like part 1 and the point-like part 1 is b, and is the prepolymer A applied so that 0.05 <interval b (mm) <2? Or the unit area of the base material is 1m 2 4 <c (pieces / cm 2 ) It is preferable to apply the prepolymer A so that <4,000.
Spacing b is 2mm or more, or 1cm 2 This is because if the number of hitting point-like portions 1 is 4 or less, the ratio of the fixed area of the resin on the base material becomes small, and the absorptive power decreases. On the other hand, the distance b is 0.05mm or less, or 1cm 2 When the number of per-spotted portions 1 is 4,000 or more, adjacent droplets (prepolymer A) are likely to come into contact with each other in the step of applying prepolymer A to the base material. This is because not only is difficult, but also when the water absorption swells, adjacent water-containing gels come into contact with each other (too close to each other) to impede water absorption.
In addition, about a coating pattern, it is not limited to the shape of FIG. 2, You may apply | coat a prepolymer to arbitrary shapes, such as an ellipse, a triangle, and a quadrilateral. In that case, the diameter a may be a diameter of a circle substantially corresponding to the area of the dotted portion.
[0042]
Subsequently, the prepolymer A applied to the base material is irradiated with ultraviolet rays to polymerize and crosslink the prepolymer to form a water-absorbing resin (second step, step S5).
The illuminance of ultraviolet rays in this step S5 is determined in consideration of the type of monomer constituting the prepolymer, the viscosity of the prepolymer A, etc., but is preferably 1 to 10,000 mW / cm. The temperature of the prepolymer A during polymerization is preferably 5 to 95 ° C.
[0043]
As described above, the air contained in the base material coated with the prepolymer A is quickly replaced with the inert gas until the step of polymerizing the prepolymer A in step S5. Flow an inert gas toward the material.
The point of time when the inert gas is allowed to flow through the substrate is before prepolymer A coating (before the first step), after coating and before ultraviolet irradiation (between the first step and the second step), ultraviolet irradiation. Time (during the second step) and the like. Alternatively, the gas flow may be started at any one of these points, and then continuously performed over the first or second step. Moreover, as mentioned above, it is preferable to implement or start before the first step.
[0044]
As a method of flowing the inert gas through the substrate, the gas can be circulated from one side of the substrate surface to the other side. As a specific method, the base material is placed on a mounting table or the like made of a gas-permeable member so that gas flows from the lower side to the upper side (or from the upper side to the lower side). The method of flowing an active gas is mentioned. As the air permeable member, a metal (for example, stainless steel) or fiber net, a woven or nonwoven fabric with good air permeability, a plate having a large number of air holes (metal plate, resin plate, etc.), etc. can be used. .
In addition, as another method, gas is applied from one side of the substrate surface to the other by supporting several locations on the substrate (by pinching several locations on the substrate or by supporting the substrate from below). May flow.
Furthermore, for example, when a fibrous base material is formed in a roll shape, the base material is gripped with a roller or the like and stretched, and a water-absorbing composite is produced by continuously applying prepolymer A and performing a polymerization treatment, etc. In the method, an inert gas flow is blown onto the substrate at any position where the substrate passes before the polymerization process is performed (for example, any position between rollers that sandwich or support the substrate). The method of flowing in is mentioned.
[0045]
As for the direction in which the inert gas flows, the gas flow may be applied from the periphery of the base material to the base material surface, but in order to more efficiently replace the air inside the base material, It is preferable to flow from one side of the back surface to the other side (in one direction). In addition, when a gas is allowed to flow through the base material after application of the prepolymer A, in order to prevent the prepolymer A applied to the surface of the base material from diffusing into the base material, from the back side of the base material toward the front side. It is more preferable to flow an inert gas. Furthermore, it is preferable that the inert gas is allowed to flow in a direction substantially perpendicular to the substrate surface because air inside the substrate can be replaced more quickly.
[0046]
The gas flowing toward the base material and the inert gas used in
[0047]
The flow rate (or flow rate) of the inert gas is appropriately set because the gas passage speed in the base material varies depending on the thickness (weight per unit area) of the base material and the material. As an example of gas flow rate, basis weight (weighing) 25g / m 2 In the case of polypropylene nonwoven fabric, the base material is 1m 2 Per flow 0.0001-10m Three Do it to the extent.
Flow rate 0.0001 m Three If it is below, it takes time to exchange the gas in the substrate, and the flow rate is 10m. Three This is because the gas exchange can be performed sufficiently effectively if the degree is approximately.
By flowing the inert gas toward the base material in this way, the air inside the base material can be quickly and reliably replaced with the inert gas, and a pre-polymer A is formed by forming a less oxygen environment. Can be suitably performed.
[0048]
In step S5, by prepolymerizing and curing the prepolymer A on the base material, a water-absorbing composite in which the water-absorbing resin is fixed on the surface of the base material is formed. After forming the water-absorbing complex, drying is performed as necessary.
[0049]
According to the above method for producing a water-absorbing composite, the prepolymer A applied on the substrate is polymerized and crosslinked by irradiation with ultraviolet rays, so that the polymerization can be performed quickly.
Further, in the process of polymerizing the prepolymer A, gas flow inside the substrate can be surely and promptly performed by flowing an inert gas flow toward the substrate.
Accordingly, since an environment with less oxygen can be formed quickly, the polymerization reaction of the prepolymer A can be performed more suitably. Moreover, since a superposition | polymerization process can be implemented rapidly by it, it can prevent that the prepolymer A impregnates the inside of a base material. Therefore, since the prepolymer A can be irradiated more preferably with ultraviolet rays, it can be suitably polymerized, and a water-absorbing resin can be formed by fixing the water-absorbing resin to the substrate surface. It is possible to form a water-absorbing resin with a low water-absorbing performance and a good water-absorbing performance.
Furthermore, since the prepolymer A can be prevented from impregnating the base material to form a resin, it is possible to reduce the loss of flexibility of the base material.
[0050]
In addition, since the prepolymer A is applied to the base material in a discontinuous manner, the surface area of the formed water absorbent resin is increased, and the water absorption performance is improved. In addition, it is also possible to reduce the covering of the base material with the resin and impairing the flexibility, or causing the water-absorbing composite to feel uncomfortable when the manufactured water-absorbing resin swells with water. Accordingly, it is possible to produce a water-absorbing composite having good water absorption performance and good feeling of use such as touch.
[0051]
[Second Embodiment]
In the second embodiment, instead of the prepolymer A in the first embodiment, a water-soluble monomer mainly composed of acrylic acid and / or acrylate (hereinafter referred to as acrylic acid monomer). A method for producing a water-absorbing composite using a prepolymer (prepolymer B) prepared by mixing a body and a hydrophilic thickener will be described.
[0052]
Prepolymer B is a water-soluble monomer mainly composed of acrylic acid and / or a salt thereof (water-soluble monomer mainly composed of acrylic acid-based monomer shown in the first embodiment). The hydrophilic thickener is adjusted by adding 0.01 to 15% by weight (more preferably 0.1 to 15% by weight). This is because if the addition amount is 15% or more, the resin obtained after polymerization has a low gel strength, and the gel after water absorption gives an unpleasant feeling such as stickiness. On the other hand, if the addition amount is less than 0.01%, the viscosity of the whole monomer aqueous solution becomes low, so that the coated monomer aqueous solution is impregnated inside the substrate before polymerization. As a result, the polymerization of the monomer is not sufficiently performed, the amount of the monomer remaining in the produced water-absorbing composite is increased, the flexibility of the substrate is impaired, and moisture is not used in use. This is because it is absorbed by the water-absorbing resin on the surface of the material, but is hardly absorbed by the resin impregnated inside the base material, resulting in poor absorption.
[0053]
As the hydrophilic thickener used in the present invention, any inorganic or organic restriction may be used as long as it dissolves or swells in the acrylic monomer aqueous solution and gives viscosity to the acrylic monomer aqueous solution. It can be used without. Specific examples of these hydrophilic thickeners include bentonite, vermiculite, aluminum hydroxide, magnesium aluminum silicate, powdered silica, and other inorganic substances such as hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, hydroxypropyl cellulose, and hydroxypropyl. Cellulose derivatives represented by methyl cellulose, ethyl cellulose, etc., xanthan gum, gellan gum, guar gum, sodium alginate, carrageenan, pectin, etc., and natural polymer compounds represented by their derivatives, polyacrylamide, polyethylene oxide, polyvinyl alcohol, hydroxy Alkyl acrylate polymers, alkoxyalkyl acrylate polymers, nonionic synthetic polymer compounds, acrylic Acid, methacrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, and their alkali metal salts, and anionic synthetic polymer compound obtained by polymerizing the ammonium salts.
[0054]
The preferable viscosity of the prepolymer B is 500 to 100,000 mPa · S (B-type viscometer in view of the point that the base material is not so much impregnated and easy to handle when applied to a fibrous base material. , Measured at 25 ° C.), more preferably 1,500 to 30,000 mPa · S.
[0055]
In this second embodiment, a photopolymerization initiator, a crosslinking agent, a sheet-like base material, and a foaming agent, a peroxide, a persulfate compound, etc., which are added as necessary, are used for the production of the water-absorbing composite. Is the same as in the first embodiment.
[0056]
The method for producing a water-absorbent composite according to the second embodiment is the same as that in the first embodiment after the prepolymer B, which is a mixed aqueous solution of a water-soluble monomer and a hydrophilic thickener, is prepared. This is the same as after step S3. That is, a crosslinking agent and a photopolymerization initiator are added to the prepolymer B in the same amounts as described in the above embodiment, and a foaming agent is added if desired. Thereafter, the prepolymer B is applied onto the substrate (first step). The coating method and the coating pattern are also the same as in the first embodiment.
[0057]
Thereafter, in the same manner as in step S5 in the first embodiment, the prepolymer B on the substrate is irradiated with ultraviolet rays under an inert gas atmosphere (second step) to polymerize and crosslink the prepolymer B. To cure. As a result, a water-absorbing composite in which the water-absorbing resin is fixed to the substrate is formed. After forming the water-absorbing composite, it is dried as necessary.
Also in the second embodiment, similarly to the first embodiment, an inert gas flow is caused to flow through the substrate before the second step or during the second step. Thereby, the air contained in the substrate is quickly and reliably replaced with the inert gas.
[0058]
According to the second embodiment, similar to the first embodiment, a water-absorbing composite with a small amount of residual monomer, without impairing the flexibility of the base material, and having good water absorption performance can be produced.
[0059]
[Third Embodiment]
In the third embodiment, instead of the prepolymers A and B, a water-soluble monomer aqueous solution produced in the step S1 in the first embodiment, a photopolymerization initiator, a crosslinking agent, A method for producing a water-absorbing composite using an aqueous monomer solution to which a foaming material or the like is added as desired will be described.
This aqueous monomer solution is applied to the substrate by spraying or coating (first step), and the substrate is irradiated with ultraviolet rays in an inert gas atmosphere as in the first and second embodiments. (Second step), the monomer applied to the substrate is polymerized to produce a water-absorbing composite.
[0060]
Also in the third embodiment, as in the first and second embodiments, the inert gas is used as the base material before or during the second step during the production of the water-absorbent composite. Flow towards. As a result, the gas exchange inside the substrate can be performed promptly and reliably, so that the polymerization reaction of the monomer can be performed promptly and suitably.
[0061]
In addition, as a method of applying the monomer aqueous solution used in the third embodiment on the base material, this aqueous solution has a viscosity lower than that of water although it has a low viscosity. Similarly, a known printing method such as screen printing or gravure printing, a method of spraying using a spray, a method of dripping through a nozzle, or a method of kiss coating can be used.
