Nothing Special   »   [go: up one dir, main page]

JP4100355B2 - Hot water storage water heater - Google Patents

Hot water storage water heater Download PDF

Info

Publication number
JP4100355B2
JP4100355B2 JP2004043311A JP2004043311A JP4100355B2 JP 4100355 B2 JP4100355 B2 JP 4100355B2 JP 2004043311 A JP2004043311 A JP 2004043311A JP 2004043311 A JP2004043311 A JP 2004043311A JP 4100355 B2 JP4100355 B2 JP 4100355B2
Authority
JP
Japan
Prior art keywords
hot water
heat storage
fluid
storage fluid
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004043311A
Other languages
Japanese (ja)
Other versions
JP2005233514A (en
Inventor
誠治 三輪
静男 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004043311A priority Critical patent/JP4100355B2/en
Publication of JP2005233514A publication Critical patent/JP2005233514A/en
Application granted granted Critical
Publication of JP4100355B2 publication Critical patent/JP4100355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、蓄熱用流体を貯える貯湯タンクと、この貯湯タンク内の蓄熱用流体を加熱する加熱手段とを備える貯湯式給湯装置に関するものであり、特に、加熱手段、循環回路、および貯湯タンクへの蓄熱用流体の充填に関する。   The present invention relates to a hot water storage type hot water supply apparatus including a hot water storage tank for storing a heat storage fluid and a heating means for heating the heat storage fluid in the hot water storage tank, and particularly to the heating means, the circulation circuit, and the hot water storage tank. It relates to the filling of the heat storage fluid.

従来、この種の貯湯式給湯装置として、例えば、特許文献1に示すような給湯システムが知られている。この貯湯式給湯装置では、図5に示すように、蓄熱用流体を内部に貯える貯湯タンク100と、この貯湯タンク100内の最下部の蓄熱用流体を貯湯タンク100内の最上部に送る流体加熱用流路110と、この流体加熱用流路110に設けられ、流体加熱用流路110を流れる蓄熱用流体を加熱する加熱手段120と、貯湯タンク100内の蓄熱用流体が流通する第1流通部130aと給湯用水が流通する第2流通部130bとを隣接して設け、かつ蓄熱用流体と給湯用水とが対向流となるように構成され、両者間で熱交換を行なう給湯用熱交換器130と、貯湯タンク100の上部から加熱された蓄熱用流体を取り出し、第1流通部130aを通過させた後、貯湯タンク100の下部に戻すための循環通路140と、この循環通路140に蓄熱用流体を循環させるポンプ手段150と、循環通路140を介して第1流通部130aを流通する蓄熱用流体の流量を制御する流量制御手段160とを備えている。   Conventionally, as this kind of hot water storage type hot water supply apparatus, for example, a hot water supply system as shown in Patent Document 1 is known. In this hot water storage type hot water supply apparatus, as shown in FIG. 5, the hot water storage tank 100 that stores the heat storage fluid therein, and the fluid heating that sends the lowermost heat storage fluid in the hot water storage tank 100 to the uppermost portion in the hot water storage tank 100. Flow path 110, heating means 120 provided in the fluid heating flow path 110 for heating the heat storage fluid flowing through the fluid heating flow path 110, and a first flow through which the heat storage fluid in the hot water storage tank 100 flows. Portion 130a and second circulation portion 130b through which hot water supply water circulates are provided adjacent to each other, and the heat storage fluid and hot water supply water are configured to face each other and heat exchange is performed between them. 130, a circulation passage 140 for taking out the heat storage fluid heated from the upper part of the hot water storage tank 100, passing it through the first circulation part 130a, and then returning it to the lower part of the hot water storage tank 100, and this circulation passage 140 A pump means 150 for circulating the heat storage fluid, and a flow control means 160 for controlling the flow rate of the heat storage fluid flowing through the first flowing part 130a through the circulation passage 140.

そして、対向流の給湯用熱交換器130を使用して第1流通部130aに流れる蓄熱用流体の流量を制御することにより、第1流通部130aを通過した後の蓄熱用流体の湯温を加熱前の給湯用水の温度近傍まで低減できる。これにより、蓄熱用流体と給湯用水との熱交換時における熱ロスを極力小さくすることが可能となり効率の良い給湯システムを実現できるようにしている。   Then, by controlling the flow rate of the heat storage fluid flowing in the first circulation part 130a using the counter-flow hot water supply heat exchanger 130, the hot water temperature of the heat storage fluid after passing through the first circulation part 130a is reduced. It can be reduced to near the temperature of hot water before heating. As a result, it is possible to minimize heat loss at the time of heat exchange between the heat storage fluid and hot water supply water, thereby realizing an efficient hot water supply system.

また、この構成によれば、貯湯タンク100内に大きな圧力をかけることなく蓄熱用流体の貯えができることにより、貯湯タンク100の上部に大気と開口する空気孔100aが設けられた大気開放型の貯湯タンク100が形成できるようにしている(例えば、特許文献1参照)。
特開2001−153458号公報
In addition, according to this configuration, the heat storage fluid can be stored without applying a large pressure in the hot water storage tank 100, so that the open air type hot water storage in which the air hole 100a opening to the atmosphere is provided in the upper part of the hot water storage tank 100. The tank 100 can be formed (for example, refer to Patent Document 1).
JP 2001-153458 A

しかしながら、特許文献1のような大気開放型の貯湯タンク100と加熱手段120とを組み合わせて、空の貯湯タンク100内に蓄熱用流体を充填するときに、一般的には、貯湯タンク100の下方より蓄熱用流体を供給して貯湯タンク100内に充填させる方法がある。この方法では、貯湯タンク100内が満水となっていても加熱手段120および流体加熱用流路110に構成される配管経路内に空気が滞留するエアーロック現象が発生することがある。特に、貯湯タンク100よりも加熱手段120が上方に設置されると上述したエアーロック現象が流体加熱用流路110に顕著に発生することがある。これにより、蓄熱用流体が加熱手段120に流通されなくなる問題がある。   However, when the hot water storage tank 100 open to the atmosphere as in Patent Document 1 and the heating means 120 are combined to fill the heat storage fluid into the empty hot water storage tank 100, generally, There is a method of supplying more heat storage fluid and filling the hot water storage tank 100. In this method, even if the hot water storage tank 100 is full, an air lock phenomenon may occur in which air stays in the piping path configured by the heating unit 120 and the fluid heating channel 110. In particular, when the heating means 120 is installed above the hot water storage tank 100, the above-described air lock phenomenon may occur remarkably in the fluid heating channel 110. Thereby, there is a problem that the heat storage fluid is not distributed to the heating means 120.

そのため、流体加熱用流路110の配管経路を、その経路内の空気が貯湯タンク100の空気孔100aに向けて空気抜きができるように形成するとか、または配管経路の途中で空気が溜まってしまう閉鎖箇所には、その箇所の空気を外部に排出するための空気抜き弁などを設けることで経路内に空気が滞留しない構造で対応している。従って、流体加熱用流路110の配管経路を設計施工するには、専門的な技術力を有する技術者による設計施工が必要となり、装置施工のための施工コストが割高となる問題がある。   Therefore, the piping path of the fluid heating flow path 110 is formed so that air in the path can be vented toward the air hole 100a of the hot water storage tank 100, or air is accumulated in the middle of the piping path. The location corresponds to a structure in which air does not stay in the path by providing an air vent valve or the like for discharging the air at the location to the outside. Therefore, in order to design and construct the piping path of the fluid heating flow path 110, there is a problem that design construction by an engineer having specialized technical skills is required, and the construction cost for constructing the apparatus is expensive.

そこで、本発明の目的は、上記点を鑑みたものであり、流体加熱用流路から加熱手段、貯湯タンクの順に圧送するように蓄熱用流体を供給させることで、エアーロック現象の発生がなくかつ充填作業が容易にできる貯湯式給湯装置を提供することにある。   In view of the above, the object of the present invention is to prevent the occurrence of an air lock phenomenon by supplying the heat storage fluid so that the heating means and the hot water storage tank are pumped in this order from the fluid heating flow path. Another object of the present invention is to provide a hot water storage type hot water supply device that can be filled easily.

上記目的を達成するために、以下の技術的手段を採用する。すなわち、請求項1に記載の発明では、蓄熱用流体を内部に貯える貯湯タンク(10)と、この貯湯タンク(10)内の蓄熱用流体を加熱する加熱手段(20)と、この貯湯タンク(10)内の下部から蓄熱用流体を取り出して加熱手段(20)に導く往き側回路(22)と、加熱手段(20)により加熱された蓄熱用流体を貯湯タンク(10)内の上部に戻す戻り側回路(23)とを備える貯湯式給湯装置において、
往き側回路(22)もしくは戻り側回路(23)には、貯湯タンク(10)内に蓄熱用流体を充填させるときに、往き側回路(22)もしくは戻り側回路(23)のいずれか一方より蓄熱用流体を供給して、加熱手段(20)側に圧送させた後に貯湯タンク(10)側に充填するように構成されており、
往き側回路(22)もしくは前記戻り側回路(23)のいずれか一方に蓄熱用流体を供給する蓄熱用流体供給手段(61、62)が設けられ、蓄熱用流体供給手段(61、62)は、貯湯タンク(10)内に蓄熱用流体を充填させるときに、蓄熱用流体を加熱手段(20)側に供給するように構成されており、
蓄熱用流体供給手段(61、62)は、蓄熱用流体を供給する供給回路(61)と、加熱手段(20)と貯湯タンク(10)の下部とを連通させるか、または加熱手段(20)と供給回路(61)とを連通させるかの一方に流れ方向を切り換える切換弁(62)とから構成され、蓄熱用流体供給手段(61、62)には、供給回路(61)の上流端が給水源に接続されるとともに、供給回路(61)に蓄熱剤を供給する蓄熱剤供給手段(60)が設けられていることを特徴としている。
In order to achieve the above object, the following technical means are adopted. That is, in the invention described in claim 1, the hot water storage tank (10) for storing the heat storage fluid therein, the heating means (20) for heating the heat storage fluid in the hot water storage tank (10), and the hot water storage tank ( 10) Take out the heat storage fluid from the lower part in the inside, and return the heat storage fluid heated by the heating means (20) to the upper part in the hot water storage tank (10). In the hot water storage type hot water supply device comprising the return side circuit (23),
When the hot water storage tank (10) is filled with the heat storage fluid in the forward circuit (22) or the return circuit (23), either the forward circuit (22) or the return circuit (23) is used. Supplying the heat storage fluid and pumping it to the heating means (20) side, and then filling the hot water storage tank (10) side,
Heat storage fluid supply means (61, 62) for supplying heat storage fluid to either the forward circuit (22) or the return circuit (23) is provided, and the heat storage fluid supply means (61, 62) The heat storage fluid is supplied to the heating means (20) when the hot water storage tank (10) is filled with the heat storage fluid.
The heat storage fluid supply means (61, 62) communicates the supply circuit (61) for supplying heat storage fluid with the heating means (20) and the lower part of the hot water storage tank (10), or the heating means (20). And a switching valve (62) that switches the flow direction to one of the communication circuit and the supply circuit (61) . The heat storage fluid supply means (61, 62) includes an upstream end of the supply circuit (61). The heat storage agent supply means (60) which supplies a heat storage agent to a supply circuit (61) is provided while being connected to a water supply source .

請求項1に記載の発明によれば、例えば、水道圧または圧送手段などで蓄熱用流体を加熱手段(20)側から圧送させることで、加熱手段(20)側の配管経路内の空気が貯湯タンク(10)側に送り込まれるので配管経路内のエアーロック現象の発生がなくかつ蓄熱用流体の充填作業が容易にできる。   According to the first aspect of the present invention, for example, the air in the piping path on the heating means (20) side is stored in hot water by causing the heat storage fluid to be pumped from the heating means (20) side by water pressure or pumping means. Since it is sent to the tank (10) side, there is no occurrence of an air lock phenomenon in the piping path, and the filling operation of the heat storage fluid can be facilitated.

具体的には、貯湯タンク(10)内に蓄熱用流体を充填するときに、蓄熱用流体を前記加熱手段(20)側に供給するように構成されたことにより、蓄熱用流体が加熱手段(20)側の配管経路内の空気を送り出すように貯湯タンク(10)内に送り込まれるので配管経路内のエアーロック現象の発生がなくかつ充填作業が容易にできる。 Specifically, when the heat storage fluid is filled into the hot water storage tank (10), the heat storage fluid is supplied to the heating means (20) side, whereby the heat storage fluid is heated by the heating means ( 20) Since it is sent into the hot water storage tank (10) so as to send out air in the piping path on the side, there is no occurrence of an air lock phenomenon in the piping path, and filling work can be facilitated.

供給回路(61)と切換弁(62)とを設けることにより、蓄熱用流体が供給回路(61)から加熱手段(20)側を経由した後に、貯湯タンク(10)内に供給することができる。 By providing the supply circuit (61) and the switching valve (62), the heat storage fluid can be supplied from the supply circuit (61) to the hot water storage tank (10) after passing through the heating means (20) side. .

また、供給回路(61)が給水源に接続されることにより、水道圧で充填時に加熱手段(20)側に圧送させることが容易にできる。これにより、蓄熱用流体の充填作業が容易にできる。 Moreover , by connecting the supply circuit (61) to the water supply source, it can be easily pumped to the heating means (20) side at the time of filling with water pressure. Thereby, the filling operation | work of the fluid for thermal storage can be performed easily.

請求項2に記載の発明では、蓄熱用流体供給手段(61、62)は、供給回路(61)に、蓄熱用流体を貯蔵する貯蔵容器(60a)と、貯蔵容器(60a)内の蓄熱用流体を外部に圧送する圧送手段(24a)とが設けられていることにより、例えば、ポンプなどの圧送手段(24a)でも充填時に加熱手段(20)側に圧送させることが容易にできる。 In the invention according to claim 2 , the heat storage fluid supply means (61, 62) includes, in the supply circuit (61), the storage container (60a) for storing the heat storage fluid, and the heat storage fluid in the storage container (60a). By providing the pumping means (24a) for pumping the fluid to the outside, for example , the pumping means (24a) such as a pump can be easily pumped to the heating means (20) side during filling.

請求項3に記載の発明では、往き側回路(22)には、貯湯タンク(10)内の蓄熱用流体を吸い込んで加熱手段(20)に圧送する圧送手段(24)が設けられ、蓄熱用流体供給手段(61、62)は、圧送手段(24)の上流側近傍に設けられたことを特徴としている。請求項3に記載の発明によれば、上述の請求項2では蓄熱用流体供給手段(61、62)に圧送手段(24a)を設けたが、加熱手段(20)で加熱するときに用いられる圧送手段(24)を蓄熱用流体の充填時に使用させても良い。これによれば、充填時のみに使用される圧送手段(24a)が不要となる。 In the invention according to claim 3 , the forward circuit (22) is provided with a pressure feeding means (24) for sucking the heat storage fluid in the hot water storage tank (10) and pumping it to the heating means (20). The fluid supply means (61, 62) is provided in the vicinity of the upstream side of the pressure feeding means (24). According to the third aspect of the present invention, the heat storage fluid supply means (61, 62) is provided with the pressure feeding means (24a) in the above-mentioned second aspect , but is used when heating is performed by the heating means (20). The pumping means (24) may be used when filling the heat storage fluid. According to this, the pumping means (24a) used only at the time of filling becomes unnecessary.

請求項4に記載の発明では、貯湯タンク(10)は、大気圧もしくは極低圧(例えば、10kPa)となるように構成されていることを特徴としている。請求項4に記載の発明によれば、従来の高圧(例えば、170kPa)タンクのような耐圧設計が不要となるため、貯湯タンク自体を樹脂により成形することができる。この場合、一般的に用いられるステンレス鋼加工に必要なプレス工程、溶接工程が不要となって、従来よりも製造コストを低く抑えることができる。さらに、高圧タンクのように、耐圧上から円筒形状とする必要がなくタンク形状の設計自由度を高くできる。 The invention according to claim 4 is characterized in that the hot water storage tank (10) is configured to be at atmospheric pressure or extremely low pressure (for example, 10 kPa). According to the invention of claim 4, conventional high pressure (e.g., 170 kPa) for pressure-resistant design, such as a tank is not needed, can be a hot water storage tank itself is molded by resin. In this case, a press process and a welding process that are generally required for stainless steel processing are not required, and the manufacturing cost can be kept lower than before. Further, unlike the high-pressure tank, it is not necessary to form a cylindrical shape from the viewpoint of pressure resistance, and the degree of freedom in designing the tank shape can be increased.

請求項5に記載の発明では、加熱手段(20)は、冷媒の高圧側圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、臨界圧力以上に昇圧された冷媒により蓄熱用流体を加熱することを特徴としている。 In the invention according to claim 5 , the heating means (20) is a supercritical heat pump cycle in which the high-pressure side pressure of the refrigerant is equal to or higher than the critical pressure, and heats the heat storage fluid with the refrigerant whose pressure is increased to the critical pressure or higher. It is characterized by.

請求項5に記載の発明によれば、二酸化炭素などの冷媒を用いた超臨界ヒートポンプ方式の加熱手段(20)においては、沸き上げ温度が約90〜95℃程度と高くなるため、蓄熱用流体側からの気泡の発生度が高いため、例えば、加熱手段(20)内で気泡などが貯湯タンク(10)側に送り込みやすいようにすることで好適である。 According to the fifth aspect of the present invention, in the supercritical heat pump type heating means (20) using a refrigerant such as carbon dioxide, the boiling temperature is as high as about 90 to 95 ° C. Since the degree of generation of bubbles from the side is high, for example, it is preferable to make it easy to send bubbles or the like into the hot water storage tank (10) side in the heating means (20).

なお、上記各手段の括弧内の符号は、後述する実施形態の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows a corresponding relationship with the specific means of embodiment mentioned later.

(第1実施形態)
以下、本発明の第1実施形態による貯湯式給湯装置を図1に基づいて説明する。図1は本発明を適用させた貯湯式給湯装置の全体構成を示す模式図である。本実施形態の貯湯式給湯装置は、一般家庭用として使用されるものであり、図1に示すように、蓄熱用流体を内部に貯える貯湯タンク10と、この貯湯タンク10内の最下部の蓄熱用流体を貯湯タンク10内の最上部に送る流体加熱用流路21と、この流体加熱用流路21を流れる蓄熱用流体を加熱する加熱手段であるヒートポンプユニット20と、貯湯タンク10内の蓄熱用流体が流通する第1流通部30aと給湯用水が流通する第2流通部30bとを隣接して設け、かつ蓄熱用流体と給湯用水とが対向流となるように構成され、両者間で熱交換を行なう給湯用熱交換器30と、貯湯タンク10内の蓄熱用流体を給湯用熱交換器30の第1流通部30a側に流通させた後、貯湯タンク10内の下部に戻すための循環回路11と、給湯用熱交換器30の第2流通部30bの上流側に接続される給水用配管31と、第2流通部30bの下流側に接続される給湯用配管32、33と、本給湯システムの作動を制御する制御装置(給湯制御部41、熱源制御部42)などから構成されている。
(First embodiment)
Hereinafter, a hot water storage type hot water supply apparatus according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram showing an overall configuration of a hot water storage type hot water supply apparatus to which the present invention is applied. The hot water storage type hot water supply apparatus of the present embodiment is used for general household use, and as shown in FIG. 1, a hot water storage tank 10 for storing a heat storage fluid therein, and a lowermost heat storage tank in the hot water storage tank 10. A fluid heating passage 21 for sending the working fluid to the uppermost part in the hot water storage tank 10, a heat pump unit 20 that is a heating means for heating the heat storage fluid flowing through the fluid heating passage 21, and heat storage in the hot water storage tank 10. The first circulation part 30a through which the working fluid circulates and the second circulation part 30b through which the hot water supply water circulates are provided adjacent to each other, and the heat storage fluid and the hot water supply water are configured to face each other. A hot water supply heat exchanger 30 for exchanging, and a circulation for returning the heat storage fluid in the hot water storage tank 10 to the lower part in the hot water storage tank 10 after circulating the heat storage fluid in the hot water heat exchanger 30 to the first flow part 30a side. Circuit 11 and heat exchange for hot water supply Water supply pipe 31 connected to the upstream side of the second flow part 30b of the water heater 30, hot water supply pipes 32 and 33 connected to the downstream side of the second flow part 30b, and control for controlling the operation of the hot water supply system The apparatus (hot water supply control part 41, heat source control part 42) etc. are comprised.

本実施形態の貯湯タンク10は、空気孔10aを通じて大気に開放され、貯湯タンク10内部が大気圧に保たれている。この貯湯タンク10は、例えば、樹脂材料で形成され直方体形状に設けられている。また、貯湯タンク10内の蓄熱用流体に蓄えられた熱が貯湯タンク10の壁面より大気中へ放出されることを低減するために、貯湯タンク10の外周をグラスウールやウレタン等の断熱材で覆っても良い。また、使用される蓄熱用流体は主成分が水であり、防腐剤、凍結防止剤、LLC等が必要に応じて添加されている蓄熱用流体である。なお、これらの他に高比熱を有する蓄熱材料をマイクロカプセルなどの手法にて封入し、それを水に分散混合させるか、またはスリラー化させて流動可能な蓄熱材を用いても良い。   The hot water storage tank 10 of the present embodiment is opened to the atmosphere through the air hole 10a, and the interior of the hot water storage tank 10 is maintained at atmospheric pressure. The hot water storage tank 10 is formed of, for example, a resin material and has a rectangular parallelepiped shape. Further, in order to reduce the heat stored in the heat storage fluid in the hot water storage tank 10 from being released into the atmosphere from the wall surface of the hot water storage tank 10, the outer periphery of the hot water storage tank 10 is covered with a heat insulating material such as glass wool or urethane. May be. The heat storage fluid used is a heat storage fluid in which the main component is water and preservatives, antifreezing agents, LLC, and the like are added as necessary. In addition to these, a heat storage material having a high specific heat may be encapsulated by a technique such as a microcapsule and dispersed in water, or may be made into a thriller and flowable.

また、貯湯タンク10の外壁面には、蓄熱用流体の貯湯量、もしくは貯湯温度を検出するための水温センサである複数(本例では7つ)の貯湯サーミスタ55が縦方向(貯湯タンク10の高さ方向)にほぼ等間隔に配置され、貯湯タンク10内に満たされた蓄熱用流体の各水位レベルでの温度情報を後述する給湯制御部41に出力するようになっている。   Further, on the outer wall surface of the hot water storage tank 10, a plurality of (seven in this example) hot water storage thermistors 55 which are water temperature sensors for detecting the amount of hot water stored in the heat storage fluid or the hot water storage temperature are arranged in the vertical direction (the hot water storage tank 10. Temperature information at each water level of the heat storage fluid filled in the hot water storage tank 10 is output to the hot water supply control unit 41 described later.

従って、給湯制御部41は複数の貯湯サーミスタ55からの温度情報に基づいて、貯湯タンク10内上方の沸き上げられた湯温と貯湯タンク10内下方の沸き上げられる前の低温の蓄熱用流体との境界位置を検出できるとともに、各水位レベルでの蓄熱用流体の湯温を検出できる。なお、複数の貯湯サーミスタ55のうち、最上部に設けられた貯湯サーミスタ55は高温の蓄熱用流体を出湯する出湯温度を検出する機能を有している。   Therefore, based on the temperature information from the plurality of hot water storage thermistors 55, the hot water supply control unit 41 and the hot water heated above the hot water storage tank 10 and the low temperature heat storage fluid before being heated below the hot water storage tank 10 Can be detected, and the hot water temperature of the heat storage fluid at each water level can be detected. Of the plurality of hot water storage thermistors 55, the hot water storage thermistor 55 provided at the uppermost part has a function of detecting the temperature of hot water discharged from the hot storage fluid.

蓄熱用流体を加熱するヒートポンプユニット20は、例えば、二酸化炭酸を冷媒として使用することにより、高圧側の冷媒圧力が冷媒の臨界圧力以上となる超臨界ヒートポンプサイクルを使用している。このヒートポンプサイクルは、周知のように圧縮機25、加熱用熱交換器26、膨張弁27、蒸発器28、およびアキュムレータ29等の冷凍サイクル機能部品より構成されている。因みに、圧縮機25は、内蔵する電動モータ(図示しない)によって駆動され、アキュムレータ29より吸引した気相冷媒を臨界圧力以上まで圧縮して吐出する。   The heat pump unit 20 that heats the heat storage fluid uses a supercritical heat pump cycle in which, for example, carbon dioxide is used as a refrigerant so that the refrigerant pressure on the high-pressure side becomes equal to or higher than the critical pressure of the refrigerant. As is well known, this heat pump cycle includes refrigeration cycle functional parts such as a compressor 25, a heat exchanger 26 for heating, an expansion valve 27, an evaporator 28, and an accumulator 29. Incidentally, the compressor 25 is driven by a built-in electric motor (not shown), and compresses and discharges the gas-phase refrigerant sucked from the accumulator 29 to a critical pressure or more.

加熱用熱交換器26は、高圧冷媒と蓄熱用流体とを熱交換するもので、例えば、冷媒が流れる一次側流路である冷媒通路26aと蓄熱用流体が流れる二次側流路である蓄熱用流体通路26bとが二重管構造に設けられ、かつ冷媒の流れ方向と蓄熱用流体の流れ方向とが対向するように構成された対向流式の熱交換器である。膨張弁27は、加熱用熱交換器26から流出する冷媒を減圧して蒸発器28に供給する。蒸発器28は、膨張弁27で減圧された冷媒を大気との熱交換によって蒸発させる。アキュムレータ29は、蒸発器28より流出する冷媒を気液分離して、気相冷媒のみ圧縮機25に吸引させるとともに、サイクル中の余剰冷媒を蓄えている。   The heating heat exchanger 26 exchanges heat between the high-pressure refrigerant and the heat storage fluid. For example, the refrigerant passage 26a that is a primary side flow path through which the refrigerant flows and a heat storage that is a secondary side flow path through which the heat storage fluid flows. The counter flow type heat exchanger is configured such that the fluid passage 26b is provided in a double tube structure and the flow direction of the refrigerant and the flow direction of the heat storage fluid are opposed to each other. The expansion valve 27 decompresses the refrigerant flowing out of the heating heat exchanger 26 and supplies it to the evaporator 28. The evaporator 28 evaporates the refrigerant decompressed by the expansion valve 27 by heat exchange with the atmosphere. The accumulator 29 gas-liquid separates the refrigerant flowing out of the evaporator 28, causes only the gas-phase refrigerant to be sucked into the compressor 25, and stores surplus refrigerant in the cycle.

そして、加熱用熱交換器26の蓄熱用流体通路26b側は、上述した流体加熱用流路21を介して貯湯タンク10に接続されている。本実施形態の流体加熱用流路21は、貯湯タンク10内の下部10bから蓄熱用流体を取り出して加熱用熱交換器26に導く往き側回路22と、加熱用熱交換器26により加熱された蓄熱用流体を貯湯タンク10内の上部10cに戻す戻り側回路23と、加熱用熱交換器26の入口側に圧送手段である循環ポンプ24とから構成されている。   The heat storage fluid passage 26b side of the heating heat exchanger 26 is connected to the hot water storage tank 10 via the fluid heating channel 21 described above. The fluid heating flow path 21 of the present embodiment is heated by the forward circuit 22 that takes out the heat storage fluid from the lower part 10 b in the hot water storage tank 10 and guides it to the heating heat exchanger 26, and the heating heat exchanger 26. The return side circuit 23 returns the heat storage fluid to the upper part 10 c in the hot water storage tank 10, and the circulation pump 24 is a pressure feeding means on the inlet side of the heating heat exchanger 26.

この循環ポンプ24は、貯湯タンク10内の下部10bから蓄熱用流体を取り出して加熱用熱交換器26、および加熱用熱交換器26により加熱された蓄熱用流体を貯湯タンク10内の上部10cに戻すための電動ポンプである。また、沸き上げ運転のときは、後述する熱源制御部42により貯湯タンク10の最上部に設けられた貯湯サーミスタ55で検出される貯湯温度に基づいて、蓄熱用流体の沸き上げ温度を一定になるように回転数が制御される。これにより、加熱用熱交換器26で熱交換された高温の蓄熱用流体が貯湯タンク10内に送り込まれる。そして、貯湯タンク10内の上部側から下部側へ向かって順次蓄熱用流体に蓄熱されていくようになっている。   The circulation pump 24 takes out the heat storage fluid from the lower part 10 b in the hot water storage tank 10 and supplies the heat storage fluid 26 heated by the heating heat exchanger 26 and the heating heat exchanger 26 to the upper part 10 c in the hot water storage tank 10. It is an electric pump for returning. Further, during the boiling operation, the boiling temperature of the heat storage fluid is made constant based on the hot water storage temperature detected by the hot water storage thermistor 55 provided at the uppermost part of the hot water storage tank 10 by the heat source control unit 42 described later. Thus, the rotation speed is controlled. As a result, the high-temperature heat storage fluid heat-exchanged by the heating heat exchanger 26 is sent into the hot water storage tank 10. Then, heat is sequentially stored in the heat storage fluid from the upper side to the lower side in the hot water storage tank 10.

また、往き側回路22には、流れ方向を切り換える切換弁62が設けられている。この切換弁62は、後述する熱源制御部42により、通常は加熱用熱交換器26の蓄熱用流体通路26b側と貯湯タンク10の下部10bとが連通するように制御され、貯湯タンク10内に蓄熱用流体を充填するときは蓄熱用流体通路26b側と供給回路61とが連通するように制御される。また、供給回路61の上流端が図示しない仕切弁を介して給水源に接続されるとともに、さらに、供給回路61の途中には、蓄熱剤供給手段60が設けられている。   Further, the forward circuit 22 is provided with a switching valve 62 for switching the flow direction. The switching valve 62 is normally controlled by the heat source controller 42 described later so that the heat storage fluid passage 26 b side of the heating heat exchanger 26 and the lower portion 10 b of the hot water tank 10 communicate with each other. When filling the heat storage fluid, the heat storage fluid passage 26b side and the supply circuit 61 are controlled to communicate with each other. Further, the upstream end of the supply circuit 61 is connected to a water supply source via a gate valve (not shown), and further, a heat storage agent supply means 60 is provided in the middle of the supply circuit 61.

蓄熱剤供給手段60は、上述した防腐剤、凍結防止剤、LLC等の蓄熱剤を水道水に供給する供給装置であり、貯湯タンク10内に蓄熱用流体を充填するときは、切換弁62を蓄熱用流体通路26b側に流れ方向を切り換え、蓄熱剤供給手段60を開口させると、所定量の蓄熱剤が供給回路61内の水道水に供給される。   The heat storage agent supply means 60 is a supply device that supplies the above-mentioned preservative, antifreezing agent, LLC or the like heat storage agent to tap water. When the hot water storage tank 10 is filled with a heat storage fluid, the switching valve 62 is provided. When the flow direction is switched to the heat storage fluid passage 26 b side and the heat storage agent supply means 60 is opened, a predetermined amount of heat storage agent is supplied to the tap water in the supply circuit 61.

これにより、蓄熱用流体は供給回路61から切換弁62を介して往き側回路22に供給され、蓄熱用流体通路26b側へ圧送されて戻り回路23から貯湯タンク10内に充填される。ここで、上述した切換弁62および供給回路61は請求項で称する蓄熱用流体供給手段である。なお、本実施形態では、蓄熱剤供給手段60により水道水に所定量の蓄熱剤を供給することで蓄熱用流体を清々したが、蓄熱剤を添加せずに水道水のみであっても良い。ただし、水道水のみのときは冬季における蓄熱用流体の凍結による不具合が起きないようにする必要がある。   As a result, the heat storage fluid is supplied from the supply circuit 61 to the forward circuit 22 via the switching valve 62, is pumped to the heat storage fluid passage 26 b side, and is charged into the hot water storage tank 10 from the return circuit 23. Here, the switching valve 62 and the supply circuit 61 described above are heat storage fluid supply means referred to in the claims. In the present embodiment, the heat storage fluid is refreshed by supplying a predetermined amount of the heat storage agent to the tap water by the heat storage agent supply means 60. However, only the tap water may be used without adding the heat storage agent. However, when using only tap water, it is necessary to prevent problems caused by freezing of the heat storage fluid during the winter season.

また、ヒートポンプユニット20は後述する熱源制御部42からの制御信号により作動するとともに、作動状態を熱源制御部42に出力するようになっている。また、これらの動力源として交流電力を用い、主に料金設定の最も安い深夜時間帯における深夜電力を用いて、貯湯タンク10内の蓄熱用流体を沸き上げる蓄熱運転を行なっているが、昼間時間帯においても蓄熱用流体の湯温が低下してくると沸き上げ運転を行なうよう制御される。因みに、超臨界ヒートポンプサイクルによれば、一般的なヒートポンプサイクルよりも高温(例えば、85〜90℃)の蓄熱用流体を内部に貯えることができる。   The heat pump unit 20 is operated by a control signal from a heat source control unit 42 to be described later, and outputs an operating state to the heat source control unit 42. In addition, the AC power is used as the power source, and the heat storage operation for boiling the heat storage fluid in the hot water storage tank 10 is performed mainly using the midnight power in the midnight time zone where the rate setting is the cheapest. Even in the belt, when the hot water temperature of the heat storage fluid decreases, the boiling operation is controlled. Incidentally, according to the supercritical heat pump cycle, a heat storage fluid having a temperature higher than that of a general heat pump cycle (for example, 85 to 90 ° C.) can be stored therein.

次に、循環回路11は、貯湯タンク10内の蓄熱用流体を給湯用熱交換器30の第1流通部30aに流通させ、給湯用熱交換器30により熱交換された蓄熱用流体を貯湯タンク10内の下方部10eに戻すための循環回路であり、高温取り出し管12、中温取り出し管13、往き管14、戻し管15、流量比調節手段である高中温混合弁16、および第1循環ポンプ17とから構成されている。   Next, the circulation circuit 11 distributes the heat storage fluid in the hot water storage tank 10 to the first flow part 30a of the hot water supply heat exchanger 30, and the heat storage fluid heat-exchanged by the hot water supply heat exchanger 30 is stored in the hot water storage tank. 10 is a circulation circuit for returning to the lower part 10e in the high-temperature take-out pipe 12, the medium-temperature take-out pipe 13, the forward pipe 14, the return pipe 15, the high-medium temperature mixing valve 16 serving as the flow rate adjusting means, and the first circulation pump. 17.

高温取り出し管12は、貯湯タンク10内に貯えられる蓄熱用流体のうち、高温の蓄熱用流体を取り出すための配管であり、貯湯タンク10内の上方部10dに上流端が接続されている。中温取り出し管13は、貯湯タンク10内に貯えられる蓄熱用流体のうち、高温の蓄熱用流体よりも湯温の低い中温の蓄熱用流体を取り出すための配管であり、貯湯タンク10内の上方部10dと下方部10eとの間に上流端10fが接続されている。   The high-temperature take-out pipe 12 is a pipe for taking out a high-temperature heat storage fluid among the heat storage fluid stored in the hot water storage tank 10, and an upstream end is connected to an upper portion 10 d in the hot water storage tank 10. The medium temperature take-out pipe 13 is a pipe for taking out the medium temperature heat storage fluid having a lower temperature than the high temperature heat storage fluid among the heat storage fluid stored in the hot water storage tank 10. The upstream end 10f is connected between 10d and the lower part 10e.

往き管14は上流端が後述する高中温混合弁16の出口側に接続され、下流端が給湯用熱交換器30の第1流通部30aの上流端に接続されている。戻し管15は上流端が第1流通部30aの上流端に接続され、下流端が貯湯タンク10内の下方部10eに接続されている。なお、往き管14には、給湯用熱交換器30の第1流通部30aに流通させる蓄熱用流体の湯温を検出する熱交換前水温センサである熱交換前サーミスタ54が設けられ、往き管14内の温度情報を後述する給湯制御部41に出力するようにしている。   The upstream pipe 14 has an upstream end connected to an outlet side of a high / medium temperature mixing valve 16 described later, and a downstream end connected to an upstream end of the first circulation part 30 a of the hot water supply heat exchanger 30. The return pipe 15 has an upstream end connected to the upstream end of the first circulation part 30 a and a downstream end connected to the lower part 10 e in the hot water storage tank 10. The forward pipe 14 is provided with a thermistor 54 before heat exchange, which is a pre-heat exchange water temperature sensor for detecting the hot water temperature of the heat storage fluid to be circulated through the first flow part 30a of the hot water supply heat exchanger 30. The temperature information in 14 is output to a hot water supply control unit 41 described later.

次に、高中温混合弁16は、高温取り出し管12と中温取り出し管13との下流側合流部位に設けられ、給湯用熱交換器30の第1流通部30aに流通させる蓄熱用流体の湯温を調節する温度調節弁であり、それぞれの開口面積比を調節することで、高温取り出し管12から取り出した高温の蓄熱用流体と中温取り出し管13から取り出した中温の蓄熱用流体との混合比を調節するようにしている。   Next, the high / medium temperature mixing valve 16 is provided at a downstream junction of the high temperature take-out pipe 12 and the intermediate temperature take-out pipe 13 and is a hot water temperature of a heat storage fluid that is circulated to the first flow part 30a of the hot water supply heat exchanger 30. The mixing ratio of the high-temperature heat storage fluid taken out from the high-temperature take-out pipe 12 and the medium-temperature heat storage fluid taken out from the medium-temperature take-out pipe 13 is adjusted by adjusting the ratio of the respective opening areas. I try to adjust it.

そして、この高中温混合弁16は、後述する給湯制御部41に電気的に接続されており、上記、貯湯サーミスタ55および熱交換前サーミスタ54により検出される蓄熱用流体の温度情報に基づいて制御される。因みに、本実施形態では、貯湯サーミスタ55(中温取り出し配管13の近傍)により検出された蓄熱用流体の湯温が所定温度(例えば、30℃)未満のときに、高温取り出し配管12から取り出される高温の蓄熱用流体を第1流通部30aに流通するように制御される。   The high / medium temperature mixing valve 16 is electrically connected to a hot water supply control unit 41 described later, and is controlled based on the temperature information of the heat storage fluid detected by the hot water storage thermistor 55 and the thermistor 54 before heat exchange. Is done. Incidentally, in this embodiment, when the hot water temperature of the heat storage fluid detected by the hot water storage thermistor 55 (in the vicinity of the intermediate temperature extraction pipe 13) is lower than a predetermined temperature (for example, 30 ° C.), the high temperature extracted from the high temperature extraction pipe 12 is high. The heat storage fluid is controlled to flow to the first flow part 30a.

一方、貯湯サーミスタ55(中温取り出し配管13の近傍)により検出された蓄熱用流体の湯温が所定温度(例えば、30℃)以上のときに中温取り出し配管13から取り出される中温の蓄熱用流体、もしくは中温取り出し配管13から取り出される中温の蓄熱用流体と高温取り出し配管12から取り出される高温の蓄熱用流体との両方から混合させて第1流通部30aに流通するように制御される。   On the other hand, when the hot water temperature of the heat storage fluid detected by the hot water storage thermistor 55 (in the vicinity of the intermediate temperature extraction pipe 13) is equal to or higher than a predetermined temperature (for example, 30 ° C.), Control is performed so that both the medium-temperature heat storage fluid taken out from the medium-temperature take-out pipe 13 and the high-temperature heat storage fluid taken out from the high-temperature take-out pipe 12 are mixed and distributed to the first flow part 30a.

さらに、高中温混合弁16は、熱交換前サーミスタ54により検出された第1流通部30aに流通する蓄熱用流体の湯温を所定温度以上となるように温度調節することで第2流通部30bを流れる給湯用水を所定温度(例えば、設定温度+5℃程度)以下とならないようにしている。これにより、高温の蓄熱用流体よりも所定温度(例えば、30℃)近傍の中温の蓄熱用流体をより多く第1流通部30aに流通するようにしている。また、高中温混合弁16は熱交換前サーミスタ54により検出された熱交換前の蓄熱用流体の湯温に基づいてフィードバック制御を行なうようにしている。   Furthermore, the high / medium temperature mixing valve 16 adjusts the temperature of the hot water of the heat storage fluid flowing through the first flow portion 30a detected by the thermistor 54 before heat exchange so as to be equal to or higher than a predetermined temperature, thereby adjusting the second flow portion 30b. The hot-water supply water that flows through the water is prevented from becoming below a predetermined temperature (for example, about a set temperature + 5 ° C.). Thus, more medium temperature heat storage fluid in the vicinity of a predetermined temperature (for example, 30 ° C.) than the high temperature heat storage fluid is circulated to the first flow part 30a. Further, the high / medium temperature mixing valve 16 performs feedback control based on the hot water temperature of the heat storage fluid before heat exchange detected by the thermistor 54 before heat exchange.

第1循環ポンプ17は戻し管15の中途に配置されており、貯湯タンク10内の蓄熱用流体を給湯用熱交換器30に流通させるポンプである。そして、後述する熱交換後サーミスタ52により検出された給湯用熱交換器30の第2流通部30bより熱交換された給湯用水の湯温に基づいて回転数が制御されるように後述する給湯制御部41に電気的に接続されている。なお、循環回路11および流体加熱用流路21には排水栓18が設けられており、必要に応じて貯湯タンク10内および循環回路11内の蓄熱用流体を手動により排水することができるようにしている。   The first circulation pump 17 is arranged in the middle of the return pipe 15 and is a pump for circulating the heat storage fluid in the hot water storage tank 10 to the hot water supply heat exchanger 30. And hot water supply control mentioned later so that a rotation speed is controlled based on the hot water temperature of the hot water for hot water exchanged from the 2nd circulation part 30b of the heat exchanger 30 for hot water supply detected by the thermistor 52 after heat exchange mentioned later. The unit 41 is electrically connected. The circulation circuit 11 and the fluid heating passage 21 are provided with drain plugs 18 so that the heat storage fluid in the hot water storage tank 10 and the circulation circuit 11 can be drained manually if necessary. ing.

次に、給湯用熱交換器30は、循環回路11に接続されて貯湯タンク10内の蓄熱用流体が流れる第1流通部30aと、給水用配管31および給湯用配管32に接続された第2流通部30bとを有して、貯湯タンク10の外部に上下方向に配置されている。そして、第1流通部30aの下流端が貯湯タンク10の下方部10dと連通するように戻し管15に接続され、第1流通部30aの上流端が往き管14に接続されている。   Next, the hot water supply heat exchanger 30 is connected to the circulation circuit 11 so that the heat storage fluid in the hot water storage tank 10 flows, and the second water supply pipe 31 and the second hot water supply pipe 32 are connected to the hot water supply pipe 32. It has a circulation part 30b and is arranged in the vertical direction outside the hot water storage tank 10. The downstream end of the first circulation part 30 a is connected to the return pipe 15 so as to communicate with the lower part 10 d of the hot water storage tank 10, and the upstream end of the first circulation part 30 a is connected to the forward pipe 14.

一方、第2流通部30bは、その上流端が給水用配管31に接続され、下流端が給湯用配管32に接続されている。従って、給湯用熱交換器30は、図1に矢印で示すように、第1流通部30aを上から下へ向かって流れる蓄熱用流体の流れ方向と、第2流通部30bを下から上へ向かって流れる給湯用水の流れ方向とが対向する対向流式の熱交換器である。   On the other hand, as for the 2nd circulation part 30b, the upstream end is connected to the piping 31 for water supply, and the downstream end is connected to the piping 32 for hot water supply. Therefore, as shown by the arrow in FIG. 1, the hot water supply heat exchanger 30 flows in the flow direction of the heat storage fluid flowing from the top to the bottom through the first circulation part 30 a and the second circulation part 30 b from the bottom to the top. It is a counterflow type heat exchanger with which the flow direction of the hot water for water which flows toward opposes.

また、給水用配管31の上流は水道配管に接続されて水道水が第2流通部30bに導水されるようにしている。なお、給水用配管31には給水サーミスタ51が設けられており、水道水の温度情報を後述する給湯制御部41に出力するようにしている。また、給湯用配管32には、第2流通部30bにて熱交換された給湯用水の流量を調節する流量調節弁34と、給湯用配管32の下流端と給水用配管31の合流部位において給湯温度調節手段である給湯用混合弁35が設けられている。そして、この給湯用混合弁35の出口側に給湯用配管33が接続されている。   Further, the upstream of the water supply pipe 31 is connected to a water pipe so that the tap water is led to the second circulation part 30b. Note that a water supply thermistor 51 is provided in the water supply pipe 31 so that temperature information of tap water is output to a hot water supply control unit 41 described later. Further, the hot water supply pipe 32 has a flow rate adjusting valve 34 for adjusting the flow rate of the hot water supplied by the second circulation part 30 b, and a hot water supply at a junction of the downstream end of the hot water supply pipe 32 and the water supply pipe 31. A hot water supply mixing valve 35 serving as temperature adjusting means is provided. A hot water supply pipe 33 is connected to the outlet side of the hot water supply mixing valve 35.

給湯用配管33は台所、浴室などの図示しない給湯水栓に通ずる給湯配管である。そして、その中途に給湯サーミスタ53および流量カウンタ58が設けられ、給湯サーミスタ53は給湯用配管33内の温度情報を、流量カウンタ58は給湯用配管33内の流量情報を後述する給湯制御部41に出力するようにしている。なお、給湯用配管32には、給湯用熱交換器30により熱交換された蓄熱用流体の湯温を検出する熱交換後サーミスタ52が設けられ、給湯用配管33内の温度情報を後述する給湯制御部41に出力するようにしている。   The hot water supply pipe 33 is a hot water supply pipe that leads to a hot water tap (not shown) such as a kitchen or bathroom. A hot water supply thermistor 53 and a flow rate counter 58 are provided in the middle thereof. The hot water supply thermistor 53 provides temperature information in the hot water supply pipe 33, and the flow rate counter 58 provides flow information in the hot water supply pipe 33 to the hot water supply control unit 41 described later. I am trying to output. The hot water supply pipe 32 is provided with a post-heat exchange thermistor 52 that detects the hot water temperature of the heat storage fluid heat-exchanged by the hot water supply heat exchanger 30, and temperature information in the hot water supply pipe 33 is described later. The data is output to the control unit 41.

流量調節弁34は、第2流通部30bを流通する流量を調節する弁であり、第2流通部30bを流通する流量が所定流量以下となるように後述する給湯制御部41により制御される。つまり、給水される水道圧および給湯経路の圧力損失のばらつきにより流量が過大とならないように熱交換後サーミスタ52により検出される給湯用水の湯温に基づいて制御される。   The flow rate adjustment valve 34 is a valve that adjusts the flow rate that flows through the second flow unit 30b, and is controlled by a hot water supply control unit 41, which will be described later, so that the flow rate that flows through the second flow unit 30b is less than or equal to a predetermined flow rate. That is, control is performed based on the hot water temperature of the hot water detected by the thermistor 52 after heat exchange so that the flow rate does not become excessive due to variations in the water pressure of the supplied water and the pressure loss in the hot water supply path.

次に、給湯用混合弁35は、給湯用配管33に出湯させる給湯用水の湯温を調節する温度調節弁であり、それぞれの開口面積比を調節することで、第2流通部30bで熱交換された給湯用水と水道水との混合比を調節して設定温度に調節するように制御される。そして、給湯用混合弁35は、後述する給湯制御部41に電気的に接続されており、上記、給水サーミスタ51、熱交換後サーミスタ52、および給湯サーミスタ53により検出される給湯用水の温度情報に基づいて制御される。   Next, the hot water supply mixing valve 35 is a temperature adjustment valve that adjusts the hot water temperature of the hot water to be discharged from the hot water supply pipe 33, and heat exchange is performed in the second circulation part 30b by adjusting the ratio of the respective opening areas. Control is performed to adjust the mixing ratio of the supplied hot water and tap water to the set temperature. The hot-water supply mixing valve 35 is electrically connected to a hot-water supply control unit 41, which will be described later. The hot-water supply water temperature information detected by the hot-water supply thermistor 51, the post-heat exchange thermistor 52, and the hot-water supply thermistor 53 is used. Controlled based on.

因みに、給湯用混合弁35に流通される第2流通部30bで熱交換された給湯用水の湯温は、例えば、設定温度+5℃程度となるようにしている。つまり、循環回路11を循環する流量とその熱交換前サーミスタ54により検出される蓄熱用流体の湯温を制御させている。なお、給湯用混合弁35は、給湯サーミスタ53により検出される給湯用水の湯温に基づいてフィードバック制御を行なうようにしている。   Incidentally, the hot water temperature of the hot water supplied by the second circulation part 30b that is circulated to the hot water mixing valve 35 is set to, for example, about a set temperature + 5 ° C. That is, the flow rate circulating in the circulation circuit 11 and the hot water temperature of the heat storage fluid detected by the thermistor 54 before heat exchange are controlled. The hot water supply mixing valve 35 performs feedback control based on the hot water temperature of hot water supply water detected by the hot water supply thermistor 53.

次に、給湯制御部41は、マイクロコンピュータを主体として構成され、内蔵のROM(図示せず)には、予め設定された制御プログラムが設けられており、各サーミスタ51〜55からの温度情報、流量カウンタ58からの流量情報および図示しない操作盤に設けられた操作スイッチからの操作信号等に基づいて、第1循環ポンプ17、高中温混合弁16、流量調節弁34、給湯用混合弁35などの循環回路11および給湯用配管32、33内のアクチュエータ類を制御するように構成されている。   Next, the hot water supply control unit 41 is mainly composed of a microcomputer, and a built-in ROM (not shown) is provided with a preset control program, and temperature information from the thermistors 51 to 55, Based on the flow rate information from the flow rate counter 58 and an operation signal from an operation switch provided on an operation panel (not shown), the first circulation pump 17, the high / medium temperature mixing valve 16, the flow rate adjusting valve 34, the hot water supply mixing valve 35, etc. The circulation circuit 11 and the hot water supply pipes 32 and 33 are configured to control the actuators.

また、熱源制御部42は、給湯制御部41と同じように、マイクロコンピュータを主体として構成され、内蔵のROM(図示せず)には、予め設定された制御プログラムが設けられており、図示しない各種サーミスタからの温度情報などに基づいてヒートポンプユニット20内のアクチュエータ類を制御する。この熱源制御部42では、加熱用熱交換器26で加熱された蓄熱用流体の湯温を一定温度に保つために、加熱後の蓄熱用流体温度を検出する貯湯サーミスタ(最上部)55の検出温度に基づいて循環ポンプ24の回転数制御を行っている。   Similarly to the hot water supply control unit 41, the heat source control unit 42 is mainly composed of a microcomputer, and a built-in ROM (not shown) is provided with a preset control program, not shown. The actuators in the heat pump unit 20 are controlled based on temperature information from various thermistors. In this heat source control unit 42, in order to keep the hot water temperature of the heat storage fluid heated by the heating heat exchanger 26 at a constant temperature, detection of a hot water storage thermistor (topmost portion) 55 that detects the temperature of the heat storage fluid after heating is performed. The rotational speed of the circulation pump 24 is controlled based on the temperature.

さらに、熱源制御部42により、貯湯タンク10内の蓄熱用流体を沸き上げ運転のときは、蓄熱用流体通路26b側と貯湯タンク10の下部10bとが連通する流れ方向に設定されており、貯湯タンク10内に蓄熱用流体を充填するときに、切換弁62の流れ方向を蓄熱用流体通路26b側と供給回路61とが連通する側に切り換えるように制御される。   Furthermore, when the heat storage fluid in the hot water storage tank 10 is heated by the heat source control unit 42, the heat storage fluid passage 26b side and the lower part 10b of the hot water storage tank 10 are set in a flow direction so as to communicate with each other. When the heat storage fluid is filled in the tank 10, the flow direction of the switching valve 62 is controlled to be switched to the side where the heat storage fluid passage 26 b and the supply circuit 61 communicate with each other.

次に、本装置の施工後における貯湯タンク10内への蓄熱用流体の充填方法について説明する。まず、供給回路61の上流端に設けられた仕切弁(図示せず)を開弁する。そして、切換弁62を蓄熱用流体通路26b側と供給回路61とが連通する流れ方向に切り換える。そして、蓄熱用流体が往き側回路22から蓄熱用流体通路26b、戻り側回路23、貯湯タンク10の上部10dの順に圧送されて貯湯タンク10内に充填されるものである。   Next, the filling method of the heat storage fluid into the hot water storage tank 10 after the construction of the present apparatus will be described. First, a gate valve (not shown) provided at the upstream end of the supply circuit 61 is opened. Then, the switching valve 62 is switched in the flow direction in which the heat storage fluid passage 26b side and the supply circuit 61 communicate with each other. Then, the heat storage fluid is pumped from the forward side circuit 22 in the order of the heat storage fluid passage 26b, the return side circuit 23, and the upper part 10d of the hot water storage tank 10 to fill the hot water storage tank 10.

なお、供給回路61から往き側回路22に供給される蓄熱用流体は、蓄熱剤供給手段60により蓄熱剤が供給回路61に供給されているため水道水が蓄熱用流体に生成されている。これにより、蓄熱用流体が往き側回路22からヒートポンプユニット20側を経由した後に貯湯タンク10内に送り込まれるため、この間の空気が蓄熱用流体により貯湯タンク10側に送り込まれ空気孔10aから外部に排出される。   In addition, since the heat storage fluid supplied from the supply circuit 61 to the outgoing circuit 22 is supplied to the supply circuit 61 by the heat storage agent supply means 60, tap water is generated as the heat storage fluid. As a result, the heat storage fluid is fed into the hot water storage tank 10 after passing through the heat pump unit 20 side from the forward circuit 22, so that the air during this time is sent to the hot water storage tank 10 side by the heat storage fluid and is exposed to the outside through the air hole 10 a. Discharged.

そして、蓄熱剤供給手段60は貯湯タンク10内の蓄熱用流体が満タンになるまで蓄熱剤を供給し、満タンを検出したら切換弁62を蓄熱用流体通路26b側と貯湯タンク10の下部10bとが連通する流れ方向に切り換えるとともに、蓄熱剤供給手段60からの蓄熱剤の供給を停止させる。これにより、貯湯タンク10内に蓄熱用流体が充填される。   Then, the heat storage agent supply means 60 supplies the heat storage agent until the heat storage fluid in the hot water storage tank 10 becomes full, and when full storage is detected, the switching valve 62 is connected to the heat storage fluid passage 26b side and the lower part 10b of the hot water storage tank 10. Is switched to the flow direction in which the heat storage agent communicates, and the supply of the heat storage agent from the heat storage agent supply means 60 is stopped. Thereby, the hot water storage tank 10 is filled with the heat storage fluid.

そして、ヒートポンプユニット20内の各ヒートポンプサイクル部品および循環ポンプ24を作動させて貯湯タンク10内の蓄熱用流体の沸き上げ運転を実行する。これにより、貯湯タンク10内の蓄熱用流体が往き側回路22から蓄熱用流体通路26bに導入されて高圧冷媒と熱交換され、熱交換された高温の蓄熱用流体が戻り側回路23から貯湯タンク10内に戻されて高温(例えば、85℃)の蓄熱用流体が貯えられる。   And each heat pump cycle component in the heat pump unit 20 and the circulation pump 24 are operated, and the boiling operation of the heat storage fluid in the hot water storage tank 10 is executed. As a result, the heat storage fluid in the hot water storage tank 10 is introduced from the forward circuit 22 into the heat storage fluid passage 26b and exchanges heat with the high-pressure refrigerant, and the heat-exchanged high-temperature heat storage fluid is returned from the return circuit 23 to the hot water storage tank. 10 is stored in the heat storage fluid at a high temperature (for example, 85 ° C.).

そして、貯湯タンク10内に貯えられた高温の蓄熱用流体を熱源として、この蓄熱用流体を給湯用熱交換器30の第l流通部30aに流通させて、第l流通部30aに流通する給湯用水とを熱交換させ、熱交換された給湯用水と水道水とを混合させて台所、洗面所、浴槽などの給湯対象個所に給湯できるものである。因みに、使用者が給湯用配管33の末端にある給湯水栓(図示しない)を開くと、流量カウンタ58により流量情報が給湯制御部41に出力されると、まず、第1循環ポンプ17が作動する。この第1循環ポンプ17が作動すると、貯湯タンク10内の蓄熱用流体が給湯用熱交換器30の第1流通部30aに流通される。これにより、給湯用熱交換器30の第2流通部30bを流れる給湯用水が蓄熱用流体の熱エネルギーを受けて加熱される。   The hot water storage fluid stored in the hot water storage tank 10 is used as a heat source, and the heat storage fluid is circulated through the l-th circulation part 30a of the hot water supply heat exchanger 30 and circulated into the l-th circulation part 30a. Heat water is exchanged with hot water, and hot water for which hot water has been exchanged and tap water can be mixed to supply hot water to a hot water supply target area such as a kitchen, a washroom, and a bathtub. Incidentally, when the user opens a hot water tap (not shown) at the end of the hot water supply pipe 33, when the flow rate information is output to the hot water supply control unit 41 by the flow rate counter 58, first, the first circulation pump 17 is activated. To do. When the first circulation pump 17 is operated, the heat storage fluid in the hot water storage tank 10 is circulated to the first flow part 30 a of the hot water supply heat exchanger 30. Thereby, the hot water supply water which flows through the 2nd circulation part 30b of the hot water supply heat exchanger 30 receives the heat energy of the heat storage fluid and is heated.

ここで、給湯制御部41は、熱交換後サーミスタ52により検出される給湯用水の湯温が所定温度(例えば、設定温度+5℃程度)になるように第1循環ポンプ17の駆動状態(回転数)を制御する。そして、熱交換前サーミスタ54により検出される蓄熱用流体の湯温が所定温度以上となるように高中温混合弁16により制御されている。具体的には、貯湯サーミスタ55により検出された貯湯タンク10内の蓄熱用流体の湯温が所定温度(例えば、30℃)未満のときに、高温取り出し配管12から取り出される所定温度以上の高温の蓄熱用流体を第1流通部30aに流通するように制御される。   Here, the hot water supply control unit 41 drives the first circulation pump 17 so that the hot water temperature detected by the thermistor 52 after heat exchange becomes a predetermined temperature (for example, about a set temperature + 5 ° C.). ) To control. The hot and middle temperature mixing valve 16 controls the hot water temperature of the heat storage fluid detected by the pre-heat exchange thermistor 54 to be equal to or higher than a predetermined temperature. Specifically, when the hot water temperature of the heat storage fluid in the hot water storage tank 10 detected by the hot water storage thermistor 55 is lower than a predetermined temperature (for example, 30 ° C.), the hot water temperature is higher than the predetermined temperature extracted from the high temperature extraction pipe 12. The heat storage fluid is controlled to flow to the first flow part 30a.

一方、貯湯サーミスタ55により検出された貯湯タンク10内の蓄熱用流体の湯温が所定温度(例えば、30℃)以上のときは、中温取り出し配管13から取り出される中温の蓄熱用流体、もしくは中温取り出し配管13から取り出される中温の蓄熱用流体と高温取り出し配管12から取り出される高温の蓄熱用流体との両方から混合させて所定温度以上の湯温の蓄熱用流体を第1流通部30aに流通するように制御される。   On the other hand, when the hot water temperature of the heat storage fluid in the hot water storage tank 10 detected by the hot water storage thermistor 55 is equal to or higher than a predetermined temperature (for example, 30 ° C.), the medium temperature heat storage fluid taken out from the intermediate temperature take-out pipe 13 or the medium temperature take-out Mixing both the medium-temperature heat storage fluid taken out from the pipe 13 and the high-temperature heat storage fluid taken out from the high-temperature take-out pipe 12 so that the heat storage fluid having a hot water temperature not lower than a predetermined temperature is circulated to the first flow part 30a. To be controlled.

これにより、中温の蓄熱用流体が第1流通部30aに多く流通されることで貯湯タンク10内の下方部10eに低温(例えば、給水温度+5℃程度)の蓄熱用流体が戻されることになる。なお、このときに中温の蓄熱用流体の流通が少ないときは、上記低温の蓄熱用流体よりも高めの温度となって貯湯タンク10内に戻されるが、貯湯タンク10内に戻された蓄熱用流体は、時間経過とともに、その蓄熱用流体の比重差により上方に高温、下方に低温および上方と下方との間に中間層(中温)が形成される。   As a result, a large amount of medium-temperature heat storage fluid is circulated to the first flow part 30a, so that the low-temperature (for example, about the water supply temperature + 5 ° C.) heat storage fluid is returned to the lower part 10e in the hot water storage tank 10. . At this time, when the circulation of the medium temperature heat storage fluid is small, the temperature becomes higher than that of the low temperature heat storage fluid and returned to the hot water storage tank 10, but the heat storage fluid returned to the hot water storage tank 10 is returned. Over time, due to the difference in specific gravity of the heat storage fluid, a high temperature is formed upward, a low temperature is formed below, and an intermediate layer (medium temperature) is formed between the upper and lower portions.

一方、給湯用混合弁35aでは、第2流通部30bで熱交換された所定温度(設定温度+5℃程度)の給湯用水と、給水用配管31から給水される水とが混合されて設定温度に調節された給湯用水が給湯用配管33から出湯される。この給湯により、給湯用熱交換器30から戻り管15を介して貯湯タンク10内の下方部10eに低温(例えば、給水温度+5℃程度)の蓄熱用流体が戻されることになる。   On the other hand, in the hot water supply mixing valve 35a, hot water supply water having a predetermined temperature (set temperature + about 5 ° C.) exchanged by the second circulation part 30b and water supplied from the water supply pipe 31 are mixed to reach the set temperature. The adjusted hot water supply water is discharged from the hot water supply pipe 33. With this hot water supply, the low-temperature (for example, about the water supply temperature + 5 ° C.) heat storage fluid is returned from the hot water supply heat exchanger 30 to the lower portion 10e in the hot water storage tank 10 via the return pipe 15.

従って、給湯用配管33から給湯用水を出湯することにより貯湯タンク10内に戻された蓄熱用流体が時間経過後に蓄熱用流体の比重差により上方に高温、下方に低温、その上方と下方との間に中温の温度層に区分されて貯えられる。つまり、給湯用水を出湯させる毎に沸き上げられた高温の湯温と沸き上げられる前の低温の湯温との境界位置が順次上方に移動して貯湯タンク10内の貯湯量が減少していく。   Accordingly, the heat storage fluid returned to the hot water storage tank 10 by discharging hot water from the hot water supply pipe 33 is heated to a higher temperature, lower to a lower temperature, and lower and higher due to the specific gravity difference of the heat storage fluid. It is divided into medium temperature layers and stored. That is, each time the hot water supply water is discharged, the boundary position between the hot water temperature that has been boiled and the cold water temperature that has not been boiled sequentially moves upward, and the amount of hot water stored in the hot water storage tank 10 decreases. .

そして、深夜時間帯に達したときに、ヒートポンプユニット20内の各ヒートポンプサイクル部品および加圧循環ポンプ24を作動させて貯湯タンク10内の蓄熱用流体の沸き上げ運転を実行して高温(例えば、85℃)の蓄熱用流体を貯えるようにしている。なお、本実施形態では、往き側回路22より蓄熱用流体を供給するように構成したが、これに限らず、図2に示すように、戻り側回路23の途中に切換弁62、供給回路61、および蓄熱剤供給手段60を設けても良い。   When the midnight time zone is reached, each heat pump cycle component in the heat pump unit 20 and the pressurized circulation pump 24 are operated to perform a heating operation of the heat storage fluid in the hot water storage tank 10 to perform a high temperature (for example, 85 ° C) for storing heat storage fluid. In the present embodiment, the heat storage fluid is supplied from the forward circuit 22, but the present invention is not limited to this, and as shown in FIG. 2, the switching valve 62 and the supply circuit 61 are provided in the middle of the return circuit 23. , And heat storage agent supply means 60 may be provided.

この場合の切換弁62は通常は加熱用熱交換器26の蓄熱用流体通路26b側と貯湯タンク10の上部10cとが連通するように制御され、貯湯タンク10内に蓄熱用流体を充填するときは蓄熱用流体通路26b側と供給回路61とが連通するように制御される。   In this case, the switching valve 62 is normally controlled so that the heat storage fluid passage 26b side of the heat exchanger 26 for heating and the upper portion 10c of the hot water storage tank 10 communicate with each other, and the hot water storage tank 10 is filled with the heat storage fluid. Is controlled so that the heat storage fluid passage 26b side communicates with the supply circuit 61.

これにより、蓄熱用流体が戻り側回路23からヒートポンプユニット20側を経由した後に貯湯タンク10内に送り込まれるため、この間の空気が蓄熱用流体により貯湯タンク10側に送り込まれ空気孔10aから外部に排出される。なお、本実施形態では、大気圧に開放するように構成したが、これに限らず、極低圧(例えば、10kPa)となるように構成しても良い。   Thereby, since the heat storage fluid is sent into the hot water storage tank 10 after passing through the heat pump unit 20 side from the return side circuit 23, the air during this time is sent to the hot water storage tank 10 side by the heat storage fluid and is passed through the air hole 10 a to the outside. Discharged. In addition, in this embodiment, although comprised so that it might open | release to atmospheric pressure, you may comprise so that it may become a very low pressure (for example, 10 kPa), without limiting to this.

以上の第1実施形態の貯湯式給湯装置によれば、貯湯タンク10内に蓄熱用流体を充填させるときに、往き側回路22もしくは戻り側回路23より蓄熱用流体を供給して、ヒートポンプユニット20側に圧送させた後に貯湯タンク10側に充填するように構成されたことにより、例えば、水道圧などで蓄熱用流体をヒートポンプユニット20側から圧送させることで、往き側回路22、ヒートポンプユニット20、および戻り回路23内の空気が貯湯タンク10側に送り込まれるので配管経路内のエアーロック現象の発生がなくかつ蓄熱用流体の充填作業が容易にできる。   According to the hot water storage type hot water supply apparatus of the first embodiment described above, when the hot water storage tank 10 is filled with the heat storage fluid, the heat storage fluid is supplied from the forward circuit 22 or the return circuit 23, and the heat pump unit 20. By being configured to fill the hot water storage tank 10 side after being pumped to the side, for example, by feeding the heat storage fluid from the heat pump unit 20 side with water pressure or the like, the forward circuit 22, the heat pump unit 20, Further, since the air in the return circuit 23 is sent to the hot water storage tank 10 side, there is no occurrence of an air lock phenomenon in the piping path, and the heat storage fluid filling operation can be facilitated.

また、具体的には、蓄熱用流体を供給する供給回路61と流れ方向を切り換える切換弁62とから構成されていることにより、蓄熱用流体がヒートポンプユニット20側の空気を送り出すように貯湯タンク10内に送り込まれるので配管経路内のエアーロック現象の発生がなくかつ充填作業が容易にできる。   Specifically, the hot water storage tank 10 is configured such that the heat storage fluid sends out air on the heat pump unit 20 side by being configured by a supply circuit 61 that supplies the heat storage fluid and a switching valve 62 that switches the flow direction. Since it is fed into the pipe, there is no occurrence of an air lock phenomenon in the piping path, and the filling operation can be facilitated.

また、供給回路61の上流端が給水源に接続されるとともに、供給回路61に蓄熱剤を供給する蓄熱剤供給手段60が設けられていることにより、水道圧で充填時にヒートポンプユニット20側に圧送させることが容易にできる。これにより、蓄熱用流体の充填作業が容易にできる。   In addition, the upstream end of the supply circuit 61 is connected to a water supply source, and the supply circuit 61 is provided with a heat storage agent supply means 60 for supplying a heat storage agent. Can be easily done. Thereby, the filling operation | work of the fluid for thermal storage can be performed easily.

また、貯湯タンク10は、大気圧もしくは極低圧となるように構成したことにより、従来の高圧(例えば、170kPa)タンクのような耐圧設計が不要となるため、貯湯タンク自体を樹脂により成形することができる。この場合、一般的に用いられるステンレス鋼加工に必要なプレス工程、溶接工程が不要となって、従来よりも製造コストを低く抑えることができる。さらに、高圧タンクのように、耐圧上から円筒形状とする必要がなくタンク形状の設計自由度を高くできる。   In addition, since the hot water storage tank 10 is configured to be at atmospheric pressure or extremely low pressure, a pressure resistance design like a conventional high pressure (for example, 170 kPa) tank is unnecessary, and therefore the hot water storage tank itself is formed of resin. Can do. In this case, a press process and a welding process that are generally required for stainless steel processing are not required, and the manufacturing cost can be kept lower than before. Further, unlike the high-pressure tank, it is not necessary to form a cylindrical shape in terms of pressure resistance, and the degree of freedom in designing the tank shape can be increased.

ヒートポンプユニット20は、冷媒の高圧側圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、臨界圧力以上に昇圧された冷媒により蓄熱用流体を加熱することにより、二酸化炭素などの冷媒を用いた超臨界ヒートポンプ方式のヒートポンプユニット20においては、沸き上げ温度が約90〜95℃程度と高くなるため、蓄熱用流体側からの気泡の発生度が高いため、例えば、ヒートポンプユニット内で気泡などが貯湯タンク10側に送り込みやすいようにすることで好適である。   The heat pump unit 20 is a supercritical heat pump cycle in which the high-pressure side pressure of the refrigerant becomes equal to or higher than the critical pressure, and the heat storage fluid is heated by the refrigerant whose pressure has been increased to the critical pressure or higher, thereby In the heat pump unit 20 of the critical heat pump system, since the boiling temperature is as high as about 90 to 95 ° C., the generation of bubbles from the heat storage fluid side is high. It is preferable to make it easy to feed to the 10 side.

(第2実施形態)
以上の第1実施形態では、蓄熱剤を蓄熱剤供給手段60により供給回路61を流通する水道水に供給させて貯湯タンク10内に蓄熱用流体を充填させたが、これに限らず、蓄熱剤が流動性蓄熱剤のときは、流動性蓄熱剤を収容する貯蔵容器60aを供給回路61の上流端に接続し、この貯蔵容器60a内の流動性蓄熱剤を蓄熱用流体として、往き側回路22もしくは戻り側回路23のいずれか一方から供給しても良い。
(Second Embodiment)
In the above first embodiment, the heat storage agent is supplied to the tap water flowing through the supply circuit 61 by the heat storage agent supply means 60 and the hot water storage tank 10 is filled with the heat storage fluid. However, the heat storage agent is not limited to this. Is a fluid heat storage agent, a storage container 60a that houses the fluid heat storage agent is connected to the upstream end of the supply circuit 61, and the fluid heat storage agent in the storage container 60a is used as the heat storage fluid to move the forward circuit 22 Alternatively, it may be supplied from either one of the return side circuits 23.

ただし、本実施形態では、図3に示すように、貯蔵容器60aから流動性蓄熱剤を圧送するための圧送手段である圧送ポンプ24aが供給回路61に設けられている。そして、貯湯タンク10内に蓄熱用流体を充填するときは、第1実施形態と同じように切換弁62を蓄熱用流体通路26b側と供給回路61とが連通する流れ方向に切り換え、圧送ポンプ24aを作動させることで往き側回路22からヒートポンプユニット20側に圧送させた後に貯湯タンク10内に蓄熱用流体を充填することができる。これにより、第1実施形態と同様の効果を奏するものである。   However, in the present embodiment, as shown in FIG. 3, the supply circuit 61 is provided with a pumping pump 24 a that is a pumping unit for pumping the fluid heat storage agent from the storage container 60 a. When the hot water storage tank 10 is filled with the heat storage fluid, the switching valve 62 is switched to the flow direction in which the heat storage fluid passage 26b side and the supply circuit 61 communicate with each other as in the first embodiment, and the pressure feed pump 24a. The hot water storage tank 10 can be filled with a heat storage fluid after being pumped from the forward circuit 22 to the heat pump unit 20 side. Thereby, there exists an effect similar to 1st Embodiment.

なお、本実施形態では、貯蔵容器60aから流動性蓄熱剤を貯湯タンク10内に圧送する圧送ポンプ24aを配設させたが、これに限らず、図4に示すように、ヒートポンプユニット20に設けられた循環ポンプ24を切換弁62の近傍、つまり切換弁62の下流側に設けて、貯湯タンク10内に蓄熱用流体を充填するときにもこの循環ポンプ24を作動させるようにしても良い。これによれば、充填時のみに使用される上述した圧送手段24aが不要することができる。   In addition, in this embodiment, although the pumping pump 24a which pumps a fluid heat storage agent into the hot water storage tank 10 from the storage container 60a was arrange | positioned, not only this but as shown in FIG. The circulating pump 24 may be provided in the vicinity of the switching valve 62, that is, on the downstream side of the switching valve 62, and the circulating pump 24 may be operated when the hot water storage tank 10 is filled with the heat storage fluid. According to this, the above-mentioned pumping means 24a used only at the time of filling can be dispensed with.

(他の実施形態)
以上の実施形態では、貯湯タンク10は、必ずしも樹脂材料を使用する必要はなく、金属材料で成形しても良い。また、貯湯タンク10の形状は、直方体形状でなくても、例えば円筒形状でも良い。また、貯湯タンク10を大気開放形に形成したが、密閉タイプ構造の貯湯タンクでも良い。ただしこの場合には、減圧弁、圧力逃がし弁などのタンクを保護するための部品が必要となる。
(Other embodiments)
In the above embodiment, the hot water storage tank 10 does not necessarily need to use a resin material, and may be formed of a metal material. Moreover, the shape of the hot water storage tank 10 may not be a rectangular parallelepiped shape but may be a cylindrical shape, for example. In addition, although the hot water storage tank 10 is formed in an open air type, a hot water storage tank having a sealed type structure may be used. In this case, however, parts for protecting the tank such as a pressure reducing valve and a pressure relief valve are required.

また、以上の実施形態では、冷媒に二酸化炭素を用いたヒートポンプユニット20を熱源装置として説明したが、これに限らず、フロン、代替フロンなどの冷媒を用いる一般的なヒートポンプサイクルでも良い。   In the above embodiment, the heat pump unit 20 using carbon dioxide as a refrigerant has been described as a heat source device. However, the present invention is not limited to this, and a general heat pump cycle using a refrigerant such as chlorofluorocarbon or alternative chlorofluorocarbon may be used.

本発明の第1実施形態における貯湯式給湯装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the hot water storage type hot water supply apparatus in 1st Embodiment of this invention. 本発明の第1実施形態の変形例における貯湯式給湯装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the hot water storage type hot-water supply apparatus in the modification of 1st Embodiment of this invention. 本発明の第2実施形態における貯湯式給湯装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the hot water storage type hot water supply apparatus in 2nd Embodiment of this invention. 本発明の第2実施形態の変形例における貯湯式給湯装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the hot water storage type hot-water supply apparatus in the modification of 2nd Embodiment of this invention. 従来技術における貯湯式給湯装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the hot water storage type hot-water supply apparatus in a prior art.

符号の説明Explanation of symbols

10…貯湯タンク
20…ヒートポンプユニット(加熱手段)
22…往き側回路
23…戻り側回路
24…循環ポンプ(圧送手段)
60…蓄熱剤供給手段
60a…貯蔵容器
61…供給回路(蓄熱用流体供給手段)
62…切換弁
10 ... Hot water storage tank 20 ... Heat pump unit (heating means)
22 ... Outward side circuit 23 ... Return side circuit 24 ... Circulation pump (pressure feeding means)
60 ... Thermal storage agent supply means 60a ... Storage container 61 ... Supply circuit (heat storage fluid supply means)
62 ... Switching valve

Claims (5)

蓄熱用流体を内部に貯える貯湯タンク(10)と、
前記貯湯タンク(10)内の蓄熱用流体を加熱する加熱手段(20)と、
前記貯湯タンク(10)内の下部から蓄熱用流体を取り出して前記加熱手段(20)に導く往き側回路(22)と、
前記加熱手段(20)により加熱された蓄熱用流体を前記貯湯タンク(10)内の上部に戻す戻り側回路(23)とを備える貯湯式給湯装置において、
前記往き側回路(22)もしくは前記戻り側回路(23)には、前記貯湯タンク(10)内に蓄熱用流体を充填させるときに、前記往き側回路(22)もしくは前記戻り側回路(23)のいずれか一方より蓄熱用流体を供給して、前記加熱手段(20)側に圧送させた後に前記貯湯タンク(10)側に充填するように構成されており、
前記往き側回路(22)もしくは前記戻り側回路(23)のいずれか一方に蓄熱用流体を供給する蓄熱用流体供給手段(61、62)が設けられ、
前記蓄熱用流体供給手段(61、62)は、前記貯湯タンク(10)内に蓄熱用流体を充填させるときに、蓄熱用流体を前記加熱手段(20)側に供給するように構成されており、
前記蓄熱用流体供給手段(61、62)は、蓄熱用流体を供給する供給回路(61)と、前記加熱手段(20)と前記貯湯タンク(10)の下部とを連通させるか、または前記加熱手段(20)と前記供給回路(61)とを連通させるかの一方に流れ方向を切り換える切換弁(62)とから構成され
前記蓄熱用流体供給手段(61、62)には、前記供給回路(61)の上流端が給水源に接続されるとともに、前記供給回路(61)に蓄熱剤を供給する蓄熱剤供給手段(60)が設けられていることを特徴とする貯湯式給湯装置。
A hot water storage tank (10) for storing heat storage fluid therein;
Heating means (20) for heating the heat storage fluid in the hot water storage tank (10);
A forward circuit (22) for taking out the heat storage fluid from the lower part of the hot water storage tank (10) and leading it to the heating means (20);
In the hot water storage type hot water supply apparatus comprising a return side circuit (23) for returning the heat storage fluid heated by the heating means (20) to the upper part in the hot water storage tank (10),
When the hot water storage tank (10) is filled with the heat storage fluid in the forward circuit (22) or the return circuit (23), the forward circuit (22) or the return circuit (23). The heat storage fluid is supplied from any one of the above, and after being pumped to the heating means (20) side, the hot water storage tank (10) side is filled.
Thermal storage fluid supply means (61, 62) for supplying thermal storage fluid to either the forward circuit (22) or the return circuit (23) is provided,
The heat storage fluid supply means (61, 62) is configured to supply the heat storage fluid to the heating means (20) when the hot water storage tank (10) is filled with the heat storage fluid. ,
The heat storage fluid supply means (61, 62) communicates the supply circuit (61) for supplying heat storage fluid with the heating means (20) and the lower part of the hot water storage tank (10), or the heating is composed from a means (20) and said supply circuit (61) and switching valve for switching one flow direction or communicating (62),
In the heat storage fluid supply means (61, 62), the upstream end of the supply circuit (61) is connected to a water supply source, and the heat storage agent supply means (60) supplies the heat storage agent to the supply circuit (61). ) Is provided . A hot water storage type hot water supply apparatus.
蓄熱用流体を内部に貯える貯湯タンク(10)と、
前記貯湯タンク(10)内の蓄熱用流体を加熱する加熱手段(20)と、
前記貯湯タンク(10)内の下部から蓄熱用流体を取り出して前記加熱手段(20)に導く往き側回路(22)と、
前記加熱手段(20)により加熱された蓄熱用流体を前記貯湯タンク(10)内の上部に戻す戻り側回路(23)とを備える貯湯式給湯装置において、
前記往き側回路(22)もしくは前記戻り側回路(23)には、前記貯湯タンク(10)内に蓄熱用流体を充填させるときに、前記往き側回路(22)もしくは前記戻り側回路(23)のいずれか一方より蓄熱用流体を供給して、前記加熱手段(20)側に圧送させた後に前記貯湯タンク(10)側に充填するように構成されており、
前記往き側回路(22)もしくは前記戻り側回路(23)のいずれか一方に蓄熱用流体を供給する蓄熱用流体供給手段(61、62)が設けられ、
前記蓄熱用流体供給手段(61、62)は、前記貯湯タンク(10)内に蓄熱用流体を充填させるときに、蓄熱用流体を前記加熱手段(20)側に供給するように構成されており、
前記蓄熱用流体供給手段(61、62)は、蓄熱用流体を供給する供給回路(61)と、前記加熱手段(20)と前記貯湯タンク(10)の下部とを連通させるか、または前記加熱手段(20)と前記供給回路(61)とを連通させるかの一方に流れ方向を切り換える切換弁(62)とから構成され、
前記蓄熱用流体供給手段(61、62)は、前記供給回路(61)に、蓄熱用流体を貯蔵する貯蔵容器(60a)と、前記貯蔵容器(60a)内の蓄熱用流体を外部に圧送する圧送手段(24a)とが設けられていることを特徴とする貯湯式給湯装置
A hot water storage tank (10) for storing heat storage fluid therein;
Heating means (20) for heating the heat storage fluid in the hot water storage tank (10);
A forward circuit (22) for taking out the heat storage fluid from the lower part of the hot water storage tank (10) and leading it to the heating means (20);
In the hot water storage type hot water supply apparatus comprising a return side circuit (23) for returning the heat storage fluid heated by the heating means (20) to the upper part in the hot water storage tank (10),
When the hot water storage tank (10) is filled with the heat storage fluid in the forward circuit (22) or the return circuit (23), the forward circuit (22) or the return circuit (23). The heat storage fluid is supplied from any one of the above, and after being pumped to the heating means (20) side, the hot water storage tank (10) side is filled.
Thermal storage fluid supply means (61, 62) for supplying thermal storage fluid to either the forward circuit (22) or the return circuit (23) is provided,
The heat storage fluid supply means (61, 62) is configured to supply the heat storage fluid to the heating means (20) when the hot water storage tank (10) is filled with the heat storage fluid. ,
The heat storage fluid supply means (61, 62) communicates the supply circuit (61) for supplying heat storage fluid with the heating means (20) and the lower part of the hot water storage tank (10), or the heating A switching valve (62) for switching the flow direction to one of the means (20) and the supply circuit (61) communicating with each other;
The heat storage fluid supply means (61, 62) pressure-feeds to the supply circuit (61) the storage container (60a) for storing the heat storage fluid and the heat storage fluid in the storage container (60a) to the outside. A hot water storage type hot water supply apparatus , characterized in that a pressure feeding means (24a) is provided .
前記往き側回路(22)には、前記貯湯タンク(10)内の蓄熱用流体を吸い込んで前記加熱手段(20)に圧送する圧送手段(24)が設けられ、前記蓄熱用流体供給手段(61、62)は、前記圧送手段(24)の上流側近傍に設けられたことを特徴とする請求項1または請求項2に記載の貯湯式給湯装置。 The forward circuit (22) is provided with a pumping means (24) for sucking the heat storage fluid in the hot water storage tank (10) and pumping it to the heating means (20), and the heat storage fluid supply means (61 62) is provided in the vicinity of the upstream side of the pumping means (24), and the hot water storage type hot water supply device according to claim 1 or 2 . 前記貯湯タンク(10)は、大気圧もしくは極低圧となるように構成されていることを特徴とする請求項1ないし請求項3のいずれか一項に記載の貯湯式給湯装置 The hot water storage hot water supply apparatus according to any one of claims 1 to 3, wherein the hot water storage tank (10) is configured to be at atmospheric pressure or extremely low pressure. 前記加熱手段(20)は、冷媒の高圧側圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、前記臨界圧力以上に昇圧された冷媒により蓄熱用流体を加熱することを特徴とする請求項1ないし請求項4のいずれか一項に記載の貯湯式給湯装置。 The said heating means (20) is a supercritical heat pump cycle in which the high-pressure side pressure of the refrigerant is equal to or higher than the critical pressure, and heats the heat storage fluid with the refrigerant whose pressure is increased to the critical pressure or higher. The hot water storage type hot water supply device according to any one of claims 4 to 4.
JP2004043311A 2004-02-19 2004-02-19 Hot water storage water heater Expired - Fee Related JP4100355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004043311A JP4100355B2 (en) 2004-02-19 2004-02-19 Hot water storage water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004043311A JP4100355B2 (en) 2004-02-19 2004-02-19 Hot water storage water heater

Publications (2)

Publication Number Publication Date
JP2005233514A JP2005233514A (en) 2005-09-02
JP4100355B2 true JP4100355B2 (en) 2008-06-11

Family

ID=35016659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004043311A Expired - Fee Related JP4100355B2 (en) 2004-02-19 2004-02-19 Hot water storage water heater

Country Status (1)

Country Link
JP (1) JP4100355B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128508A (en) * 2006-11-17 2008-06-05 Toshiba Electric Appliance Co Ltd Hot water supply system

Also Published As

Publication number Publication date
JP2005233514A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
KR101827199B1 (en) Heating and hot water supply system
JP5109300B2 (en) Hot water storage hot water heater
JP2006336937A (en) Storage type hot water supply device
JP4104261B2 (en) Water heater
JP5245217B2 (en) Hot water storage hot water heater
JP4407643B2 (en) Hot water storage water heater
JP4485406B2 (en) Hot water storage water heater
JP2005233596A (en) Heat pump hot-water supply device
JP4104592B2 (en) Hot water storage water heater
JP2004101134A (en) Hot water storage type hot-water feeder
JP4158694B2 (en) Hot water storage type heat pump water heater
JP4100355B2 (en) Hot water storage water heater
JP4123201B2 (en) Hot water storage water heater
JP3868909B2 (en) Hot water storage water heater
JP4207867B2 (en) Hot water storage water heater
JP4101190B2 (en) Hot water storage water heater
JP4064356B2 (en) Hot water storage water heater
JP5166709B2 (en) Water heater
JP5023607B2 (en) Hot water supply apparatus and control method thereof
JP4779878B2 (en) Hot water storage water heater
JP2005207672A (en) Hot water storage type water heater
JP5577225B2 (en) Water heater
JP4155162B2 (en) Hot water storage water heater
JP4270101B2 (en) Hot water storage type multi-function water heater
JP3855942B2 (en) Hot water storage water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees