Nothing Special   »   [go: up one dir, main page]

JP4104260B2 - Optical fiber tension member - Google Patents

Optical fiber tension member Download PDF

Info

Publication number
JP4104260B2
JP4104260B2 JP33124899A JP33124899A JP4104260B2 JP 4104260 B2 JP4104260 B2 JP 4104260B2 JP 33124899 A JP33124899 A JP 33124899A JP 33124899 A JP33124899 A JP 33124899A JP 4104260 B2 JP4104260 B2 JP 4104260B2
Authority
JP
Japan
Prior art keywords
tension member
fiber
polyketone
fibers
dtex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33124899A
Other languages
Japanese (ja)
Other versions
JP2001147357A (en
Inventor
龍 谷口
仁一郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP33124899A priority Critical patent/JP4104260B2/en
Publication of JP2001147357A publication Critical patent/JP2001147357A/en
Application granted granted Critical
Publication of JP4104260B2 publication Critical patent/JP4104260B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、機械的物性に優れ軽量化が可能となり、かつ熱や湿度に対しても安定であり、伝送ロスが少なく長期間安定した伝送を可能とする光ファイバ(光ケーブル、光ファイバ心線を含む)に用いる光ファイバー用テンションメンバー(抗張力体)の改良に関する。
【0002】
【従来の技術】
近年、情報化が進みその伝達手段としての光ファイバーの需要は飛躍的に拡大している。その中でも光ファイバーを構成するテンションメンバーは、光ファイバーの伝送安定性、耐久性を支える重要な構成材であり、絶えずその性能の高度化が要求されている。
従来、テンションメンバーを構成する繊維としてはスチール、ガラス繊維が広く用いられてきているが、スチールを用いたテンションメンバーは電磁誘導の問題、比重が大きくファイバーが重くなる問題があり、またガラス繊維を用いたテンションメンバーは材料の耐衝撃性、可撓性に問題があった。
【0003】
これらの問題を解決するために、セラミックス繊維、炭素繊維、芳香族ポリエステル繊維、アラミド繊維、ポリベンザゾール繊維、ポリビニルアルコール繊維等の非金属材料、有機材料系の繊維を用いたテンションメンバーが検討されている(例えば、特開平8−21935号公報、特開平9−251123号公報)。
しかしながら、炭素繊維は電磁誘導の発生を完全に回避することが出来ない問題があった。
また、セラミックス繊維は可撓性が低くケーブル施設時の取り扱い性に問題があった。
また、芳香族ポリエステル繊維やアラミド繊維、ポリベンザゾール繊維は、ポリマーが芳香環を有し剛直であるために可撓性に乏しく取り扱い性が悪い問題があり、ポリマーが他の化合物との親和性が低いためテンションメンバーの外周にある熱可塑性樹脂からなる被覆層との接着性が悪く加工時や使用時に剥離し易い問題等があった。
また、ポリビニルアルコール繊維は湿度によって強度が大きく低下する問題、熱や水分に対する寸法安定性が不十分であるという問題などがあった。
さらに、アラミド繊維やポリビニルアルコール繊維等の高度に配向した分子構造を有する高分子繊維では、繊維表面がフィブリル化しやすく、テンションメンバーの製造工程時にトラブルが多発して満足な製品が得られにくいという問題があった。
【0004】
【発明が解決しようとする課題】
本発明の課題は、電磁誘導が発生せず、耐衝撃性・可撓性等の取扱性、被覆材との接着性、熱や湿気に対する安定性、耐フィブリル性の全ての特性を具備し、安定した情報伝送の可能なテンションメンバーを提供することである。
【0005】
【課題を解決するための手段】
本発明者は上記課題を種々検討した結果、オレフィンと一酸化炭素との共重合ポリマーより構成されたポリケトン繊維を光ファイバー用テンションメンバーとして用いることにより、光ファイバー用テンションメンバーに伴う従来の問題点を解決できることを見出し、本発明を完成するに至った。
即ち、本発明:
(1) オレフィンと一酸化炭素との共重合ポリマーより構成されたポリケトン繊維を含む光ファイバー用テンションメンバーであって、テンションメンバーを構成するポリケトン繊維が引張強度5cN/dtex以上、引張弾性率100cN/dtex以上で、単糸繊度が0.1〜3dtex、総繊度が100〜10000dtexのポリケトン繊維を含むことを特徴とする光ファイバー用テンションメンバーを提供する。また、
(2) テンションメンバーを構成するポリケトン繊維が引張強度10cN/dtex以上、引張弾性率200cN/dtex以上である点に特徴を有する。また、
(3) テンションメンバーを構成する繊維中のポリケトン繊維の割合が50重量%以上である点に特徴を有する。また、
(4) テンションメンバーを構成する繊維がポリケトン繊維のみからなる点に特徴を有する。また、
(5) (1) (4) のいずれかに記載のテンションメンバーを用いた光ファイバーを提供する。
【0006】
以下、本発明を詳細に説明する。
本発明のテンションメンバーに含まれる繊維に用いるポリマーはオレフィンと一酸化炭素が共重合したポリケトンポリマーである。
ポリケトンポリマーは屈曲性ポリマーであるため、このポリマーからなるポリケトン繊維は可撓性・耐衝撃性に優れる。また、ケトン基を有することから被覆材との接着性に優れ、さらには結晶性が高く高融点であること、水酸基等の親水性基を有さないことから熱や湿気に対して安定な性質を有している。
【0007】
ポリマーの組成としては強度・弾性率、樹脂との接着性、寸法安定性、耐クリープ特性、高温繊維物性等の観点から、エチレンと一酸化炭素が結合した1−オキソトリメチレンを主たる繰返単位とするポリマーが好ましい。
繰返単位中の1−オキソトリメチレンの割合は、多ければ多いほど高融点、高力学物性、高寸法安定性の繊維が得られるため90重量%以上であることが好ましく、さらに好ましくは97重量%以上である。
このオレフィンと一酸化炭素が結合した繰返単位同士は、部分的にケトン基同士、エチレン同士がつながっていてもよいが、90重量%以上がオレフィンと一酸化炭素が交互に配列したポリケトンポリマーであることが望ましい。
【0008】
耐光性、耐熱性、高温時の物性の低下の観点からオレフィンと一酸化炭素が交互に配列した部分の含有率は多ければ多いほどよく、好ましくは97重量%以上、最も好ましくは100重量%である。
また、必要に応じてプロペン、ブテン、ヘキセン、シクロヘキセン、ペンテン、シクロペンテン、オクテン、ノネン等のエチレン以外のオレフィンやメチルメタクリレート、酢酸ビニル、アクリルアミド、ヒドロキシエチルメタクリレート、スチレン、スチレンスルホン酸ナトリウム、アリルスルホン酸ナトリウム、ビニルピロリドン、塩化ビニル等の不飽和炭化水素を有する化合物を共重合していてもよい。
また、必要に応じてポリケトンポリマーに酸化防止剤、クエンチング剤、ラジカル捕捉剤、重金属不活性化剤、ゲル化抑制剤、艶消剤、紫外線吸収剤、顔料等の各種添加剤を配合しても良い。
【0009】
本発明のテンションメンバーに含まれるポリケトン繊維には高い機械的性質と熱・湿度に対する安定性、表面の平滑性が求められる。
機械的性質としては強度・弾性率が挙げられ、強度としては、好ましくは5cN/dtex以上、より好ましくは10cN/dtex以上、特に好ましくは15cN/dtex以上であることが望ましい。
また、弾性率は好ましくは100cN/dtex、より好ましくは200cN/dtex以上、特に好ましくは300cN/dtex以上であることが望ましい。
ポリケトン繊維の熱・湿度に対する安定性としては乾・湿熱処理下での収縮率が低いほど形状変化や残留応力が少なく寸法安定性が優れるため、これらの値は小さいほど耐熱性に優れた材料といえる。
乾熱収縮率としては、180℃×30分処理における収縮率が4%以下であることが好ましく、さらには3%以下であることがより好ましい。
湿熱収縮率としては、100%湿度下、120℃×30分処理による収縮率としては3%以下、さらには2%以下であることがより好ましい。
【0010】
テンションメンバー中のポリケトン繊維表面には毛羽が無いことが重要である。
強度10cN/dtex以上、弾性率200cN/dtex以上の高強度・高弾性率のポリケトン繊維を得るためには、10倍以上の高倍率の延伸が必要であるが、このような延伸を行った場合、ポリケトン繊維の内部および表面には繊維軸方向に長いフィブリル構造が形成される。特に繊維表面のフィブリルは延伸時や加工時に糸−糸間や糸−装置間の摩擦によって剥離し毛羽になりやすく、この毛羽のため工程通過性が著しく悪化したり、製品の品位が低下する。
このために、本発明のテンションメンバーに用いられるポリケトン繊維の耐摩耗性としては、本発明の実施例記載の耐摩耗性試験における毛羽の数が10個未満であることが望ましい。
このような優れた耐摩耗性を有するポリケトン繊維の構造としては、電子顕微鏡により該繊維の縦断面を観察した際のフィブリルの平均直径が10〜1000nm、好ましくは20〜800nm、更に好ましくは100〜500nmである構造を有することが望ましい。
【0011】
ポリケトン繊維の単糸繊度には特に制約はないが、太すぎると可撓性が低下して取り扱い性が困難になり、一方細すぎると工程上の単糸切れが起こりやすくなるため、0.01〜100dtex、より好ましくは0.1〜3dtexの範囲である。
また、ポリケトン繊維の総繊度はテンションメンバーの使用環境によって異なるが、一般的な用途では10〜100000dtex、好ましくは100〜10000dtexの範囲である。
【0012】
本発明のテンションメンバーは上述のポリケトン繊維を含んでいればその他の繊維を含んでいてもよい。
ポリケトン繊維と混用可能な繊維としては、例えばスチール、ガラス繊維、セラミックス繊維、炭素繊維、芳香族ポリエステル繊維、アラミド繊維、ポリベンザゾール繊維、ポリビニルアルコール繊維、ポリエステル繊維、ポリアミド繊維、ポリエチレン繊維、ポリアセタール繊維等が挙げられる。
これらの繊維の混用方法は別々に束ねた繊維束同士を積層して使用しても、混繊あるいは交撚して使用しても、さらには交互に引きそろえて使用してもよい。また、必要に応じてはスチールやアラミドの繊維束の外周にポリケトン繊維を配列して接着性を高める等の形態複合を行ってもよい。
【0013】
本発明のテンションメンバーに含まれる繊維中のポリケトン繊維の割合は特に制限はないが、高ければ高いほど接着性、可撓性、取り扱い性に優れるため好ましくは50重量%以上、より好ましくは80重量%以上、特に好ましくは100重量%である。
【0014】
以下、本発明のテンションメンバーの製造法について説明する。
テンションメンバーに含まれるポリケトン繊維の製造法については、高強度・高弾性で耐熱性に優れ、かつ繊維表面のフィブリルの平均直径が小さく耐摩耗性に優れる繊維を製造出来る濃厚塩溶剤を用いた湿式紡糸法が好ましい。
【0015】
以下、ハロゲン化亜鉛水溶液を溶剤とした湿式紡糸法を例にして、ポリケトン繊維の製造法について説明する。
溶剤に用いるハロゲン化亜鉛化合物としては、溶解性、溶媒のコスト、水溶液の安定性の点で塩化亜鉛、よう化亜鉛が好ましい。
また、必要に応じては塩化ナトリウム、塩化カリウム、塩化カルシウム等のアルカリ金属あるいはアルカリ土類金属のハロゲン化物を60重量%以下、好ましくは40重量%以下で含んでいてもよく、ドープの溶解性、熱安定性、紡糸性の観点から塩化ナトリウムや塩化カルシウムなどの金属塩を5〜30重量%含有したドープが好ましい。
【0016】
このポリケトンドープを紡糸口金より吐出し、必要に応じてはエアーギャップ部を経て凝固浴を通して糸状物とする。
凝固浴の組成は、メタノール、アセトン等の有機溶剤、水、有機物水溶液、無機物水溶液等どのようなものであってもよいが、水を含んだ溶液が好ましい。
このようにして得た糸状物を必要に応じては金属塩を洗浄し、乾燥、延伸を行う。
延伸は通常融点以下の温度で行われ、延伸倍率はトータルで10倍以上、特に15倍以上の熱延伸を行うことが好ましく、延伸温度を徐々に高くしていく多段延伸法が好適に用いられる。
また、延伸時および延伸後に撚りがかかると、テンションメンバーの弾性率が低下する要因となるため、撚数は1m当たり10回以下であることが好ましく、特に好ましくは1m当たり0回であることが望ましい。
このようにして得られたポリケトン繊維はそのまま、あるいは必要に応じては他の強化繊維と複合した後に繊維間に樹脂を含浸せしめた後に絞り成形を行いテンションメンバーとする。
【0017】
含浸する樹脂としては、従来公知の熱可塑性樹脂、熱硬化性樹脂をそのまま、あるいは改良して使用してもよく、必要に応じて複数種類の樹脂を混合してもよい。
使用可能な樹脂としては例えば熱可塑性樹脂では、ナイロン6、ナイロン6・6等のポリアミド樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリエーテルスルホン、ポリエーテルイミド、ポリカーボネート、ポリエーテルケトン等が挙げられる。
熱硬化性樹脂では、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール樹脂、ビスマレイミド樹脂等が挙げられる。また、熱硬化性樹脂に使用する硬化剤についても従来公知の硬化剤をそのままあるいは修正して用いることが出来る。
【0018】
硬化剤としては例えば、ビスフェノールS、ビスフェノールA、ジシアンジアミド、ジアミノジフェニルスルホン、ジアミノジフェニルメタン、テトラメチルグアナジン、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族(脂肪族)アミン、イミダゾール誘導体、酸無水物、三フッ化ホウ素錯体等が挙げられる。
樹脂の含浸方法についても特に制限はなく、例えば、従来公知の溶融含浸法、溶液含浸法、パウダー含浸法、プルトルージョン法をそのままあるいは必要に応じては改良して適用することが出来る。
テンションメンバー中の繊維の含有量は特に制限はないが、テンションメンバーの強度および取扱性の観点から30〜90重量%の範囲であることが好ましく、さらに好ましくは50〜80重量%であることが望ましい。
【0019】
本発明のテンションメンバーは非導電性であり高強度・高弾性率のポリケトン繊維を含むため、電磁誘導が発生せず、強固で力学物性に優れる光ファイバーが得られるようになる。
また、屈曲性高分子からなるため可撓性に優れ光ファイバー施設時の取扱性に優れ、被覆材との接着性に優れ、熱や湿気に対しても安定であることから、長期間安定した情報伝送機能を維持することが可能となる。
さらに、特定凝固条件で紡糸したポリケトン繊維を用いた場合には、耐フィブリル性に優れ、延伸時やテンションメンバー加工時に毛羽が発生せず、品位の優れたテンションメンバーを生産性よく安定して製造することが可能となる。
【0020】
【実施例】
本発明を、下記の実施例などにより更に詳しく説明するが、それらは本発明の範囲を限定するものではない。
実施例の説明中に用いられる各測定値の測定方法は次の通りである。
(1)極限粘度
極限粘度[η]は次の定義式(I)に基づいて求められる値である。

Figure 0004104260
(但し、式中のt及びTはヘキサフルオロイソプロパノールに溶解したポリケトンの希釈溶液の60℃での粘度管の流過時間である。
またCは、上記溶液100ml中のグラム単位による溶質重量値である。)
(2)強度、伸度、弾性率はJIS−L−1013に準じて測定した。
【0021】
(3)耐摩耗性
繊維をテトラクロロエチレンで25℃、1分間処理し油剤を洗浄した。
該繊維を総デニールが1000dとなるように束ねた後に、固定糸(糸長50cm)、走行糸(糸長1m)の2本に切って、固定糸の両端を張力が0.5cN/dtexとなるように鉄柱に固定する。走行糸の一端を振り子式モーターに固定して、もう一方の端に荷重が0.1cN/dtexとなるように錘を付ける。
走行糸の下面と固定糸の上面とを垂直に接触させ走行糸の一端の振り子式モーターを振幅50mm、100往復/分の速度で1分間振動させた。ここで、走行糸と固定糸とのなす角度は150゜とした。
試験終了後の走行糸の摩擦部分から任意に5カ所を抽出し、その表面を光学顕微鏡で観察して、擦過状態を判定した。
本測定に用いた摩耗装置の概要を図1に示す。
【0022】
(4)乾熱収縮率
JIS−L−1013に準じて180℃処理前後の値を計測して求めた。
(5)湿熱収縮率
湿度100%、温度120℃のオートクレーブ中に糸を投入し、無緊張下で30分間処理した。処理前の繊維長をl0、処理後の繊維長をlとして、下式(2) にて湿熱収縮率WSを測定した。
WS =〔(l0−l)/l0〕×100 (%)・・・(2)
(6)テンションメンバーの湿熱後強度
湿度100%、温度120℃のオートクレーブ中にテンションメンバーを投入し30分間処理した。処理後のテンションメンバーの強度を上記(2)の方法に準じて測定した。
【0023】
(実施例1)
常法により調製したエチレンと一酸化炭素が完全交互共重合した極限粘度5.9のポリケトンポリマーを、塩化亜鉛65重量%/塩化ナトリウム10重量%含有する水溶液に添加し、80℃で2時間攪拌溶解しポリマー濃度8重量%のドープを得た。得られたドープを80℃に加温し、20μmのフィルターでろ過した後に、紡口径0.10mm、L/D=1、250ホールの紡口より10mmのエアーギャップを通した後に5重量%の塩化亜鉛を含有する18℃の水中に吐出量12.5cc/分の速度で押出し、凝固させた。
凝固糸を引き続き濃度2重量%の硫酸水溶液で洗浄し、さらに30℃の水で洗浄した後、巻取速度3.2m/分で巻取った。得られた糸状物を200℃にて乾燥して未延伸糸を得た。
この未延伸糸を240℃で1段目の延伸を行った後に、引き続き265℃で2段目の延伸を行いトータルで15倍の延伸を行った。延伸時に毛羽・断糸等のトラブルは発生しなかった。得られた繊維は繊維物性、熱安定性共に優れた性能を有していた。
【0024】
得られたポリケトンマルチフィラメントを4本束ねた繊維束にプルトルージョン法で不飽和ポリエステル樹脂(商品名日本触媒(株)製エポラックG−750)を対繊維30重量%含浸し、160℃で加熱乾燥した。
テンションメンバーを長さ20000mに成形する際に毛羽・断糸等による工程上の不具合はなかった。得られたテンションメンバーは実用上十分な高い強度・弾性率を有し、また繊維と樹脂との接着性もよく剥離した部分は観察されなかった。
得られた繊維の性質および性能を下記の実施例2、3および比較例1、2と合わせて表1にまとめて示す。
【0025】
(実施例2)
常法によりエチレン/一酸化炭素ユニットを94重量%、プロピレン/一酸化炭素ユニットを6重量%含有する極限粘度1.5のポリケトンターポリマーを調製した。
得られたポリマーにカルシウムヒドロキシアパタイトを0.3重量%添加し、235℃で溶融後、0.23mmφ、250Hの紡口から吐出速度400m/分で巻取った。
得られた未延伸糸を200℃で1段目の延伸を行った後、225℃で2段目の延伸を行い、トータル10倍の延伸を行った。延伸時に毛羽・糸切れ等のトラブルは発生しなかった。
得られたポリケトンフィラメントを実施例1と同様の処方で、長さ20000mのテンションメンバーに製造した。
得られたテンションメンバーは繊維と樹脂との接着性もよく剥離した部分は観察されなかった。
【0026】
(実施例3)
実施例1で得られたポリケトンマルチフィラメント6本を、線径150μmの光ファイバーの外周に一重配列になるように積層し、不飽和ポリエステル樹脂を含浸・被覆して光ファイバー(心線)を得た。
長さ20000mの成形時に毛羽・断糸等による工程上の不具合はなかった。得られた光ファイバーは繊維と樹脂との接着性もよく剥離した部分は観察されなかった。
【0027】
(比較例1)
常法により調製した高強度ポリビニルアルコール繊維を用い、実施例1と同様の処方で樹脂を含浸・被覆、加熱乾燥して長さ20000mのテンションメンバーを得た。
このテンションメンバーは繊維と樹脂の接着性は良好であったが、100%湿度下で120℃×30分の処理を行ったところ強度は半分以下に低下した。
(比較例2)
常法により調製したアラミド繊維を用い、実施例1と同様の処方で樹脂を含浸・被覆、加熱乾燥して長さ1000mのテンションメンバーを得た。
アラミド繊維およびテンションメンバーの力学物性は優れたものであったが、このテンションメンバーは繊維と樹脂の接着性が不良で、目視で100m当たり3〜5カ所の明瞭な剥離部分が観察され、取扱い時の曲げ方向の力により容易に繊維と樹脂の剥離が発生した。
【0028】
【表1】
Figure 0004104260
【0029】
(注)
耐摩耗性:○=繊維表面にフィブリル状の毛羽や単糸切れが観察されない。
△=繊維表面に1〜9本のフィブリル状の毛羽や単糸切れが観察される。
×=繊維表面に10本以上のフィブリル状の毛羽や単糸切れが観察される。
接着性: ○=テンションメンバーの繊維と樹脂間に剥離が観察されない。
×=テンションメンバーの繊維と樹脂間に剥離が観察される。
【0030】
【発明の効果】
本発明のテンションメンバーは、非導電性で且つ高強度・高弾性率のポリケトン繊維を含むために、電磁誘導が発生せず、強固で力学物性に優れる光ファイバーを含む光ケーブル、光ファイバ心線が得られるようになる。
また、ポリケトン繊維が屈曲性高分子であるため可撓性に優れ且つ光ファイバー製造時、輸送時および施設時の取扱性に優れ、被覆材との接着性に優れ、熱や湿気に対しても安定であることから、長期間安定した情報伝送機能を維持することが可能となる。
さらに、特定凝固条件で紡糸したポリケトン繊維を用いた場合には、耐フィブリル性に優れ、延伸時やテンションメンバー加工時に毛羽が発生せず、品位の優れたテンションメンバーを生産性よく安定して製造することが可能となる。
【図面の簡単な説明】
【図1】本発明に用いた摩擦試験の試験装置の概要を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention provides an optical fiber (an optical cable, an optical fiber cable) that has excellent mechanical properties, can be reduced in weight, is stable against heat and humidity, and has low transmission loss and enables stable transmission over a long period of time. In addition, the present invention relates to an improvement in a tension member (strength member) for an optical fiber.
[0002]
[Prior art]
In recent years, computerization has progressed, and the demand for optical fibers as a transmission means has dramatically increased. Among them, the tension member that constitutes the optical fiber is an important constituent material that supports the transmission stability and durability of the optical fiber, and the enhancement of its performance is constantly required.
Conventionally, steel and glass fiber have been widely used as the fiber constituting the tension member. However, the tension member using steel has a problem of electromagnetic induction, a problem that the specific gravity is large and the fiber becomes heavy. The tension member used had a problem in impact resistance and flexibility of the material.
[0003]
In order to solve these problems, tension members using non-metallic materials such as ceramic fibers, carbon fibers, aromatic polyester fibers, aramid fibers, polybenzazole fibers, and polyvinyl alcohol fibers, and organic material fibers have been studied. (For example, JP-A-8-21935 and JP-A-9-251123).
However, the carbon fiber has a problem that the generation of electromagnetic induction cannot be completely avoided.
In addition, ceramic fibers have low flexibility and have a problem in handling at the time of cable facilities.
In addition, aromatic polyester fibers, aramid fibers, and polybenzazole fibers have problems with poor flexibility and poor handling because the polymers have aromatic rings and are rigid, and the polymers have an affinity with other compounds. Therefore, the adhesiveness with the coating layer made of a thermoplastic resin on the outer periphery of the tension member is poor, and there is a problem that it is easily peeled off during processing or use.
In addition, the polyvinyl alcohol fiber has a problem that the strength greatly decreases due to humidity and a problem that the dimensional stability against heat and moisture is insufficient.
Furthermore, polymer fibers having a highly oriented molecular structure such as aramid fibers and polyvinyl alcohol fibers tend to fibrillate the fiber surface, causing problems during the tension member manufacturing process and making it difficult to obtain satisfactory products. was there.
[0004]
[Problems to be solved by the invention]
The subject of the present invention is that electromagnetic induction does not occur, handling properties such as impact resistance and flexibility, adhesion to a covering material, stability against heat and moisture, and all the characteristics of fibril resistance, It is to provide a tension member capable of stable information transmission.
[0005]
[Means for Solving the Problems]
As a result of various studies on the above problems, the present inventor solved the conventional problems associated with the optical fiber tension member by using a polyketone fiber composed of a copolymer of olefin and carbon monoxide as the optical fiber tension member. The present inventors have found that this can be done and have completed the present invention.
That is, the present invention:
(1) An optical fiber tension member including a polyketone fiber composed of a copolymer of olefin and carbon monoxide, wherein the polyketone fiber constituting the tension member has a tensile strength of 5 cN / dtex or more and a tensile modulus of 100 cN / dtex. There is thus provided an optical fiber tension member comprising polyketone fibers having a single yarn fineness of 0.1 to 3 dtex and a total fineness of 100 to 10000 dtex . Also,
(2) The polyketone fiber constituting the tension member is characterized by a tensile strength of 10 cN / dtex or more and a tensile modulus of 200 cN / dtex or more. Also,
(3) It is characterized in that the proportion of polyketone fibers in the fibers constituting the tension member is 50% by weight or more. Also,
(4) It is characterized in that the fibers constituting the tension member are composed only of polyketone fibers. Also,
(5) An optical fiber using the tension member according to any one of (1) to (4) is provided.
[0006]
Hereinafter, the present invention will be described in detail.
The polymer used for the fiber contained in the tension member of the present invention is a polyketone polymer obtained by copolymerizing olefin and carbon monoxide.
Since the polyketone polymer is a flexible polymer, the polyketone fiber made of this polymer is excellent in flexibility and impact resistance. In addition, since it has a ketone group, it has excellent adhesion to the coating material, and has high crystallinity and a high melting point, and since it has no hydrophilic group such as a hydroxyl group, it is stable against heat and moisture. have.
[0007]
The polymer composition is mainly a repeating unit of 1-oxotrimethylene in which ethylene and carbon monoxide are bonded from the viewpoints of strength and elastic modulus, resin adhesion, dimensional stability, creep resistance, high-temperature fiber properties, etc. The following polymer is preferred.
The proportion of 1-oxotrimethylene in the repeating unit is preferably 90% by weight or more, more preferably 97% by weight because the higher the fiber, the higher the melting point, the higher the mechanical properties, and the higher dimensional stability. % Or more.
The repeating units in which the olefin and carbon monoxide are bonded may be partially linked with ketone groups and ethylene, but 90% by weight or more is a polyketone polymer in which olefins and carbon monoxide are alternately arranged. It is desirable to be.
[0008]
From the viewpoint of light resistance, heat resistance, and reduction in physical properties at high temperatures, the content of the portion in which olefins and carbon monoxide are alternately arranged is preferably as large as possible, preferably 97% by weight or more, most preferably 100% by weight. is there.
If necessary, olefins other than ethylene such as propene, butene, hexene, cyclohexene, pentene, cyclopentene, octene, and nonene, methyl methacrylate, vinyl acetate, acrylamide, hydroxyethyl methacrylate, styrene, sodium styrenesulfonate, allylsulfonic acid A compound having an unsaturated hydrocarbon such as sodium, vinyl pyrrolidone or vinyl chloride may be copolymerized.
In addition, various additives such as antioxidants, quenching agents, radical scavengers, heavy metal deactivators, gelation inhibitors, matting agents, UV absorbers, pigments, etc. may be blended into the polyketone polymer as necessary. Also good.
[0009]
The polyketone fiber contained in the tension member of the present invention is required to have high mechanical properties, heat / humidity stability, and surface smoothness.
Examples of the mechanical properties include strength and elastic modulus, and the strength is preferably 5 cN / dtex or more, more preferably 10 cN / dtex or more, and particularly preferably 15 cN / dtex or more.
The elastic modulus is preferably 100 cN / dtex, more preferably 200 cN / dtex or more, and particularly preferably 300 cN / dtex or more.
As the stability of polyketone fiber against heat and humidity, the lower the shrinkage rate under dry and wet heat treatment, the less the shape change and residual stress, and the better the dimensional stability. I can say that.
As the dry heat shrinkage rate, the shrinkage rate in the treatment at 180 ° C. for 30 minutes is preferably 4% or less, and more preferably 3% or less.
The wet heat shrinkage rate is more preferably 3% or less, more preferably 2% or less as the shrinkage rate by treatment at 120 ° C. for 30 minutes at 100% humidity.
[0010]
It is important that the polyketone fiber surface in the tension member has no fluff.
In order to obtain a polyketone fiber having a strength of 10 cN / dtex or higher and a modulus of elasticity of 200 cN / dtex or higher, a high-strength and high-modulus polyketone fiber needs to be stretched at a high magnification of 10 times or more. In the interior and surface of the polyketone fiber, a long fibril structure is formed in the fiber axis direction. In particular, fibrils on the surface of the fiber tend to peel off due to friction between yarns and yarns or between yarns and devices during drawing or processing, and this fuzz significantly deteriorates the processability and reduces the quality of the product.
For this reason, as the abrasion resistance of the polyketone fiber used for the tension member of the present invention, it is desirable that the number of fluffs in the abrasion resistance test described in the examples of the present invention is less than 10.
As the structure of such a polyketone fiber having excellent abrasion resistance, the average diameter of fibrils when the longitudinal section of the fiber is observed with an electron microscope is 10 to 1000 nm, preferably 20 to 800 nm, more preferably 100 to 100 nm. It is desirable to have a structure that is 500 nm.
[0011]
There is no particular restriction on the single yarn fineness of the polyketone fiber, but if it is too thick, the flexibility is lowered and handling becomes difficult, while if it is too thin, single yarn breakage in the process tends to occur. It is -100 dtex, More preferably, it is the range of 0.1-3 dtex.
The total fineness of the polyketone fiber varies depending on the usage environment of the tension member, but is in the range of 10 to 100,000 dtex, preferably 100 to 10,000 dtex in general applications.
[0012]
The tension member of the present invention may contain other fibers as long as it contains the above-described polyketone fibers.
Examples of fibers that can be mixed with polyketone fibers include steel, glass fibers, ceramic fibers, carbon fibers, aromatic polyester fibers, aramid fibers, polybenzazole fibers, polyvinyl alcohol fibers, polyester fibers, polyamide fibers, polyethylene fibers, and polyacetal fibers. Etc.
These fiber mixing methods may be used by laminating separately bundled fiber bundles, or may be used by mixing or intertwisting, or may be used alternately. Further, if necessary, morphological combination such as arranging polyketone fibers on the outer periphery of a fiber bundle of steel or aramid to enhance the adhesion may be performed.
[0013]
The ratio of the polyketone fiber in the fiber contained in the tension member of the present invention is not particularly limited, but the higher the ratio, the better the adhesiveness, flexibility, and handleability, so 50 wt% or more, more preferably 80 wt%. % Or more, particularly preferably 100% by weight.
[0014]
Hereinafter, the manufacturing method of the tension member of this invention is demonstrated.
The polyketone fiber contained in the tension member is wet using a concentrated salt solvent that can produce high strength, high elasticity, excellent heat resistance, and a fiber with a small average fibril diameter on the fiber surface and excellent wear resistance. A spinning method is preferred.
[0015]
Hereinafter, a method for producing polyketone fibers will be described by taking a wet spinning method using an aqueous zinc halide solution as a solvent.
The zinc halide compound used for the solvent is preferably zinc chloride or zinc iodide from the viewpoints of solubility, solvent cost, and aqueous solution stability.
Further, if necessary, it may contain a halide of alkali metal or alkaline earth metal such as sodium chloride, potassium chloride, calcium chloride or the like in an amount of 60% by weight or less, preferably 40% by weight or less. From the viewpoint of thermal stability and spinnability, a dope containing 5 to 30% by weight of a metal salt such as sodium chloride or calcium chloride is preferable.
[0016]
The polyketone dope is discharged from a spinneret and, if necessary, is made into a filament through an air gap portion and a coagulation bath.
The composition of the coagulation bath may be any organic solvent such as methanol and acetone, water, an organic aqueous solution, an inorganic aqueous solution, etc., but a solution containing water is preferred.
The filamentous material thus obtained is washed with a metal salt, if necessary, dried and stretched.
Stretching is usually performed at a temperature below the melting point, and the stretching ratio is preferably 10 times or more in total, particularly preferably 15 times or more, and a multistage stretching method in which the stretching temperature is gradually increased is suitably used. .
Further, if twisting is applied at the time of stretching and after stretching, the elastic modulus of the tension member is reduced. Therefore, the number of twists is preferably 10 times or less per meter, and particularly preferably 0 times per meter. desirable.
The polyketone fiber thus obtained is used as it is, or, if necessary, after being combined with other reinforcing fibers and impregnated with resin between the fibers, and then drawn to form a tension member.
[0017]
As the resin to be impregnated, conventionally known thermoplastic resins and thermosetting resins may be used as they are or after modification, and plural kinds of resins may be mixed as necessary.
Usable resins include, for example, thermoplastic resins, polyamide resins such as nylon 6 and nylon 6/6, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyolefin resins such as polyethylene and polypropylene, polyethersulfone, and polyetherimide. , Polycarbonate, polyether ketone and the like.
Examples of thermosetting resins include unsaturated polyester resins, vinyl ester resins, epoxy resins, phenol resins, bismaleimide resins, and the like. Further, as a curing agent used for the thermosetting resin, a conventionally known curing agent can be used as it is or after being modified.
[0018]
Examples of the curing agent include bisphenol S, bisphenol A, dicyandiamide, diaminodiphenylsulfone, diaminodiphenylmethane, tetramethylguanazine, phenol novolac resin, cresol novolac resin, aromatic (aliphatic) amine, imidazole derivative, acid anhydride, And boron trifluoride complex.
The resin impregnation method is also not particularly limited, and for example, a conventionally known melt impregnation method, solution impregnation method, powder impregnation method, and pultrusion method can be applied as they are or modified as necessary.
The content of the fiber in the tension member is not particularly limited, but is preferably in the range of 30 to 90% by weight, more preferably 50 to 80% by weight from the viewpoint of the strength and handleability of the tension member. desirable.
[0019]
Since the tension member of the present invention is non-conductive and contains polyketone fibers having high strength and high modulus, electromagnetic induction does not occur, and an optical fiber having strong and excellent mechanical properties can be obtained.
In addition, because it is made of a flexible polymer, it has excellent flexibility, excellent handling at the time of optical fiber facilities, excellent adhesion to coating materials, and is stable against heat and moisture, so it is stable for a long time. The transmission function can be maintained.
In addition, when polyketone fibers spun under specific coagulation conditions are used, they have excellent fibril resistance, no fluffing occurs during stretching or tension member processing, and stable production of high-quality tension members with high productivity. It becomes possible to do.
[0020]
【Example】
The present invention will be described in more detail with reference to the following examples, but they are not intended to limit the scope of the present invention.
The measurement method of each measurement value used in the description of the examples is as follows.
(1) Intrinsic viscosity Intrinsic viscosity [η] is a value determined based on the following defining formula (I).
Figure 0004104260
(However, t and T in the formula are the flow time of the viscosity tube at 60 ° C. of the dilute solution of polyketone dissolved in hexafluoroisopropanol.
C is the solute weight value in grams in 100 ml of the solution. )
(2) Strength, elongation, and elastic modulus were measured according to JIS-L-1013.
[0021]
(3) The wear resistant fiber was treated with tetrachloroethylene at 25 ° C. for 1 minute to wash the oil.
After bundling the fibers so that the total denier is 1000 d, the fibers are cut into two pieces, a fixed yarn (yarn length 50 cm) and a running yarn (yarn length 1 m), and the tension at both ends of the fixed yarn is 0.5 cN / dtex. Fix it to the iron pole so that One end of the running yarn is fixed to the pendulum motor, and a weight is attached to the other end so that the load is 0.1 cN / dtex.
The pendulum motor at one end of the traveling yarn was vibrated for 1 minute at an amplitude of 50 mm and a speed of 100 reciprocations / minute, with the lower surface of the traveling yarn and the upper surface of the fixed yarn contacting vertically. Here, the angle formed by the traveling yarn and the fixed yarn was 150 °.
Five points were arbitrarily extracted from the friction portion of the running yarn after the test was completed, and the surface was observed with an optical microscope to determine the rubbing state.
An outline of the wear apparatus used in this measurement is shown in FIG.
[0022]
(4) Dry heat shrinkage rate According to JIS-L-1013, the value before and after the 180 ° C. treatment was measured and determined.
(5) Moist heat shrinkage rate The yarn was put into an autoclave having a humidity of 100% and a temperature of 120 ° C., and treated for 30 minutes under no tension. Fiber length before processing l 0, the fiber length after treatment as l, were measured wet heat shrinkage ratio WS using the following equation (2).
WS = [(l 0 −l) / l 0 ] × 100 (%) (2)
(6) After the wet heat of the tension member, the tension member was placed in an autoclave having a strength and humidity of 100% and a temperature of 120 ° C. and treated for 30 minutes. The strength of the tension member after the treatment was measured according to the method (2) above.
[0023]
(Example 1)
A polyketone polymer having an intrinsic viscosity of 5.9, which is a completely alternating copolymer of ethylene and carbon monoxide, prepared by a conventional method is added to an aqueous solution containing 65% by weight of zinc chloride / 10% by weight of sodium chloride, and stirred at 80 ° C. for 2 hours. A dope having a polymer concentration of 8% by weight was obtained by dissolution. The obtained dope was heated to 80 ° C. and filtered through a 20 μm filter. After passing through an air gap of 10 mm from a nozzle with a nozzle diameter of 0.10 mm and L / D = 1,250 holes, 5 wt% It was extruded into water at 18 ° C. containing zinc chloride at a discharge rate of 12.5 cc / min and solidified.
The coagulated yarn was subsequently washed with an aqueous sulfuric acid solution having a concentration of 2% by weight, further washed with water at 30 ° C., and then wound at a winding speed of 3.2 m / min. The obtained filamentous material was dried at 200 ° C. to obtain an undrawn yarn.
This undrawn yarn was stretched at the first stage at 240 ° C., and then at the second stage at 265 ° C. for a total stretch of 15 times. Troubles such as fuzz and yarn breakage did not occur during drawing. The obtained fiber had excellent performance in both fiber properties and thermal stability.
[0024]
A fiber bundle obtained by bundling four obtained polyketone multifilaments was impregnated with 30% by weight of an unsaturated polyester resin (trade name: EPORAC G-750 manufactured by Nippon Shokubai Co., Ltd.) by a pultrusion method and dried at 160 ° C. did.
When the tension member was formed to a length of 20000 m, there were no problems in the process due to fluff, yarn breakage, and the like. The obtained tension member had a sufficiently high strength and elastic modulus for practical use, and the part where the adhesion between the fiber and the resin was well peeled was not observed.
Properties and performances of the obtained fibers are shown in Table 1 together with Examples 2 and 3 and Comparative Examples 1 and 2 below.
[0025]
(Example 2)
A polyketone terpolymer having an intrinsic viscosity of 1.5 containing 94% by weight of ethylene / carbon monoxide units and 6% by weight of propylene / carbon monoxide units was prepared by a conventional method.
To the obtained polymer, 0.3% by weight of calcium hydroxyapatite was added, melted at 235 ° C., and then wound from a 0.23 mmφ, 250H spout at a discharge speed of 400 m / min.
The obtained unstretched yarn was stretched at the first stage at 200 ° C. and then stretched at the second stage at 225 ° C. for a total stretching of 10 times. Troubles such as fluff and yarn breakage did not occur during stretching.
The resulting polyketone filament was produced into a tension member having a length of 20000 m in the same formulation as in Example 1.
In the obtained tension member, the part where the adhesion between the fiber and the resin was well peeled was not observed.
[0026]
(Example 3)
Six polyketone multifilaments obtained in Example 1 were laminated on the outer periphery of an optical fiber having a wire diameter of 150 μm so as to be arranged in a single array, and impregnated with and coated with an unsaturated polyester resin to obtain an optical fiber (core wire).
There was no problem in the process due to fluff, yarn breakage, etc. during molding of a length of 20000 m. In the obtained optical fiber, the part where the adhesion between the fiber and the resin was well peeled was not observed.
[0027]
(Comparative Example 1)
Using a high-strength polyvinyl alcohol fiber prepared by a conventional method, the resin was impregnated / coated with the same formulation as in Example 1 and dried by heating to obtain a tension member having a length of 20000 m.
This tension member had good adhesion between the fiber and the resin, but when the treatment was performed at 120 ° C. for 30 minutes under 100% humidity, the strength decreased to less than half.
(Comparative Example 2)
Using an aramid fiber prepared by a conventional method, the resin was impregnated / coated with the same formulation as in Example 1 and dried by heating to obtain a tension member having a length of 1000 m.
The mechanical properties of the aramid fiber and tension member were excellent, but this tension member has poor adhesion between the fiber and the resin, and 3-5 clear peeled parts are visually observed per 100 m. The fiber and the resin were easily peeled by the force in the bending direction.
[0028]
[Table 1]
Figure 0004104260
[0029]
(note)
Abrasion resistance: ◯ = No fibrillar fluff or single yarn breakage observed on the fiber surface.
Δ = 1 to 9 fibrillar fuzz and single yarn breakage are observed on the fiber surface.
X = 10 or more fibrillar fuzz and single yarn breakage are observed on the fiber surface.
Adhesiveness: ○ = No peeling observed between the tension member fibers and the resin.
X = Peeling is observed between the fiber of the tension member and the resin.
[0030]
【The invention's effect】
The tension member of the present invention includes non-conductive, high-strength, high-modulus polyketone fibers, so that no electromagnetic induction occurs, and an optical cable and optical fiber core including an optical fiber that is strong and has excellent mechanical properties can be obtained. Be able to.
In addition, polyketone fiber is a flexible polymer, so it has excellent flexibility, easy handling during optical fiber manufacturing, transportation and facilities, excellent adhesion to coating materials, and stable against heat and moisture. Therefore, it is possible to maintain a stable information transmission function for a long time.
In addition, when polyketone fibers spun under specific coagulation conditions are used, they have excellent fibril resistance, no fluffing occurs during stretching or tension member processing, and stable production of high-quality tension members with high productivity. It becomes possible to do.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of a test apparatus for a friction test used in the present invention.

Claims (5)

オレフィンと一酸化炭素との共重合ポリマーより構成されたポリケトン繊維を含む光ファイバー用テンションメンバーであって、テンションメンバーを構成するポリケトン繊維が引張強度5cN/dtex以上、引張弾性率100cN/dtex以上で、単糸繊度が0.1〜3dtex、総繊度が100〜10000dtexのポリケトン繊維を含むことを特徴とする光ファイバー用テンションメンバー。An optical fiber tension member comprising a polyketone fiber composed of a copolymer of olefin and carbon monoxide, wherein the polyketone fiber constituting the tension member has a tensile strength of 5 cN / dtex or more and a tensile modulus of 100 cN / dtex or more. An optical fiber tension member comprising polyketone fibers having a single yarn fineness of 0.1 to 3 dtex and a total fineness of 100 to 10,000 dtex . テンションメンバーを構成するポリケトン繊維が引張強度10cN/dtex以上、引張弾性率200cN/dtex以上であることを特徴とする請求項1記載の光ファイバー用テンションメンバー。  2. The tension member for an optical fiber according to claim 1, wherein the polyketone fiber constituting the tension member has a tensile strength of 10 cN / dtex or more and a tensile elastic modulus of 200 cN / dtex or more. テンションメンバーを構成する繊維中のポリケトン繊維の割合が50重量%以上であることを特徴とする請求項1又は2記載の光ファイバー用テンションメンバー。The optical fiber tension member according to claim 1 or 2, wherein the proportion of the polyketone fiber in the fibers constituting the tension member is 50% by weight or more. テンションメンバーを構成する繊維がポリケトン繊維のみからなることを特徴とする請求項1〜のいずれかに記載の光ファバー用テンションメンバー。 Fiber-b bar tension member according to any one of claims 1 to 3, the fibers constituting the tension member is characterized in that it consists only polyketone fiber. 請求項1〜のいずれかに記載のテンションメンバーを用いた光ファイバー。An optical fiber using the tension member according to any one of claims 1 to 4 .
JP33124899A 1999-11-22 1999-11-22 Optical fiber tension member Expired - Lifetime JP4104260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33124899A JP4104260B2 (en) 1999-11-22 1999-11-22 Optical fiber tension member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33124899A JP4104260B2 (en) 1999-11-22 1999-11-22 Optical fiber tension member

Publications (2)

Publication Number Publication Date
JP2001147357A JP2001147357A (en) 2001-05-29
JP4104260B2 true JP4104260B2 (en) 2008-06-18

Family

ID=18241569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33124899A Expired - Lifetime JP4104260B2 (en) 1999-11-22 1999-11-22 Optical fiber tension member

Country Status (1)

Country Link
JP (1) JP4104260B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4449531B2 (en) * 2004-03-29 2010-04-14 日東紡績株式会社 FIBER-REINFORCED RESIN LINEAR AND METHOD FOR PRODUCING THE SAME

Also Published As

Publication number Publication date
JP2001147357A (en) 2001-05-29

Similar Documents

Publication Publication Date Title
KR100810865B1 (en) Method of Preparing Polyketone Fibers and the Polyketone Fibers Prepared by the Method
JP3708030B2 (en) Polyketone fiber, polyketone fiber twisted product and molded article thereof
TWI555889B (en) Polyester fiber for rubber reinforcing and its manufacturing method
JP6855683B2 (en) Liquid crystal polyester multifilament
WO2019167923A1 (en) Twisted cord of liquid-crystal polyester multifilaments, production method therefor, and product comprising said twisted cord
JP7472787B2 (en) Liquid crystal polyester multifilament and advanced processed products made therefrom
JP4570273B2 (en) Polyketone fiber, cord and method for producing the same
JP4104260B2 (en) Optical fiber tension member
US5045257A (en) Process for producing aromatic polyester fiber
JP2001146638A (en) Monofilament and method for producing the same
JP2018040077A (en) Liquid crystal polyester multifilament
JP6753231B2 (en) Liquid crystal polyester multifilament
JP2003027333A (en) Polyketone fiber
JP2012214912A (en) Method for producing pretreated polyester fiber
JP5502680B2 (en) Polyester fiber for marine rope
JPS59116411A (en) Novel polyamide yarn and its preparation
JP4660014B2 (en) rope
JPS6385105A (en) Organic high-strength yarn with excellent abrasion resistance
CN112105765B (en) Wholly aromatic polyamide fiber
JP7584121B2 (en) Manufacturing method of fibers for industrial materials
KR100595756B1 (en) High strength polyvinyl alcohol fiber
JP2012214911A (en) Polyester fiber for rubber reinforcement
JP2005352179A (en) Tension member for optical fiber
JP2007023452A (en) Highly functional fiber having excellent opening property or paralleling property
JP2001148982A (en) Fishing line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080325

R150 Certificate of patent or registration of utility model

Ref document number: 4104260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term