In addition, when the pattern of applying the monomer aqueous solution on the base material is applied in the same shape and size as in the first embodiment, in terms of fixing area of the resin on the base material, water absorption, etc. The same effects as those of the first embodiment can be obtained.
[0062]
According to the method for producing a water-absorbing composite of the third embodiment, it is possible to produce a water-absorbing composite having a small amount of residual monomer, without impairing the flexibility of the base material, and having good water absorption performance.
[0063]
The water-absorbing composites produced in the first to third embodiments can be used as absorbents for disposable paper diapers and sanitary products, as well as agricultural and horticultural supplies such as soil water retaining agents, and foods (for example, fish -It can be used in applications such as meat preservation sheets, dew condensation inhibitors, desiccants, and humidity control agents.
[0064]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and specific examples.
<Example 1>
A water-absorbing composite was formed according to the production method described in the embodiment.
A glass beaker was charged with a monomer aqueous solution consisting of 347.6 g of 36% sodium acrylate aqueous solution, 41.1 g of acrylic acid, 8.8 g of 2-methoxyethyl acrylate, and 102.5 g of water, and the temperature was adjusted to 25 ° C.
Next, 1-hydroxy-cyclohexyl-phenyl-ketone (0.005% by weight (monomer component)) was added as a photopolymerization initiator, and then irradiated with ultraviolet rays for 5 minutes using a 6 W black light from the side of the glass beaker. The beaker containing the reaction solution was cooled in an ice bath to obtain a liquid material. The obtained liquid was a homogeneous solution containing 1.4% by weight of a polymer component and 33.6% by weight of a monomer component as thickening components, and having a viscosity of 11,000 mPa · s (B-type viscosity, 25 ° C.). This solution is designated as Prepolymer 1.
[0065]
To prepolymer 1, 0.05% by weight of ethylene glycol diglycidyl ether and diethylene glycol diacrylate as crosslinkable monomers were added to the total amount of the monomer and polymer in prepolymer 1, respectively. Further, a mixture obtained by adding 0.01% by weight of 2,2-dimethoxy-1,2-diphenylethane-1-one, which is a photopolymerization initiator, to the prepolymer 1 was mixed with a polypropylene nonwoven fabric (weighing 25 g /
This coated product was placed on a stainless steel wire netting with the surface coated with prepolymer 1 facing upward. And the base material 1m from the bottom to the top of the wire mesh 2 About ○ m per Three In a state where a nitrogen gas flow flowing at a flow rate of 5 mm was formed, ultraviolet rays were irradiated for 3 minutes using a 400 w high pressure mercury lamp. Thereafter, drying was performed at 120 ° C. for 10 minutes to obtain a water-absorbing composite.
[0066]
The obtained water-absorbing composite was measured for water absorption and residual monomer amount.
(1) Measuring method of water absorption
The water-absorbing composite cut to 5 × 5 cm was sealed in a 200 mesh nylon bag, immersed in physiological saline for 3 hours, and then drained for 5 minutes. After draining, the weight of each nylon bag was measured, and the weight of the bag was subtracted from the measured value, and divided by the sample weight of the water-absorbing composite to calculate the amount of water absorption (g / g) per unit weight. .
(2) Method for measuring residual monomer
The water-absorbing composite cut out to 5 × 5 cm was further finely cut and placed in 200 ml of physiological saline and stirred to disperse. After stirring for 3 hours, the dispersion was filtered through a membrane filter, and the residual monomer in the filtrate was measured by HPLC (: high performance liquid chromatography).
[0067]
As a result of the measurement, the performance of the water-absorbent composite obtained in Example 1 was a water absorption of 42 (g / g) and a residual monomer of 160 ppm.
[0068]
<Example 2>
In Example 2, the prepolymer 1 in Example 1 was applied on a polypropylene nonwoven fabric in a pattern having a diameter of a2.0 mm and a distance of b2.0 mm (this coating pattern is referred to as pattern B). A water-absorbing composite was produced under the same conditions as in 1.
When the performance of this water-absorbent composite was measured by the same method as in Example 1, the water absorption was 41 (g / g) and the residual monomer was 90 ppm.
[0069]
<Example 3>
In Example 3, the prepolymer 1 in Example 1 was applied on a polypropylene nonwoven fabric in a pattern having a diameter of a 2.0 mm and a distance of b 1.5 mm (this coating pattern is referred to as pattern C). A water-absorbing composite was produced under the same conditions as in 1.
When the performance of this water-absorbing composite was measured by the same method as in Example 1, the water absorption was 38 (g / g) and the residual monomer was 110 ppm.
[0070]
<Example 4>
In Example 4, instead of 2,2-dimethoxy-1,2-diphenylethane-1-one used in Example 1, 2,2′-azobis (2-amidinopropane) hydrochloride was used as a polymerization initiator. Was added to the prepolymer 1 and others were produced under the same conditions as in Example 1 to produce a water-absorbing composite.
When the performance of this water-absorbent composite was measured by the same method as in Example 1, the water absorption was 42 (g / g) and the residual monomer was 100 ppm.
[0071]
<Example 5>
In this example, an aqueous solution of partial sodium salt of acrylic acid having a concentration of 40% by weight, in which 70 mol% of acrylic acid was neutralized with sodium hydroxide, was prepared. To this aqueous solution, 0.05% by weight of diethylene glycol diacrylate as a crosslinking agent was added to the monomer component, and further, 0.01% by weight of 2,2-dimethoxy-1,2-diphenylethane-1-one as a photopolymerization initiator. Added. The obtained mixed liquid was made into a polypropylene nonwoven fabric (weighing 25 g / m 2 ) Above, spray coating was performed with a spray nozzle.
This coated product was placed on a wire mesh in the same manner as in Example 1, irradiated with ultraviolet rays in a nitrogen atmosphere, and then dried to obtain a water-absorbing composite.
When the performance of the obtained water-absorbent composite was measured by the same method as in Example 1, the water absorption was 42 (g / g) and the residual monomer was 200 ppm.
[0072]
<Comparative Example 1>
In Comparative Example 1, a stainless steel plate was used in place of the wire mesh used in the polymerization of the prepolymer 1 in Example 1, and the inert gas flow did not flow toward the base material. An absorption claim complex was produced under the same conditions as those described above.
When the performance of the obtained water-absorbent composite was measured by the same method as in Example 1, the water absorption was 29 (g / g) and the residual monomer was 1500 ppm.
[0073]
<Comparative example 2>
In Comparative Example 2, a stainless steel plate was used in place of the wire mesh used in the polymerization of the prepolymer 1 in Example 4 so that an inert gas flow did not flow toward the base material. Absorption claim composites were produced under the same conditions.
When the performance of the obtained water-absorbing composite was measured in the same manner as in Example 1, the water absorption was 28 (g / g) and the residual monomer was 1200 ppm.
[0074]
<Comparative Example 3>
In Comparative Example 3, when the mixed solution applied to the nonwoven fabric in Example 5 was polymerized, a stainless steel plate was used instead of the wire mesh, and the inert gas flow did not flow toward the base material. 5 was prepared under the same conditions as in No. 5.
When the performance of the obtained water-absorbing composite was measured in the same manner as in Example 1, the water absorption was 30 (g / g) and the residual monomer was 6500 ppm.
[0075]
The results of Examples 1 to 5 and Comparative Examples 1 to 3 are shown in Table 1 below.
[Table 1]
[0076]
In Examples 1 to 4, water-absorbing composites having good water absorption and a small amount of residual monomers are obtained. In Example 5, the residual monomer is slightly increased. This is presumably because the monomer was impregnated into the base material because the prepolymer was not prepared in the production process and a monomer mixture having a low viscosity was applied to the base material.
Here, in the water-absorbent composite, the reference value of the residual monomer contained in the water-absorbent resin is 1,000 ppm or less, and it is considered that 200 ppm or less is substantially preferable in order to exhibit good absorption characteristics. . In view of this, in the method for producing a water-absorbing composite according to Examples 1 to 5, the water absorption amount and the residual monomer amount are both good values, and a water-absorbing composite having good water absorption performance is suitably produced. ing.
[0077]
Comparing Example 1 and Comparative Example 1, in Comparative Example 1, the amount of water absorption was small, and the amount of residual monomer was also greatly increased, exceeding the standard value of 1,000 ppm.
Therefore, when the prepolymer 1 is polymerized, by flowing an inert gas from the back side to the front side of the base material, the polymerization is suitably performed, and a water-absorbing composite having a small amount of residual monomers and good absorption performance can be obtained. I understand.
The same applies to the comparison between Example 4 and Comparative Example 2.
[0078]
Further, in Example 5, a good water-absorbing composite was obtained as described above, whereas in Comparative Example 3 in which polymerization was performed without flowing an inert gas to the base material, the water absorption performance was lowered, and the amount of residual monomers Is also very much. This is because in Example 5, the air inside the base material was quickly and reliably replaced with the inert gas, and the gas flowed from the bottom to the top of the base material to the base material of the monomer mixture. It is considered that the monomer was suitably polymerized on the surface of the substrate due to the further suppression of the impregnation.
Therefore, even in the case where a water-absorbing composite is produced by applying a monomer mixture liquid having a low viscosity to the base material, it remains with a good water absorption by flowing an inert gas through the base material during the monomer polymerization process. It can be seen that a water-absorbing composite with less monomer can be produced.
[0079]
【The invention's effect】
According to the method for producing a water-absorbent composite of the present invention, a composition containing a water-soluble monomer mainly composed of acrylic acid and / or a salt thereof, a photopolymerization initiator, and a crosslinking agent is used as a sheet-like substrate. After coating , Tote base material From the back side to the front side By flowing an inert gas toward, gas exchange inside the substrate can be performed reliably and promptly. Moreover, it can prevent that the composition apply | coated to the sheet-like base material surface diffuses inside the sheet-like base material.
Therefore, by rapidly forming an environment with less oxygen, the polymerization reaction of the water-soluble monomer can be performed more suitably. Moreover, since gas exchange can be performed promptly, the polymerization process can be performed more quickly, and impregnation of the water-soluble monomer into the substrate can be prevented. As a result, the water-soluble monomer can be polymerized more preferably by irradiating with ultraviolet rays, and a water-absorbing resin having a large surface area and a small amount of residual monomer can be formed on the surface of the substrate. A composite can be produced.
[0080]
In addition, since the water-soluble monomer is discontinuously applied on the substrate, the surface area of the water-absorbing resin formed is increased. In addition, it is also possible to reduce the covering of the base material with the resin and impairing the flexibility, or causing the water-absorbing composite to feel uncomfortable when the manufactured water-absorbing resin swells with water. Accordingly, it is possible to produce a water-absorbing composite having good water absorption performance and good feeling of use such as touch.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a method for producing a water-absorbent composite according to a first embodiment of the present invention.
FIG. 2 is a diagram showing an example of a coating pattern in which prepolymer A is applied discontinuously on a substrate surface.
[Explanation of symbols]
1 Dot (composition)
2 Substrate (sheet-like substrate)
a Diameter
b interval
Claims (2)
不活性ガス雰囲気下で、前記シート状基材に紫外線を照射して前記水溶性単量体を重合させる第2の工程と、
を有する吸水性複合体の製造方法において、
前記第1の工程後に、前記シート状基材の裏面側から表面側に向けて不活性ガス流を流すことを特徴とする吸水性複合体の製造方法。First, a composition containing a water-soluble monomer mainly composed of acrylic acid and / or a salt thereof, a photopolymerization initiator, and a crosslinking agent is applied to the surface of a sheet-like substrate having air permeability . 1 process,
A second step of polymerizing the water-soluble monomer by irradiating the sheet-like substrate with ultraviolet rays under an inert gas atmosphere;
In a method for producing a water-absorbent composite having
After the first step , an inert gas flow is caused to flow from the back surface side to the front surface side of the sheet-like base material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002259208A JP4240281B2 (en) | 2002-09-04 | 2002-09-04 | Method for producing water-absorbing composite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002259208A JP4240281B2 (en) | 2002-09-04 | 2002-09-04 | Method for producing water-absorbing composite |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004099634A JP2004099634A (en) | 2004-04-02 |
JP4240281B2 true JP4240281B2 (en) | 2009-03-18 |
Family
ID=32260310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002259208A Expired - Fee Related JP4240281B2 (en) | 2002-09-04 | 2002-09-04 | Method for producing water-absorbing composite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4240281B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060128827A1 (en) * | 2004-12-10 | 2006-06-15 | The Procter & Gamble Company | Absorbent members comprising modified water absorbent resin for use in diapers |
KR100725024B1 (en) | 2006-06-05 | 2007-06-07 | 주식회사 덕성 | Manufacturing method of super absorbent hydrocolloid |
JP4863830B2 (en) * | 2006-10-03 | 2012-01-25 | 旭化成ケミカルズ株式会社 | Fabric-like high-speed absorbent composite and its production method |
KR101633521B1 (en) * | 2008-02-27 | 2016-06-24 | 바스프 에스이 | Multi-layer composite material, production and use thereof |
-
2002
- 2002-09-04 JP JP2002259208A patent/JP4240281B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004099634A (en) | 2004-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106046224B (en) | Water-absorbent resin particles | |
GB2136813A (en) | Absorbent foam products, process and compositions for immobilization of particulate absorbents | |
JP2014518716A (en) | Sanitary absorbent articles for women containing water-absorbing composites | |
CN114945624A (en) | Method for preparing super absorbent polymer film | |
JP5818797B2 (en) | Open-cell foam with superabsorbent | |
CN103044703A (en) | Preparation process of porous hydrogel and non-porous hydrogel | |
JP4240281B2 (en) | Method for producing water-absorbing composite | |
JPH0873507A (en) | Water-absorbing sheet, its production, and water-absorbing article | |
JPH11147902A (en) | Production of water-absorbing resin, water absorbent and its production | |
JP4077204B2 (en) | Method for producing water-absorbing composite and water-absorbing composite | |
TWI687443B (en) | Water-absorbing resin and absorbent articles | |
CN103561783A (en) | Feminine hygiene absorbent article comprising a superabsorbent foam of high swell rate | |
JP2000198805A (en) | Water-absorbing composite and method for producing the same | |
JPS6397677A (en) | Porous pressure-sensitive adhesive film and its production | |
JP4580887B2 (en) | Adhesive polymer gel, composition for producing gel and adhesive tape | |
JP2613934B2 (en) | Method for producing water-absorbing composite | |
JPS6328639A (en) | Liquid-absorbent composite and its manufacturing method | |
JP2004339678A (en) | Method for producing water-absorbent resin composite and its deposit | |
WO2004094482A1 (en) | Water-absorbing resin composite and process for producing accumulation thereof | |
JPH0624627B2 (en) | Super absorbent material | |
JP6109157B2 (en) | Production of superabsorbent foam with high swelling rate | |
CN104341561B (en) | Method for increasing neutral hydrogel water absorption ratio by adopting macromolecule electrolyte | |
JPH07292142A (en) | Production of water absorbing composite | |
JPH04140139A (en) | Water-absorbing sheet and manufacture thereof | |
JPH0291129A (en) | Preparation of water-absorbing composite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050616 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071026 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081125 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081217 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4240281 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140109 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |