Nothing Special   »   [go: up one dir, main page]

JP4133302B2 - Energy absorption member for car body - Google Patents

Energy absorption member for car body Download PDF

Info

Publication number
JP4133302B2
JP4133302B2 JP2002374503A JP2002374503A JP4133302B2 JP 4133302 B2 JP4133302 B2 JP 4133302B2 JP 2002374503 A JP2002374503 A JP 2002374503A JP 2002374503 A JP2002374503 A JP 2002374503A JP 4133302 B2 JP4133302 B2 JP 4133302B2
Authority
JP
Japan
Prior art keywords
hollow material
energy absorbing
absorbing member
shape
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002374503A
Other languages
Japanese (ja)
Other versions
JP2004203202A (en
Inventor
徹 橋村
美速 今村
成一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002374503A priority Critical patent/JP4133302B2/en
Publication of JP2004203202A publication Critical patent/JP2004203202A/en
Application granted granted Critical
Publication of JP4133302B2 publication Critical patent/JP4133302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車体衝突時の荷重エネルギー吸収性能が優れ、かつ取付性にも優れた車体用エネルギー吸収部材に関するものである。
【0002】
【従来の技術】
自動車などの車体には、乗員の安全性確保のために、車体衝突時の軸方向への大荷重付加時に、軸方向に自ら圧壊変形して荷重エネルギーを吸収する、エネルギー吸収ボックスあるいはクラッシュボックスとも称される、エネルギー吸収部材が設けられる。
【0003】
この車体エネルギー吸収部材として代表的なものは、フロントやリアなどのバンパー補強材の後面に設けられるバンパーステイ、バンパーステイと車体サイドメンバ部材との間に設けられるエネルギー吸収部材などである。
【0004】
これらのエネルギー吸収部材の構造は、基本的に、円形あるいは矩形などの断面形状が、その長手方向(軸方向)に渡って延在する中空材からなる。
【0005】
エネルギー吸収部材は、前記バンパーステイやエネルギー吸収部材などは、車体長さ方向に略水平方向に延在するように配置される。そして、これらエネルギー吸収部材は、車体の各使用 (取り付け) 部位に応じて、車体前方や後方の衝突などの際の、中空材への軸方向への大荷重付加時に、損壊、飛散などせずに、軸方向に蛇腹状に圧壊変形して荷重エネルギーを吸収する機能が求められる。
【0006】
近年、車体軽量化のために、これらエネルギー吸収部材には、従来使用されていた鋼材に代わって、5000系、6000系、7000系等の高強度アルミニウム合金の押出中空形材などが使用され始めている。
【0007】
これらエネルギー吸収部材のエネルギー吸収性能を更に高めるため、従来から、図11に斜視図で示すような、テーパー状の自動車エネルギー吸収部材 (衝撃吸収部材)40 が提案されている(特許文献1 参照) 。
【0008】
【特許文献1】
特開2000-53017号(1〜3 頁、図1 〜3)
【0009】
上記特許文献1 のテーパー状の自動車エネルギー吸収部材40は、図11に示すように、外周壁41が車体前方側ほど細くなる (車体後方側ほど太くなる) テーパー状の形状を有している。そして、車体前方側に前壁42、後方側にフランジ43を一体に有するHAT 型中空形状を有し、フランジ43において、ボルト孔44a 〜44c を有する取り付けプレート44を介して、フロントサイドフレーム14の前端に固定されている。
【0010】
なお、上記特許文献1 以外にも、コの字状に成形した鋼板同士を突き合わせ、接合部を溶接して、一体に中空材化するとともに、上記特許文献1 と同じく、外周壁が車体前方側ほど細くなるテーパー状の形状を有したエネルギー吸収部材が実際に使用されている。
【0011】
このようなテーパー状のエネルギー吸収部材は、前面からの衝突荷重に対して根元が太くなる構造となり、断面二次モーメントの点から、外周壁41が同じ外径である場合に比して、全体座屈が生じ難くなる。このため、中空材への軸方向への大荷重付加時に、中空材が、損壊、飛散などせずに、軸方向に蛇腹状に圧壊変形して、荷重エネルギーを吸収する性能を高くすることができる。また、その長さ方向に対して、衝突荷重が少々傾いた角度で入力しても、荷重エネルギー吸収性能を確保しやすい利点もある。
【0012】
【発明が解決しようとする課題】
しかし、上記特許文献1 のようなエネルギー吸収部材40を、アルミニウム合金を用いて製造しようとする場合、製造自体が難しい。即ち、特許文献1 のようなエネルギー吸収部材40は、車体前方側を前壁42を有する閉断面となし、更に、後方側に外方に広がるフランジ43を一体に有するHAT 型中空形状としている。このため、アルミニウム合金中空形材を出発素材にするにせよ、アルミニウム合金板材を出発素材にするにせよ、プレス加工乃至機械加工によって、テーパー状の胴部を製作するとともに、フランジ43を一体に製造することが非常に困難である。また、加工工程が非常に複雑となったり、煩雑となって、経済的では無い問題もある。
【0013】
そして、アルミニウム合金の中でも、高強度で伸びの小さな前記7000系アルミニウム合金などでは、上記プレス加工乃至機械加工が比較的しにくく、上記テーパー状の胴部やフランジ43を一体的に設ける場合に、割れやミクロな割れである肌荒れなどを生じやすい。更には、プレス加工乃至機械加工の条件にもよるが、残存伸びが変形部に残留する可能性もある。
【0014】
変形部やその周辺に、仮に、これら割れや肌荒れ、あるいは残存伸びが存在した場合、変形部やその周辺部の圧壊強度が著しく低下する。このため、変形部は、車体衝突時のような大荷重付加時ではなく、それよりも小さい荷重の付加時に圧壊しやすくなり (圧壊の起点となって) 、エネルギー吸収性能が著しく低下する。一方、これら割れや肌荒れ、あるいは残存伸びを無くすように、プレス加工乃至機械加工することは、上記した加工工程の複雑さや煩雑さの問題につながることとなる。
【0015】
このため、上記特許文献1 のようなエネルギー吸収部材を、そのフランジを含めて一体的に製造するのは困難があり、上記テーパー状の胴部とフランジ43とを別個に製作して、溶接などで接合せざるを得ない。しかし、溶接接合で一体化した場合、部品点数や接合部が増すため、接合強度の低下と、これに伴う衝突エネルギー吸収性能の低下が問題となる。このため、接合強度を低下させないための接合方法を工夫する必要があり、溶接にせよ機械的接合にせよ、より煩雑になるという現実的な問題を抱えている。
【0016】
この結果、テーパー状のエネルギー吸収部材をアルミニウム合金材では製造しにくく、実際の実施形態は、上記した、鋼板成形材を用いた溶接による一体型の中空材とならざるを得ない。
【0017】
したがって、本発明の目的は、エネルギー吸収性能を低下性させることなく、胴部のテーパー形状と、更には接合用のフランジなどを一体に設けた、車体用アルミニウム合金エネルギー吸収部材を提供しようとするものである。
【0018】
【課題を解決するための手段】
この目的を達成するために、本発明車体用エネルギー吸収部材の要旨は、アルミニウム合金押出中空材からなり、中空材の軸方向が荷重付加方向となるように車体部材に接合された上で、荷重付加時に中空材軸方向に圧壊変形して、荷重エネルギーを吸収するエネルギー吸収部材であって、中空材の外径が前記荷重に対する軸方向の後方側ほど太くなるテーパー形状を有し、このテーパー形状が電磁成形による中空材の拡径にて形成されているとともに、前記中空材軸方向の端部に、前記車体部材の接合面形状と適合する接合面形状を有して外方に広がるフランジが形成され、このフランジは前記中空材軸方向の端部が電磁成形により拡径されて金型成形面に押圧され、前記中空材と一体に形成されたものであり、このフランジの前記金型に押圧した表面とは反対側の表面を接合面として、前記車体部材と接合されることである。
【0019】
本発明のようなテーパー状の胴部形状を有するアルミニウム合金エネルギー吸収部材は、前記した通り、前面からの衝突荷重に対して根元が太くなる構造となり、断面二次モーメントの点から、外周壁41が同じ外径である場合に比して、全体座屈が生じ難くなる。このため、中空材への軸方向への大荷重付加時に、中空材が、損壊、飛散などせずに、軸方向に蛇腹状に圧壊変形して、荷重エネルギーを吸収する性能を高くすることができる。また、その長さ方向に対して、衝突荷重が少々傾いた角度で入力しても、荷重エネルギー吸収性能を確保しやすい利点もある。
【0020】
また、本発明においては、テーパー状の胴部形状や、接合用のフランジを、アルミニウム合金中空形材自体の電磁成形による拡径により、中空形材と一体に形成する。電磁成形は、後述する通り、電磁力による成形素材の超高速の変形によって、素材 (中空材) を成形する。このため、変形速度が遅いプレス加工乃至機械加工とは異なり、テーパー状の胴部形状の形成や接合用のフランジの形成の際に、前記した割れや肌荒れ、あるいは残存伸びが生じることが少ない。また、テーパー状の胴部形状の形成や接合用のフランジを一体に形成できるため、前記した、分割構造における接合部での継ぎ手強度の確保の問題などを解決することができる。
【0021】
また、電磁成形は、強い電磁力による超高速の変形であるので、テーパー状の胴部形状や、接合用のフランジを、これらが複雑な形状であっても、基本的には一回の成形加工で形成できる。このため、プレス加工乃至機械加工のような、加工工程が複雑となったり、部品点数が増えて煩雑となる問題が無い。
【0022】
【発明の実施の形態】
以下、本発明エネルギー吸収部材の実施の形態について具体的に説明する。図1 〜7 は、本発明エネルギー吸収部材の実施態様を各々示す斜視図である。
【0023】
先ず、図1 〜4 において、図1(a)、図2(a)、図3(a)は、素材となる円管状( 断面が円管状) のアルミニウム合金中空材7aを示し、図4(a)は、素材となる矩形断面管状 (断面が口型管状) のアルミニウム合金中空材7bを示す。
【0024】
図1(b)、図2(b)、図3(b)は、上記円管状アルミニウム合金中空材7aを電磁成形により拡径したテーパー状の本発明エネルギー吸収部材1a、1c、1eを示す(但し端部のフランジは未形成)。エネルギー吸収部材1aは外形が円管状、1cは外形が6 角形の多角形状、1eは外形が矩形状である。
【0025】
図4(b)は、上記矩形断面管状のアルミニウム合金中空材7bを、電磁成形により拡径した、テーパー状の本発明エネルギー吸収部材1gを示す(但し端部のフランジは未形成)。エネルギー吸収部材1gは図1(b)のエネルギー吸収部材1aと同じ外形が円管状である。このように、矩形断面管状の素材中空材から、円管状など断面形状が違う中空材を簡便に成形できる点が、電磁成形の利点でもある。
【0026】
これら各エネルギー吸収部材は、前面からの衝突荷重に対して根元が太くなる構造となるように、各々F1で示す衝突荷重方向に対して、軸方向の中空材の外径が、前記荷重方向に対する後方側ほど順次太くなる、言い換えると、前記荷重方向に対する前面側ほど順次細くなる、テーパー形状 (テーパー形状の胴部) を各々有している。
【0027】
バンパーステイやエネルギー吸収部材の場合は、後述する通り、中空材3 の軸方向の両端部3a、3b、あるいは上記フランジ2a、2bにおいて、車体部材により軸方向に支持される。このような使用態様の場合に、テーパー状のエネルギー吸収部材は、前面からの衝突荷重に対して、断面二次モーメントの点から、胴部が同じ外径である中空材に比して、全体座屈が生じにくくなり、荷重エネルギー吸収性能を高くすることができる。また、その長さ方向に対して、衝突荷重が少々傾いた角度で入力しても、荷重エネルギー吸収性能を確保しやすい。
【0028】
しかも、本発明においては、これらテーパー状の胴部形状を、アルミニウム合金中空形材自体の電磁成形による拡径により形成する。このため、変形速度が遅いプレス加工乃至機械加工とは異なり、テーパー状の胴部形状の形成や接合用のフランジの形成の際に、前記したエネルギー吸収性能を低下させる、割れや肌荒れ、あるいは残存伸びが生じることが少ない。
【0029】
図1(c)、図2(c)、図3(c)、図4(c)は、上記テーパー状の本発明エネルギー吸収部材1a、1c、1e、1gの (中空形材3 の) 軸方向の両端部 (図1(b)、図2(b)、図3(b)、図4(c)で言う3a、3b) に、車体部材との接合用のフランジ2a、2bを形成した態様を示している。接合用のフランジの形成は必ずしもエネルギー吸収部材軸方向の両端部に設けなくとも、片方のみ設けても良く、要はエネルギー吸収部材の使用条件に応じて適宜選択される。なお、フランジ2a、2bにおける周方向に間隔を開けて設けた丸印は、機械的な接合用のボルト孔あるいはフランジ補強用の突起などを示す。
【0030】
これらのフランジ2a、2bの形成は、後述するごとく、電磁成形による上記テーパーの形成時に、テーパー形成と同時に、素材となる各アルミニウム合金中空材7 の軸方向の両端部を電磁成形により拡径して、一体に形成できる。
【0031】
なお、フランジ2a、2bをプレス加工乃至機械加工によって形成する手段もあるが、前記した通り、加工工程が非常に複雑となったり、煩雑となって、現実的では無い問題もある。また、エネルギー吸収を低下させる、前記した割れや肌荒れ、あるいは残存伸びが加工の際に生じる可能性が高い。更に、フランジ2a、2bを別個に製作して、溶接などで接合する場合も、部品点数や接合部が増すため、接合強度の低下と、これに伴う衝突エネルギー吸収性能の低下が問題となる。
【0032】
この図1(c)、図2(c)、図3(c)、図4(c)のフランジの態様においては、中空材3 の外方に略直角の角度で立ち上がって、表面 (接合面) がフラット (平坦) に広がる、円形状のフランジ2a、2bを形成した態様を示している。
【0033】
このような中空材3 に一体に形成されたフランジは、前記別途接合するタイプのフランジよりも、接合強度が格段に高く、各エネルギー吸収部材1 自体のエネルギー吸収性能が高い。また、エネルギー吸収部材1 と他の車体部材とを、接合面積を大きくしながら、直接接合することができる。このため、フランジを別個に製作して、エネルギー吸収部材の端部や接合側の車体部材端部と、フランジ端部とを各々別個に接合するような従来方式に比して、両者の接合強度を大幅に高めることができる。この結果、エネルギー吸収部材1 の実際の設置時においても、軸方向への大荷重付加時に、軸方向の圧壊変形による荷重エネルギー吸収性能を向上させることができる。また、他の車体部材との接合の煩雑さをも解消できる。
【0034】
電磁成形によれば、エネルギー吸収部材1aが接合される、他の車体部材の接合面や車体部材フランジ接合面の形状に応じて、これに適合するフランジ2a、2bの形状を自由に成形しうる。例えば、図1(c)、図2(c)、図3(c)、図4(c)では、車体部材側のフラットな表面 (接合面) 形状や、フラットなフランジ表面 (接合面) 形状との接合を想定して、前記した表面がフラットに広がる円形状のフランジに形成されている。
【0035】
この点、他の車体部材の接合面や車体部材フランジ接合面の形状が、曲面形状や、フラットだが垂直方向ではなく角度を付けて斜めに傾いたような形状であれば、アルミニウム合金中空材のフランジ接合面形状も、これに適合すべく、曲面形状や、斜めに傾いて立ち上がるような形状とすることができる。
【0036】
ここで、素材アルミニウム合金中空材7 の断面形状やエネルギー吸収部材1 としての断面形状は、エネルギー吸収部材としての車体使用部位や使用態様によって適宜選択される。ただ、上記テーパー形状やフランジを素材中空材7 の電磁成形による拡径によって、成形可能な断面形状とする必要がある。
【0037】
即ち、図4(a)の素材となる矩形断面管状アルミニウム合金中空材7bや、図2(b)、図3(b)のテーパー状エネルギー吸収部材1c、1eなど、矩形や多角形状などの断面形状乃至外形形状などでは、角部のコーナーR(角度) が小さ過ぎると、電磁成形による中空材3 の拡径の際に、この角部で割れが生じやすくなる。
【0038】
この点、電磁成形可能であれば、例えば、円管状以外にも、コーナーR(角度) の小さい角部を有さない、矩形、多角形状、円形、楕円形、その他な不定形な円形などの中空材、あるいは、閉断面以外にも、開断面である C形や、コ形などの中空形材も含みうる。
【0039】
次に、図5 、6 、7 の本発明エネルギー吸収部材の態様は、エネルギー吸収部材1 ( 中空材3)表面の一部に、衝突荷重などの大荷重付加時に圧壊の起点となる、凸部、凹部、孔などの変形部を設けたものである。
【0040】
これらの変形部も電磁成形により中空材と一体に形成することが好ましい。電磁成形による変形部の形成では、前記した通り、変形速度が遅いプレス加工乃至機械加工による変形部の形成とは異なり、凸部、凹部、孔などの変形部やその周辺に、前記した、割れや肌荒れ、あるいは残存伸びが生じることが少ない。
【0041】
図5 のエネルギー吸収部材1iは、前記図1(b)や図4(b)のエネルギー吸収部材と同様、中空部6 を有するテーパー状円管のアルミニウム合金中空材3 の表面に、凸部 (突起) 4a、4bを設けている(但し端部のフランジは未形成)。この凸部 (突起) 4a、4bは、中空材3 表面の円周方向に、例えば断面の円の中心 (中空材軸心) からの角度が60°間隔で6 個、90°間隔で4 個など、適宜設けられる変形部である。
【0042】
これら変形部を、電磁成形により両端に設けるフランジとの、成形時の干渉無しに変形部を設けて、大荷重付加時に圧壊の起点とするためには、中空材3 の前面からの長さが中空材3 軸方向長さの2/3 程度となる位置に設けることが好ましい。
【0043】
図5 のエネルギー吸収部材1iが、例えば、バンパーステイやエネルギー吸収部材のように、車体衝突時の荷重方向に対し、略平行方向に延在するように略水平配置された場合に、凸部 4a 、4bは圧壊変形の起点となる。即ち、この凸部 4a 、4b等は、車体衝突時のF1の方向からの、中空材3 の荷重側 (前面側) の軸方向端部3aへの大荷重付加時には、中空材3 を外方へ拡径する作用を有するため、エネルギー吸収部材1i (中空材3)の軸方向の圧壊変形の起点となる。そして、エネルギー吸収部材1iの軸方向のエネルギー吸収性能を高める。これらの圧壊変形の起点効果は、凸部状乃至突起状の変形部だけでなく、後述する凹部状や孔状の変形部でも同じである。
【0044】
更に、図6 、7 では、エネルギー吸収部材の基本構造は図5 のエネルギー吸収部材1iと同じであって、中空材3 の表面の、凸部、凹部、孔などの変形部の形状を種々変えた態様を各々示している。なお、本発明における凸部、凹部、孔などの変形部の形状や中空材3 表面への設け方は下記態様に限定されるものではなく、下記態様以外にも、必要エネルギー吸収性能やエネルギー吸収部材の使用態様や部位に応じて、適宜選択される。
【0045】
また、図6 、7 のエネルギー吸収部材は、前記図1(c)、図2(c)、図3(c)、図4(c)のテーパー状の本発明エネルギー吸収部材1a、1c、1e、1gと同様に、中空形材3 の軸方向の両端部に、車体部材との接合用のフランジ2a、2bを形成した態様を示している。これらの車体部材との接合用のフランジは、使用態様に応じて、必ずしも中空形材の軸方向の両端部に設ける必要は無く、片方のみに設けても良い。
【0046】
この内、図6(a)、(b) 、(c) は、凸部 (突起)4を設けた例を示している。図6(a)のエネルギー吸収部材1jでは、図5 と同じく、中空材3 表面の円周方向に対称に凸部4a、4bを設けている。図6(b)のエネルギー吸収部材1kでは、中空材3 表面の円周方向に対称に2 個の凸部を軸方向に2 列、合計4 個の凸部4c、4d、4e、4fを設けている。図6(c)のエネルギー吸収部材1lでは、中空材3 表面の円周方向に対称に、かつ軸方向の長さが長い凸部4g、4hを設けている。
【0047】
この他、中空材表面の円周に沿って、らせん状の凸部、リング状の凸部、X 字状に互いに交叉した凸部、軸方向の長さが比較的長い凸部などを間隔をあけて複数個設けても良い。
【0048】
更に、図7 のエネルギー吸収部材では中空材3 表面に凹部または貫通孔を設けた例を示している。図7(a)のエネルギー吸収部材1mでは、中空材3 表面の円周に沿って、凹部または貫通孔5a、5bを間隔をあけて複数個設けている。図7(b)のエネルギー吸収部材1nでは、中空材3 表面の円周方向に対称に2 個、軸方向に2 列で、合計4 個の凹部または貫通孔5c、5d、5e、5fを設けている。
【0049】
上記図7(a)、(b) の態様は、前記図6(a)、(b) の凸部に代えて貫通孔を設けた態様とも言える。この点、凸部を設ける代わりに凹部や貫通孔を設けても良く、また、これら凸部、凹部、貫通孔を、各々組み合わせて設けても良い。
【0050】
次に、実際に、中空材3 のテーパー形状を形成、および、更に、中空材両端部のフランジや、中空材表面の上記凸部、凹部、孔などの変形部を中空材に一体に形成する、電磁成形方法について、以下に説明する。
【0051】
先ず、電磁成形自体は、高電圧で蓄荷電されている電気エネルギー (電荷) を、通電コイルに瞬時に投入し (放電させ) 、極めて短時間の強力な磁場を形成することにより、この磁場内におかれたワーク (被加工物、金属部材) が磁場の反発力 (フレミングの左手の法則に従ったLorentz 力) によって強い拡張力や収縮力を受けて、高速で塑性変形することを利用して、ワークを所定形状に、塑性加工乃至成形する技術である。
【0052】
この電磁成形は、導電性が高く、かつ渦電流が発生しやすい金属の板、管などの金属部材を成形対象とし、板の成形、管の拡管、管の縮管、管の端部などの成形に有望とされて来た。特にアルミニウム合金は、電気の良導体であり、この電磁成形に適した材料とされる。
【0053】
図8 は、中空材3 のテーパー形状、中空材両端部のフランジ、中空材表面の上記凸部、凹部、孔などの変形部を、電磁成形により、同時に設ける態様を断面図で示している。
【0054】
ここで、図8(a)、(b) は、中空材3 のテーパー形状とともに、前記図5(a)に示した凸部4a、4b、図8(c)は、前記図7(a)に示した貫通孔5aを、各々中空材両端部のフランジ2a、2bとともに、電磁成形によって、同時に設ける態様を示す。
【0055】
図8(a)、(b) において、28、29、30は金型であり、アルミニウム合金中空材3 表面に、凸部4a、4bを形成するための空間状 (隙間状) 成形面31または凹部成形面30c を有する。これらの金型28、29、30は、軸方向に同一径の中空材3 を、図の右側に行くにしたがって太くなるテーパー形状を形成するために、中空材3 を挟む金型同士の間隔 (対向する金型成形面同士の間隔) が図の右側に行くにしたがって順次大きくなるように、対向する金型成形面が互いに傾斜して (傾斜面として) 形成されている。これは、図8(c)の金型32でも同様である。
【0056】
更に、これらの金型28、29、30は、中空材3 の両端部に、中空材3 の外方に略直角の角度で立ち上がって、表面がフラットに広がる円形状のフランジ2a、2bを形成するための、垂直に立ち上がるフラットな成形面29a 、30b を有する。
【0057】
ここで、図8(a)、(b) において、金型28、29、30の片方の形材端部成形面28a 、30a は、垂直ではなく、一定の角度をもって斜めに立ち上がるフラットな成形面となっている。これは、前記したように、他の車体部材の接合面やフランジ接合面の形状が垂直ではなく、斜めに立ち上がるような場合に対応して、中空材3 に対し直角ではなく、一定の角度をもって斜めに立ち上がるような、傾斜したフランジ2aを作成するためである。
【0058】
図8(a)、(b) において、電磁成形の要領は、先ず、アルミニウム合金素材中空材7a( 図1 の素材中空材7a) を金型28、29、30内にセットする。即ち、中空材7aの端部側 (図の右方) から、通電コイル25を中空材3 の管内に挿入する。そして、図示しない衝撃電流発生装置に高電圧で蓄荷電されている電気エネルギーを数十kJ( 数百μF 、数十kV) 、コンデンサー27、結線26を介して、通電コイル25に瞬時に投入し、極めて短時間の強力な磁場を、対向する金型の傾斜成形面間、両管端部と空間状 (隙間状) 成形面31および凹部成形面30c 部分に形成する。
【0059】
これにより、軸方向に同一径の素材中空材7aは、軸方向に渡って外方に拡径され、対向する金型の傾斜成形面 (テーパー形状成形面) に強い力で押し当てられて成形され、図の右側に行くにしたがって順次外径 (径) が太くなるテーパー形状の中空材3 の外形 (点線で表示) が形成される。
【0060】
なお、テーパー形状は、中空材3 の軸方向 (図の右方向へ) の外形線として、直線状に傾斜して拡径していくものだけではなく、外方に凸状あるいは内方に凹状となるような曲線状に傾斜して拡径していく、あるいは更に、段階的、段差的に拡径していく、などの拡径テーパー形状が適宜選択される。これらの拡径テーパー形状は、前記金型の傾斜成形面を、所望の上記拡径テーパー形状に対応した形状とすることで形成可能である。
【0061】
上記中空形材の胴部のテーパー形状の成形と同時に、中空材3 の凸部4a、4b相当部が、金型の隙間状成形面31および凹部成形面30c 内に拡径され、凸部4a、4bを形成する。更に、これと同時に、中空材3 の周囲 (外) 方向に、中空材端部3a、3bが拡径される。そして、拡径した端部3a、3bが強い力で金型28、29、30の成形面に押圧され、フランジ2a、2bを中空材3 の端部に形成する。
【0062】
なお、図示はしないが、変形部として凹部を形成する場合は、凹部に対応する形状の金型を、凹部を形成する中空材の表面部分に近接して設け、かしめなどに用いられるような管径を縮小させる縮管電磁成形によって、凹部を形成する。
【0063】
次に、図8(c)でもこれらの電磁成形の要領は同様である。即ち、軸方向に同一径の中空材3 は、軸方向に渡って外方に拡径され、対向する金型の傾斜成形面 (テーパー形状成形面) に押し当てられて成形され、図の右側に行くにしたがって順次太くなるテーパー形状の外形が形成される( 点線で表示) 。ただ、図8(c)の場合では、金型32の隙間状成形面33によって拡径された中空材3 の貫通孔相当部分が、隙間状成形面33の先端にあるリング状突起部32a と衝突して、リング状突起部32a の輪郭形状に合わせて打ち抜かれ、貫通孔5a、5bを形成する。また、図8(c)の場合では、中空材3 端部の両フランジ2a、2bは、図7(a)のように、垂直に立ち上がるように形成される。
【0064】
以上、中空材3 のテーパー形状、中空材両端部のフランジ、中空材表面の変形部を、電磁成形により、同時に設ける態様を示した。しかし、必ずしも同時でなくとも、金型を上記同時に設ける一体的な態様として、各成形部位に対応した形状 (長さ) のコイルを用い、これらを別々乃至順次に設けても良い。また、金型を各成形部位に対応して別々に分割し、各成形部位に対応した形状 (長さ) のコイルを用い、これらを別個乃至順次に設けても良い。
【0065】
ここで、相手方の車体部材接合面が鞍型などの曲面形状を有する場合、中空材両端部のフランジもそれに応じた曲面形状とする。例えば、表面 (接合面) が鞍型などの曲面形状を有するフランジは、金型の成形面28a 、29b 、30a 、30b などの形状を、鞍型などの適宜の曲面形状とすることで、成形できる。また、フラットだが垂直方向ではなく角度を付けて斜めに傾いたような形状も、上記金型の成形面を、中空材3 に対し、直角ではなく角度をつけて傾けることで成形できる。
【0066】
なお、各フランジの接合面や、接合面の裏面などに、フランジの補強用の突起乃至リブを設けても良い。突起乃至リブを放射状、同心円状などに適宜フランジに設けることで、フランジが補強される。これら突起乃至リブは、金型の成形面に、対応する凹部形状を設けることで簡便に電磁成形できる。この点、形成したフランジの後面側に、略平行な拡径部やテーパ状の拡径部を更に形成して、直線部と結ぶようにしても良い。フランジの後面側に、このような拡径部を形成することで、フランジの継ぎ手としての強度をより高めることができる。この拡径部の設け方は、金型とアルミニウム合金中空材の外径とのクリアランスの調整により、簡便に制御できる。
【0067】
これらの電磁成形において、エネルギー吸収部材のような、3mm 以上の比較的厚肉で、かつ50mmΦ以上の比較的大口径のアルミニウム合金中空材の端部を拡管成形する場合、拡径した端部外表面を金型面に押圧して、アルミニウム合金中空材3 表面の変形部や端部のフランジを形成するためには、前記投入電気エネルギー量は、できるだけ大きく、例えば8kJ 以上とすることが好ましい。
【0068】
因みに、このようなアルミニウム合金管端部内に、コイルを挿入する一方、金型成形面を管端部外側に近接させて設け、前記コイルに電気エネルギーを投入して、管端部を拡径変形させるとともに、変形した管端部の外表面側を前記金型成形面に押圧して、外方に広がるラッパ状のフランジを成形する技術は、佐野利男他4 名、" 電磁力を利用する塑性加工の研究" 、「機械技術研究所報告第150 号」、1990年3 月、機械技術研究所発行 (第6 章管端の成形、第62〜68頁) などにも開示されている (非特許文献1)。
【0069】
しかし、本発明が対象とするようなエネルギー吸収部材は、3mm 以上の比較的厚肉で、かつ50mmΦ以上の比較的大口径のアルミニウム合金中空材である。このような、比較的厚肉で、かつ比較的大口径のアルミニウム合金管端部の成形は、かしめなどに用いられる管径を縮小させるような縮管成形に比して、著しく電磁成形が難しいと認識され、これまで実用化されていなかった。上記非特許文献1 でも、比較的厚肉で、かつ比較的大口径のアルミニウム合金中空材端部の、電磁成形による拡管乃至拡径成形が難しいと認識されている。この理由は、コイルなどのハード的な制約により、前記投入電気エネルギー量が小さくならざるを得なかったことも大きい。
【0070】
次に、本発明エネルギー吸収部材の車体におけるバンパーモジュールに使用した場合の一使用態様を、図9 、10を用いて説明する。図9 にバンパー構造を正面図で示す。図9 において、先ず、10はバンパーカバー、11は発泡フォーム材などで適宜構成する衝撃吸収材、12はパンパー補強材、13はステイ、14は車体サイドメンバーであり、1iは本発明テーパー状エネルギー吸収部材 (図6 (a) の態様) である。これら部材が記載順に、車体前後方向 (図の左側が前) に順に配列される。
【0071】
そして、バンパー補強材12の後面フランジ面16a とステイ13の前面フランジ13a 、ステイ13の後面フランジ13b とエネルギー吸収部材1iの前面フランジ2a、エネルギー吸収部材1iの後面フランジ2bと、サイドメンバー14の前面フランジ14a とが、これら各接合面同士で、溶接乃至ボルト、ナット、リベットなどの機械的な結合手段20などにより接合されている。
【0072】
バンパー補強材12は、例えば、各々車体前後方向に略平行に設けられた前面フランジ15と後面フランジ16、およびこれらのフランジ間をつなぐ略平行に設けられた左右のウエブ17、18とからなる、一体のアルミニウム合金中空押出形材から構成される。バンパー補強材12は、鋼製中空材であっても良いが、アルミニウム合金中空材、それもアルミニウム合金中空押出形材により構成されることが軽量化の点で好ましい。なお、19は選択的に設けられる補強用の中リブであり、これによって、断面日形の略矩形形状を有している。
【0073】
また、ステイ13は、エネルギー吸収部材1iと同様に、アルミニウム合金中空材からなり、フランジ13a 、13b が電磁成形により、ステイ端部に一体に形成される場合には、実質的に、本発明エネルギー吸収部材となる。本発明では、このステイ13が従来のアルミニウム合金中空材や鋼製のステイであっても良い。また、ステイ13を本発明エネルギー吸収部材の態様とし、エネルギー吸収部材1iの方を省略することも可能である。
【0074】
更にサイドメンバー14は、特に高い強度を必要とするため、通常通り、鋼材からなることが好ましい。このため、前面フランジ14a も、通常通り、サイドメンバー14端部に溶接接合で一体化された鋼製フランジとされることが好ましい。
【0075】
図9 の本発明態様では、エネルギー吸収部材1iは、前面からの衝突荷重に対して根元が太くなる構造となるように、図左側( 車体前方) からの衝突荷重方向に対して、軸方向の中空材の外径が、前記荷重方向に対する後方側ほど順次太くなる、テーパー形状を各々有している。このため、前面からの衝突荷重に対して、断面二次モーメントの点から、荷重エネルギー吸収性能を高くすることができる。また、その長さ方向に対して、衝突荷重が少々傾いた角度で入力しても、荷重エネルギー吸収性能を確保できる。
【0076】
更に、エネルギー吸収部材1iのフランジ2a、2bが、ステイ13の後面フランジ13b やサイドメンバー14の前面フランジ14a の形状に対応して、垂直に立ち上がるフラットな形状を有する。そして、中空材3 に一体に形成されている。このため、エネルギー吸収部材1iと他の車体部材であるステイ13やサイドメンバー14とを、各々のフランジを介して、接合面積を大きくしながら、直接接合することができる。したがって、これらフランジを別個に製作して、各々別個に接合する従来方式に比して、エネルギー吸収部材1iの接合強度を大幅に高めることができる。また、エネルギー吸収部材1iは、圧壊変形の起点となる凸部4a、4bを有している。
【0077】
これらの結果、バンパーカバー10を介して、車体前方から伝わる、車体衝突時の軸方向( 車体前後方向) の荷重エネルギーを、ステイ13の軸方向の圧壊変形と、エネルギー吸収部材1i軸方向の圧壊変形による、エネルギー吸収性能を大きく向上させることができる。また、エネルギー吸収部材1iのフランジを介して他の車体部材と直接接合することができるため、上記車体衝突時の圧壊変形によって、エネルギー吸収部材1iのみが壊れた場合でも、エネルギー吸収部材1iのみを簡便に取り外すことができ、新しいエネルギー吸収部材を取り付けることも簡便にできる。これらの効果は、ステイ13がエネルギー吸収部材である場合に、このステイ13についても言える。
【0078】
図10は、図9 のバンパー構造の要部のみを平面図で示したものである。但し、図10において、バンパー補強材12は、図8 のように長手方向 (車体幅方向) に直線状ではなく、車体後方側に傾斜乃至湾曲した両端部12a 、12b を有する。このため、バンパー補強材12支持用の2 本のステイ13は、各々バンパー補強材12の車体後方側に傾斜した両端部12a 、12b 後面に、間隔をあけて配置されている。
【0079】
したがって、ステイ23の各前面フランジ13a は、バンパー補強材12の両端部12a 、12b の後面形状に応じて、各方向に傾斜したフラットな形状を有している。そして、この前面フランジ13a を介して、その管軸方向 (中空形材軸方向) を車体前後方向 (水平方向) として、バンパー補強材1 をその後面側から車体前後方向に支持している。
【0080】
前面フランジ13a を、このような傾斜した、通常は形成が難しい形状とする必要がある場合には、ステイ13を、本発明エネルギー吸収部材1iと同様に、アルミニウム合金中空材からなり、特に前面傾斜フランジ13a や、後面フランジ13b を電磁成形により、ステイ端部に一体に形成することが有利となる。なお、これ以外の、各部材の構造や接続構造は、図9 の場合と同じである。
【0081】
本発明エネルギー吸収部材 (中空材) としての要求特性を満足するアルミニウム合金としては、通常、この種構造部材用途に汎用される、AA乃至JIS 5000系、6000系、7000系等の耐力の比較的高い汎用合金であって、調質されたアルミニウム合金から選択して用いられる。ただ、この中でも、特に、Al-Zn-Mg系、あるいは Al-Zn-Mg-Cu系の7000系のアルミニウム合金押出中空形材であって、T5、T6、T7などの調質 (特に人工時効処理された) アルミニウム合金押出中空形材が好ましい。
【0082】
【発明の効果】
本発明によれば、エネルギー吸収性能を低下性させることなく、テーパー形状、あるいは接合用のフランジなどを一体に設けた、車体用アルミニウム合金エネルギー吸収部材を提供することができる。このため、エネルギー吸収部材や車体自体の軽量化を促進でき、アルミニウム合金材の用途も一層拡大するものであり、工業的な価値が大きい。
【図面の簡単な説明】
【図1】本発明エネルギー吸収部材の一実施態様を示し、図1(a)は素材円管状中空材、図1(b)は円管状エネルギー吸収部材、図1(c)はフランジ付き円管状エネルギー吸収部材を各々示す斜視図である。
【図2】本発明エネルギー吸収部材の他の実施態様を示し、図2(a)は素材円管状中空材、図2(b)は多角形エネルギー吸収部材、図2(c)はフランジ付き多角形エネルギー吸収部材を各々示す斜視図である。
【図3】本発明エネルギー吸収部材の他の実施態様を示し、図3(a)は素材円管状中空材、図1(b)は矩形エネルギー吸収部材、図1(c)はフランジ付き矩形エネルギー吸収部材を各々示す斜視図である。
【図4】本発明エネルギー吸収部材の他の実施態様を示し、図3(a)は素材矩形状中空材、図1(b)は円管状エネルギー吸収部材、図1(c)はフランジ付き円管状エネルギー吸収部材を各々示す斜視図である。
【図5】本発明円管状エネルギー吸収部材の他の実施態様を示し、変形部を設けた態様を示す斜視図である。
【図6】本発明フランジ付き円管状エネルギー吸収部材の他の実施態様を示し、図6(a)、(b) 、(c) は各々異なる変形部を設けたの態様を示す斜視図である。
【図7】本発明フランジ付き円管状エネルギー吸収部材の他の実施態様を示し、図7(a)、(b) は各々異なる変形部を設けた態様を示す斜視図である。
【図8】本発明エネルギー吸収部材の電磁成形による製作の態様を示し、図8(a)、(b) 、(c) は各々異なるフランジおよび変形部を設ける態様を示す断面図である。
【図9】本発明エネルギー吸収部材のバンパへの使用態様を示す正面図である。
【図10】本発明エネルギー吸収部材のバンパへの使用態様を示す平面図である。
【図11】従来のテーパー状の自動車エネルギー吸収部材を示す斜視図である。
【符号の説明】
1:エネルギー吸収部材、2:フランジ、3:中空材、4:凸部、5:孔、
6:中空部分、7:素材中空形材、
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an energy absorbing member for a vehicle body that has excellent load energy absorption performance at the time of a vehicle body collision and has excellent mounting properties.
[0002]
[Prior art]
In order to ensure the safety of passengers, an energy absorption box or crash box that absorbs load energy by crushing and deforming in the axial direction when a heavy load is applied in the axial direction at the time of a vehicle collision A so-called energy absorbing member is provided.
[0003]
Typical examples of the vehicle body energy absorbing member include a bumper stay provided on the rear surface of a bumper reinforcing material such as a front and rear, an energy absorbing member provided between the bumper stay and the vehicle body side member member, and the like.
[0004]
The structure of these energy absorbing members basically consists of a hollow material having a circular or rectangular cross-sectional shape extending in the longitudinal direction (axial direction).
[0005]
The energy absorbing member is disposed such that the bumper stay, the energy absorbing member, and the like extend in a substantially horizontal direction in the vehicle body length direction. These energy absorbing members are not damaged or scattered when a heavy load is applied to the hollow material in the axial direction in the event of a collision at the front or rear of the vehicle, depending on each use (attachment) part of the vehicle. In addition, a function of crushing and deforming in a bellows shape in the axial direction to absorb load energy is required.
[0006]
In recent years, high-strength extruded aluminum materials such as 5000 series, 6000 series, and 7000 series have begun to be used for these energy absorbing members to reduce the weight of the vehicle body, instead of steel materials that have been used in the past. Yes.
[0007]
In order to further enhance the energy absorbing performance of these energy absorbing members, a tapered automobile energy absorbing member (impact absorbing member) 40 as shown in a perspective view in FIG. 11 has been conventionally proposed (see Patent Document 1). .
[0008]
[Patent Document 1]
JP 2000-53017 (1-3 pages, Fig. 1-3)
[0009]
As shown in FIG. 11, the tapered automobile energy absorbing member 40 of Patent Document 1 has a tapered shape in which the outer peripheral wall 41 becomes thinner toward the front side of the vehicle body (thicker toward the rear side of the vehicle body). And, it has a HAT-type hollow shape integrally including a front wall 42 on the front side of the vehicle body and a flange 43 on the rear side, and the flange 43 has a front plate 42 with bolt holes 44a to 44c via a mounting plate 44. It is fixed at the front end.
[0010]
In addition to Patent Document 1, the steel plates formed in a U-shape are butted together and welded together to form a hollow material integrally. An energy absorbing member having a tapered shape that becomes narrower is actually used.
[0011]
Such a taper-shaped energy absorbing member has a structure where the root becomes thick with respect to the collision load from the front surface, and in terms of the secondary moment of section, the entire outer wall 41 has the same outer diameter as compared to the case where the outer peripheral wall 41 has the same outer diameter. Buckling is less likely to occur. For this reason, when a large load is applied to the hollow material in the axial direction, the hollow material can be deformed in a bellows shape in the axial direction without being damaged or scattered, thereby improving the performance of absorbing load energy. it can. Moreover, even if the collision load is input at an angle slightly inclined with respect to the length direction, there is an advantage that load energy absorption performance can be easily secured.
[0012]
[Problems to be solved by the invention]
However, when the energy absorbing member 40 as described in Patent Document 1 is to be manufactured using an aluminum alloy, the manufacturing itself is difficult. That is, the energy absorbing member 40 as in Patent Document 1 has a closed cross section having a front wall 42 on the front side of the vehicle body, and further has a HAT-type hollow shape integrally having a flange 43 extending outward on the rear side. Therefore, whether the aluminum alloy hollow shape material is used as the starting material or the aluminum alloy plate material is used as the starting material, the tapered body is manufactured by pressing or machining, and the flange 43 is manufactured integrally. It is very difficult to do. In addition, there is a problem that the processing process becomes very complicated or complicated and is not economical.
[0013]
And among the aluminum alloys, such as the 7000 series aluminum alloy having high strength and small elongation, the press working or machining is relatively difficult, and when the tapered body portion and the flange 43 are provided integrally, It tends to cause rough skin such as cracks and micro cracks. Furthermore, depending on the conditions of pressing or machining, the remaining elongation may remain in the deformed portion.
[0014]
If these cracks, rough skin, or residual elongation exists in the deformed portion and its periphery, the crushing strength of the deformed portion and its peripheral portion is significantly reduced. For this reason, the deformed portion is not easily collapsed when a large load is applied as in the case of a vehicle collision, but is easily collapsed when a smaller load is applied (a starting point of collapse), and the energy absorption performance is significantly reduced. On the other hand, pressing or machining so as to eliminate these cracks, rough skin, or residual elongation leads to the complexity and complexity of the processing steps described above.
[0015]
For this reason, it is difficult to integrally manufacture the energy absorbing member as in Patent Document 1 including its flange, and the tapered body portion and the flange 43 are separately manufactured, welded, etc. It must be joined with. However, when integrated by welding, the number of parts and joints increase, so that a reduction in joint strength and a reduction in collision energy absorption performance associated therewith become a problem. For this reason, it is necessary to devise a joining method for preventing the joint strength from being lowered, and there is a practical problem that it becomes more complicated regardless of welding or mechanical joining.
[0016]
As a result, it is difficult to produce a tapered energy absorbing member with an aluminum alloy material, and the actual embodiment has to be the above-described integrated hollow material by welding using a steel plate forming material.
[0017]
Accordingly, an object of the present invention is to provide an aluminum alloy energy absorbing member for a vehicle body that is integrally provided with a tapered shape of a body portion, and further a flange for joining, etc., without degrading energy absorbing performance. Is.
[0018]
[Means for Solving the Problems]
  In order to achieve this object, the gist of the energy absorbing member for a vehicle body of the present invention is made of an aluminum alloy extruded hollow material, and is bonded to the vehicle body member so that the axial direction of the hollow material is the load application direction, An energy absorbing member that absorbs load energy by crushing and deforming in the axial direction of the hollow material when added, and has a tapered shape in which the outer diameter of the hollow material increases toward the rear side in the axial direction with respect to the load. Is formed by expanding the diameter of the hollow material by electromagnetic forming, and at the end in the axial direction of the hollow material, there is a flange that has a joint surface shape that matches the joint surface shape of the vehicle body member and spreads outward This flange is formed by expanding the end of the hollow material axial direction by electromagnetic forming.Pressed against the molding surface,This flange is formed integrally with the hollow material.The surface opposite to the surface pressed against the mold is a bonding surface,It is joining with the said vehicle body member.
[0019]
As described above, the aluminum alloy energy absorbing member having a tapered body shape as in the present invention has a structure in which the root becomes thick with respect to the collision load from the front surface. Compared to when the diameters are the same, the overall buckling is less likely to occur. For this reason, when a large load is applied to the hollow material in the axial direction, the hollow material can be deformed in a bellows shape in the axial direction without being damaged or scattered, thereby improving the performance of absorbing load energy. it can. Moreover, even if the collision load is input at an angle slightly inclined with respect to the length direction, there is an advantage that load energy absorption performance can be easily secured.
[0020]
  Further, in the present invention, a tapered body shapeAnd contactThe combined flange is formed integrally with the hollow member by expanding the diameter of the aluminum alloy hollow member itself by electromagnetic forming. As described later, electromagnetic forming forms a material (hollow material) by ultra-high-speed deformation of the forming material by electromagnetic force. For this reason, unlike press working or machining with a slow deformation speed, the above-described cracking, rough skin, or residual elongation is less likely to occur when forming a tapered body shape or forming a joining flange. Moreover, since the formation of the tapered body portion and the flange for joining can be formed integrally, the above-described problem of securing the joint strength at the joint portion in the divided structure can be solved.
[0021]
  Also, since electromagnetic forming is an ultra-high-speed deformation caused by strong electromagnetic force, the tapered body shapeAnd contactEven if these flanges have complicated shapes, they can basically be formed by a single molding process. For this reason, there is no problem that the machining process becomes complicated, such as pressing or machining, or the number of parts increases and becomes complicated.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the energy absorbing member of the present invention will be specifically described. 1 to 7 are perspective views showing embodiments of the energy absorbing member of the present invention.
[0023]
First, in FIGS. 1 to 4, FIGS. 1 (a), 2 (a), and 3 (a) show an aluminum alloy hollow material 7a that is a circular tube (a cross section is circular) as a material, and FIG. a) shows an aluminum alloy hollow material 7b having a rectangular cross-section tubular shape (a cross section having a mouth-shaped tubular shape) as a material.
[0024]
  FIG. 1 (b), FIG. 2 (b), and FIG. 3 (b) show tapered energy-absorbing members 1a, 1c, and 1e of the present invention in which the diameter of the tubular aluminum alloy hollow material 7a is expanded by electromagnetic forming.(However, the end flange is not formed). The energy absorbing member 1a has a circular outer shape, 1c has a hexagonal polygonal shape, and 1e has a rectangular outer shape.
[0025]
  FIG. 4 (b) shows the tapered energy-absorbing member 1g of the present invention, in which the aluminum alloy hollow material 7b having a rectangular cross section is expanded by electromagnetic forming.(However, the end flange is not formed). The same outer shape of the energy absorbing member 1g as that of the energy absorbing member 1a in FIG. Thus, the advantage of electromagnetic forming is that a hollow material having a different cross-sectional shape, such as a circular tube, can be easily formed from a hollow material having a rectangular cross-section tubular material.
[0026]
Each of these energy absorbing members has a structure in which the base becomes thicker with respect to the collision load from the front surface, and the outer diameter of the hollow material in the axial direction with respect to the collision load direction indicated by F1, respectively, Each has a tapered shape (tapered body) that gradually increases in thickness toward the rear side, in other words, gradually decreases toward the front side with respect to the load direction.
[0027]
In the case of a bumper stay or an energy absorbing member, as will be described later, it is supported in the axial direction by the vehicle body member at both axial end portions 3a, 3b of the hollow member 3 or the flanges 2a, 2b. In the case of such a use mode, the tapered energy absorbing member is entirely in comparison with the hollow material having the same outer diameter in terms of the secondary moment from the point of view of the secondary moment with respect to the collision load from the front surface. Buckling is less likely to occur and load energy absorption performance can be increased. Moreover, even if the collision load is input at an angle slightly inclined with respect to the length direction, it is easy to ensure load energy absorption performance.
[0028]
Moreover, in the present invention, these tapered body shapes are formed by expanding the diameter of the aluminum alloy hollow shape material itself by electromagnetic forming. For this reason, unlike press working or machining with a slow deformation speed, when forming a tapered body shape or forming a joining flange, the aforementioned energy absorption performance is reduced, cracks, rough skin, or residual There is little elongation.
[0029]
FIG. 1 (c), FIG. 2 (c), FIG. 3 (c), and FIG. 4 (c) show the shafts (of the hollow profile 3) of the tapered energy-absorbing members 1a, 1c, 1e, and 1g of the present invention. Flanges 2a and 2b for joining to vehicle body members are formed at both ends in the direction (3a and 3b in FIGS. 1 (b), 2 (b), 3 (b), and 4 (c)). An embodiment is shown. The formation of the joining flange is not necessarily provided at both ends in the axial direction of the energy absorbing member, but only one of them may be provided, and the point is appropriately selected according to the use conditions of the energy absorbing member. Note that the circles provided at intervals in the circumferential direction of the flanges 2a and 2b indicate bolt holes for mechanical joining or protrusions for reinforcing the flange.
[0030]
As will be described later, these flanges 2a and 2b are formed at the same time as the taper is formed by electromagnetic forming. Simultaneously with the taper formation, both ends in the axial direction of each aluminum alloy hollow material 7 as a material are expanded by electromagnetic forming. Can be formed integrally.
[0031]
Although there is a means for forming the flanges 2a and 2b by press working or machining, there is also a problem that is not practical because the working process becomes very complicated or complicated as described above. In addition, there is a high possibility that the above-described cracking, rough skin, or residual elongation that reduces energy absorption occurs during processing. Further, when the flanges 2a and 2b are separately manufactured and joined by welding or the like, the number of parts and joints are increased, so that the joint strength is lowered and the impact energy absorption performance is lowered accordingly.
[0032]
1 (c), FIG. 2 (c), FIG. 3 (c), and FIG. 4 (c), the surface of the flange (3) ) Is a flat (flat) shape in which circular flanges 2a and 2b are formed.
[0033]
Such a flange integrally formed with the hollow member 3 has remarkably higher bonding strength and higher energy absorption performance of each energy absorbing member 1 itself than the separately joined flange. Further, the energy absorbing member 1 and the other vehicle body member can be directly joined while increasing the joining area. Therefore, compared to the conventional method in which the flange is manufactured separately and the end of the energy absorbing member, the end of the vehicle body member on the joining side, and the end of the flange are joined separately, the joint strength of both Can be greatly increased. As a result, even when the energy absorbing member 1 is actually installed, it is possible to improve load energy absorbing performance due to axial crushing deformation when a large load is applied in the axial direction. Moreover, the complexity of joining with other vehicle body members can be eliminated.
[0034]
According to electromagnetic forming, the shape of the flanges 2a and 2b conforming to the shape of the joint surface of another vehicle body member to which the energy absorbing member 1a is joined or the shape of the joint surface of the vehicle body member flange can be freely molded. . For example, in Fig. 1 (c), Fig. 2 (c), Fig. 3 (c), and Fig. 4 (c), the flat surface (joint surface) shape on the body member side or the flat flange surface (joint surface) shape The above-mentioned surface is formed in the circular flange which spreads flatly.
[0035]
In this regard, if the shape of the joint surface of other body members or the joint surface of the body member flange is a curved surface shape or a flat shape that is tilted at an angle rather than a vertical direction, the aluminum alloy hollow material The flange joint surface shape can also be a curved surface shape or a shape that rises obliquely so as to conform to this.
[0036]
Here, the cross-sectional shape of the material aluminum alloy hollow material 7 and the cross-sectional shape as the energy absorbing member 1 are appropriately selected depending on the vehicle body use site and the usage mode as the energy absorbing member. However, the taper shape and the flange need to have a cross-sectional shape that can be formed by expanding the hollow material 7 by electromagnetic forming.
[0037]
That is, the rectangular cross-section tubular aluminum alloy hollow material 7b that is the material of FIG. 4 (a), the tapered energy absorbing members 1c and 1e of FIGS. 2 (b) and 3 (b), etc. In the shape or outer shape, if the corner R (angle) of the corner is too small, cracks are likely to occur at the corner when the diameter of the hollow material 3 is increased by electromagnetic forming.
[0038]
In this regard, if electromagnetic forming is possible, for example, a rectangular shape, a polygonal shape, a circular shape, an elliptical shape, or any other irregular shape that does not have a corner with a small corner R (angle) other than a circular tube. In addition to hollow materials or closed cross-sections, open-section C-shaped or U-shaped hollow shapes can also be included.
[0039]
Next, the embodiment of the energy absorbing member of the present invention shown in FIGS. 5, 6 and 7 has a convex portion that becomes a starting point of crushing when a large load such as a collision load is applied to a part of the surface of the energy absorbing member 1 (hollow material 3). In addition, a deformed portion such as a concave portion or a hole is provided.
[0040]
These deformed portions are also preferably formed integrally with the hollow material by electromagnetic forming. In the formation of the deformed portion by electromagnetic forming, as described above, unlike the formation of the deformed portion by pressing or machining with a slow deformation speed, the cracks described above are formed in the deformed portion such as a convex portion, a concave portion, and a hole, and the periphery thereof. It is less likely to cause rough skin or residual elongation.
[0041]
  The energy absorbing member 1i in FIG. 5 has a convex portion (on the surface of the aluminum alloy hollow material 3 of the tapered circular tube having the hollow portion 6 in the same manner as the energy absorbing member in FIGS. 1 (b) and 4 (b). (Protrusions) 4a, 4b are provided(However, the end flange is not formed). These convex portions (protrusions) 4a and 4b are arranged in the circumferential direction of the surface of the hollow material 3, for example, six at 60 ° intervals and four at 90 ° intervals from the center of the cross-section circle (hollow material axis). These are deformed portions provided as appropriate.
[0042]
In order to provide these deformed parts with the flanges provided at both ends by electromagnetic forming without interference during molding, and to use them as the starting point of crushing when a heavy load is applied, the length from the front surface of the hollow material 3 must be The hollow material 3 is preferably provided at a position that is about 2/3 of the axial length.
[0043]
When the energy absorbing member 1i in FIG. 5 is arranged substantially horizontally so as to extend in a direction substantially parallel to the load direction at the time of a vehicle collision, such as a bumper stay or an energy absorbing member, for example, the convex portion 4a 4b is the starting point of the crushing deformation. In other words, the convex portions 4a, 4b, etc. are formed so that the hollow material 3 is moved outward when a heavy load is applied to the axial end portion 3a on the load side (front side) of the hollow material 3 from the direction F1 at the time of a vehicle collision. Therefore, the energy absorbing member 1i (hollow material 3) serves as a starting point for the axial crushing deformation. Then, the energy absorbing performance in the axial direction of the energy absorbing member 1i is enhanced. The starting point effect of these crushing deformations is the same not only in the convex or protruding deformed portions but also in the concave or hole deformed portions described later.
[0044]
Further, in FIGS. 6 and 7, the basic structure of the energy absorbing member is the same as that of the energy absorbing member 1i of FIG. 5, and the shape of the deformed portion such as the convex portion, the concave portion, and the hole on the surface of the hollow material 3 is variously changed. Each embodiment is shown. In addition, the shape of the deformed portion such as the convex portion, the concave portion, and the hole in the present invention and the way to provide the hollow material 3 on the surface are not limited to the following modes. It is suitably selected according to the usage mode and part of the member.
[0045]
In addition, the energy absorbing members of FIGS. 6 and 7 are the tapered energy absorbing members 1a, 1c, and 1e of the present invention shown in FIGS. 1 (c), 2 (c), 3 (c), and 4 (c). In the same manner as 1g, a mode is shown in which flanges 2a and 2b for joining to a vehicle body member are formed at both ends of the hollow member 3 in the axial direction. The flanges for joining with these vehicle body members do not necessarily need to be provided at both ends in the axial direction of the hollow shape member, depending on the usage, and may be provided only on one side.
[0046]
  Among these, FIGS. 6 (a), (b) and (c) show an example in which a convex portion (projection) 4 is provided. In the energy absorbing member 1j in FIG. 6 (a), as in FIG. 5, the surface of the hollow material 3 is symmetrical in the circumferential direction.ConvexPortions 4a and 4b are provided. In the energy absorbing member 1k in FIG. 6 (b), two convex portions are arranged in two rows in the axial direction symmetrically in the circumferential direction of the surface of the hollow material 3, and a total of four convex portions 4c, 4d, 4e, 4f are provided. ing. In the energy absorbing member 1l in FIG. 6 (c), the length of the axial direction is long and symmetrical with respect to the circumferential direction of the surface of the hollow material 3.ConvexParts 4g and 4h are provided.
[0047]
In addition, along the circumference of the surface of the hollow material, spiral convex portions, ring-shaped convex portions, convex portions crossing each other in an X shape, convex portions having a relatively long axial length, and the like are spaced apart. A plurality of openings may be provided.
[0048]
Further, the energy absorbing member of FIG. 7 shows an example in which a recess or a through hole is provided on the surface of the hollow material 3. In the energy absorbing member 1m of FIG. 7 (a), a plurality of recesses or through-holes 5a, 5b are provided at intervals along the circumference of the surface of the hollow material 3. The energy absorbing member 1n shown in FIG. 7 (b) is provided with two recesses or through-holes 5c, 5d, 5e, and 5f in total, two in the circumferential direction on the surface of the hollow material 3 and two in the axial direction. ing.
[0049]
The modes of FIGS. 7 (a) and 7 (b) can be said to be a mode in which through holes are provided instead of the convex portions of FIGS. 6 (a) and 6 (b). In this regard, instead of providing the convex portion, a concave portion or a through hole may be provided, or these convex portion, concave portion and through hole may be provided in combination.
[0050]
Next, the taper shape of the hollow material 3 is actually formed, and further, the flanges at both ends of the hollow material and the deformed portions such as the above-mentioned convex portions, concave portions, and holes on the surface of the hollow material are integrally formed in the hollow material. The electromagnetic forming method will be described below.
[0051]
First, in electromagnetic forming itself, electric energy (charge) stored at a high voltage is instantaneously applied (discharged) to a current-carrying coil to form a strong magnetic field for a very short time. The work placed on the workpiece (workpiece, metal member) is subjected to strong expansion force and contraction force due to the repulsive force of the magnetic field (Lorentz force according to Fleming's left-hand rule) and plastic deformation is performed at high speed. This is a technique for plastic working or forming a workpiece into a predetermined shape.
[0052]
This electromagnetic forming is intended for forming metal members such as metal plates and pipes that are highly conductive and easily generate eddy currents, such as plate forming, tube expansion, tube contraction, and tube ends. Promising for molding. In particular, an aluminum alloy is a good electrical conductor and is a material suitable for this electromagnetic forming.
[0053]
FIG. 8 is a sectional view showing a mode in which the tapered shape of the hollow material 3, the flanges at both ends of the hollow material, and the deformed portions such as the convex portions, the concave portions, and the holes on the surface of the hollow material are simultaneously provided by electromagnetic forming.
[0054]
Here, FIGS. 8 (a) and 8 (b) show the tapered shape of the hollow material 3, and the protrusions 4a and 4b and FIG. 8 (c) shown in FIG. A mode is shown in which the through holes 5a shown in Fig. 1 are provided simultaneously by electromagnetic forming together with the flanges 2a and 2b at both ends of the hollow material.
[0055]
In FIGS. 8 (a) and (b), 28, 29, and 30 are dies, and a space-like (gap-like) molding surface 31 for forming convex portions 4a and 4b on the surface of the aluminum alloy hollow material 3 or A concave molding surface 30c is provided. These molds 28, 29, and 30 are formed so that the hollow material 3 having the same diameter in the axial direction forms a tapered shape that becomes thicker toward the right side of the figure. The opposing mold forming surfaces are formed so as to be inclined (as inclined surfaces) so that the distance between the opposing mold forming surfaces increases gradually toward the right side of the figure. The same applies to the mold 32 in FIG. 8 (c).
[0056]
Further, these molds 28, 29 and 30 are formed with circular flanges 2a and 2b which rise at a substantially right angle to the outside of the hollow material 3 at both ends of the hollow material 3 and have a flat surface. For this purpose, it has flat molding surfaces 29a and 30b that rise vertically.
[0057]
Here, in FIGS. 8 (a) and 8 (b), one of the profile end molding surfaces 28a and 30a of the molds 28, 29, and 30 is not vertical but is a flat molding surface that rises obliquely at a certain angle. It has become. As described above, this corresponds to the case where the shape of the joint surface of the other vehicle body member or the flange joint surface is not vertical but rises diagonally, and is not perpendicular to the hollow material 3 but at a certain angle. This is to create an inclined flange 2a that rises diagonally.
[0058]
8 (a) and 8 (b), the procedure for electromagnetic forming is as follows. First, an aluminum alloy material hollow material 7a (material hollow material 7a in FIG. 1) is set in the molds 28, 29, and 30. That is, the energizing coil 25 is inserted into the tube of the hollow material 3 from the end side (right side in the figure) of the hollow material 7a. Then, electric energy stored at a high voltage in an impact current generator (not shown) is instantaneously supplied to the energizing coil 25 through several tens kJ (several hundred μF, several tens kV), a capacitor 27, and a connection 26. A very strong magnetic field for a very short time is formed between the inclined molding surfaces of the opposing molds, both pipe ends, and the space (gap) molding surface 31 and the concave molding surface 30c.
[0059]
As a result, the hollow material 7a having the same diameter in the axial direction is expanded outward in the axial direction and pressed against the inclined molding surface (tapered molding surface) of the opposing mold with a strong force. As a result, the outer shape (indicated by a dotted line) of the tapered hollow material 3 whose outer diameter (diameter) gradually increases as it goes to the right side of the figure is formed.
[0060]
In addition, the taper shape is not only a linearly inclined shape whose diameter increases in the axial direction (to the right in the figure) of the hollow material 3, but is also convex outward or concave inward. The diameter-increasing taper shape is appropriately selected such that the diameter is increased by inclining in a curved line, or the diameter is increased stepwise or stepwise. These diameter-expanded taper shapes can be formed by forming the inclined molding surface of the mold into a shape corresponding to the desired diameter-expanded taper shape.
[0061]
Simultaneously with the forming of the tapered shape of the hollow portion of the hollow member, the convex portions 4a and 4b of the hollow member 3 are expanded in diameter into the gap-shaped molding surface 31 and the concave molding surface 30c of the mold, and the convex portion 4a , 4b is formed. At the same time, the diameters of the hollow material end portions 3a and 3b are expanded in the circumferential (outward) direction of the hollow material 3. The enlarged end portions 3a, 3b are pressed against the molding surfaces of the molds 28, 29, 30 with a strong force, and the flanges 2a, 2b are formed at the end portions of the hollow material 3.
[0062]
Although not shown, when a recess is formed as the deformed portion, a pipe having a shape corresponding to the recess is provided close to the surface portion of the hollow material forming the recess and used for caulking or the like. The concave portion is formed by reduced-tube electromagnetic forming that reduces the diameter.
[0063]
Next, the procedure for electromagnetic forming is the same in FIG. 8 (c). That is, the hollow material 3 having the same diameter in the axial direction is expanded outward in the axial direction, pressed against the inclined molding surface (tapered molding surface) of the opposing mold, and formed on the right side of the figure. A taper-shaped outer shape is formed which gradually increases in thickness as indicated by (indicated by a dotted line). However, in the case of FIG. 8 (c), the portion corresponding to the through hole of the hollow material 3 whose diameter has been expanded by the gap-shaped molding surface 33 of the mold 32 is the ring-shaped protrusion 32a at the tip of the gap-shaped molding surface 33. It collides and is punched in accordance with the contour shape of the ring-shaped protrusion 32a to form the through holes 5a and 5b. In the case of FIG. 8 (c), both flanges 2a, 2b at the end of the hollow material 3 are formed so as to rise vertically as shown in FIG. 7 (a).
[0064]
As described above, the aspect in which the tapered shape of the hollow material 3, the flanges at both ends of the hollow material, and the deformed portion of the hollow material surface are simultaneously provided by electromagnetic forming has been shown. However, as an integrated mode in which the molds are provided at the same time, the coils having a shape (length) corresponding to each molding site may be used, and these may be provided separately or sequentially. Alternatively, the mold may be divided separately corresponding to each molding site, and a coil having a shape (length) corresponding to each molding site may be used, and these may be provided separately or sequentially.
[0065]
Here, if the mating body member joining surface has a curved surface shape such as a saddle shape, the flanges at both ends of the hollow material are also curved according to the curved shape. For example, a flange whose surface (bonding surface) has a curved shape such as a saddle shape is formed by changing the shape of the molding surface 28a, 29b, 30a, 30b, etc. of the mold to an appropriate curved shape such as a saddle shape. it can. Further, a shape that is flat but inclined at an angle rather than in the vertical direction can be formed by inclining the molding surface of the mold with respect to the hollow material 3 at an angle instead of a right angle.
[0066]
Note that protrusions or ribs for reinforcing the flanges may be provided on the joint surfaces of the flanges, the back surface of the joint surfaces, or the like. By providing protrusions or ribs appropriately on the flange in a radial or concentric manner, the flange is reinforced. These protrusions or ribs can be easily electromagnetically formed by providing corresponding concave shapes on the molding surface of the mold. In this respect, a substantially parallel enlarged diameter portion or a tapered enlarged diameter portion may be further formed on the rear surface side of the formed flange and connected to the straight portion. By forming such an enlarged diameter portion on the rear surface side of the flange, the strength of the flange joint can be further increased. The method of providing this enlarged diameter portion can be easily controlled by adjusting the clearance between the mold and the outer diameter of the aluminum alloy hollow material.
[0067]
In these electromagnetic forming, when the end of an aluminum alloy hollow material having a relatively large diameter of 3 mm or more and a relatively large diameter of 50 mmΦ or more, such as an energy absorbing member, is subjected to pipe expansion molding, the outside of the expanded end In order to press the surface against the mold surface and form a deformed portion or a flange at the end of the aluminum alloy hollow material 3, the amount of input electric energy is preferably as large as possible, for example, 8 kJ or more.
[0068]
Incidentally, while inserting a coil into such an aluminum alloy tube end, a mold forming surface is provided close to the outside of the tube end, and electric energy is input to the coil to expand and deform the tube end. The technology to form a trumpet-shaped flange that spreads outward by pressing the outer surface side of the deformed tube end against the mold forming surface is Toshio Sano et al., “Plasticity using electromagnetic force” Processing Research "," Mechanical Technology Research Institute Report No. 150 ", published by the Mechanical Technology Research Institute in March 1990 (Chapter 6 Pipe End Molding, pp. 62-68), etc. Patent Document 1).
[0069]
However, the energy absorbing member as the object of the present invention is an aluminum alloy hollow material having a relatively thick wall of 3 mm or more and a relatively large diameter of 50 mmΦ or more. The forming of such a relatively thick and relatively large diameter aluminum alloy tube end portion is extremely difficult to form electromagnetically compared to the tube forming method for reducing the tube diameter used for caulking or the like. It was recognized and was not put into practical use until now. Also in Non-Patent Document 1, it is recognized that it is difficult to expand or form a tube by electromagnetic forming at the end of a relatively thick aluminum alloy hollow material having a relatively large diameter. The main reason for this is that the amount of input electric energy has to be reduced due to hardware restrictions such as a coil.
[0070]
Next, one usage mode when the energy absorbing member of the present invention is used for a bumper module in a vehicle body will be described with reference to FIGS. Figure 9 shows the bumper structure in front view. In FIG. 9, first, 10 is a bumper cover, 11 is an impact absorbing material appropriately configured with foamed foam material, 12 is a bumper reinforcement, 13 is a stay, 14 is a vehicle body side member, and 1i is the tapered energy of the present invention. Fig. 6 is an absorbent member (the embodiment of Fig. 6 (a)). These members are arranged in the order of description in the longitudinal direction of the vehicle body (the left side in the figure is the front).
[0071]
The rear flange surface 16a of the bumper reinforcement 12 and the front flange 13a of the stay 13, the rear flange 13b of the stay 13 and the front flange 2a of the energy absorbing member 1i, the rear flange 2b of the energy absorbing member 1i, and the front surface of the side member 14 The flanges 14a are joined to each other by means of welding or mechanical coupling means 20 such as bolts, nuts, rivets or the like.
[0072]
The bumper reinforcing member 12 includes, for example, a front flange 15 and a rear flange 16 that are provided substantially in parallel in the longitudinal direction of the vehicle body, and left and right webs 17 and 18 that are provided substantially in parallel to connect the flanges. It is composed of an integral aluminum alloy hollow extruded profile. The bumper reinforcing material 12 may be a steel hollow material, but it is preferable from the viewpoint of weight reduction that it is made of an aluminum alloy hollow material and also an aluminum alloy hollow extruded shape. Reference numeral 19 denotes a reinforcing middle rib that is selectively provided, and has a substantially rectangular shape with a cross-sectional shape of a sun.
[0073]
Similarly to the energy absorbing member 1i, the stay 13 is made of an aluminum alloy hollow material. When the flanges 13a and 13b are integrally formed at the end of the stay by electromagnetic forming, the energy of the present invention is substantially reduced. It becomes an absorbing member. In the present invention, the stay 13 may be a conventional aluminum alloy hollow material or steel stay. Further, the stay 13 may be an aspect of the energy absorbing member of the present invention, and the energy absorbing member 1i may be omitted.
[0074]
Furthermore, since the side member 14 requires particularly high strength, it is preferable that the side member 14 is made of steel as usual. For this reason, it is preferable that the front flange 14a is also a steel flange integrated with the end of the side member 14 by welding as usual.
[0075]
In the embodiment of the present invention in FIG. 9, the energy absorbing member 1i has an axial direction relative to the collision load direction from the left side of the figure (front of the vehicle body) so that the base becomes thicker with respect to the collision load from the front surface. Each of the hollow materials has a tapered shape in which the outer diameter gradually increases toward the rear side with respect to the load direction. For this reason, the load energy absorption performance can be enhanced in terms of the moment of inertia of the cross section with respect to the collision load from the front surface. Moreover, even if the collision load is input at an angle slightly inclined with respect to the length direction, the load energy absorption performance can be ensured.
[0076]
Further, the flanges 2a and 2b of the energy absorbing member 1i have a flat shape that rises vertically corresponding to the shape of the rear flange 13b of the stay 13 and the front flange 14a of the side member 14. The hollow material 3 is integrally formed. For this reason, the energy absorbing member 1i and the stay 13 and the side member 14, which are other vehicle body members, can be directly joined through the respective flanges while increasing the joining area. Therefore, it is possible to significantly increase the joining strength of the energy absorbing member 1i as compared with the conventional method in which these flanges are manufactured separately and joined separately. Further, the energy absorbing member 1i has convex portions 4a and 4b that are the starting points of the crushing deformation.
[0077]
As a result, the load energy transmitted from the front of the vehicle body through the bumper cover 10 in the axial direction (vehicle longitudinal direction) at the time of the vehicle collision is crushed and deformed in the axial direction of the stay 13 and in the axial direction of the energy absorbing member 1i. Due to the deformation, the energy absorption performance can be greatly improved. Further, since it can be directly joined to other vehicle body members via the flange of the energy absorbing member 1i, even if only the energy absorbing member 1i is broken due to the crushing deformation at the time of the vehicle body collision, only the energy absorbing member 1i is attached. It can be easily removed and a new energy absorbing member can be easily attached. These effects can be applied to the stay 13 when the stay 13 is an energy absorbing member.
[0078]
FIG. 10 is a plan view showing only the main part of the bumper structure of FIG. However, in FIG. 10, the bumper reinforcing member 12 has both end portions 12a and 12b which are not linear in the longitudinal direction (vehicle width direction) as shown in FIG. For this reason, the two stays 13 for supporting the bumper reinforcing material 12 are arranged at intervals on the rear surfaces of both end portions 12a and 12b inclined to the rear side of the vehicle body of the bumper reinforcing material 12, respectively.
[0079]
Therefore, each front flange 13a of the stay 23 has a flat shape inclined in each direction in accordance with the shape of the rear surface of both end portions 12a, 12b of the bumper reinforcing member 12. Then, the bumper reinforcing material 1 is supported from the rear surface side in the vehicle front-rear direction via the front flange 13a with the tube axis direction (hollow profile shaft direction) as the vehicle front-rear direction (horizontal direction).
[0080]
When the front flange 13a needs to have such an inclined shape that is difficult to form normally, the stay 13 is made of an aluminum alloy hollow material as in the case of the energy absorbing member 1i of the present invention. It is advantageous to integrally form the flange 13a and the rear flange 13b at the stay end by electromagnetic forming. The structure of each member and the connection structure other than this are the same as those in FIG.
[0081]
  As an aluminum alloy that satisfies the required characteristics as the energy absorbing member (hollow material) of the present invention, the AA to JIS 5000 series, 6000 series, 7000 series, etc. It is a high general-purpose alloy that is selected from tempered aluminum alloys. However, among them, in particular, Al-Zn-Mg-based or Al-Zn-Mg-Cu-based 7000-based aluminum alloy extruded hollow shapes, which have tempering such as T5, T6, T7 (especially artificial aging) (Treated) aluminum alloy extruded hollow profile is preferredYes.
[0082]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the aluminum alloy energy absorption member for vehicle bodies which provided the taper shape or the flange for joining integrally, etc. can be provided, without reducing energy absorption performance. For this reason, the weight reduction of an energy absorption member and the vehicle body itself can be accelerated | stimulated, and the use of an aluminum alloy material further expands, and industrial value is great.
[Brief description of the drawings]
FIG. 1 shows an embodiment of the energy absorbing member of the present invention, FIG. 1 (a) is a material tubular hollow material, FIG. 1 (b) is a circular tubular energy absorbing member, and FIG. 1 (c) is a flanged circular tube. It is a perspective view which shows each energy absorption member.
2 shows another embodiment of the energy absorbing member of the present invention, FIG. 2 (a) is a material circular hollow material, FIG. 2 (b) is a polygonal energy absorbing member, and FIG. 2 (c) is a flanged multi member. It is a perspective view which shows each square energy absorption member.
3 shows another embodiment of the energy absorbing member of the present invention, FIG. 3 (a) is a material tubular hollow material, FIG. 1 (b) is a rectangular energy absorbing member, and FIG. 1 (c) is a rectangular energy with flange. It is a perspective view which shows each absorption member.
FIG. 4 shows another embodiment of the energy absorbing member of the present invention, FIG. 3 (a) is a rectangular hollow material, FIG. 1 (b) is a circular energy absorbing member, and FIG. 1 (c) is a flanged circle. It is a perspective view which shows each tubular energy absorption member.
FIG. 5 is a perspective view showing another embodiment of the circular tubular energy absorbing member of the present invention and showing an embodiment provided with a deformed portion.
6 shows another embodiment of the flanged tubular energy absorbing member of the present invention, and FIGS. 6 (a), 6 (b), and 6 (c) are perspective views showing an embodiment in which different deformation portions are provided. FIG. .
FIG. 7 shows another embodiment of the flanged tubular energy absorbing member of the present invention, and FIGS. 7 (a) and 7 (b) are perspective views showing an embodiment in which different deformation portions are provided.
FIGS. 8A, 8B, and 8C are cross-sectional views showing a mode in which different flanges and deformed portions are provided, respectively, illustrating a mode of manufacturing the energy absorbing member of the present invention by electromagnetic forming. FIGS.
FIG. 9 is a front view showing a usage mode of the energy absorbing member of the present invention for a bumper.
FIG. 10 is a plan view showing a usage mode of the energy absorbing member of the present invention for a bumper.
FIG. 11 is a perspective view showing a conventional tapered automobile energy absorbing member.
[Explanation of symbols]
1: energy absorbing member, 2: flange, 3: hollow material, 4: convex part, 5: hole,
6: Hollow part, 7: Material hollow shape,

Claims (4)

アルミニウム合金押出中空材からなり、中空材の軸方向が荷重付加方向となるように車体部材に接合された上で、荷重付加時に中空材軸方向に圧壊変形して、荷重エネルギーを吸収するエネルギー吸収部材であって、中空材の外径が前記荷重に対する軸方向の後方側ほど太くなるテーパー形状を有し、このテーパー形状が電磁成形による中空材の拡径にて形成されているとともに、前記中空材軸方向の端部に、前記車体部材の接合面形状と適合する接合面形状を有して外方に広がるフランジが形成され、このフランジは前記中空材軸方向の端部が電磁成形により拡径されて金型成形面に押圧され、前記中空材と一体に形成されたものであり、このフランジの前記金型に押圧した表面とは反対側の表面を接合面として、前記車体部材と接合されることを特徴とする車体用エネルギー吸収部材。Energy absorption that consists of an aluminum alloy extruded hollow material and is joined to the body member so that the axial direction of the hollow material becomes the load application direction, and then collapses in the axial direction of the hollow material when a load is applied to absorb the load energy The hollow material has a tapered shape in which the outer diameter of the hollow material increases toward the rear side in the axial direction with respect to the load, and the tapered shape is formed by expanding the hollow material by electromagnetic forming, and the hollow At the end in the material axis direction, a flange is formed that has a joint surface shape that matches the shape of the joint surface of the vehicle body member and extends outward. The flange is expanded at the end in the hollow material axis direction by electromagnetic forming. The flange is pressed against the molding surface and formed integrally with the hollow material. The flange is joined to the body member with the surface opposite to the surface pressed against the mold as a joining surface. Is Vehicle body energy absorbing member, characterized in that. 前記中空材表面に、前記荷重付加時に圧壊の起点となる変形部が設けられた請求項1に記載の車体用エネルギー吸収部材。  The vehicle body energy absorbing member according to claim 1, wherein a deformed portion serving as a starting point of collapse when the load is applied is provided on the surface of the hollow material. 前記変形部が電磁成形により設けられた請求項2に記載の車体用エネルギー吸収部材。  The vehicle body energy absorbing member according to claim 2, wherein the deformable portion is provided by electromagnetic forming. 前記エネルギー吸収部材がバンパー内に配置されるものである請求項1乃至3のいずれか1項に記載の車体用エネルギー吸収部材。  The energy absorbing member for a vehicle body according to any one of claims 1 to 3, wherein the energy absorbing member is disposed in a bumper.
JP2002374503A 2002-12-25 2002-12-25 Energy absorption member for car body Expired - Fee Related JP4133302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002374503A JP4133302B2 (en) 2002-12-25 2002-12-25 Energy absorption member for car body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002374503A JP4133302B2 (en) 2002-12-25 2002-12-25 Energy absorption member for car body

Publications (2)

Publication Number Publication Date
JP2004203202A JP2004203202A (en) 2004-07-22
JP4133302B2 true JP4133302B2 (en) 2008-08-13

Family

ID=32812511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002374503A Expired - Fee Related JP4133302B2 (en) 2002-12-25 2002-12-25 Energy absorption member for car body

Country Status (1)

Country Link
JP (1) JP4133302B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112203906A (en) * 2018-05-31 2021-01-08 株式会社Uacj Impact absorbing member

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112006000256B4 (en) 2005-01-28 2015-12-10 Toyota Jidosha Kabushiki Kaisha Vehicle frame structure
JP4562677B2 (en) 2006-03-30 2010-10-13 株式会社神戸製鋼所 Welded structure closed section frame
KR100867841B1 (en) 2006-11-21 2008-11-10 현대자동차주식회사 front body structure for vehicle
JP5130878B2 (en) * 2007-11-19 2013-01-30 トヨタ自動車株式会社 Shock absorbing structure
JP5234324B2 (en) * 2008-03-31 2013-07-10 マツダ株式会社 Vehicle body structure
JP5465849B2 (en) * 2008-07-30 2014-04-09 アイシン精機株式会社 Shock absorber and bumper device for vehicle
JP5322882B2 (en) * 2009-10-13 2013-10-23 株式会社神戸製鋼所 Bumper stay manufacturing method and bumper stay manufacturing method
WO2012040826A1 (en) * 2010-09-28 2012-04-05 Magna International Inc. Scalable crush can for vehicle
KR101494120B1 (en) * 2011-03-30 2015-02-16 신닛테츠스미킨 카부시키카이샤 Metallic hollow column-like member
JP2014004973A (en) * 2012-06-27 2014-01-16 Kojima Press Industry Co Ltd Crash box for vehicle and bumper device for vehicle and impact absorption structure for vehicle
JP6039600B2 (en) * 2014-03-28 2016-12-07 富士重工業株式会社 Shock absorption structure
JP6741337B2 (en) * 2015-06-12 2020-08-19 本田技研工業株式会社 Energy absorber
JP2020078823A (en) 2018-11-14 2020-05-28 株式会社神戸製鋼所 Bead formation method and structure member
CN116495023B (en) * 2023-04-14 2024-03-08 西南交通大学 Foam metal filled bamboo-like sandwich circular tube and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06305444A (en) * 1993-04-23 1994-11-01 Nippon Light Metal Co Ltd Member with expanded part and manufacture thereof
JPH0824969A (en) * 1994-07-07 1996-01-30 Japan Steel Works Ltd:The Electromagnetic forming device for tube expansion and manufacture of tube-like formed product
JP3327030B2 (en) * 1995-01-27 2002-09-24 トヨタ自動車株式会社 Impact energy absorbing device and its mounting structure
DE29703843U1 (en) * 1997-03-04 1997-05-22 Gesellschaft für Innenhochdruckverfahren mbH & Co. KG, 73441 Bopfingen Deformation element
JP2000081069A (en) * 1998-09-05 2000-03-21 Press Kogyo Co Ltd Impact absorbing member for vehicle and its manufacture
JP3830340B2 (en) * 2000-09-12 2006-10-04 株式会社神戸製鋼所 Manufacturing method of bonded structure
JP3847102B2 (en) * 2000-09-12 2006-11-15 株式会社神戸製鋼所 Structural member and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112203906A (en) * 2018-05-31 2021-01-08 株式会社Uacj Impact absorbing member

Also Published As

Publication number Publication date
JP2004203202A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
JP4133302B2 (en) Energy absorption member for car body
US9327664B2 (en) Energy absorbing member, method for producing same, and electromagnetic tube expansion method for rectangular cross-section member and polygon cross-section member
JP2006160260A (en) Energy absorbing member for vehicle body
JP7532719B2 (en) ROCKER STRUCTURE FOR A VEHICLE, METHOD FOR OBTAINING SAME, AND VEHICLE EQUIPPED WITH A ROCKER STRUCTURE - Patent application
WO2011049029A1 (en) Vehicle bumper beam and method for manufacturing same
EP0728607A2 (en) Guard beam for a door of an automotive door structure
US20100219031A1 (en) Impact absorber for vehicle
US8210583B2 (en) Energy absorber device and method of forming same
JP2009519863A (en) Mechanical energy absorption system
JP2008261493A (en) Shock absorbing member and its manufacturing method
JP3863099B2 (en) Bumper, stay, and electromagnetic forming method for forming flange on stay
EP4431372A1 (en) A vehicle structure
JP3939286B2 (en) Manufacturing method of tubular member with flange
JP3863100B2 (en) Energy absorbing member for vehicle body and electromagnetic forming method for forming flange on energy absorbing member for vehicle body
JP5235007B2 (en) Crash box
KR100775806B1 (en) Crash box in automotive bumper system
JP4527613B2 (en) Bumper stay and bumper equipment
JP2012111356A (en) Method for manufacturing energy absorbing structure, and energy absorbing structure
JP5049210B2 (en) Bumper stay
JP4439273B2 (en) Tubular member with flange
JPWO2008012876A1 (en) Shock absorbing member
JP4039032B2 (en) Impact energy absorbing member
KR20220130682A (en) Inflated tube for automobile crash box and manufacturing method thereof
JP4689300B2 (en) Shock absorbing member for vehicle
WO2020085383A1 (en) Automobile frame member and electric automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080416

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4133302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees