JP4108532B2 - Suede-like artificial leather - Google Patents
Suede-like artificial leather Download PDFInfo
- Publication number
- JP4108532B2 JP4108532B2 JP2003134691A JP2003134691A JP4108532B2 JP 4108532 B2 JP4108532 B2 JP 4108532B2 JP 2003134691 A JP2003134691 A JP 2003134691A JP 2003134691 A JP2003134691 A JP 2003134691A JP 4108532 B2 JP4108532 B2 JP 4108532B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- polyester
- suede
- artificial leather
- elastic polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002649 leather substitute Substances 0.000 title claims description 39
- 229920000728 polyester Polymers 0.000 claims description 58
- 229920001410 Microfiber Polymers 0.000 claims description 57
- 239000000835 fiber Substances 0.000 claims description 54
- 229920000642 polymer Polymers 0.000 claims description 54
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 33
- 239000004745 nonwoven fabric Substances 0.000 claims description 23
- 239000002245 particle Substances 0.000 claims description 17
- 239000000377 silicon dioxide Substances 0.000 claims description 14
- 239000012237 artificial material Substances 0.000 claims 1
- 239000010985 leather Substances 0.000 claims 1
- 238000000034 method Methods 0.000 description 35
- 239000004744 fabric Substances 0.000 description 15
- 238000004043 dyeing Methods 0.000 description 13
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 12
- 229920002635 polyurethane Polymers 0.000 description 10
- 239000004814 polyurethane Substances 0.000 description 10
- 238000005299 abrasion Methods 0.000 description 9
- 239000000975 dye Substances 0.000 description 8
- -1 polyethylene terephthalate Polymers 0.000 description 8
- 239000002585 base Substances 0.000 description 7
- 150000002009 diols Chemical class 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- FJQXCDYVZAHXNS-UHFFFAOYSA-N methadone hydrochloride Chemical compound Cl.C=1C=CC=CC=1C(CC(C)N(C)C)(C(=O)CC)C1=CC=CC=C1 FJQXCDYVZAHXNS-UHFFFAOYSA-N 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 6
- 239000003638 chemical reducing agent Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000003658 microfiber Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 238000005886 esterification reaction Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000005345 coagulation Methods 0.000 description 4
- 230000015271 coagulation Effects 0.000 description 4
- 239000000986 disperse dye Substances 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 238000005470 impregnation Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 239000004721 Polyphenylene oxide Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000008119 colloidal silica Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 229920000570 polyether Polymers 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- RYYXDZDBXNUPOG-UHFFFAOYSA-N 4,5,6,7-tetrahydro-1,3-benzothiazole-2,6-diamine;dihydrochloride Chemical compound Cl.Cl.C1C(N)CCC2=C1SC(N)=N2 RYYXDZDBXNUPOG-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004581 coalescence Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000003002 pH adjusting agent Substances 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000003352 sequestering agent Substances 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 239000005061 synthetic rubber Substances 0.000 description 2
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- 244000137852 Petrea volubilis Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- GRWZHXKQBITJKP-UHFFFAOYSA-L dithionite(2-) Chemical compound [O-]S(=O)S([O-])=O GRWZHXKQBITJKP-UHFFFAOYSA-L 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000985 reactive dye Substances 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Landscapes
- Nonwoven Fabrics (AREA)
- Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
- Multicomponent Fibers (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、極細繊維と弾性重合体からなるスエード調人工皮革に関する。よりくわしくは、本発明は、衣料、家具用途、車両シート用途に使用可能な抗ピル性を有し、引き裂き強力に優れた高級な外観およびタッチを有するスエード調人工皮革に関する。
【0002】
【従来の技術】
近年、極細繊維よりなるスエード調人工皮革はソフトなタッチ、風合い、高級な外観を有することから衣料用素材をはじめとして手袋用、靴用および家具用途などに高級素材として採用されている。特にポリエステル極細繊維を使用したスエード調人工皮革は、ソフトな風合いや高級な外観を有する上に、水洗い洗濯が可能などのイージーケア性を兼ね備えている点から幅広く使用されている。
【0003】
一般に、極細繊維と弾性重合体からなるスエード調人工皮革は、柔軟な風合いを有するためには該極細繊維と該弾性重合体の間に空間を必要とする。空間が大きいほどソフトな風合いとなるが、その分該極細繊維が該弾性重合体から素抜けやすくなり、ピリングを生じやすくなる。特に該極細繊維がポリエステル繊維である場合、その染色は一般的には分散染料による高温高圧染色が行われ、その後、還元剤やソーピング剤により該基材中の余剰染料の除去を行なうが、通常、還元処理の際、液を強アルカリ性とするためポリエステルの減量が生じ、弾性重合体との間のみならず極細繊維間にも空間を生じるため、よりピリングを生じやすい。これまで人工皮革を含むスエード調布帛または立毛布帛のピリング性を改良するために種々の方法が試みられてきた。大別して、機械的な処理により繊維表面に凹凸を付与する方法、樹脂変更により繊維強度を低下させる方法および繊維中に微粒子を添加する方法が提案されている。機械的な処理により繊維表面に凹凸を付与する方法としては、織物を粒度♯100〜800の無機粉末からなるセラミックロールに接触させる方法や、分割型複合ポリエステル短繊維よりなる布帛を割繊処理した後、布帛表面を、研磨フィルムを表面に設けた可撓性粗面材で叩打する方法が提案されている(例えば、特許文献1、特許文献2参照)。しかしながら、繊維表面に機械的に凹凸を与える方法は一方で染色した後に繊維表面の乱反射により色の深みが出ないという問題がある。更に原反の強度を低下させる危険性がある。
【0004】
樹脂変更により繊維強度を低下させる方法は、低重合度の樹脂やリン酸エステル結合を含有するポリエステルを使用し繊維物性を低下させた繊維が提案されている(例えば、特許文献3、特許文献4参照)。しかしながら、一般に溶融粘度が低いために紡糸が困難であり、又かろうじて紡糸しても繊維が弱すぎて延伸が不調となるなど製造上の欠点がある。また、原反の機械強度、特に引き裂き強力が著しく低下する問題がある。また、0.02〜0.2デニールの細繊維(A)と(A)の5分の1以下で0.02デニール未満の極細繊維よりなる繊維束からなるスエード調人工皮革が、また、−SC3M(Mはアルカリ金属)を有する化合物が共重合されているポリエチレンテレフタレート(A)のまわりにポリエチレングリコールを1〜13モル%混合したポリエチレンテレフタレート(B)を配してなる複合繊維を使用し織編物にした後成分Bの一部を溶解除去する方法が提案されている(たとえば、特許文献5、特許文献6参照)。しかしながら、いずれも繊維を構成する樹脂および紡糸ノズルに特殊なものを使用する必要があり、高コスト化が避けられない。
【0005】
また、繊維中に微粒子を添加する方法としては、粒子径10〜150ミクロンのシリカを、繊維を構成する重合体に対し0.05〜30質量%含有させる方法が提案されている(特許文献7参照)。しかしながら、上記粒子径範囲では目的とするスエード調人工皮革に使用する極細繊維に対し粒子径が大きく極細繊維を形成しにくい。更に、全エステル結合中0.1〜10%がリン酸エステル結合であり、粒子径80ミリミクロン以下のシリカを0.5〜10質量%含有した共重合ポリエステルであり紡糸、延伸後に熱水又は水蒸気処理および/または該ポリエステル繊維の可溶性あるいは分解性を有する溶媒での処理を行う抗ピル性を有するポリエステル繊維およびその製造方法が提案されている(例えば、特許文献8参照)。しかし該方法は、リン酸エステル結合を有する特殊なポリエステルを用意する必要があり高コスト化につながるものである。また、繊度が0.005dtexより小さく、繊維自体の強度が小さいためピリングになりにくいものであるが、繊維が細いため充分な発色が得られないという欠点がある。また、従来濃色を出すために繊維にカーボンブラックを練り込んだものは公知であるが、白またはベージュやアイボリー等の淡色に染色できるものはこれまで提案されていない。上記のように、これまで特殊な設備や原料を必要とせず、風合いが柔軟で、淡色に染色可能な、家具用途や自動車シート材に使用可能な抗ピル性を有する極細繊維不織布と弾性重合体からなるスエード調人工皮革は提供できていなかった。
【0006】
【特許文献1】
特開平7−097764号公報
【特許文献2】
特開平9−296355号公報
【特許文献3】
特公昭35−8562号公報
【特許文献4】
特開昭50−135331号公報
【特許文献5】
特開平7−173778号公報
【特許文献6】
特開平5−171567号公報
【特許文献7】
特公昭45−39055号公報
【特許文献8】
特開昭55−112313号公報
【0007】
【発明が解決しようとする課題】
本発明は、ポリエステル極細繊維からなる絡合不織布とその内部に含有された弾性重合体からなり、少なくとも片面に該極細繊維の立毛が形成されているスエード調人工皮革において、特別な原料や工程を必要とせずに、家具用途、車両シート用途に使用可能であり、淡色に染色可能な抗ピル性を有するスエード調人工皮革及びその製造方法を提供することを課題とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を達成するために鋭意検討した結果、ポリエステル極細繊維中に該極細繊維径に応じた特定の平均粒子径を持つシリカを適当量含有することにより、家具用途、車両シート用途に使用可能な抗ピル性を有するスエード調人工皮革が得られることを見出して本発明を完成した。
【0009】
すなわち、本発明は、単繊維繊度が0.2〜0.005dtexのポリエステル極細繊維束からなる絡合不織布とその内部に含有された弾性重合体からなり、少なくとも片面に該極細繊維の立毛が形成されているスエード調人工皮革において、該ポリエステル極細繊維が、100nm以下の平均粒子径を有するシリカを0.5〜10質量%含有しており、かつ、該ポリエステル極細繊維の破断強度が2.0〜4.0cN/dtexであることを特徴とするスエード調人工皮革である。
【0010】
【発明の実施の形態】
本発明に用いられるスエード調人工皮革の基体は0.2〜0.005dtexのポリエステル極細繊維からなる不織布に弾性重合体が充填された構成のものである。繊維を構成する樹脂は、ポリエチレンテレフタレート、ポリブチレンテレフタレートおよびそれらに5−スルホナトリウム−イソフタレート等の一般的に公知であるカチオン染色性を付与するための改質剤を共重合またはブレンドしたものであり、それら単独または2種以上をブレンドした極限粘度0.6〜0.7のものである。上記ポリエステル極細繊維の繊度は、0.2〜0.005dtex、好ましくは0.1〜0.01dtexのものである。繊度が0.2dtexより太いと、高級なスエード調の品位のある外観およびソフトな表面タッチは得られない。また、0.01dtexより細いと充分な発色性が得られにくい。
【0011】
また、本発明で用いられるポリエステル極細繊維の破断強度は2.0〜4.0cN/dtexでなければならない。2.0cN/dtexより低いと、スエード調人工皮革の機械強度、特に引き裂き強度において、実用上使用できないものとなる。また、4.0cN/dtexより大きいと繊維が強すぎ、磨耗時ピリングになりやすいものとなる。尚、該スエード調人工皮革中のポリエステル極細繊維の破断強度の測定は以下の通り行う。まず、該スエード調人工皮革から該スエード調人工皮革中の弾性重合体を溶解せしめる溶剤にて該弾性重合体を抽出、残ったポリエステル極細繊維からなる不織布を乾燥する。得られたポリエステル極細繊維からなる不織布からポリエステル極細繊維を採取し、破断強度を測定する。測定は20点行い、大小各3点の値を除いたものを平均し、その試料の破断強度とする。
【0012】
シリカを上記ポリエステル樹脂に含有せしめる方法としては、任意の粒子径を有するシリカ微粒子が単粒子状で存在するコロイダルシリカを、エステル交換法ではテレフタル酸とエチレングリコールのエステル化反応開始直前又は反応中の任意の段階で、直接エステル化法においてはテレフタル酸とエチレングリコールのエステル化反応開始直前又は反応中の任意の段階で加えればよい。最も好ましい添加方法としては、コロイダルシリカを、エステル化もしくはエステル化反応の前もしくは初期に急激な分散液の離散を防ぐようにして行うことである。なお、コロイダルシリカとはケイ素酸化物を主成分とする微粒子が水または単価のアルコール類またはジオール類またはこれらの混合物を分散媒としたコロイドとして存在するものをいう。添加するシリカの粒子径は、繊維を0.2〜0.005dtexの繊度に形成する場合、平均粒子径が100nm以下である必要があり、好ましくは60nm以下である。平均粒子径が100nmより大きい場合は繊維強度の低下を招く。また、工業的に製造可能な範囲であれば特に限定はしないが0.1nm以上が好ましく1nm以上がより好ましい。ポリエステル中の含有量は0.5〜10質量%である必要があり、好ましくは0.8〜5質量%の範囲が良い。含有量が0.5質量%未満の場合、抗ピル性を発揮できず、10質量%より大きい場合、実用に供するレベルの繊維物性の確保が困難となる。
【0013】
単繊維繊度0.2〜0.005dtexのポリエステル極細繊維は、従来公知の方法で作られる。例えば、繊維断面において上記ポリエステルが島成分、そして上記ポリエステルに相溶性のない少なくとも1種類以上のポリマーが海成分となっている繊維断面が海島構造のポリエステル極細繊維発生型繊維から海成分ポリマーを溶解又は分解除去することにより、または上記ポリエステルと相溶性のない1種以上のポリマーが接合した断面形状を有する貼合わせ型のポリエステル極細繊維発生型繊維を機械的または化学的な処理により2成分の界面で剥離させることにより得ることができる。得られるポリエステル極細繊維束を構成する極細繊維の単繊維繊度を0.2dtex以下とするためには、貼合わせ型の極細繊維発生型繊維を用いるよりは繊維断面が海島構造となっている極細繊維発生型繊維を用いる方が工程上有利である。またメルトブローンなどのように直接極細繊維を製造する方法を用いてもよい。
【0014】
ポリエステル極細繊維発生型繊維中で溶解または分解除去される成分としては、ポリエステル極細繊維成分と溶剤または分解剤に対する溶解性または分解性を異にし、ポリエステル極細繊維成分との相溶性の低いポリマーであり、かつ紡糸条件下でポリエステル極細繊維成分より溶融粘度が小さいかあるいは表面張力が小さいポリマーであり、例えば、ポリエチレン、ポリスチレン、ポリエチレンプロピレン共重合体などのポリマーから選ばれた少なくとも1種類のポリマーである。
【0015】
上記ポリエステル極細繊維発生型繊維は、カードで解繊し、ウェッバーを通してウエブを形成し、得られた繊維ウエブは、所望の重さ、厚さに積層し、次いで、ニードルパンチ、高速水流などの公知の方法で絡合処理を行って三次元絡合不織布とする。ウエブには必要に応じて織編物等を積層することもできる。三次元絡合不織布は最終的に表面が毛羽立てられ、立毛表面が形成されることから、該不織布表面は極細繊維発生型繊維または極細繊維から構成されていることが必要であるが、得られるシートの風合いの点から不織布全体が極細繊維発生型繊維または極細繊維からなっている場合が好ましい。三次元絡合不織布は、表面平滑な基体層とするため、弾性重合体の含浸前に加熱プレス処理などにより表面平滑化することが好ましい。得られる三次元絡合不織布の目付としては、150〜1000g/m2の範囲が好ましい。150g/m2未満の場合、弾性重合体の含浸以降の工程での伸び等形態変化が大きくなり、得られる製品に歪が残ったり面感不良を招く。また、1000g/m2を越える場合、弾性重合体の含浸や凝固および上記極細繊維発生型繊維中の海成分を抽出する際の工程速度が遅くなり実用的でない。また、加熱プレス処理後の好ましい厚みとしては、1.0〜3.0mmの範囲が好ましく、1.0mm未満であればやはり弾性重合体の含浸以降の工程での伸び等形態変化が大きくなり、得られる製品に歪が残ったり面感不良を招く。3.0mmを越える場合では原反が厚いため巻き取る際、表面に折れしわを生じ易くなる。得られた三次元絡合不織布の密度は0.3g/cm3〜0.55g/cm3の範囲が耐磨耗性を向上させる点で好ましく、より好ましくは0.4g/cm3〜0.5g/cm3の範囲である。0.3g/cm3 未満の場合には、繊維が素抜けやすくなり、実用に耐え得る耐磨耗性を確保することが困難であり、0.55g/cm3を越える場合には、弾性重合体の比率が少なくなり、表面の起毛された極細繊維がやはり素抜け易くなる。
【0016】
上記三次元絡合ポリエステル極細繊維不織布に含浸する弾性重合体は、ポリウレタン、合成ゴム、アクリル酸エステル系重合体または共重合体およびそれらから選ばれた少なくとも1種類の弾性重合体を主体とした重合体が選択できるが、弾性回復性、スポンジ形成性等が良好なことよりポリウレタンがもっとも好ましく用いられる。弾性重合体の付与方法としては、特に制約は無く弾性重合体溶液中での浸漬しニップする方法や、不織布上に弾性重合体溶液を付与し高速回転するロールで摺り込む方法等が挙げられる。ポリウレタンの凝固方法としては、ポリウレタンの非溶剤を含む液に浸漬して湿式凝固するか、ゲル化させた後加熱乾燥する方法などが挙げられる。ここで含浸する弾性重合体は、従来から皮革様シートの製造に用いられているポリウレタン、合成ゴム、アクリル酸エステル系重合体または共重合体、可塑剤の使用によって弾性化した樹脂、例えばポリ塩化ビニル、ポリアミド等の弾性重合体から選ばれた少なくとも1種類の弾性重合体を主体とした重合体を用いることが出来る。しかし、柔軟性、弾性回復性、スポンジ形成性等よりポリウレタンがもっとも好ましく用いられる。ポリウレタンとしては、例えば、平均分子量500〜3000のポリエステルジオール、ポリエーテルジオール、ポリカーボネートジオールあるいはポリエステルポリエーテルジオール等のポリマージオール等から選ばれた少なくとも1種類のポリマージオールと、4、4’ージフェニルメタンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネートなどの芳香族系、脂環族系、脂肪族系のジイソシアネートなどから選ばれた少なくとも1種類のジイソシアネートと、エチレングリコール、ブタンジオール、エチレンジアミン、4、4’ージアミノジフェニルメタン等の2個以上の活性水素原子を有する少なくとも1種類の低分子化合物とを所定のモル比で反応させて得たポリウレタンおよびその変性物が挙げられる。
【0017】
上記弾性重合体液には、必要に応じて着色剤、凝固調節剤、酸化防止剤、分散剤等の添加剤を配合する。繊維質基体に占める弾性重合体の比率は、基体に柔軟な風合いと弾性回復性を持たせるために、ポリエステル極細繊維絡合不織布と弾性重合体の質量比が90:10〜50:50、好ましくは90:10〜60:40の範囲で含有させるのがよい。弾性重合体の比率が90:10より小さい場合、緻密な弾性体スポンジ(多孔構造)が形成されず、基体表面を起毛する際に十分に極細繊維を固定できず、耐磨耗性が低下する傾向がある。また弾性体スポンジ自身が緻密で平滑でないために立毛面が十分な平滑面とならない。また50:50より大きい場合、染色後の表面に弾性重合体が目立ち粗末な毛羽感の、品位の低下したものとなる。
【0018】
次に、上記ポリエステル極細繊維発生型繊維を、繊維構成ポリマーのうちの少なくとも1成分(好ましくは海成分構成ポリマー)を溶解剤若しくは分解剤で処理して、または機械的若しくは化学的処理によりポリエステルを含む2成分の界面で剥離して極細繊維束に変性する。極細繊維発生型繊維の変性処理は弾性重合体の付与前であってもよいが、極細繊維束に変性後に弾性重合体を含浸、凝固すると、弾性重合体が極細繊維に接着し風合いが硬くなりやすいため、弾性重合体付与後に極細繊維束に変性することが好ましい。弾性重合体付与前に変性処理を行う場合には、極細繊維と弾性重合体が接着しないようにポリビニルアルコールなどの溶解除去可能な仮充填剤を不織布に付与した後に弾性重合を付与し、その後に該仮充填剤を除去することが好ましい。
また、得られた極細繊維は、シリカ平均粒子径/ポリエステル極細繊維直径の比率は0.01〜0.1であることが引き裂き強力と抗ピリング性を両立する上で好ましい。該比率が0.01未満の場合ピリングが発生し易くなる傾向があり、0.1を越えた場合には、引き裂き強力が低下する傾向がある。
【0019】
上記で得られたポリエステル極細繊維絡合不織布と弾性重合体からなるスエード調人工皮革基体はスライス、バフィング等により所望の厚みに調整した後、必要により該弾性重合体を溶解させる溶剤と非溶解性の溶剤の任意の割合の混液を表面に塗布することにより該弾性重合体を溶解させた後、サンドペーパー等による公知の方法でバフィングすることにより上記人工皮革基体表面のポリエステル極細繊維は起毛、整毛されスエード調人工皮革の染色前生地となる。
起毛された立毛長の平均長さは、ピリングを発生させにくい点で0.1〜1.5mmの範囲が好ましく、0.3〜1.0mmの範囲であることがより好ましい。また、立毛密度は、3000〜15000本/m2が耐磨耗性の向上とライティング効果を両立させるため好ましい。
【0020】
得られたスエ―ド調人工皮革生地の染色は、分散染料、カチオン染料やその他反応性染料を用い、必要に応じ分散剤、pH調整剤および金属イオン封鎖剤等を用い、高温高圧染色機により行う。染色の際の浴比は生地質量に対し10〜40倍が適当である。また、染料濃度は、1%owf〜35%owfの範囲が好ましい。1%owf未満では、色目が薄く、35%owfを越えると染色摩擦堅牢度や洗濯堅牢度等実用物性上使用できないものとなる。染色温度は115〜150℃、好ましくは120〜140℃の温度範囲で行う。115℃未満の場合、ポリエステル中に分散染料が充分に拡散し得えない。150℃を越える場合、該基材中の主に弾性重合体の加水分解により基材の強度低下、毛羽脱落等が懸念される。
次いで、2〜10g/lの還元剤および還元剤と等量の還元助剤であるアルカリ剤存在下、50〜80℃の温度で該スエード調人工皮革中の過剰染料を還元分解、洗浄除去する。50℃未満の場合、弾性重合体中の余剰染料の洗浄が不十分であり、80℃を越えると繊維中の染料まで還元洗浄してしまうこととなる。還元剤は二酸化チオ尿素やハイドロサルファイト等のポリエステルの還元洗浄に一般的に用いられるものが使用できる。還元剤量が2g/lより少ない場合、充分に該基体の弾性重合体中の染料を分解、洗浄することが出来ず、色斑の発生や色目の再現性低下を引き起こす。また、10g/lを越える場合には染料の分解、洗浄効果は変わらずコスト的に不利となる。
次いで、酸化処理および適当量の酸を加え生地中に残存した還元工程でのアルカリ剤の中和操作を行う。
最後に、常温での水洗浄を行い染色工程を終え、乾燥、仕上げ工程を経てスエード調人工皮革とする。
【0021】
得られたスエード調人工皮革は、椅子貼り用途や車両シート用途において、長期間の着用に際し、同一部分が擦られるという点で荷重12kPa、磨耗回数5000回のマーチンデール磨耗試験後の表面がJIS L1076に規定するピリング判定標準写真1による判定基準において4級以上であることが好ましく、4−5級以上であることがより好ましい。
【0022】
【実施例 】
以下本発明の実施態様を実施例により説明するが、本発明はこれら実施例に限定されるものではない。なお、実施例中の部、%はすべて質量に関するものである。
また、実施例中に記載のマーチンデール磨耗試験は、JIS L1096に規定されている測定方法に準じたものであり、荷重12kPa、磨耗回数5000回の条件で行ったものである。
【0023】
実施例1〜4、比較例1、2
テレフタル酸83部、エチレングリコール62部、40〜50nmの粒子径分布を持つ濃度20質量%の水系シリカ、三酸化アンチモン0.038部をスラリー状にして反応器に仕込み、250℃、1.5kg/cm3・Gで4時間エステル反応を行った後、徐々に減圧および昇温し、50分間で圧力1mmHg以下、温度280℃に達した後、2時間重縮合反応を行い、得られたポリエステルを反応器下方より押し出してポリエステルチップを得た。この時シリカの添加量を0.2質量%〜15質量%まで変え各ポリエステルチップを作成した。
島成分として上記ポリエステルを使用し、海成分がMFR=40の直鎖状低密度ポリエチレンの海島型複合繊維(海/島質量比=60/40、島数100、繊度10.5dtex)を作成した。通常の延伸、捲縮および切断を行い、繊度4.0dtex、繊維長51mm、捲縮数12山/inchの原綿を得た後、該原綿を使用して、厚み1.3mm、目付530g/m2、密度0.41g/cm3のニードルパンチ不織布を作成した。この不織布にポリエーテル系ポリウレタンの15%DMF溶液を含浸し、DMF水溶液により湿式凝固し、水洗した後85℃トルエンにより海成分のポリエチレンを抽出除去し、目付480g/m2、ポリウレタンと不織布の質量比26.5:73.5で、繊度0.024dtex、厚み1.0mmの人工皮革基体を得た。
得られた人工皮革基体の片面を180番のサンドペーパーによりバフィングし、厚みを0.8mmとした後、反対側の面にDMF30部とアセトン70部の割合で混合した溶剤を200メッシュのグラビアロールを用いて8g/m2塗布した後乾燥し、グラビア面を240番のサンドペーパーで2回および400番のサンドペーパーで2回順次バフィングし、平均立毛長500μm、平均立毛密度8000本/m2のスエード調人工皮革の染色前生地を得た。
【0024】
次にこのスエード調人工皮革生地を90℃、10分間湯通しし熱水になじませると同時に生地をリラックスした後、高圧液流染色機を使用し、浴比1:15で、分散染料としてSumikaron Blue S-BBL 0.5%owf、Kayalon Polyester Red TL-SF 15.0%owf、Kiwalon Polyester Yellow BRF 1.2%owf、均染剤としてKP レベラー AUL(芳香族スルホン酸塩誘導体、日本化薬株式会社製)1.0g/l、pH調整剤としてニューバッファーK(ミテジマ化学株式会社製)1.8g/lおよび金属イオン封鎖剤としてスカルナーNT(高松油脂株式会社製)1.0g/lを用い135℃、60分間染色を行った。
次いで、二酸化チオ尿素7g/l、水酸化ナトリウム5g/lを加え65℃、30分間還元処理を行った。次いで、過酸化水素3g/l、ソーダ灰3g/lを加え70℃、20分間酸化処理を行った後、酢酸1g/lにて中和処理を行い、最後に常温の水で洗浄し染色を終了した。乾燥後、撥水処理および整毛処理を行った。
得られたスエード調人工皮革中はエンジ色であり、高級な外観とタッチを有し、風合いの良好なものであった。得られたスエード調人工皮革の本文中記載の方法で測定したポリエステル極細繊維の破断強度、引き裂き強力およびマーチンデール磨耗試験の結果を表1に示す。
シリカの含有量が0.5質量%未満のものは、マーチンデール磨耗試験において、ピリング状となり、10質量%より多いものは引き裂き強力において実用レベルに達し得ないものとなった。
【0025】
【表1】
【0026】
実施例5〜7、比較例3、4
実施例2と同様にして人工皮革基体を得るに際し、ポリエステルの重合の際に添加するシリカの粒子径を20〜200nmの範囲の任意のものとしたこと以外は、実施例2と同様の工程、条件でスエード調人工皮革を作成した。得られたスエード調人工皮革の本文中記載の方法で測定したポリエステル極細繊維の破断強度、引き裂き強力およびマーチンデール磨耗試験の結果を表2に示す。
シリカの粒子径がポリエステル極細繊維の60分の1以下のものはマーチンデール磨耗試験においてピリング状になり、15分の1より大きいものは染色品の引き裂き強力が著しく低下しているものであった。
【0027】
【表2】
【0028】
【発明の効果】
以上に詳述した本発明の方法によれば、ポリエステル極細繊維からなる絡合不織布とその内部に含有された弾性重合体からなり、少なくとも片面に該ポリエステル極細繊維の立毛が形成されているスエード調人工皮革において、高級な外観、タッチおよび柔軟な風合いを有し、マーチンデール磨耗試験後の表面状態においてピリングが発生しないスエード調人工皮革を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a suede-like artificial leather made of ultrafine fibers and an elastic polymer. More particularly, the present invention relates to a suede-like artificial leather having a high-grade appearance and a touch that has an anti-pilling property that can be used for apparel, furniture, and vehicle seats.
[0002]
[Prior art]
In recent years, suede-like artificial leather made of ultrafine fibers has been used as a high-grade material for clothing materials, gloves, shoes and furniture because it has a soft touch, texture and high-grade appearance. In particular, suede-like artificial leather using polyester microfibers is widely used because it has a soft texture and a high-grade appearance, and also has easy care properties that allow washing and washing.
[0003]
In general, a suede-like artificial leather composed of ultrafine fibers and an elastic polymer requires a space between the ultrafine fibers and the elastic polymer in order to have a soft texture. The larger the space, the softer the texture, but the extra fine fibers are easily removed from the elastic polymer, and pilling is likely to occur. In particular, when the ultrafine fiber is a polyester fiber, the dyeing is generally performed by high-temperature and high-pressure dyeing with a disperse dye, and then the excess dye in the substrate is removed with a reducing agent or a soaping agent. In the reduction treatment, the amount of polyester is reduced because the solution is strongly alkaline, and a space is formed not only between the elastic polymer but also between the ultrafine fibers, so that pilling is more likely to occur. In the past, various methods have been tried to improve the pilling properties of suede-like fabrics or raised fabrics containing artificial leather. Broadly speaking, a method of imparting irregularities to the fiber surface by mechanical treatment, a method of reducing fiber strength by changing the resin, and a method of adding fine particles to the fiber have been proposed. As a method for imparting irregularities to the fiber surface by mechanical treatment, a method of bringing the fabric into contact with a ceramic roll made of inorganic powder having a particle size of # 100 to 800, or a fabric made of split-type composite polyester short fibers was split. Thereafter, a method has been proposed in which the fabric surface is struck with a flexible rough surface material provided with a polishing film on the surface (see, for example, Patent Document 1 and Patent Document 2). However, the method of mechanically imparting unevenness to the fiber surface has a problem that the color depth does not appear due to irregular reflection of the fiber surface after dyeing. Furthermore, there is a risk of reducing the strength of the original fabric.
[0004]
As a method for reducing the fiber strength by changing the resin, fibers having a lowered physical property using a resin having a low polymerization degree or a polyester containing a phosphate ester bond have been proposed (for example, Patent Document 3 and Patent Document 4). reference). However, since the melt viscosity is generally low, spinning is difficult, and even if it is barely spun, there are drawbacks in production such that the fiber is too weak and stretching becomes unsatisfactory. In addition, there is a problem that the mechanical strength of the original fabric, particularly the tear strength, is significantly reduced. Moreover, the suede-like artificial leather which consists of a fiber bundle which consists of a fine fiber (A) of 0.02 to 0.2 denier and 1/5 or less of (A) and less than 0.02 denier, Woven using a composite fiber in which polyethylene terephthalate (B) in which 1 to 13 mol% of polyethylene glycol is mixed is arranged around polyethylene terephthalate (A) in which a compound having SC3M (M is an alkali metal) is copolymerized. A method of dissolving and removing a part of component B after forming a knitted fabric has been proposed (see, for example, Patent Document 5 and Patent Document 6). However, it is necessary to use special ones for the resin and the spinning nozzle constituting the fiber, and the cost increase is inevitable.
[0005]
In addition, as a method for adding fine particles into the fiber, a method of adding 0.05 to 30% by mass of silica having a particle size of 10 to 150 microns with respect to the polymer constituting the fiber has been proposed (Patent Document 7). reference). However, in the above particle diameter range, the particle diameter is large compared to the ultrafine fibers used in the intended suede-like artificial leather, and it is difficult to form the ultrafine fibers. Further, 0.1 to 10% of all ester bonds are phosphate ester bonds, and it is a copolyester containing 0.5 to 10% by mass of silica having a particle diameter of 80 millimicrons or less. There has been proposed a polyester fiber having anti-pilling property and a method for producing the same by performing steam treatment and / or treatment with a solvent having solubility or degradability of the polyester fiber (see, for example, Patent Document 8). However, this method requires preparation of a special polyester having a phosphate ester bond, leading to an increase in cost. In addition, the fineness is less than 0.005 dtex and the strength of the fiber itself is small, so that it is difficult to pill. However, since the fiber is thin, there is a disadvantage that sufficient color development cannot be obtained. Conventionally, carbon black is kneaded into a fiber in order to produce a dark color, but no one that can be dyed lightly such as white or beige or ivory has been proposed. As mentioned above, ultra-fine fiber nonwoven fabric and elastic polymer with anti-pilling properties that can be used for furniture applications and automotive seat materials that do not require special equipment or raw materials, have a soft texture, and can be dyed lightly. Suede-like artificial leather made of
[0006]
[Patent Document 1]
JP 7-097664 A [Patent Document 2]
JP-A-9-296355 [Patent Document 3]
Japanese Patent Publication No. 35-8562 [Patent Document 4]
JP 50-135331 A [Patent Document 5]
JP-A-7-173778 [Patent Document 6]
JP-A-5-171567 [Patent Document 7]
Japanese Patent Publication No. 45-39055 [Patent Document 8]
Japanese Patent Laid-Open No. 55-112313
[Problems to be solved by the invention]
The present invention is a suede-like artificial leather comprising a entangled non-woven fabric made of polyester ultrafine fibers and an elastic polymer contained therein, and at least one surface of which the napped fibers are formed. It is an object of the present invention to provide a suede-like artificial leather having an anti-pilling property that can be used for furniture use and vehicle seat use without being necessary, and can be dyed lightly, and a method for producing the same.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that the polyester ultrafine fiber contains an appropriate amount of silica having a specific average particle diameter corresponding to the ultrafine fiber diameter, thereby enabling the use of furniture and vehicles. The present invention has been completed by finding that a suede-like artificial leather having an anti-pilling property that can be used for seating is obtained.
[0009]
That is, the present invention comprises an entangled nonwoven fabric made of a polyester microfiber bundle having a single fiber fineness of 0.2 to 0.005 dtex and an elastic polymer contained therein, and at least one surface is formed with napped fibers of the ultrafine fiber. In the suede-like artificial leather, the polyester ultrafine fiber contains 0.5 to 10% by mass of silica having an average particle diameter of 100 nm or less, and the breaking strength of the polyester ultrafine fiber is 2.0. It is a suede-like artificial leather characterized by being -4.0 cN / dtex.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The suede-like artificial leather substrate used in the present invention has a constitution in which an elastic polymer is filled in a nonwoven fabric made of polyester ultrafine fibers of 0.2 to 0.005 dtex. The resin constituting the fiber is a copolymer or blend of polyethylene terephthalate, polybutylene terephthalate and a modifier for imparting generally known cationic dyeing properties such as 5-sulfosodium-isophthalate. Yes, and those having an intrinsic viscosity of 0.6 to 0.7 obtained by blending them alone or in combination of two or more. The fineness of the polyester microfiber is 0.2 to 0.005 dtex, preferably 0.1 to 0.01 dtex. If the fineness is larger than 0.2 dtex, a high-quality suede-quality appearance and a soft surface touch cannot be obtained. On the other hand, if it is thinner than 0.01 dtex, it is difficult to obtain sufficient color developability.
[0011]
Moreover, the breaking strength of the polyester extra fine fiber used by this invention must be 2.0-4.0 cN / dtex. If it is lower than 2.0 cN / dtex, the mechanical strength of the suede-like artificial leather, particularly the tear strength, cannot be used practically. On the other hand, if it is larger than 4.0 cN / dtex, the fiber is too strong and pilling tends to occur during wear. In addition, the measurement of the breaking strength of the polyester microfiber in the suede-like artificial leather is performed as follows. First, the elastic polymer is extracted from the suede-like artificial leather with a solvent that dissolves the elastic polymer in the suede-like artificial leather, and the remaining nonwoven fabric made of polyester ultrafine fibers is dried. Polyester ultrafine fibers are collected from the obtained nonwoven fabric composed of polyester ultrafine fibers, and the breaking strength is measured. The measurement is performed at 20 points, and the average of the values obtained by removing the values of 3 points is used as the breaking strength of the sample.
[0012]
As a method of incorporating silica into the polyester resin, colloidal silica in which silica fine particles having an arbitrary particle size are present in a single particle form is used. In the transesterification method, immediately before the start of the esterification reaction of terephthalic acid and ethylene glycol or during the reaction. At any stage, in the direct esterification method, it may be added immediately before the start of the esterification reaction of terephthalic acid and ethylene glycol or at any stage during the reaction. The most preferable addition method is to perform colloidal silica so as to prevent abrupt dispersion of the dispersion before or at the initial stage of the esterification or esterification reaction. Colloidal silica refers to a material in which fine particles containing silicon oxide as a main component exist as a colloid using water, unitary alcohols or diols, or a mixture thereof as a dispersion medium. The particle diameter of the silica to be added is required to be 100 nm or less, preferably 60 nm or less when the fibers are formed to have a fineness of 0.2 to 0.005 dtex. When the average particle diameter is larger than 100 nm, the fiber strength is reduced. Moreover, if it is a range which can be manufactured industrially, although it does not specifically limit, 0.1 nm or more is preferable and 1 nm or more is more preferable. Content in polyester needs to be 0.5-10 mass%, Preferably the range of 0.8-5 mass% is good. When the content is less than 0.5% by mass, the anti-pill property cannot be exhibited, and when the content is more than 10% by mass, it is difficult to ensure fiber properties at a practical level.
[0013]
Polyester superfine fiber of a single fiber fineness 0.2~0.005Dte x is made by a known method. For example, in the fiber cross section, the polyester is an island component, and at least one type of polymer that is not compatible with the polyester is a sea component. Alternatively, a two-component interface can be obtained by decomposing and removing, or by applying a mechanical or chemical treatment to a laminated polyester ultrafine fiber-generating fiber having a cross-sectional shape in which one or more polymers that are incompatible with the polyester are joined. It can obtain by making it peel. In order to set the single fiber fineness of the ultrafine fiber constituting the obtained polyester ultrafine fiber bundle to 0.2 dtex or less, the ultrafine fiber whose fiber cross section has a sea-island structure rather than using a bonded ultrafine fiber generating fiber. It is advantageous in the process to use the generation type fiber. Moreover, you may use the method of manufacturing an ultrafine fiber directly like a melt blown.
[0014]
The component dissolved or decomposed and removed in the polyester microfiber-generating fiber is a polymer that is different in solubility or decomposability in the polyester microfiber component and solvent or decomposing agent and has low compatibility with the polyester microfiber component. And a polymer having a lower melt viscosity or a lower surface tension than the polyester ultrafine fiber component under spinning conditions, for example, at least one polymer selected from polymers such as polyethylene, polystyrene, and polyethylene-propylene copolymer. .
[0015]
The polyester ultrafine fiber generating fiber is defibrated with a card and formed into a web through a webber. The obtained fiber web is laminated to a desired weight and thickness, and then known as needle punch, high-speed water flow, etc. The entanglement process is performed by the method to obtain a three-dimensional entangled nonwoven fabric. If necessary, a woven or knitted fabric can be laminated on the web. Since the surface of the three-dimensional entangled nonwoven fabric is finally fluffed and a raised surface is formed, it is necessary that the surface of the nonwoven fabric be composed of ultrafine fiber-generating fibers or ultrafine fibers. From the viewpoint of the texture of the sheet, it is preferable that the entire nonwoven fabric is made of ultrafine fiber-generating fibers or ultrafine fibers. In order to make the three-dimensional entangled nonwoven fabric a base layer having a smooth surface, it is preferable that the surface is smoothed by a heat press treatment or the like before impregnation with the elastic polymer. The basis weight of the obtained three-dimensional entangled nonwoven fabric is preferably in the range of 150 to 1000 g / m 2 . If it is less than 150 g / m 2 , the change in form such as elongation in the process after the impregnation of the elastic polymer becomes large, resulting in distortion remaining in the resulting product or poor surface feeling. On the other hand, when it exceeds 1000 g / m 2 , the impregnation and coagulation of the elastic polymer and the process speed when extracting the sea component in the ultrafine fiber generating fiber are slow, which is not practical. Moreover, as a preferable thickness after the heat press treatment, the range of 1.0 to 3.0 mm is preferable, and if it is less than 1.0 mm, the shape change such as elongation in the process after the impregnation of the elastic polymer is increased, The resulting product remains distorted and causes poor surface appearance. When the thickness exceeds 3.0 mm, the original fabric is thick, so that it is easy to bend and wrinkle on the surface when winding. The density of the three-dimensional entangled nonwoven fabric is preferably in that the range of 0.3g / cm 3 ~0.55g / cm 3 improves the abrasion resistance, more preferably 0.4g / cm 3 ~0. The range is 5 g / cm 3 . If it is less than 0.3 g / cm 3 , the fibers are easily pulled out, and it is difficult to ensure wear resistance that can be practically used. If it exceeds 0.55 g / cm 3 , the elastic weight The ratio of coalescence is reduced, and the ultra-fine fibers with raised surfaces are still easily removed.
[0016]
The elastic polymer impregnated in the three-dimensional entangled polyester ultrafine fiber nonwoven fabric is a polymer composed mainly of polyurethane, synthetic rubber, acrylate polymer or copolymer, and at least one elastic polymer selected from them. A coalescence can be selected, but polyurethane is most preferably used because of its good elasticity recovery, sponge formation and the like. The method for applying the elastic polymer is not particularly limited, and includes a method of dipping and niping in an elastic polymer solution, a method of applying an elastic polymer solution on a nonwoven fabric and sliding it with a roll that rotates at high speed. Examples of the coagulation method of polyurethane include a method of wet coagulation by immersing in a liquid containing a non-solvent of polyurethane, or a method of heating and drying after gelation. The elastic polymer impregnated here is a polyurethane, synthetic rubber, acrylate polymer or copolymer conventionally used for the production of leather-like sheets, a resin made elastic by the use of a plasticizer, such as polychlorinated A polymer mainly composed of at least one elastic polymer selected from elastic polymers such as vinyl and polyamide can be used. However, polyurethane is most preferably used from the viewpoint of flexibility, elastic recovery, sponge formation and the like. Examples of the polyurethane include at least one polymer diol selected from polyester diols having an average molecular weight of 500 to 3000, such as polyester diol, polyether diol, polycarbonate diol or polyester polyether diol, and 4,4′-diphenylmethane diisocyanate. At least one diisocyanate selected from aromatic, alicyclic and aliphatic diisocyanates such as isophorone diisocyanate and hexamethylene diisocyanate, and ethylene glycol, butanediol, ethylenediamine and 4,4′-diaminodiphenylmethane. And the like, and polyurethanes obtained by reacting at least one low molecular weight compound having two or more active hydrogen atoms in a predetermined molar ratio, and modified products thereof. .
[0017]
Additives such as a colorant, a coagulation regulator, an antioxidant, and a dispersant are blended with the elastic polymer liquid as necessary. The ratio of the elastic polymer occupying the fibrous base is 90:10 to 50:50, preferably the mass ratio of the polyester ultrafine fiber entangled nonwoven fabric to the elastic polymer in order to give the base a soft texture and elastic recovery. Is preferably contained in the range of 90:10 to 60:40. When the ratio of the elastic polymer is smaller than 90:10, a dense elastic sponge (porous structure) is not formed, and the ultrafine fibers cannot be sufficiently fixed when raising the surface of the substrate, resulting in a decrease in wear resistance. Tend. Further, since the elastic sponge itself is dense and not smooth, the raised surface is not sufficiently smooth. On the other hand, when the ratio is larger than 50:50, the elastic polymer is conspicuous on the surface after dyeing, and the fluff feeling is poor and the quality is lowered.
[0018]
Next, the polyester ultrafine fiber-generating fiber is treated with at least one component (preferably a sea component-constituting polymer) of the fiber-constituting polymer with a solubilizer or decomposition agent, or mechanically or chemically treated with the polyester It peels at the interface of the two components to be included and is modified into an ultrafine fiber bundle. The modification treatment of the ultrafine fiber generation type fiber may be before the elastic polymer is applied, but if the ultrafine fiber bundle is impregnated with the elastic polymer after modification and solidified, the elastic polymer adheres to the ultrafine fiber and the texture becomes hard. Since it is easy, it is preferable to modify into an ultrafine fiber bundle after applying the elastic polymer. When the modification treatment is performed before applying the elastic polymer, after applying a temporary filler capable of dissolving and removing such as polyvinyl alcohol to the non-woven fabric so that the ultrafine fiber and the elastic polymer do not adhere, the elastic polymerization is applied. It is preferable to remove the temporary filler.
Moreover, it is preferable that the obtained ultrafine fiber has a ratio of silica average particle diameter / polyester ultrafine fiber diameter of 0.01 to 0.1 in order to achieve both tear strength and anti-pilling property. When the ratio is less than 0.01, pilling tends to occur, and when it exceeds 0.1, the tear strength tends to decrease.
[0019]
The suede-like artificial leather base made of the polyester ultrafine fiber entangled nonwoven fabric and the elastic polymer obtained above is adjusted to a desired thickness by slicing, buffing, etc., and then insoluble in a solvent for dissolving the elastic polymer as necessary. After the elastic polymer is dissolved by applying a mixed solution of an arbitrary ratio of the above solvent to the surface, the polyester ultrafine fiber on the surface of the artificial leather substrate is raised and trimmed by buffing by a known method such as sandpaper. It becomes hair and becomes the cloth before dyeing of suede-like artificial leather.
The average length of the raised napped length is preferably in the range of 0.1 to 1.5 mm, and more preferably in the range of 0.3 to 1.0 mm, from the viewpoint of hardly causing pilling. Further, the nap density is preferably 3000 to 15000 / m 2 because both the improvement of wear resistance and the lighting effect are achieved.
[0020]
The obtained suede-like artificial leather fabric is dyed using disperse dyes, cationic dyes and other reactive dyes, and if necessary, using a dispersant, pH adjuster, sequestering agent, etc. Do. The bath ratio for dyeing is suitably 10 to 40 times the dough mass. The dye concentration is preferably in the range of 1% owf to 35% owf. If it is less than 1% owf, the color is light, and if it exceeds 35% owf, it cannot be used in practical properties such as fastness to dyeing friction and fastness to washing. The dyeing temperature is 115 to 150 ° C, preferably 120 to 140 ° C. When the temperature is lower than 115 ° C., the disperse dye cannot be sufficiently diffused in the polyester. When the temperature exceeds 150 ° C., there is a concern that the strength of the base material may be reduced or the fluff may fall off due to hydrolysis of the elastic polymer in the base material.
Subsequently, the excess dye in the suede-like artificial leather is reductively decomposed and washed away at a temperature of 50 to 80 ° C. in the presence of 2 to 10 g / l of a reducing agent and an alkaline agent which is a reducing agent equivalent to the reducing agent. . When the temperature is less than 50 ° C., the excess dye in the elastic polymer is not sufficiently washed. When the temperature exceeds 80 ° C., the dye in the fiber is reduced and washed. As the reducing agent, those generally used for reducing and washing polyester such as thiourea dioxide and hydrosulfite can be used. When the amount of the reducing agent is less than 2 g / l, the dye in the elastic polymer of the substrate cannot be sufficiently decomposed and washed, resulting in occurrence of color spots and a decrease in color reproducibility. On the other hand, if it exceeds 10 g / l, the decomposition and cleaning effects of the dye are not changed, which is disadvantageous in terms of cost.
Subsequently, the neutralizing operation of the alkaline agent is performed in the reduction process remaining in the dough by adding an oxidation treatment and an appropriate amount of acid.
Finally, water washing at room temperature is performed to finish the dyeing process, followed by drying and finishing processes to obtain a suede-like artificial leather.
[0021]
The obtained suede-like artificial leather has a surface after a Martindale abrasion test with a load of 12 kPa and a wear number of 5000 times in that the same part is rubbed when worn for a long period of time in a chair application or vehicle seat application. It is preferably 4th grade or higher, more preferably 4-5th grade or higher, based on the criteria for judgment based on the pilling judgment standard photo 1 defined in the above.
[0022]
【Example 】
Embodiments of the present invention will be described below with reference to examples, but the present invention is not limited to these examples. In the examples, all parts and% relate to mass.
In addition, the Martindale abrasion test described in the examples is based on the measurement method defined in JIS L1096, and was performed under the conditions of a load of 12 kPa and an abrasion frequency of 5000 times.
[0023]
Examples 1 to 4, Comparative Examples 1 and 2
A slurry of 83 parts of terephthalic acid, 62 parts of ethylene glycol, 20 mass% aqueous silica having a particle size distribution of 40 to 50 nm, and 0.038 part of antimony trioxide was charged into a reactor, and the mixture was charged at 250 ° C. and 1.5 kg. After the ester reaction at 4 cm / cm 3 · G for 4 hours, the pressure was gradually reduced and the temperature was increased. After 50 minutes, the pressure reached 1 mmHg or less and the temperature reached 280 ° C., and then the polycondensation reaction was performed for 2 hours. Was extruded from the bottom of the reactor to obtain a polyester chip. At this time, the addition amount of silica was changed from 0.2% by mass to 15% by mass to prepare each polyester chip.
Using the polyester as an island component, a sea-island type composite fiber (sea / island mass ratio = 60/40, number of islands 100, fineness of 10.5 dtex) of a linear low density polyethylene having a sea component of MFR = 40 was prepared. . Normal stretching, crimping and cutting were performed to obtain a raw cotton having a fineness of 4.0 dtex, a fiber length of 51 mm, and a number of crimps of 12 piles / inch, and then using the raw cotton, a thickness of 1.3 mm and a basis weight of 530 g / m 2 to prepare a density 0.41 g / cm 3 of the needle punched nonwoven fabric. This nonwoven fabric was impregnated with a 15% DMF solution of polyether polyurethane, wet-coagulated with an aqueous DMF solution, washed with water, and then extracted and removed from sea component polyethylene with toluene at 85 ° C., with a basis weight of 480 g / m 2 , the mass of polyurethane and nonwoven fabric An artificial leather substrate having a ratio of 26.5: 73.5, a fineness of 0.024 dtex and a thickness of 1.0 mm was obtained.
One side of the obtained artificial leather base was buffed with sand paper No. 180, the thickness was adjusted to 0.8 mm, and then a 200-mesh gravure roll was mixed with 30 parts of DMF and 70 parts of acetone on the opposite side. 8 g / m 2 was applied and dried, and the gravure surface was buffed twice with sandpaper No. 240 and twice with sandpaper No. 400, with an average nap length of 500 μm and an average nap density of 8000 / m 2. The fabric before dyeing of suede-like artificial leather was obtained.
[0024]
Next, this suede-like artificial leather fabric was boiled in hot water at 90 ° C. for 10 minutes, and at the same time, the fabric was relaxed. Then, using a high-pressure liquid dyeing machine, a bath ratio of 1:15, Sumikaron Blue as a disperse dye S-BBL 0.5% owf, Kayalon Polyester Red TL-SF 15.0% owf, Kiwalon Polyester Yellow BRF 1.2% owf, KP Leveler AUL (aromatic sulfonate derivative, Nippon Kayaku Co., Ltd.) as leveling agent Company) 1.0 g / l, New Buffer K (manufactured by Mitsima Chemical Co., Ltd.) 1.8 g / l as pH adjuster, and Skarner NT (manufactured by Takamatsu Yushi Co., Ltd.) 1.0 g / l as sequestering agent. Staining was performed at 135 ° C. for 60 minutes.
Subsequently, 7 g / l of thiourea dioxide and 5 g / l of sodium hydroxide were added, and reduction treatment was performed at 65 ° C. for 30 minutes. Next, 3 g / l of hydrogen peroxide and 3 g / l of soda ash were added, followed by oxidation at 70 ° C. for 20 minutes, followed by neutralization with 1 g / l of acetic acid, and finally washing with room temperature water for dyeing. finished. After drying, a water repellent treatment and a hair styling treatment were performed.
The obtained suede-like artificial leather had an engineering color, had a high-quality appearance and touch, and had a good texture. Table 1 shows the breaking strength, tear strength, and Martindale abrasion test result of the polyester ultrafine fibers measured by the method described in the text of the obtained suede-like artificial leather.
Those having a silica content of less than 0.5% by mass were pilled in the Martindale abrasion test, and those having a silica content of more than 10% by mass were unable to reach a practical level in terms of tear strength.
[0025]
[Table 1]
[0026]
Examples 5-7, Comparative Examples 3, 4
When obtaining an artificial leather substrate in the same manner as in Example 2, the same steps as in Example 2 except that the particle size of silica added during polymerization of the polyester was arbitrarily set in the range of 20 to 200 nm. Suede-like artificial leather was created under the conditions. Table 2 shows the breaking strength, tear strength, and Martindale abrasion test result of the polyester ultrafine fibers measured by the method described in the text of the obtained suede-like artificial leather.
Silica particles having a particle size of 1/60 or less of the polyester ultrafine fibers were pilled in the Martindale abrasion test, and those having a particle size of more than 1/15 were markedly reduced in tearing strength of the dyed product. .
[0027]
[Table 2]
[0028]
【The invention's effect】
According to the method of the present invention described in detail above, a suede tone comprising an entangled non-woven fabric made of polyester ultrafine fibers and an elastic polymer contained therein, and at least one surface of the polyester ultrafine fibers is raised. In the artificial leather, a suede-like artificial leather having a high-grade appearance, a touch and a soft texture and free from pilling in the surface state after the Martindale abrasion test can be obtained.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003134691A JP4108532B2 (en) | 2003-05-13 | 2003-05-13 | Suede-like artificial leather |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003134691A JP4108532B2 (en) | 2003-05-13 | 2003-05-13 | Suede-like artificial leather |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004339617A JP2004339617A (en) | 2004-12-02 |
JP2004339617A5 JP2004339617A5 (en) | 2005-11-04 |
JP4108532B2 true JP4108532B2 (en) | 2008-06-25 |
Family
ID=33525178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003134691A Expired - Fee Related JP4108532B2 (en) | 2003-05-13 | 2003-05-13 | Suede-like artificial leather |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4108532B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006241620A (en) * | 2005-03-02 | 2006-09-14 | Toray Ind Inc | Nubuck leather like sheet-shaped product and method for producing the same |
EP2048280A4 (en) * | 2006-07-27 | 2012-08-15 | Tradik Co Ltd | Synthetic leather, base to be used in the leather, and processes for production of both |
CN102016077B (en) * | 2008-03-24 | 2015-05-13 | 可乐丽股份有限公司 | Split leather product and manufacturing method therefor |
JP5260196B2 (en) * | 2008-09-05 | 2013-08-14 | 帝人株式会社 | Fabrics and textile products |
WO2011027732A1 (en) | 2009-09-03 | 2011-03-10 | 東レ株式会社 | Pilling-resistant artificial leather |
-
2003
- 2003-05-13 JP JP2003134691A patent/JP4108532B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004339617A (en) | 2004-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2474663B1 (en) | Pilling-resistant artificial leather | |
JP4204707B2 (en) | Fibrous substrate for artificial leather and artificial leather using the same | |
JP4869242B2 (en) | Leather-like sheet and method for producing the same | |
JP4419549B2 (en) | Ultra-fine short fiber nonwoven fabric and leather-like sheet and production method thereof | |
JP4233965B2 (en) | Suede artificial leather and method for producing the same | |
TW201641778A (en) | Napped artificial leather dyed using cationic dye, and method for manufacturing same | |
US6780469B2 (en) | Nubuck-like artificial leather and a production process thereof | |
WO2017164162A1 (en) | Sheet-shaped material and method for producing same | |
JP4108532B2 (en) | Suede-like artificial leather | |
KR20020027655A (en) | Plush leather-like sheet product and method for production thereof | |
EP4029984A1 (en) | Napped artificial leather | |
JP5088293B2 (en) | Leather-like sheet material, interior material, clothing material and industrial material using the same, and method for producing leather-like sheet material | |
JP3789353B2 (en) | Suede-like artificial leather dyeing method | |
JP2002180380A (en) | Sueded artificial leather and method for producing the same | |
JP5168083B2 (en) | Leather-like sheet material, interior material, clothing material and industrial material using the same, and method for producing leather-like sheet material | |
JP3939378B2 (en) | Napped sheet and method for producing the same | |
JP4884661B2 (en) | Artificial leather and method for producing the same | |
JP3752058B2 (en) | Manufacturing method of napped sheet | |
JP3109793B2 (en) | Suede-like artificial leather | |
JP3742213B2 (en) | Leather-like sheet | |
JP3953799B2 (en) | Suede leather-like sheet | |
JP4429751B2 (en) | Stretchable leather-like sheet substrate and method for producing the same | |
JP2008202206A (en) | Leather-like sheet substance, method for producing the same, and interior material, clothing material, industrial material and abrasive cloth each using the same | |
JP2001226881A (en) | Fibrous substrate for artificial leather | |
JP4067872B2 (en) | Suede leather-like sheet and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050822 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050822 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080311 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080402 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110411 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4108532 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110411 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120411 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120411 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130411 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130411 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140411 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |