JP4197254B2 - Production of acrylic acid by heterogeneous catalytic partial oxidation of propane - Google Patents
Production of acrylic acid by heterogeneous catalytic partial oxidation of propane Download PDFInfo
- Publication number
- JP4197254B2 JP4197254B2 JP2002587391A JP2002587391A JP4197254B2 JP 4197254 B2 JP4197254 B2 JP 4197254B2 JP 2002587391 A JP2002587391 A JP 2002587391A JP 2002587391 A JP2002587391 A JP 2002587391A JP 4197254 B2 JP4197254 B2 JP 4197254B2
- Authority
- JP
- Japan
- Prior art keywords
- propane
- acrylic acid
- gas
- reaction gas
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 title claims abstract description 94
- 239000001294 propane Substances 0.000 title claims abstract description 47
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 title claims abstract description 38
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 230000003647 oxidation Effects 0.000 title claims abstract description 24
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 230000003197 catalytic effect Effects 0.000 title claims description 14
- 238000000034 method Methods 0.000 claims abstract description 68
- 239000000203 mixture Substances 0.000 claims abstract description 64
- 230000008569 process Effects 0.000 claims abstract description 47
- 239000012495 reaction gas Substances 0.000 claims abstract description 31
- 239000007789 gas Substances 0.000 claims description 46
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 40
- 239000003085 diluting agent Substances 0.000 claims description 16
- 229910052760 oxygen Inorganic materials 0.000 claims description 16
- 239000007858 starting material Substances 0.000 claims description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 239000001301 oxygen Substances 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 10
- 229910052758 niobium Inorganic materials 0.000 claims description 8
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 6
- 238000010790 dilution Methods 0.000 claims description 6
- 239000012895 dilution Substances 0.000 claims description 6
- 229910001882 dioxygen Inorganic materials 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910052703 rhodium Inorganic materials 0.000 claims description 3
- 229910052707 ruthenium Inorganic materials 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 230000002829 reductive effect Effects 0.000 abstract description 7
- 239000000463 material Substances 0.000 description 56
- 239000012071 phase Substances 0.000 description 24
- 239000003054 catalyst Substances 0.000 description 22
- 238000010438 heat treatment Methods 0.000 description 20
- 229910044991 metal oxide Inorganic materials 0.000 description 18
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 16
- -1 for example Chemical compound 0.000 description 16
- 239000000843 powder Substances 0.000 description 13
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 239000011230 binding agent Substances 0.000 description 12
- 238000000576 coating method Methods 0.000 description 12
- 239000010955 niobium Substances 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 239000013543 active substance Substances 0.000 description 10
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 10
- 238000001035 drying Methods 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 230000009467 reduction Effects 0.000 description 10
- 239000000047 product Substances 0.000 description 9
- 239000007921 spray Substances 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 239000011149 active material Substances 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 235000019260 propionic acid Nutrition 0.000 description 5
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 4
- 235000011054 acetic acid Nutrition 0.000 description 4
- 239000007900 aqueous suspension Substances 0.000 description 4
- 238000001354 calcination Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 229910052714 tellurium Inorganic materials 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 229910052787 antimony Inorganic materials 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 3
- 229910000484 niobium oxide Inorganic materials 0.000 description 3
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 3
- 229920000447 polyanionic polymer Polymers 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000001694 spray drying Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 229910000410 antimony oxide Inorganic materials 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- 239000011363 dried mixture Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 229910052756 noble gas Inorganic materials 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- FXADMRZICBQPQY-UHFFFAOYSA-N orthotelluric acid Chemical compound O[Te](O)(O)(O)(O)O FXADMRZICBQPQY-UHFFFAOYSA-N 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 229910052845 zircon Inorganic materials 0.000 description 2
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 2
- FSJSYDFBTIVUFD-SUKNRPLKSA-N (z)-4-hydroxypent-3-en-2-one;oxovanadium Chemical compound [V]=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O FSJSYDFBTIVUFD-SUKNRPLKSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- MCSXGCZMEPXKIW-UHFFFAOYSA-N 3-hydroxy-4-[(4-methyl-2-nitrophenyl)diazenyl]-N-(3-nitrophenyl)naphthalene-2-carboxamide Chemical compound Cc1ccc(N=Nc2c(O)c(cc3ccccc23)C(=O)Nc2cccc(c2)[N+]([O-])=O)c(c1)[N+]([O-])=O MCSXGCZMEPXKIW-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical class [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910021552 Vanadium(IV) chloride Inorganic materials 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- XFHGGMBZPXFEOU-UHFFFAOYSA-I azanium;niobium(5+);oxalate Chemical compound [NH4+].[Nb+5].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O XFHGGMBZPXFEOU-UHFFFAOYSA-I 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 150000003857 carboxamides Chemical class 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 239000012018 catalyst precursor Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000012733 comparative method Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 description 1
- 229960001826 dimethylphthalate Drugs 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000001640 fractional crystallisation Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000002638 heterogeneous catalyst Substances 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- PDKHNCYLMVRIFV-UHFFFAOYSA-H molybdenum;hexachloride Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Mo] PDKHNCYLMVRIFV-UHFFFAOYSA-H 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen(.) Chemical compound [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical class [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical class [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- LAJZODKXOMJMPK-UHFFFAOYSA-N tellurium dioxide Chemical compound O=[Te]=O LAJZODKXOMJMPK-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- JTJFQBNJBPPZRI-UHFFFAOYSA-J vanadium tetrachloride Chemical compound Cl[V](Cl)(Cl)Cl JTJFQBNJBPPZRI-UHFFFAOYSA-J 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/27—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
- C07C45/32—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
- C07C45/33—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/27—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
- C07C45/32—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
- C07C45/33—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
- C07C45/34—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
- C07C45/35—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
本発明は、気相でのプロパンの不均一系触媒部分酸化によるアクリル酸の製法に関し、この際、プロパン、分子酸素及び少なくとも1種の希釈ガスを含有する反応ガス出発混合物を、高めた温度で、一般的化学式I: The present invention relates to a process for the production of acrylic acid by heterogeneous catalytic partial oxidation of propane in the gas phase, wherein a reaction gas starting mixture containing propane, molecular oxygen and at least one diluent gas is heated at an elevated temperature. General chemical formula I:
M1は、Te及び/又はSbを表わし、
M2は、Nb、Ta、W、Ti、Al、Zr、Cr、Mn、Ga、Fe、Ru、Co、Rh、Ni、Pd、Pt、La、Bi、B、Ce、Sn、Zn、Si及びInを包含する群からの少なくとも1種の元素を表わし、
bは、0.01〜1であり、
cは、>0〜1であり、
dは、>0〜1であり、かつ
nは、(I)中の酸素とは異なる元素の原子価及び度数によって決定される数である]の多金属酸化物物質上に導き、この際、プロパンを部分的にアクリル酸に酸化させる。
M 1 represents Te and / or Sb,
M 2 is, Nb, Ta, W, Ti , Al, Zr, Cr, Mn, Ga, Fe, Ru, Co, Rh, Ni, Pd, Pt, La, Bi, B, Ce, Sn, Zn, Si and Represents at least one element from the group comprising In;
b is 0.01-1;
c is> 0 to 1,
d is> 0 to 1, and
n is a number determined by the valence and frequency of an element different from oxygen in (I)] leading to the partial oxidation of propane to acrylic acid.
一般的化学式Iの多金属酸化物物質でのプロパンの不均一系触媒部分酸化による、ポリマーの製造に重要なモノマー、アクリル酸の製法は公知である(例えば、DE−A10119933、DE−A10051419、DE−A10046672、DE−A10033121、EP−A1090684、EP−A962253、EP−A895809、DE−A19835247、EP−A608838、WO00/29105及びWO00/29106 参照)。 Processes for the preparation of acrylic acid, an important monomer for the production of polymers by heterogeneous catalytic partial oxidation of propane with multimetal oxide materials of the general chemical formula I are known (eg DE-A10111933, DE-A10051419, DE -A10046672, DE-A10033121, EP-A1090684, EP-A962253, EP-A895809, DE-A19835247, EP-A608838, WO00 / 29105 and WO00 / 29106).
公知技術水準で示された理論の共通の特徴及び達成された結果は、反応ガス出発混合物中での著しい量の水蒸気の併用が、アクリル酸生成の触媒活性についても、選択性についても、有利であるということである。 The common features of the theory shown in the state of the art and the results achieved show that the combination of significant amounts of water vapor in the reaction gas starting mixture is advantageous both for the catalytic activity and the selectivity of acrylic acid production. That is.
しかし、公知技術水準で推奨されたこの方法の欠点は、アクリル酸の気相触媒酸化の製法では、純粋なアクリル酸ではなく、生成ガス混合物が得られ、これからアクリル酸を分離しなければならないことである。 However, the disadvantage of this method recommended in the state of the art is that the process for the gas phase catalytic oxidation of acrylic acid yields a product gas mixture, not pure acrylic acid, from which acrylic acid must be separated. It is.
典型的方法で、プロパンからアクリル酸への不均一系触媒気相部分酸化の生成ガス混合物は、未反応プロパンの他に、副成分、例えば、プロペン、アクロレイン、CO2、CO、酢酸及びプロピオン酸を含有するが、希釈ガスとして併用される成分、例えば、純粋な生成物を得るために、アクリル酸がそれから分離されるべき水蒸気も含有する。 In a typical process, the product gas mixture of the heterogeneously catalyzed gas phase partial oxidation of propane to acrylic acid, in addition to the sub-components of the unreacted propane, for example, propene, acrolein, CO 2, CO, acetic acid and propionic acid But also contains components that are used together as a diluent gas, such as water vapor from which acrylic acid is to be separated to obtain a pure product.
水へのアクリル酸の卓越した親和性に基づき(ベビー用オムツで使用される超吸収材とは、アクリル酸をベースとするポリマーのことである)、より多くの水蒸気を気相酸化で希釈ガスとして併用すればするほど、前記の分離課題は経費が更に増してくる。 Based on the outstanding affinity of acrylic acid to water (the superabsorbent used in baby diapers is a polymer based on acrylic acid), more water vapor is diluted by gas phase oxidation The more they are used together, the more the cost of the separation problem becomes.
更に、高められた量の水蒸気の存在は、副生成物としての不所望なプロピオン酸生成を促し、この副生成物はアクリル酸とのその類似性により、水蒸気から分離させることは更にもっと困難である。 In addition, the presence of an increased amount of water vapor promotes undesired propionic acid production as a by-product, which is even more difficult to separate from water vapor due to its similarity to acrylic acid. is there.
従って、希釈ガスとしての水蒸気の併用を、全く必要としないか、又は減少された範囲でしか必要としないにも拘らず、アクリル酸生成の触媒活性及び選択性を満足させることができる、プロパンからアクリル酸への不均一系触媒部分酸化法が有利である。 Therefore, from the propane, which can satisfy the catalytic activity and selectivity of acrylic acid generation, although it does not require the use of steam as a diluent gas at all or only in a reduced range. A heterogeneous catalytic partial oxidation process to acrylic acid is advantageous.
従って、気相でのプロパンの不均一系触媒部分酸化によりアクリル酸を製造するために、プロパン、分子酸素及び少なくとも1種の希釈ガスを含有する反応ガス出発物質を、高めた温度で、一般的化学式I: Thus, to produce acrylic acid by heterogeneous catalytic partial oxidation of propane in the gas phase, a reaction gas starting material containing propane, molecular oxygen and at least one diluent gas is generally used at elevated temperatures. Formula I:
M1は、Te及び/又はSbを表わし、
M2は、Nb、Ta、W、Ti、Al、Zr、Cr、Mn、Ga、Fe、Ru、Co、Rh、Ni、Pd、Pt、La、Bi、B、Ce、Sn、Zn、Si及びInを包含する群からの少なくとも1種の元素を表わし、
bは、0.01〜1であり、
cは、>0〜1であり、
dは、>0〜1であり、かつ
nは、(I)中の酸素とは異なる元素の原子価及び度数によって決定される数である]の多金属酸化物物質上に導き、この際、プロパンを部分的にアクリル酸に酸化させる方法が発明され、この方法は、反応ガス出発混合物の組成を、方法の実施中に少なくとも1回変更させ、反応ガス出発混合物中で、反応ガス出発混合物中に含有されるプロパンのモル量に対して、変更前に含有される希釈ガス水蒸気のモル成分が、変更後より少ない量であるようにすることを特徴とする。
M 1 represents Te and / or Sb,
M 2 is, Nb, Ta, W, Ti , Al, Zr, Cr, Mn, Ga, Fe, Ru, Co, Rh, Ni, Pd, Pt, La, Bi, B, Ce, Sn, Zn, Si and Represents at least one element from the group comprising In;
b is 0.01-1;
c is> 0 to 1,
d is> 0 to 1, and
n is a number determined by the valence and frequency of an element different from oxygen in (I)], wherein propane is partially oxidized to acrylic acid Invented and this method changes the composition of the reaction gas starting mixture at least once during the performance of the method and in the reaction gas starting mixture relative to the molar amount of propane contained in the reaction gas starting mixture. The molar component of the dilution gas water vapor contained before the change is smaller than that after the change.
本発明による方法の基礎は、意外にも、一般的化学式Iの多金属酸化物物質が、反応ガス出発混合物中で、一定の操作時間中に、反応ガス出発混合物中に含有されるプロパンに対して、先ず一定の成分の水蒸気を併用し、引続いてこの成分を減少させる場合に、プロパンからアクリル酸への触媒気相酸化で、希釈ガスとしての高められた量の水蒸気の存在で、アクリル酸を高められた活性及び選択性で生成させるその能力を保持するという発明である。即ち、反応ガス出発混合物中の水蒸気成分を減少させた後も、その他は非変化操作条件でのプロパンの不均一系触媒気相酸化は、不均一系触媒気相酸化が恒久的に反応ガス出発混合物中のより少ない水蒸気成分で実施されるとした場合よりも、もっと高いアクリル酸生成の選択性を伴って進行する。この記載は、水蒸気成分の減少を、反応ガス出発混合物が減少を行った後に水蒸気をもはや含有しないところまで行う場合にも当てはまる。 The basis of the process according to the invention is, surprisingly, that the multi-metal oxide material of general formula I is in the reaction gas starting mixture for a certain operating time, relative to the propane contained in the reaction gas starting mixture. First, when a certain component of water vapor is used in combination, and subsequently this component is reduced, in the presence of an increased amount of water vapor as a diluent gas in the catalytic gas phase oxidation of propane to acrylic acid, It is an invention that retains its ability to produce acids with enhanced activity and selectivity. That is, even after reducing the water vapor component in the reaction gas starting mixture, the heterogeneous catalytic gas phase oxidation of propane under otherwise unchanged operating conditions is the case where the heterogeneous catalytic gas phase oxidation is permanently It proceeds with a higher selectivity for acrylic acid production than would be done with less water vapor components in the mixture. This description also applies when the reduction of the water vapor component is carried out to the point where the reaction gas starting mixture no longer contains water vapor after the reduction.
通例、本発明による方法で、水蒸気成分の減少を、少なくとも部分的に、水蒸気とは異なる、本発明による方法で併用可能な希釈ガスの成分の上昇によって調整する。しかし、この調整は行われなくとも良い。そのような他の希釈ガスは、殊に、分子窒素、酸化炭素、例えば、CO及びCO2、しかし同様に、貴ガス、例えば、He又はArである。プロパン自体は、同様に希釈ガスとしてこれに該当する。この場合には、プロパンを、本発明による方法で、分子酸素の使用量に対して、超化学量論的量で使用する。 Typically, in the process according to the invention, the reduction of the water vapor component is at least partly adjusted by an increase in the components of the dilution gas that are different from the water vapor and can be used together in the process according to the invention. However, this adjustment need not be performed. Such other diluent gas, in particular, molecular nitrogen, carbon oxides, e.g., CO and CO 2, but similarly, noble gases, for example, a He or Ar. Propane itself falls under this as a diluent gas as well. In this case, propane is used in a superstoichiometric amount relative to the amount of molecular oxygen used in the process according to the invention.
通例、前記の希釈ガスの混合物を使用する。これは、本発明による方法では、通例、不活性である。即ち、これは、本発明による方法の実施で、化学的に実際に無変化である。 Typically, a mixture of the aforementioned dilution gases is used. This is usually inert in the process according to the invention. That is, it is chemically unchanged in practice with the method according to the invention.
当然、本発明による方法では、水蒸気成分のモル減少を、水蒸気とは異なる不活性希釈ガスのモル成分の当量的上昇によって完全に調整することができ、又はむしろ過剰代償することができる。本発明による方法では、水蒸気代用物として、分子窒素を使用することが有利である。 Of course, in the process according to the invention, the molar reduction of the water vapor component can be adjusted completely by the equivalent increase in the molar component of the inert diluent gas different from the water vapor, or rather can be overcompensated. In the process according to the invention, it is advantageous to use molecular nitrogen as a water vapor substitute.
本発明による方法は、通例、例えば、200〜550℃、又は230〜480℃又は300〜440℃の反応温度で実施される。勿論、本発明による方法では、水蒸気成分の減少の前と後の温度は同一であってよい。しかし、温度は、水蒸気成分の減少後に、水蒸気成分の減少の前よりも低くても、又は高くても良い。 The process according to the invention is typically carried out at reaction temperatures of, for example, 200 to 550 ° C., or 230 to 480 ° C. or 300 to 440 ° C. Of course, in the process according to the invention, the temperature before and after the reduction of the water vapor component may be the same. However, the temperature may be lower or higher after the reduction of the water vapor component than before the reduction of the water vapor component.
操作圧(絶対)は、本発明による方法では、1atm、1atmより少ない、又は1atmより多くてもよい。本発明による典型的な操作圧は、1.5〜10バール、しばしば1.5〜4バールである。操作圧は、本発明による方法の間、一定に保たれても、変更されても良い。即ち、操作圧は、本発明による水蒸気成分の減少の前に、その後よりも大きい又は小さくてよい。 The operating pressure (absolute) may be less than 1 atm, 1 atm or greater than 1 atm in the method according to the invention. Typical operating pressures according to the invention are 1.5 to 10 bar, often 1.5 to 4 bar. The operating pressure may be kept constant or changed during the method according to the invention. That is, the operating pressure may be greater or less than before the reduction of the water vapor component according to the present invention.
当然、本発明による方法の範囲では、反応ガス出発混合物の組成の本発明により必要な変更を、例えば、周期的に連続して何回も実施することもできる。即ち、減少された水蒸気成分での一定の操作時間後に、反応ガス出発混合物中の水蒸気成分を一定時間再び上昇させ、その後に再び低下させる等が可能である。 Of course, within the scope of the process according to the invention, the necessary changes according to the invention of the composition of the reaction gas starting mixture can also be carried out several times, for example periodically in succession. That is, after a certain operating time with a reduced water vapor component, the water vapor component in the reaction gas starting mixture can be raised again for a certain time and then lowered again.
酸素給源として、本発明による方法のために、純酸素も、空気又は酸素富化又は酸素貧化空気も使用することができる。 As oxygen source, pure oxygen as well as air or oxygen-enriched or oxygen-poor air can be used for the process according to the invention.
本発明による方法に使用すべきプロパンに、その純度に関して特に高い要求は設定されない。プロペンを随伴物として含有するプロパンを、本発明による方法に使用することもできる。本発明による方法の反応ガス出発混合物の組成は、典型的には、次の範囲内で変動する(モル比):
プロパン:酸素:H2O:他の希釈ガス=1:(0.1〜10):(0〜50):(0〜50)。
The propane to be used in the process according to the invention has no particularly high requirements regarding its purity. Propane containing propene as an adjunct can also be used in the process according to the invention. The composition of the reaction gas starting mixture of the process according to the invention typically varies within the following range (molar ratio):
Propane: oxygen: H 2 O: other diluent gases = 1: (0.1-10) :( 0-50) :( 0-50).
前記の比率は、
1:(0.5〜5):(1〜30):(0〜30)
が有利である。
The ratio is
1: (0.5-5): (1-30): (0-30)
Is advantageous.
本発明により、前記の比率は、水蒸気成分の減少前に、A=1:(0.1〜10):(0.1〜50):(0〜50)の範囲にあり、かつ水蒸気成分の減少後に、B=1:(0.1〜10):(0〜30):(0〜30)の範囲にあることが有利である。 According to the present invention, the ratio is in the range of A = 1: (0.1-10) :( 0.1-50) :( 0-50) and before the reduction of the water vapor component, After the decrease, it is advantageous that B = 1: (0.1-10) :( 0-30) :( 0-30).
本発明により有利に、範囲Aは、モル比1:(0.5〜5):(2〜30):(0〜30)を包含し、範囲Bは、モル比1:(0.5〜5):(0〜20):(0〜30)を包含する。 Advantageously according to the invention, the range A comprises a molar ratio of 1: (0.5-5) :( 2-30) :( 0-30), and the range B has a molar ratio of 1: (0.5- 5): (0-20): (0-30) are included.
前記の範囲は、殊に、他の希釈ガスとして主に分子窒素を使用する場合に当てはまる。反応ガス出発混合物の組成範囲Aを適用する間では、本発明による方法での反応温度は、有利に250〜550℃であり、反応ガス出発混合物の組成範囲Bを適用する間では、本発明による方法での反応温度は有利に同様に250〜550℃である。 This is especially true when molecular nitrogen is mainly used as another diluent gas. During the application of the composition range A of the reaction gas starting mixture, the reaction temperature in the process according to the invention is preferably between 250 and 550 ° C. and during the application of the composition range B of the reaction gas starting mixture, according to the invention. The reaction temperature in the process is likewise preferably from 250 to 550 ° C.
本発明による方法は、他の点では、評価される公知技術水準に記載された方法と同様に実施されてよい。即ち、触媒床は、固床でも、移動床でも、又は渦動床であってもよい。 In other respects, the method according to the invention may be carried out in the same way as described in the state of the art to be evaluated. That is, the catalyst bed may be a solid bed, a moving bed, or a vortex bed.
この際、本発明により使用すべき多金属酸化物物質Iは、そのものとして(例えば、粉末又は細片に破砕される)又は成形体に成形されて、本発明による方法に使用されて良い。 At this time, the multi-metal oxide substance I to be used according to the present invention may be used as such (for example, crushed into powder or strips) or formed into a molded body and used in the method according to the present invention.
本発明による方法に好適な多金属酸化物物質Iの製造は、冒頭で評価された公知技術水準から引用されて良い。適用される製法によって、得られる多金属酸化物の構造は、どちらかといえば非晶質(例えば、WO00/29105及びWO00/29106に記載されているような)又はどちらかといえば結晶(例えば、EP−A608838、EP−A962253、EP−A895809及びDE−A19835247に記載されているような)であってよい。 The preparation of the multimetal oxide material I suitable for the process according to the invention may be cited from the prior art evaluated at the outset. Depending on the manufacturing method applied, the structure of the resulting multi-metal oxide is rather amorphous (eg as described in WO00 / 29105 and WO00 / 29106) or rather crystalline (eg EP-A 608838, EP-A 962253, EP-A 895809 and DE-A 19835247).
この際、製造は、通例、標準圧(1atm)で、多金属酸化物物質の元素成分の給源(出発化合物)から、出来るだけ良好に混ぜた、有利に微細な乾燥混合物を生成させ、これを、引続き、酸化的(例えば、空気)、還元的、不活性(例えば、N2)又は減圧を示す雰囲気下での熱処理によって、活性酸化物に変えるようにして行われる。しかし、DE−A10033121の熱水法で製造された多金属酸化物物質Iを、本発明による方法に使用することも勿論可能である。 In this case, the production usually produces a finely divided, preferably finely mixed mixture from the source of the elemental constituents of the multimetal oxide material (starting compound) at standard pressure (1 atm), as well as possible. Subsequently, it is carried out by changing to an active oxide by heat treatment under an atmosphere showing oxidative (eg air), reductive, inert (eg N 2 ) or reduced pressure. However, it is of course possible to use the multi-metal oxide material I produced by the hydrothermal method of DE-A10033121 in the method according to the invention.
本発明による方法に好適な触媒成形体への多金属酸化物物質Iの成形は、例えば、DE−A10118814及びDE−A10119933に記載されたように行うことが出来る。 The shaping of the multimetal oxide material I into a catalyst shaped body suitable for the process according to the invention can be carried out, for example, as described in DE-A 10118814 and DE-A 10119933.
本発明により、多金属酸化物物質Iとして、式中、M1=Teであるものが有利に使用される。更に、式中、M2=Nb、Ta、W及び/又はチタンである多金属酸化物物質Iが本発明による方法に有利である。有利に、M2=Nbである。本発明により使用すべき多金属酸化物物質Iの化学量論的係数bは、有利に、0.1〜0.6である。相応する方法で、化学量論的係数cの優勢範囲は、0.01〜1又は0.05〜0.4であり、dの有利な値は、0.01〜1又は0.1〜0.6である。本発明により使用すべき特に有利な多金属酸化物物質Iは、式中の化学量論的係数b、c及びdが、同時に前記の通性範囲にある物質である。本発明により好適な他の化学量論的係数は、初めに引用された公知技術水準の明細書に公開されているそれである。 According to the invention, as the multimetal oxide material I, those in which M 1 = Te are advantageously used. Furthermore, multimetal oxide materials I where M 2 = Nb, Ta, W and / or titanium are advantageous for the process according to the invention. Advantageously, M 2 = Nb. The stoichiometric coefficient b of the multimetal oxide material I to be used according to the invention is preferably 0.1 to 0.6. In a corresponding manner, the dominant range of the stoichiometric coefficient c is 0.01 to 1 or 0.05 to 0.4, and an advantageous value for d is 0.01 to 1 or 0.1 to 0. .6. Particularly advantageous multimetal oxide materials I to be used according to the invention are those in which the stoichiometric coefficients b, c and d in the formula are at the same time as described above. Other stoichiometric coefficients suitable according to the invention are those published in the specification of the prior art cited at the outset.
更に、本発明による方法には、そのレントゲン回折図が回折反射h及びiを有し、その回折角(2Θ)での頂点が22.2±0.5°(h)及び27.3±0.5°( i )である多金属酸化物物質Iが有利に使用され得る。この際、この回折反射の半値幅は、極めて小さいか又は同様に極めて卓越していて良い。 Furthermore, in the method according to the invention, the X-ray diffractogram has diffractive reflections h and i, the vertices at the diffraction angle (2Θ) are 22.2 ± 0.5 ° (h) and 27.3 ± 0. A multimetal oxide material I which is .5 ° (i) can be used advantageously. At this time, the half width of the diffraction reflection may be very small or may be extremely excellent as well.
本発明による方法には、そのレントゲン回折図が、回折反射h及びiに付加的に回折反射kを有し、その頂点が28.2±0.5°(k)である多金属酸化物物質Iが特に有利である。 In the method according to the invention, the X-ray diffractogram has a diffraction reflection k in addition to the diffraction reflections h and i, the vertex of which is 28.2 ± 0.5 ° (k). I is particularly advantageous.
後者の内、本発明により、回折反射hがレントゲン回折図内で強度最強であり、高々0.5°を有し、回折反射i及び回折反射kの半値幅が同時に各々≦1°であり、かつ回折反射kの強度Pk及び回折反射iの強度Piが、関係0.65≦R≦0.85を満たし、この際、Rは、式:
R = Pi/(Pi+Pk)
によって定義される強度比率であるものが再び本発明により有利である。この多金属酸化物Iのレントゲン回折図は、有利に、その最高が2Θ=50±0.3°である回折反射を示さない。
Among the latter, according to the present invention, the diffraction reflection h is the strongest intensity in the X-ray diffraction diagram, has a maximum of 0.5 °, and the half widths of the diffraction reflection i and the diffraction reflection k are simultaneously ≦ 1 °, In addition, the intensity P k of the diffraction reflection k and the intensity P i of the diffraction reflection i satisfy the relationship 0.65 ≦ R ≦ 0.85, where R is an expression:
R = P i / (P i + P k )
The strength ratio defined by is again advantageous according to the invention. The X-ray diffractogram of this multimetal oxide I advantageously does not show a diffractive reflection whose maximum is 2Θ = 50 ± 0.3 °.
この多金属酸化物物質Iの内で、本発明による方法には、0.67≦R≦0.75が当てはまるものが有利であり、R=0.70〜0.75又はR=0.72が当てはまるものが特に極めて有利である。 Of these multi-metal oxide materials I, it is advantageous for the process according to the invention that 0.67 ≦ R ≦ 0.75 to apply and R = 0.70 to 0.75 or R = 0.72. Are particularly advantageous.
半値幅≦1°の回折反射i及び回折反射kを有し、同時に0.65≦R≦0.85の関係を満たし、場合によりその最高が2Θ=50±0.3°である回折反射を示さない多金属酸化物物質Iの製造は、DE−A10118814及びDE−A10119933の明細書に記載されているように行うことが出来る。 It has diffractive reflection i and diffractive reflection k with half width ≦ 1 °, and at the same time satisfies the relationship of 0.65 ≦ R ≦ 0.85, and sometimes does not show a diffractive reflection whose maximum is 2Θ = 50 ± 0.3 ° The production of the multimetallic oxide material I can be carried out as described in the specifications of DE-A 10118814 and DE-A 10119933.
この際、その回折反射iにより、いわゆるi−相を含有する多金属酸化物物質Iが重要である。多金属酸化物物質I中に現れ得る他の結晶相は、例えば、いわゆるk−相である。これは、回折反射h及びkの存在によって、及び50±0.3°での最高位置を有する回折反射の存在によって明らかになる。 At this time, the multi-metal oxide substance I containing a so-called i-phase is important due to the diffraction reflection i. Another crystalline phase that can appear in the multimetal oxide material I is, for example, the so-called k-phase. This is manifested by the presence of diffractive reflections h and k and by the presence of the diffractive reflection with the highest position at 50 ± 0.3 °.
目的とされる、本発明により使用すべきi−相の成分が優勢である多金属酸化物物質Iの製法は、例えば、JP−A11−43314、DE−A10118814、DE−A10119933及び以前の出願DE−A10046672の明細書が公表していて、その中で、重要な多金属酸化物物質Iは、エタンからエチレンへの不均一系触媒酸化物水素添加の触媒として、及びプロパン又はプロペンからアクリル酸への不均一系触媒気相酸化の触媒として推奨されている。 The intended process for the preparation of the multi-metal oxide material I in which the components of the i-phase to be used according to the invention are dominant is, for example, JP-A11-43314, DE-A10118814, DE-A101199933 and the previous application DE -A10046672 is published in which important multi-metal oxide materials I are used as catalysts for heterogeneously catalyzed oxide hydrogenation from ethane to ethylene and from propane or propene to acrylic acid. It is recommended as a catalyst for gas phase oxidation of heterogeneous catalysts.
その後に、引用された殆どの公知技術水準の明細書に公表された自体公知の方法(例えば、以前の出願DE−A10033121にも同様に記載されている)で、先ず、i−相及び他の相(例えば、k−相)から成る混合物である化学式(I)の多金属酸化物物質を製造する。ここで、この混合物中で、i−相の成分を、例えば、他の相、例えばk−相を顕微鏡下に選択し、又は多金属酸化物活性物質を好適な液体で洗浄することによって高めることが出来る。そのような液体として、例えば、有機酸(例えば、蓚酸、蟻酸、酢酸、クエン酸及び酒石酸)、無機酸(例えば、硝酸)の水溶液、アルコール及び過酸化水素水溶液がこれに該当する。更に、JP−A7−232071も、卓越したi−相成分を有する本発明により使用すべき多金属酸化物物質Iの製法を公表している。 Thereafter, in a manner known per se published in most cited state of the art specifications (for example, also described in the previous application DE-A10033121), first the i-phase and other A multi-metal oxide material of formula (I) that is a mixture of phases (eg, k-phase) is produced. Here, in this mixture, the components of the i-phase are enhanced, for example by selecting another phase, for example the k-phase under the microscope, or by washing the multimetal oxide active with a suitable liquid. I can do it. Examples of such liquids include organic acids (eg, oxalic acid, formic acid, acetic acid, citric acid and tartaric acid), aqueous solutions of inorganic acids (eg, nitric acid), alcohols and aqueous hydrogen peroxide solutions. Furthermore, JP-A 7-23201 also discloses a process for the production of the multi-metal oxide material I to be used according to the invention having an excellent i-phase component.
本発明により使用すべき卓越したi−層成分を有する多金属酸化物物質Iが、少ない系統的方法で、DE−A19835247に公表された製法によって得られる。その後に、その元素成分の好適な給源から、出来るだけ良好に混和した、有利に微細な乾燥混合物を製造し、これを350〜700℃又は400〜650℃又は400〜600℃の温度で熱処理する。熱処理は、原則的に、酸化、還元下でも、不活性雰囲気下でも行うことができる。酸化雰囲気として、例えば、空気、分子酸素を富化させた空気又は酸素を貧化させた空気がこれに該当する。熱処理は、不活性雰囲気下に、即ち、例えば、分子窒素及び/又は貴ガス下に有利に実施される。熱処理は、通例、標準圧(1atm)で行われる。熱処理は、真空下に、又は超圧下に行うことも当然可能である。 The multi-metal oxide material I having an excellent i-layer component to be used according to the invention is obtained in a few systematic ways by the process published in DE-A 19835247. Thereafter, a suitably finely mixed, preferably fine, dry mixture is produced from a suitable source of the elemental components and heat-treated at a temperature of 350 to 700 ° C. or 400 to 650 ° C. or 400 to 600 ° C. . In principle, the heat treatment can be carried out under oxidation or reduction or in an inert atmosphere. Examples of the oxidizing atmosphere include air, air enriched with molecular oxygen, and air enriched with oxygen. The heat treatment is advantageously carried out under an inert atmosphere, ie for example under molecular nitrogen and / or noble gas. The heat treatment is usually performed at a standard pressure (1 atm). Naturally, the heat treatment can be performed under vacuum or super-pressure.
熱処理をガス状の雰囲気下に行う場合には、これは停滞していても、流動していてもよい。熱処理は、合計して、24時間まで、又はそれ以上の時間がかかってよい。 When the heat treatment is performed in a gaseous atmosphere, it may be stagnant or flowing. The heat treatment may take up to 24 hours or more in total.
熱処理は、先ず、酸化(酸素含有の)雰囲気下に(例えば、空気下に)、150〜400℃又は250〜350℃の温度で有利に行われる。それに続いて、熱処理は、有利に不活性ガス下に、350〜700℃又は400〜650℃又は400〜600℃の温度で続けられる。勿論、熱処理は、触媒前駆物をその熱処理の前に先ず(場合により粉末化後に)錠剤化させ(場合により、微細グラファイト0.5〜2質量%の添加下に)、次いで、熱処理し、続いて再び破砕するようにして行うこともできる。 The heat treatment is first advantageously performed at a temperature of 150-400 ° C. or 250-350 ° C. in an oxidizing (oxygen-containing) atmosphere (eg in air). Subsequently, the heat treatment is continued at a temperature of 350 to 700 ° C. or 400 to 650 ° C. or 400 to 600 ° C., preferably under an inert gas. Of course, the heat treatment first tablets the catalyst precursor (possibly after pulverization) before the heat treatment (optionally with addition of 0.5-2% by weight of fine graphite), then heat treatment, followed by It can also be carried out by crushing again.
本発明により使用すべき多金属酸化物物質Iの製造の範囲での出発化合物の良好な混合は、全く一般的に、乾燥機中で又は湿式で行うことができる。 Good mixing of the starting compounds within the scope of the production of the multimetal oxide material I to be used according to the invention can be carried out quite generally in a dryer or wet.
乾式で行う場合には、出発化合物を有利に微細として使用し、混合及び場合により粘稠後に、か焼(熱処理)を施す。 When carried out dry, the starting compound is preferably used as fine and is calcined (heat treated) after mixing and optionally thickening.
しかし、良好な混合は湿式で行うことが有利である。この際、通例、出発化合物を水溶液及び/又は懸濁液の形で相互に混合させる。引続いて、この水性物質を乾燥させ、乾燥後にか焼させる。水性物質とは、有利に、水溶液又は水性懸濁液のことである。乾燥工程は、水性混合物の製造直後に、殊に、噴霧乾燥すべき水性物質が水溶液である場合に、特に良好に混和した乾燥混合を条件とする噴霧乾燥によって(排出温度は、通例100〜150℃である;噴霧乾燥は直流又は向流で実施されてよい)行われる。 However, it is advantageous to perform good mixing wet. In this case, the starting compounds are usually mixed with one another in the form of an aqueous solution and / or suspension. Subsequently, the aqueous material is dried and calcined after drying. The aqueous substance is preferably an aqueous solution or an aqueous suspension. The drying step is carried out immediately after the preparation of the aqueous mixture, in particular when the aqueous substance to be spray-dried is an aqueous solution, particularly by spray drying, subject to a well-mixed dry mixture (discharge temperature is typically 100 to 150). The spray drying may be carried out by direct current or countercurrent).
本発明により使用すべき多金属酸化物物質Iの製造の実施範囲で、元素成分の給源として、加熱の際に(場合により空気中で)、酸化物及び/又は水酸化物を生成することができる全てのものがこれに該当する。勿論、そのような出発化合物として、元素成分の酸化物及び/又は水酸化物を、既に併用する、又は引続いて使用することもできる。 In the scope of the production of the multi-metal oxide material I to be used according to the invention, it is possible to produce oxides and / or hydroxides on heating (possibly in air) as a source of elemental components. This is all that can be done. Of course, as such starting compounds, oxides and / or hydroxides of elemental components can already be used together or subsequently used.
本発明により使用される元素Moの給源は、例えば、モリブデン酸化物、例えば、三酸化モリブデン、モリブデン酸塩、例えば、アンモニウムヘプタモリブデートテトラヒドレート及びモリブデンハロゲニド、例えば、塩化モリブデンである。 Sources of elemental Mo used according to the present invention are, for example, molybdenum oxides such as molybdenum trioxide, molybdates such as ammonium heptamolybdate tetrahydrate and molybdenum halides such as molybdenum chloride.
本発明により使用可能な、好適な元素Vの出発化合物は、例えば、バナジルアセチルアセトネート、バナジウム酸塩、例えば、メタバナジウム酸アンモニウム、バナジウム酸化物、例えば、五酸化バナジウム(V2O5)、バナジウムハロゲニド、例えば、四塩化バナジウム(CCl4)及びバナジウムオキシハロゲニド、例えばVOCl3である。この際、バナジウム出発化合物として、バナジウムを酸化度+4で含有するものを併用することができる。 Suitable starting compounds of element V that can be used according to the invention are, for example, vanadyl acetylacetonate, vanadate, such as ammonium metavanadate, vanadium oxide, such as vanadium pentoxide (V 2 O 5 ), vanadium halides, e.g., vanadium tetrachloride (CCl 4) and vanadium oxy halides, such as VOCl 3. In this case, a vanadium starting compound containing vanadium with an oxidation degree of +4 can be used in combination.
元素テルルの給源として、本発明により、テルル酸化物、例えば、二酸化テルル、金属テルル、テルルハロゲニド、例えば、TeCl2が好適であるが、テルル酸、例えば、オルトテルル酸H6TeO6も好適である。 As a source of elemental tellurium, tellurium oxides such as tellurium dioxide, metal tellurium, tellurium halides such as TeCl 2 are preferred according to the invention, but telluric acids such as orthotelluric acid H 6 TeO 6 are also suitable.
有利なアンチモン出発化合物は、アンチモンハロゲニド、例えば、SbCl3、アンチモン酸化物、例えば、三酸化アンチモン(Sb2O3)、アンチモン酸、例えば、HSb(OH)6であるが、アンチモン酸化物−塩、例えば、硫化−酸化アンチモン(SbO)2SO4も有利である。 Preferred antimony starting compounds are antimony halides such as SbCl 3 , antimony oxides such as antimony trioxide (Sb 2 O 3 ), antimonic acids such as HSb (OH) 6 , but antimony oxides— Also advantageous are salts, for example sulfide-antimony oxide (SbO) 2 SO 4 .
本発明により好適なニオブ給源は、例えば、ニオブ酸化物、例えば五酸化ニオブ(Nb2O5)、ニオブオキシドハロゲニド、例えば、NbOCl3、ニオブハロゲニド、例えば、NbCl5であるが、ニオブ及び有機カルボン酸及び/又はジカルボン酸から成る錯化合物、例えば、オキサレート及びアルコラートも好適である。勿論、ニオブ給源として、EP−A895809で使用されたNb含有溶液もこれに該当する。 Niobium sources suitable according to the invention are, for example, niobium oxides such as niobium pentoxide (Nb 2 O 5 ), niobium oxide halides such as NbOCl 3 , niobium halides such as NbCl 5 , but niobium and organic carboxylic acids. Also suitable are complex compounds consisting of acids and / or dicarboxylic acids, such as oxalates and alcoholates. Of course, the Nb-containing solution used in EP-A 895809 as a niobium source also corresponds to this.
他の可能な全ての元素M2に関して、本発明により好適な出発化合物として、殊に、そのハロゲニド、硝酸塩、蟻酸塩、蓚酸塩、酢酸塩、炭酸塩及び/又は水酸化物がこれに該当する。好適な出発化合物は、様々で、そのオキソ化合物、例えば、タングステン酸塩又はこれから誘導される酸である。出発化合物として、アンモニウム塩もしばしば使用される。 With respect to all other possible elements M 2 , the halogenide, nitrate, formate, oxalate, acetate, carbonate and / or hydroxide are particularly suitable as starting compounds according to the invention. . Suitable starting compounds vary and are their oxo compounds, such as tungstates or acids derived therefrom. Ammonium salts are often used as starting compounds.
更に、本発明による多金属酸化物物質Iの製造の出発化合物として、例えば、Polyhedron Vol. 6, No. 2, pp. 213-218 に記載されているような、アンダーソン型(Anderson Typ )のポリアニオンもこれに該当する。アンダーソン型のポリアニオンのもう1つの好適な文献給源は、Kinetics and Catalysis, Vol. 40, No.3, 1999, pp 401~404 である。 Furthermore, as starting compounds for the production of the multimetal oxide material I according to the invention, Anderson Typ polyanions, as described, for example, in Polyhedron Vol. 6, No. 2, pp. 213-218 This is also the case. Another suitable literature source for Anderson polyanions is Kinetics and Catalysis, Vol. 40, No. 3, 1999, pp 401-404.
出発化合物として好適な他のポリアニオンは、例えば、ドーソン(Dawson)又はケギン(Keggin Typ.)型のそれである。本発明により、高めた温度で、酸素が存在して、又は酸素を遮断して、場合によりガス状の化合物の遊離下に、その酸化物に変化する出発化合物が有利に使用される。 Other polyanions suitable as starting compounds are, for example, those of the Dawson or Keggin Typ. Type. According to the invention, at elevated temperatures, starting compounds are advantageously used which are converted to their oxides in the presence of oxygen or by shutting off oxygen, optionally with the liberation of gaseous compounds.
前記のように得られる、本発明により使用すべき多金属酸化物物質Iは、そのものとして[例えば、粉末として又は粉末の錠剤化(しばしば、微細グラファイト0.5〜2質量%の添加下に)及びその後の破砕後に破片に破砕する]又は同様に成形体に成形して、本発明による方法に使用することができる。 The multi-metal oxide material I to be used according to the invention obtained as described above is itself [for example as a powder or tableting of powder (often with addition of 0.5-2% by weight of fine graphite). And then crushed into fragments after crushing] or similarly formed into a compact and used in the method according to the invention.
成形体への成形は、例えば、以前の出願DE−A10051419に記載されているような、担体上への被覆によって行うことができる。 Molding into a shaped body can be carried out, for example, by coating on a carrier as described in the previous application DE-A 10051419.
本発明により使用すべき多金属酸化物物質Iに使用すべき担体は、有利に化学的に不活性である。即ち、それは、本発明により使用すべき多金属酸化物物質によって触媒されるプロパンからアクリル酸への触媒気相酸化の経過中、実際に作用しない。 The support to be used for the multimetal oxide material I to be used according to the invention is preferably chemically inert. That is, it does not actually work during the course of catalytic gas phase oxidation of propane to acrylic acid catalyzed by the multi-metal oxide material to be used according to the present invention.
担体材料として、本発明により殊に、酸化アルミニウム、二酸化珪素、珪酸塩、例えば、粘土、カオリン、ステアタイト、軽石、珪酸アルミニウム及び珪酸マグネシウム、炭化珪素、二酸化ジルコン及び二酸化トリウムがこれに該当する。 As support materials, in particular according to the invention, aluminum oxide, silicon dioxide, silicates, such as clay, kaolin, steatite, pumice, aluminum silicate and magnesium silicate, silicon carbide, zircon dioxide and thorium dioxide are relevant.
担体の表面は、平滑であっても、粗性であってもよい。高められた表面粗性は、通例、被覆された活性物質シェルの高められた接着強度を前提とするので、担体の表面は粗性であることが有利である。 The surface of the carrier may be smooth or rough. Since the increased surface roughness is usually predicated on the increased adhesive strength of the coated active substance shell, it is advantageous that the surface of the support is rough.
担体の表面粗性RZは、しばしば、5〜200μmの範囲にあり、頻繁に、20〜100μmの範囲にある(Fa. Hommelwerke, DE の "Hommel Tester Fuer DIN-ISO Oberflaechenmessgroessen" を用いて、DIN 4768 Blatt 1 により測定する)。 The surface roughness R Z of the support is often in the range of 5 to 200 μm and frequently in the range of 20 to 100 μm (using “Hommel Tester Fuer DIN-ISO Oberflaechenmessgroessen” by Fa. Hommelwerke, DE, DIN 4768 Blatt 1).
更に、担体材料は有孔又は無孔であってよい。担体材料は、無孔であることが有利である(担体の容積に対する孔の総容積≦1容積%)。 Furthermore, the support material may be perforated or non-porous. The support material is advantageously nonporous (total volume of pores ≦ 1% by volume relative to the volume of the support).
本発明によるシェル型触媒上にある活性酸化物物質シェルの厚さは、通例、10〜1000μmである。しかし、それは、50〜700μm、100〜600μm又は150〜400μmであってもよい。可能なシェル厚は、同様に、10〜500μm、100〜500μっ又は150〜300μmである。 The thickness of the active oxide material shell on the shell-type catalyst according to the invention is typically 10 to 1000 μm. However, it may be 50-700 μm, 100-600 μm or 150-400 μm. Possible shell thicknesses are likewise 10 to 500 μm, 100 to 500 μm or 150 to 300 μm.
本発明による方法のために、原則的に、担体の任意の形状が考慮される。その最長伸張は、通例、1〜10mmである。しかし、担体として、球状物、筒状物、殊に中空筒状物が有利に使用される。球状担体の有利な直径は、1.5〜4mmである。担体として筒状物を使用する場合には、その長さは有利に2〜10mmであり、その外径は4〜10mmである。更に、環状物の場合には、壁厚は、通例、1〜4mmである。本発明により好適な環状担体は、長さ3〜6mm、外径4〜8mm及び壁厚1〜2mmを有することができる。しかし、環状担体形状7mm×3mm×4mm又は5mm×3mm×2mm(外径×長さ×内径)も可能である。 For the method according to the invention, in principle any shape of the carrier is considered. Its longest extension is typically 1-10 mm. However, spherical, cylindrical, and in particular hollow cylindrical materials are advantageously used as the carrier. The preferred diameter of the spherical carrier is 1.5 to 4 mm. When a cylindrical object is used as the carrier, its length is preferably 2 to 10 mm and its outer diameter is 4 to 10 mm. Furthermore, in the case of an annular object, the wall thickness is typically 1 to 4 mm. An annular carrier suitable according to the invention can have a length of 3-6 mm, an outer diameter of 4-8 mm and a wall thickness of 1-2 mm. However, an annular carrier shape 7 mm × 3 mm × 4 mm or 5 mm × 3 mm × 2 mm (outer diameter × length × inner diameter) is also possible.
本発明により使用すべきシェル型触媒の製造は、最も簡単な方法で、一般式(I)の活性酸化物物質を予備生成させ、それを微細形に変え、最後に、液状結合剤によって担体表面上に被覆させることによって行うことができる。そのために、担体の表面を、最も簡単な方法で、液状結合剤で湿潤させ、一般式(I)の微細活性酸化物物質との接触被覆によって、活性物質の層を湿潤担体上に付着させる。最後に、被層担体を乾燥させる。勿論、層厚を高めるために、この過程を周期的に繰り返すことができる。この場合には、被層基体が新規の″担体″などになる。 The production of the shell-type catalyst to be used according to the invention is in the simplest way by pre-generating the active oxide material of the general formula (I), converting it into a fine form, and finally with a liquid binder This can be done by coating it on top. For this purpose, the surface of the support is wetted with a liquid binder in the simplest way and a layer of active substance is deposited on the wet support by contact coating with a finely active oxide material of general formula (I). Finally, the layered carrier is dried. Of course, this process can be repeated periodically to increase the layer thickness. In this case, the layered substrate becomes a new “carrier” or the like.
担体の表面上に被覆すべき一般式(I)の触媒活性酸化物物質の純度は、勿論、所望のシェル厚に適合される。100〜500μmのシェル厚範囲には、例えば、粉末粒子の総数の少なくとも50%がメッシュ幅1〜20μmの篩を通過し、その50μm以上の最長伸張を有する粒子の数的成分が10%よりも少ない活性物質粉末が好適である。通例、粉末粒子の最長伸張の分布は、製造条件により、ガウス分布に相応する。粒度分布は、しばしば、次のようである: The purity of the catalytically active oxide material of general formula (I) to be coated on the surface of the support is of course adapted to the desired shell thickness. In the shell thickness range of 100-500 μm, for example, at least 50% of the total number of powder particles passes through a sieve having a mesh width of 1-20 μm, and the numerical component of particles having the longest extension of 50 μm or more is more than 10%. Less active material powder is preferred. As a rule, the distribution of the longest elongation of the powder particles corresponds to a Gaussian distribution, depending on the production conditions. The particle size distribution is often as follows:
この際、次のものは次のことを表わす:
D=粒径、
x=その直径が≧Dである粒子の%率、及び
y=その直径が<Dである粒子の%率。
The following represents the following:
D = particle size,
x = percentage of particles whose diameter is ≧ D and y = percentage of particles whose diameter is <D.
前記の被覆法を工業的規模で実施するために、例えば、DE−A2909671及びDE−A10051419に公開された方法原則の適用が推奨される。即ち、被覆すべき担体は、有利に傾斜された(傾斜角は、通例、≧1°及び≦90°、大抵、≧30°及び≦90°である;傾向角は、水平に対する回転容器中心軸の角である)回転性の回転容器(例えば、回転皿又は被層ドラム)中に入れられる。回転する回転容器は、例えば、球状又は筒状の担体を、一定の間隔で連続して配置された2つの供給装置下に通す。2つの供給装置の第1は、有利に1本のノズル(例えば、圧力空気で操作される噴霧ノズル)に相応し、回転する回転皿中で回転する担体は、これを通って、液状結合剤を噴霧され、調整湿潤される。第2供給装置は、噴霧する液状結合剤の円錐状噴霧の外にあり、微細の酸化物活性物質を供給することに用いられる(例えば、振動溝又は粉末スクリューを経て)。調整湿潤された担体球は、供給された活性物質粉末を取り込み、これは、回転運動によって、例えば筒状又は球状の担体の外表面上に凝縮されて密集したシェルになる。 In order to carry out the above-mentioned coating process on an industrial scale, it is recommended to apply the method principle published, for example, in DE-A 2909671 and DE-A 10051419. That is, the support to be coated is advantageously inclined (tilt angles are typically ≧ 1 ° and ≦ 90 °, mostly ≧ 30 ° and ≦ 90 °; the tendency angle is the central axis of the rotating vessel relative to the horizontal In a rotatable rotating container (e.g., rotating plate or layered drum). In the rotating rotating container, for example, a spherical or cylindrical carrier is passed under two supply devices arranged continuously at regular intervals. The first of the two supply devices preferably corresponds to one nozzle (for example a spray nozzle operated with pressure air), through which the rotating carrier in the rotating rotating dish passes through the liquid binder. Is sprayed and adjusted wet. The second supply device is outside the conical spray of the liquid binder to be sprayed and is used to supply fine oxide active material (eg, via a vibrating groove or powder screw). The conditioned wet carrier spheres take in the supplied active substance powder, which is condensed into a dense shell by rotational movement, for example on the outer surface of a cylindrical or spherical carrier.
必要な場合には、そうして基礎被層された担体は、それに続く回転経過中に再び噴霧ノズルを通過し、この際、更に移動中に、微細酸化物活性物質のもう1つの層を取り入れることができる等のように調整湿潤される(中間乾燥は通例必要ではない)。この際、微細酸化物活性物質及び液状結合剤は、通例、連続的及び同時に供給される。 If necessary, the base-coated carrier thus passes again through the spray nozzle during the subsequent rotation, in this case taking in another layer of fine oxide active material during further movement. And so on (intermediate drying is usually not necessary). Here, the fine oxide active substance and the liquid binder are usually supplied continuously and simultaneously.
液状結合剤の除去は、被覆終了後に、例えば、熱ガス、例えば、N2又は空気の作用によって行うことができる。注目に値することに、前記の被覆法は、相接して連続する層も、担体の表面上の基礎被層も充分に満足する付着を引き起こす。 The removal of the liquid binder can be carried out, for example, by the action of a hot gas such as N 2 or air after the end of the coating. It is notable that the above-mentioned coating method causes a sufficiently satisfactory deposition of the adjacent continuous layers as well as the basic coating on the surface of the support.
前記の被覆法については、担体の被覆すべき表面の湿潤が調整される方法で行われることが本質である。要するに、担体表面が確かに液状結合剤を吸着して有するが、担体表面上には液状相がそのものとして可視的には現れてこないように、担体表面を有利に湿潤させる。担体表面が湿潤しすぎる場合には、微細触媒活性酸化物物質は、表面上に付着する代わりに、別々の集塊に凝集する。これに関する詳細な記載は、DE−A2909671及びDE−A10051419にある。 The above-described coating method is essentially performed by a method in which wetting of the surface to be coated of the carrier is adjusted. In short, the surface of the carrier certainly has the liquid binder adsorbed, but the surface of the carrier is advantageously wetted so that the liquid phase does not appear as such on the surface of the carrier. If the support surface is too wet, the fine catalytically active oxide material aggregates into separate agglomerates instead of depositing on the surface. Detailed descriptions in this regard can be found in DE-A 2909671 and DE-A 10051419.
昇華によって行うことができる。最も簡単な場合には、これは、相応する温度(しばしば50〜300、しばしば150℃)の熱ガスの作用によって行うことができる。しかし、熱ガスの作用によって、予備乾燥だけを引き起こすこともできる。最終乾燥は、次いで、例えば、任意の種類の乾燥炉(例えば、バンド乾燥機)中で、又は反応器中で行うことができる。この際、作用される温度は、酸化物活性物質の製造に適用されるか焼温度以上であってはならない。勿論、乾燥は、排他的に乾燥炉中で実施されることもできる。 Can be done by sublimation. In the simplest case, this can be done by the action of hot gas at a corresponding temperature (often 50-300, often 150 ° C.). However, pre-drying can also be caused by the action of hot gas. Final drying can then be performed, for example, in any type of drying oven (eg, a band dryer) or in a reactor. The temperature applied here must not be higher than the calcination temperature applied in the production of the oxide active material. Of course, the drying can also be carried out exclusively in a drying oven.
被覆法の結合剤として、担体の種類及び形状に無関係で、次のものを使用することができる:水、一価のアルコール、例えば、エタノール、メタノール、プロパノール及びブタノール、多価のアルコール、例えば、エチレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール又はグリセリン、一−又は多価の有機カルボン酸、例えば、プロピオン酸、蓚酸、マロン酸、グルタル酸又はマレイン酸、アミノアルコール、例えば、エタノールアミン又はジエタノールアミン及び一−又は多価の有機アミド、例えば、ホルムアミド。有利な結合剤は、水20〜90%及び水に溶かした有機化合物10〜80%から成り、その沸点又は昇華温度が標準圧(1atm)で>100℃、有利に>150℃である溶液でもある。前記の可能な有機結合剤のリストから、有機化合物が有利に選択される。前記の結合剤水溶液の有機成分は、有利に10〜50、特に有利に20〜30質量%である。この際、有機成分として、単糖類及び少糖類、例えば、ブドウ糖、果糖、蔗糖又は乳糖及びポリエチレンオキシド及びポリアクリレートがこれに該当する。 Regardless of the type and shape of the carrier, the following can be used as binders in the coating process: water, monohydric alcohols such as ethanol, methanol, propanol and butanol, polyhydric alcohols such as Ethylene glycol, 1,4-butanediol, 1,6-hexanediol or glycerin, mono- or polyvalent organic carboxylic acids such as propionic acid, succinic acid, malonic acid, glutaric acid or maleic acid, amino alcohols such as Ethanolamine or diethanolamine and mono- or polyvalent organic amides such as formamide. Preferred binders are solutions consisting of 20 to 90% of water and 10 to 80% of organic compounds dissolved in water, whose boiling point or sublimation temperature is> 100 ° C., preferably> 150 ° C. at standard pressure (1 atm). is there. From the list of possible organic binders mentioned above, organic compounds are advantageously selected. The organic component of the aqueous binder solution is preferably 10-50, particularly preferably 20-30% by weight. In this case, monosaccharides and oligosaccharides such as glucose, fructose, sucrose or lactose, polyethylene oxide and polyacrylate are applicable as organic components.
本発明により好適なシェル型触媒の製造は、一般式(I)の完成された微細の活性酸化物物質を湿潤担体表面上に被覆することだけではなく行うことができることが重要である。 It is important that the production of shell-type catalysts suitable according to the invention can be carried out not only by coating the finished fine active oxide material of general formula (I) on the wet support surface.
むしろ、活性酸化物物質の代わりに、微細の前駆物質それ自体を湿潤担体表面上に(同一の被覆法及び結合剤の使用下に)被覆し、被覆された担体の乾燥後に、か焼を実施することもできる。 Rather, instead of the active oxide material, the fine precursor itself is coated on the wet carrier surface (using the same coating method and binder) and calcined after drying the coated carrier. You can also
そのような微細前駆物質として、例えば、所望の一般式(I)の活性酸化物物質の元素成分の給源から、先ず、出来るだけ良好に混和した、有利に微細の乾燥混合物を製造し(例えば、給源の水性懸濁液又は水溶液の噴霧乾燥によって)、この微細乾燥混合物を(場合により微細のグラファイト0.5〜2質量%の添加下での錠剤化後に)150〜350℃、有利に250〜350℃の温度で酸化(酸素含有)雰囲気下に(例えば、空気下に)熱処理し(数時間)、最後に必要であれば粉砕させることによって得られる物質がこれに該当する。 As such a fine precursor, for example, from the source of the elemental component of the desired active oxide material of the general formula (I), first an advantageously finely mixed, preferably finely dried mixture is produced (for example, 150 to 350 ° C., preferably from 250 to 350 ° C., preferably by spray drying of an aqueous suspension or aqueous solution of the source, this finely dried mixture (optionally after tableting with addition of 0.5 to 2% by weight of fine graphite). This applies to substances obtained by heat treatment (several hours) in an oxidizing (oxygen-containing) atmosphere at a temperature of 350 ° C. (for example in air) and finally pulverizing if necessary.
担体を前駆物質で被覆した後に、有利に不活性ガス雰囲気下に(全ての他の雰囲気も考慮される)、360〜700℃又は400〜650℃又は400〜600℃の温度でか焼させる。 After the support has been coated with the precursor, it is preferably calcined at a temperature of 360-700 ° C. or 400-650 ° C. or 400-600 ° C., preferably in an inert gas atmosphere (all other atmospheres are also considered).
勿論、本発明により使用可能な多金属酸化物物質Iの成形は、微細の多金属酸化物物質Iも、多金属酸化物物質Iの微細前駆物質も、押出し及び/又は錠剤化によって行うことが出来る。 Of course, the formation of the multimetal oxide material I that can be used according to the invention can be carried out by extrusion and / or tableting of both the fine multimetal oxide material I and the fine precursor of the multimetal oxide material I. I can do it.
この際、形状として、球状物、完全筒状物及び中空筒状物(環状物)がこれに該当する。この際、前記の形状の最長伸張は、通例、1〜10mmである。筒状物の場合には、その長さは、有利に2〜10mm、外径は、有利に4〜10mmである。更に、環状物の場合には、壁厚は通例1〜4mmである。本発明により好適な環形の完全触媒は、長さ3〜6mm、外径4〜8mm、壁厚は1〜2mmを有することができる。しかし、7mm×3mm×4mm又は5mm×3mm×2mm(外径×長さ×内径)の完全触媒環状物形状も可能である。 In this case, the spherical shape, the complete cylindrical shape, and the hollow cylindrical shape (annular shape) correspond to this. At this time, the longest extension of the shape is usually 1 to 10 mm. In the case of a cylindrical object, the length is preferably 2 to 10 mm, and the outer diameter is preferably 4 to 10 mm. Furthermore, in the case of an annular object, the wall thickness is typically 1 to 4 mm. A ring-shaped complete catalyst suitable according to the present invention can have a length of 3-6 mm, an outer diameter of 4-8 mm, and a wall thickness of 1-2 mm. However, complete catalyst annulus shapes of 7 mm x 3 mm x 4 mm or 5 mm x 3 mm x 2 mm (outer diameter x length x inner diameter) are also possible.
勿論、本発明による方法に使用すべき多金属酸化物物質Iの形状については、DE−A10101695の全てのそれも考慮される。 Of course, all that of DE-A 10101695 is also considered for the shape of the multimetal oxide material I to be used in the process according to the invention.
本発明により有利に使用すべき多金属酸化物物質Iが、レントゲン回折図を示すことは本発明により本質なことであり(本明細書中、常に、Cu−Kα−放射に対する)、これは回折反射h、i及びkを示し、回折角(2Θ)でのその頂点は、22.2±0.4°(h)、27.3±0.4°(i)及び28.2±0.4°(k)であり、この際、
回折反射hは、最強強度のレントゲン回折図内であり、かつ高々0.5°の半値幅を示し、
回折反射iの強度Pi及び回折反射kの強度Pkは、0.65≦R≦0.85の関係を満たし、この際、Rは、式:
R = Pi/(Pi+Pk)
によって定義された強度比率であり、かつ
回折反射i及び回折反射kの半値幅は、各々≦1°である。
It is essential according to the invention that the multi-metal oxide material I to be used advantageously according to the invention exhibits a roentgen diffractogram (here, always against Cu-Kα radiation), which is Shows reflections h, i and k, and their vertices at the diffraction angle (2Θ) are 22.2 ± 0.4 ° (h), 27.3 ± 0.4 ° (i) and 28.2 ± 0. 4 ° (k),
Diffraction reflection h is in the strongest X-ray diffraction diagram and shows a half-value width of at most 0.5 °,
The intensity P i of the diffraction reflection i and the intensity P k of the diffraction reflection k satisfy the relationship of 0.65 ≦ R ≦ 0.85, where R is an expression:
R = P i / (P i + P k )
And the half widths of the diffraction reflection i and the diffraction reflection k are each ≦ 1 °.
レントゲン回折図中の回折反射の強度の定義は、本明細書中、DE−A19835247、及びDE−A10051419及びDE−A10046672中に記載された定義に関係する。 The definition of the intensity of the diffracted reflection in the X-ray diffractogram relates to the definitions described in DE-A 19835247 and DE-A 10051419 and DE-A 10046672 in this document.
即ち、A1は、反射1の頂点を表わし、B1は、レントゲン回折図の直線中で、2Θ−軸に対して垂直に立つ強度軸に沿って見て、頂点A1の左側で、直近の卓越した最低値(反射肩を示す最低値は無視しておく)を表わし、かつB2は、相応する方法で、頂点A1の右側で、直近の卓越した最低値を表わし、C1は、頂点A1から垂直に2Θ−軸に引かれた直線が、点B1及びB2を結ぶ直線と交わる点を表わし、この時、反射1の強度は、頂点A1から点C1まで延びる直線分A1C1の長さである。この際、最低値という表現は、反射1の基礎範囲中の曲線に置かれた接線の上昇勾配がマイナス値からプラス値に移行する点、又は上昇勾配がゼロに向かう点を意味し、この際、上昇勾配の確定については、2Θ軸及び強度軸の座標が引用される。 That is, A 1 represents the apex of reflection 1 and B 1 is the closest to the left side of apex A 1 when viewed along the intensity axis standing perpendicular to the 2Θ-axis in the X-ray diffraction line. And B 2 represents the most recent lowest value to the right of vertex A 1 in a corresponding manner, and C 1 is the corresponding lowest value. , A straight line drawn perpendicularly from the vertex A 1 to the 2Θ-axis represents a point intersecting with a straight line connecting the points B 1 and B 2 , and at this time, the intensity of the reflection 1 extends from the vertex A 1 to the point C 1. This is the length of the straight line segment A 1 C 1 . In this case, the expression “minimum value” means a point where the rising gradient of the tangent line placed on the curve in the basic range of reflection 1 shifts from a negative value to a positive value, or a point where the rising gradient goes to zero. For the determination of the ascending slope, the coordinates of the 2Θ axis and the intensity axis are cited.
本明細書中、半値幅は、相応する方法で、直線分A1C1の中心で、2Θ−軸に対する平行線を引く場合に、2つの交点H1及びH2の間で生じる直線分の長さであり、この際、H1、H2は、A1の左側及び右側でレントゲン回折図の前記に定義された直線とこの平行線との各々最初の交点を意味する。 In the present specification, the half-width is determined in a corresponding manner by a straight line segment between two intersections H 1 and H 2 when a parallel line to the 2Θ-axis is drawn at the center of the straight line segment A 1 C 1 . Length, where H 1 , H 2 mean the first intersection of each of the above defined straight lines of the X-ray diffraction diagram and this parallel line on the left and right sides of A 1 .
半値幅及び強度の測定の例としての実施は、DE−A10046672中の第6図も示す。 An exemplary implementation of half width and intensity measurements also shows FIG. 6 in DE-A 10046672.
有利に本発明により使用すべき多金属酸化物物質Iのレントゲン回折図は、回折反射h、i及びkの他に、通例、その頂点が次の回折角(2Θ)である他の回折反射を有する:
9.0±0.4°(l)、
6.7±0.4°(o)及び
7.9±0.4°(p)。
The X-ray diffraction diagram of the multi-metal oxide material I to be used according to the invention preferably shows, in addition to the diffracted reflections h, i and k, other diffractive reflections whose vertex is usually the next diffraction angle (2Θ). Have:
9.0 ± 0.4 ° (l),
6.7 ± 0.4 ° (o) and 7.9 ± 0.4 ° (p).
一般式(I)の触媒活性酸化物物質のレントゲン回折図は、その頂点が次の回折角(2Θ)である回折角を付加的に含有することが有利である:
45.2±0.4°(q)。
The X-ray diffractogram of the catalytically active oxide material of the general formula (I) advantageously contains additionally a diffraction angle whose vertex is the following diffraction angle (2Θ):
45.2 ± 0.4 ° (q).
しばしば、多金属酸化物物質(I)のレントゲン回折図は、更に、反射29.2±0.4°(m)及び35.4±0.4°(n)も有する。 Often, the X-ray diffraction pattern of the multi-metal oxide material (I) also has reflections of 29.2 ± 0.4 ° (m) and 35.4 ± 0.4 ° (n).
一般式(I)の触媒活性酸化物物質がk−相を有する場合には、そのレントゲン回折図は、通例、更に、その頂点が次の回折角(2Θ)である他の回折反射を有する:
36.2±0.4°及び
50.0±0.4°。
If the catalytically active oxide material of general formula (I) has a k-phase, its X-ray diffractogram usually has another diffractive reflection whose vertex is the next diffraction angle (2Θ):
36.2 ± 0.4 ° and 50.0 ± 0.4 °.
回折角hに強度100を付け加える場合には、本発明により、回折角i、l、m、n、o、p、qは、同一の強度目盛りで次の強度を示す場合が有利である:
i :5〜95、しばしば5〜80、部分的に10〜60;
l:1〜30;
m:1〜40;
n :1〜40;
o :1〜30;
p:1〜30及び
q:5〜60。
When adding an intensity of 100 to the diffraction angle h, according to the invention, it is advantageous if the diffraction angles i, l, m, n, o, p, q show the following intensities on the same intensity scale:
i: 5-95, often 5-80, partially 10-60;
l: 1-30;
m: 1-40;
n: 1-40;
o: 1-30;
p: 1-30 and q: 5-60.
前記のレントゲン回折図が付加的な回折反射を有する場合には、その半値幅は通例≦1°である。 If the X-ray diffractogram has an additional diffraction reflection, its half-value width is typically ≦ 1 °.
本明細書中で、レントゲン回折図に関する全データは、レントゲン放射としてCu−Kα−放射の使用下に生じるレントゲン回折図に関係する(Siemens−Diffraktometer Theta−Theta D−5000、真空管電圧:40kV、真空管電流:40mA、口径絞りV20(可変性)、散乱放射絞りV20(可変性)、二次単色光器絞り(0.1mm)、検出器絞り(0.6mm)、測定間隔(2Θ):0.02°、各段階の測定時間2.4s、検出器:シンチレーション計数管)。 In this specification, all data relating to X-ray diffractograms relate to X-ray diffractograms that occur under the use of Cu-Kα-radiation as X-ray radiation (Siemens-Diffraktometer Theta-Theta D-5000, vacuum tube voltage: 40 kV, vacuum tube Current: 40 mA, aperture stop V20 (variable), scattering radiation stop V20 (variable), secondary monochromator stop (0.1 mm), detector stop (0.6 mm), measurement interval (2Θ): 0. 02 °, measurement time of each step 2.4 s, detector: scintillation counter).
本発明により使用すべき多金属酸化物物質(I)の比表面積は、しばしば、1〜30m2/gである(BET−表面積、窒素)。 The specific surface area of the multimetal oxide material (I) to be used according to the invention is often 1-30 m 2 / g (BET-surface area, nitrogen).
本発明による方法で、新規に製造される本発明により使用すべき触媒は、有利に、先ず、含有プロパンに対して、高められた水蒸気成分を有する(即ち、組成範囲A中にある)反応ガス出発混合物に暴露される。 The catalyst to be used according to the invention, which is newly produced in the process according to the invention, preferably has firstly a reaction gas having an increased water vapor component (ie in composition range A) relative to the propane contained. Exposed to the starting mixture.
本発明による方法を固床酸化として施工する場合には、実施は有利な方法で、その接触管に触媒が装入されている束管反応器中で行われる。通常、接触管の周りに、伝熱体として液体、通例、塩浴が誘導される。 When the process according to the invention is applied as solid bed oxidation, it is an advantageous process and is carried out in a bundle reactor with a catalyst in its contact tube. Usually, a liquid, usually a salt bath, is induced around the contact tube as a heat transfer body.
反応ガス混合物は、接触管中で、反応器全体から見て、塩浴に対して直流か、又は向流で導かれる。塩浴自体は、接触管に相対的に完全に並流することができる。しかし、当然これは、横流を重ね合わせることもできる。全体的に、塩浴は接触管の周りで、蛇行して流れることもでき、この流れは、反応器だけを見れば、反応ガス混合物に対して直流又は向流で導かれていてもよい。本発明による方法に好適な束管反応器は、例えば、明細書EP−A700714及びEP−A700893が公表している。本発明による方法では、プロパンでの触媒装填の負荷は、例えば、10〜500Nl/l・hであってよい。反応ガス出発混合物での負荷は、しばしば、100〜10000Nl/l・hの範囲、しばしば500〜5000Nl/l・hの範囲にある。 The reaction gas mixture is directed in a contact tube, either directly or countercurrently to the salt bath, as viewed from the whole reactor. The salt bath itself can flow relatively completely in parallel with the contact tube. However, of course, this can also overlap the cross current. Overall, the salt bath can also flow in a meandering manner around the contact tube, and this flow may be directed in direct or countercurrent to the reaction gas mixture if only the reactor is viewed. Suitable bundle reactors for the process according to the invention are published, for example, in the specifications EP-A 700714 and EP-A 700893. In the process according to the invention, the loading of the catalyst loading with propane may be, for example, 10 to 500 Nl / l · h. The loading with the reaction gas starting mixture is often in the range of 100 to 10000 Nl / l · h, often in the range of 500 to 5000 Nl / l · h.
本発明による方法では、反応ガス出発混合物は、反応温度に予備加熱されて、触媒を含有する反応帯域に供給されてよい。 In the process according to the invention, the reaction gas starting mixture may be preheated to the reaction temperature and fed to the reaction zone containing the catalyst.
勿論、本発明による方法では、排他的にアクリル酸から成るとは限らない生成ガス混合物が得られる。むしろ、生成ガス混合物は、未反応プロパンの他に、副成分、例えば、プロペン、アクロレイン、CO2、CO、H2O、酢酸、プロピオン酸等を含有し、それらからアクリル酸は分離されねばならない。 Of course, the process according to the invention gives a product gas mixture which does not necessarily consist exclusively of acrylic acid. Rather, the product gas mixture, in addition to the unreacted propane, secondary components, for example, contains propene, acrolein, CO 2, CO, H 2 O, acetic acid, propionic acid and the like, acrylic acid from them must be separated .
本発明による方法によって、生成ガス混合物中に含有される水蒸気量も、酢酸及びプロピオン酸の副産物生成も制限されるので、この分離は、プロペンからアクリル酸への不均一系触媒気相酸化について公知であるように行うことができる。 This separation is known for heterogeneously catalyzed gas phase oxidation of propene to acrylic acid because the process according to the invention limits the amount of water vapor contained in the product gas mixture as well as the by-product formation of acetic acid and propionic acid. Can be done.
即ち、含有アクリル酸は、生成ガス混合物から、例えば、高沸騰の不活性の疎水性有機溶剤(例えば、ジフェニルエーテル及びジフェニルから成る混合物、これは、場合により更に添加剤、例えば、ジメチルフタレートを含有することができる)での吸着によって抽出されることができる。そこで残留する吸着剤及びアクリル酸から成る混合物は、引続き、自体公知の方法で、精留的、抽出的及び/又は結晶化で純アクリル酸まで仕上げ処理することができる。選択的に、生成ガス混合物からのアクリル酸の根本的分離は、例えば、DE−A19924532に記載されているような分別縮合によって行うこともできる。 That is, the containing acrylic acid contains from the product gas mixture, for example, a high boiling inert hydrophobic organic solvent (eg, a mixture comprising diphenyl ether and diphenyl, which optionally further contains an additive, eg, dimethyl phthalate). Can be extracted by adsorption. The adsorbent and acrylic acid mixture remaining there can subsequently be finished to pure acrylic acid by rectification, extraction and / or crystallization in a manner known per se. Alternatively, the radical separation of acrylic acid from the product gas mixture can also be carried out by fractional condensation, for example as described in DE-A 19924532.
ここで残留するアクリル酸縮合物を、次いで、例えば、分別結晶化(例えば、懸濁結晶化及び/又は積層結晶化)によって更に精製することができる。 The acrylic acid condensate remaining here can then be further purified, for example, by fractional crystallization (eg suspension crystallization and / or layered crystallization).
アクリル酸の根本的分離の際に残留する残留ガス混合物は、殊に未反応のプロパン及び場合により未反応のプロペンを含有する。これを残留ガス混合物から、例えば、分別加圧精留によって分離し、引続き、本発明による気相酸化に戻すことができる。しかし、残留ガスを抽出装置中で、プロパン及び場合によりプロペンを有利に吸着することができる疎水性有機溶剤と接触させる(例えば、それを通過させることによって)ことがより有利である。 The residual gas mixture remaining during the radical separation of acrylic acid contains in particular unreacted propane and optionally unreacted propene. This can be separated from the residual gas mixture, for example by fractional pressure rectification, and subsequently returned to the gas phase oxidation according to the invention. However, it is more advantageous to contact the residual gas in the extraction device with a hydrophobic organic solvent that can adsorb propane and possibly propene, for example, by passing it through.
後続の空気中での脱着及び/又はストリップによって、吸着されたプロパン及び場合によりプロペンを再び遊離させ、本発明による方法に戻すことができる。この方法で、経済的な総プロパン変換率が達成可能である。しかし勿論、アクリル酸を、DE−A10059122に記載された方法によっても、生成ガス混合物から分離させることができる。 Subsequent desorption and / or stripping in air allows the adsorbed propane and possibly propene to be liberated again and returned to the process according to the invention. In this way, an economical total propane conversion can be achieved. Of course, however, acrylic acid can also be separated from the product gas mixture by the method described in DE-A10059122.
本発明による方法で、減少された水蒸気必要量で、アクリル酸生成の高選択性が可能であることが注目に値する。 It is noteworthy that the process according to the invention allows a high selectivity of acrylic acid production with a reduced water vapor requirement.
勿論、本発明により使用すべき多金属酸化物物質Iは、微細な、例えば、コロイド状の材料、例えば、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコン及び酸化ニオブで希釈された形で、本発明による方法に使用することができる。 Of course, the multi-metal oxide material I to be used according to the invention is a fine, for example colloidal material, diluted in a form diluted with, for example, silicon dioxide, titanium dioxide, aluminum oxide, zircon oxide and niobium oxide. It can be used in the method according to the invention.
この際、希釈物質比率は、9(希釈剤):1(活性物質)までであってよい。即ち、可能な希釈物質比率は、例えば、6(希釈剤):1(活性物質)及び3(希釈剤):1(活性物質)である。希釈剤の加入混合は、か焼の前及び/又はその後に行うことができる。か焼前に加入混合を行う場合には、希釈剤は、それがか焼の際に実際にそのままの状態であり続けるように選択されなければならない。このことは、例えば、相応する高温で燃焼される酸化物の場合に通例示される。 At this time, the dilution substance ratio may be up to 9 (diluent): 1 (active substance). That is, possible diluent substance ratios are, for example, 6 (diluent): 1 (active substance) and 3 (diluent): 1 (active substance). Diluent admixture can occur before and / or after calcination. If additive mixing is performed prior to calcination, the diluent must be selected so that it remains in effect during calcination. This is the case for example in the case of oxides combusted at correspondingly high temperatures.
本発明による方法で使用される触媒は、水蒸気がそれに添加されていてもよい酸素含有ガス、例えば、空気又は酸素貧化又は富化空気の装入によって、温度≦反応温度で何度も再生され得る。 The catalyst used in the process according to the invention is regenerated many times at temperature ≦ reaction temperature by the introduction of an oxygen-containing gas to which water vapor may be added, for example air or oxygen-poor or enriched air. obtain.
例
A)本発明により使用すべき多金属酸化物−I−触媒の製造
精鋼容器中で、水44.6l中に、80℃で、攪拌下に、メタバナジウム酸アンモニウム(V2O5 77.5質量%、Fa.G.f.E.、DE−Nuernberg)1287.25gを溶かした。澄明な帯黄色溶液が生じた。この溶液を60℃に冷却させ、次いで、連続して、前記の順序で、60℃の堅持下に、先ずテルル酸(H6TeO6 99質量%、Fa.Fluka)1683.75g及び次いでヘプタモリブデン酸アンモニウム(MoO3 81.5質量%、Fa.Starck)5868.0gを混合攪拌させた。深赤色溶液Aが生じた。第2の精鋼容器中で、60℃で、水8.3l中にアンモニウムニオブオキサレート(Nb 21.1質量%、Fa.Starck、DE−Goslar)1599.0gを溶かして、溶液Bとした。2つの溶液A及びBを30℃に冷却させ、この温度で相互に合一させ、この際、溶液Bを溶液A中に混合攪拌させた。混合攪拌は、連続的に10分間以内で行われた。橙色水性懸濁液が生じた。
Example
A) Production of the multimetal oxide-I-catalyst to be used according to the invention Ammonium metavanadate (V 2 O 5 77.5) in 44.6 l of water at 80 ° C. with stirring in a refined steel vessel (Mass%, Fa.GfE, DE-Nuernberg) 1287.25 g was dissolved. A clear yellowish solution was formed. The solution is allowed to cool to 60 ° C. and then, in succession, in the above order, firstly 1683.75 g of telluric acid (H 6 TeO 6 99% by weight, Fa. Fluka) and then heptamolybdenum while being held at 60 ° C. Ammonium acid (MoO 3 81.5 mass%, Fa. Starck) 5868.0 g was mixed and stirred. A deep red solution A was formed. In a second refined steel container, 1599.0 g of ammonium niobium oxalate (Nb 21.1% by mass, Fa. Starck, DE-Goslar) was dissolved in 8.3 l of water at 60 ° C. to obtain a solution B. The two solutions A and B were allowed to cool to 30 ° C. and merged together at this temperature, with solution B being mixed and stirred into solution A. The mixing and stirring was continuously performed within 10 minutes. An orange aqueous suspension was formed.
この懸濁液を引続き噴霧乾燥させた(T受容器=30℃、T進入=240℃、T進出=110℃、乾燥時間:1.5時間、Fa.Nipolosaの噴霧塔)。得られた噴霧物質は同様に橙色であった。この噴霧物質中に、微細グラファイト(篩分析:最小50質量%<24μm、最大10質量%>24μ及び<48μm、最大5質量%>48μm、BET−表面積:6〜13m2/g)1質量%を加入混合させた。 This suspension was subsequently spray dried (T receptor = 30 ° C., T entry = 240 ° C., T entry = 110 ° C., drying time: 1.5 hours, Fa. Nipolosa spray tower). The spray material obtained was likewise orange. In this spray material, fine graphite (sieving analysis: minimum 50% by weight <24 μm, maximum 10% by weight> 24 μm and <48 μm, maximum 5% by weight> 48 μm, BET-surface area: 6-13 m 2 / g) 1% by weight Were mixed.
生じた混合物を、形状16mm×2.5mm×8mm(外径×高さ×内径)の中空筒状物(環状物)に圧縮して(加圧)、生じる環状物の側圧強度が約10Nであるようにした。 The resulting mixture is compressed (pressurized) into a hollow cylinder (annular material) having a shape of 16 mm × 2.5 mm × 8 mm (outer diameter × height × inner diameter). I was there.
この環状物200gを、2回に分けて各々100gで順番に、図1による回転球状炉中でか焼させた(内容量1リットルの石英ガラス球状炉;1=炉容器、2=回転フラスコ、3=加熱室、4=窒素−/空気流)。そのために、回転球状炉内容物を、50Nl/hの空気流下に、直線的加熱勾配で、27.5分間以内で、25℃から275℃へ加熱し、この温度で、空気流の堅持下に1時間保持した。引続き、32.5分間以内で、直線的加熱勾配で、275℃から600℃に加熱し、この際、空気流を、50Nl/lの窒素流に変えた。600℃及び窒素流を2時間堅持し、引続き、全ての炉を自体放置によって、窒素流の堅持下に25℃に冷却させた。組成Mo1.0V0.33Te0.15Nb0.11Oxの黒色錠剤が生じた。 200 g of the annular material was calcined in a rotating spherical furnace according to FIG. 1 in order at 100 g in two portions (1 liter quartz glass spherical furnace; 1 = furnace vessel, 2 = rotary flask, 3 = heating chamber, 4 = nitrogen- / air flow). For this purpose, the rotary spherical furnace contents are heated from 25 ° C. to 275 ° C. within 27.5 minutes with a linear heating gradient under a flow of 50 Nl / h of air and at this temperature, the air flow is kept constant. Hold for 1 hour. Subsequently, within 32.5 minutes, a linear heating gradient was used to heat from 275 ° C. to 600 ° C., with the air flow being changed to a nitrogen flow of 50 Nl / l. The 600 ° C. and nitrogen flow was held for 2 hours, and then all furnaces were allowed to cool to 25 ° C. under nitrogen flow hold by themselves. A black tablet of the composition Mo 1.0 V 0.33 Te 0.15 Nb 0.11 O x was produced.
レッチュ(Retsch)−ミル中で、錠剤を乾燥させ、粒度<100μmに粉砕した。粉砕物質150gを10質量%のHNO3−水溶液1500ml中で7時間70℃で環流攪拌し、生じる懸濁液から固形物を濾取し、水で洗浄して硝酸塩を除去した。濾滓を1晩空気下に110℃で、マッフル炉中で乾燥させた。生じる活性物質は、組成Mo1.0V0.27Te0.12Nb0.13Ox を有した。 The tablets were dried and ground to a particle size <100 μm in a Retsch-mill. 150 g of the pulverized material was reflux-stirred in 1500 ml of a 10% by weight HNO 3 -water solution for 7 hours at 70 ° C., and the solid was collected from the resulting suspension by filtration and washed with water to remove nitrates. The filter cake was dried overnight at 110 ° C. in air in a muffle furnace. The resulting active material had the composition Mo 1.0 V 0.27 Te 0.12 Nb 0.13 O x .
得られた活性物質粉末75gを、直径2.2〜3.2mmの球状担体(担体材料=Fa.Ceramtec、DEのステアタイト、担体総容量に対する担体孔総容量≦1容量%;Rz=45μm)300g上に被覆させた。そのために、担体を内容量2lの被覆ドラム(水平に対するドラム中心軸の傾斜角=30°)中に前与した。ドラムを1分間当たり25回転で回転させた。圧力空気300Nl/hで操作される噴霧ノズルを経て、60分間を超えて、グリセリン及び水の混合物(質量比グリセリン:水=1:3)約30mlを、担体上に噴霧した。この際、噴霧球状物が、ドラム中で回し板によって傾斜ドラムの最上点に運ばれた担体を、転落区間の上半分で湿潤させるように、ノズルは設置されていた。活性物質微粉末は、粉末スクリューによってドラム中に装入され、この際、粉末供給点は、転落区間以内で、しかし、噴霧球状物の下部にあった。湿潤及び粉末配量の周期的反復によって、根本的に被覆された担体は、それに続く周期で担体自体になった。 75 g of the active substance powder thus obtained was added to a spherical carrier having a diameter of 2.2 to 3.2 mm (carrier material = Fa. Ceramtec, DE steatite, carrier pore total volume ≦ 1% by volume relative to the carrier total volume; R z = 45 μm ) Over 300g. For this purpose, the carrier was preloaded in a coated drum with a volume of 21 (inclination angle of the drum central axis with respect to the horizontal = 30 °). The drum was rotated at 25 revolutions per minute. About 30 ml of a mixture of glycerin and water (mass ratio glycerin: water = 1: 3) was sprayed on the support over a period of 60 minutes via a spray nozzle operated with pressurized air 300 Nl / h. At this time, the nozzle was installed so that the sprayed spherical material wets the carrier carried to the uppermost point of the inclined drum by the rotating plate in the drum in the upper half of the falling section. The active substance fine powder was charged into the drum by means of a powder screw, the powder feed point being within the tumbling section, but at the bottom of the spray sphere. Due to the periodic repetition of wetting and powder dispensing, the fundamentally coated carrier became the carrier itself in subsequent cycles.
被覆終了後に、被覆担体を、16時間120℃で循環空気乾燥炉(Firma Binder、DE、内容量53l)中で乾燥させた。それに続く2時間の熱処理によって150℃で空気中でグリセリンを除去した。本発明により使用すべき、活性物質成分20質量%を有するシェル型触媒Sを得た。
B)本発明による方法及び比較法の実施
新規に製造したシェル型触媒S35gを、各々、電気加熱マットによって加熱された単管反応器中に入れた(管長:140cm、内径:8.5mm、外径:60mm、V2A鋼、触媒嵩長:54.5cm、反応ガス出発混合物の予備加熱に付加的に、Fa.Ceramtecのステアタイト球状物(直径2.2〜3.2mm)から成る30cm長さの予備注入、更に、反応管に同じステアタイト球状物を触媒帯域の終了後に充填した)。マット温度350℃で、シェル型触媒を空気中で管状反応器中に入れた。
After the end of coating, the coated carrier was dried for 16 hours at 120 ° C. in a circulating air drying oven (Firma Binder, DE, content 53 l). The glycerin was removed in air at 150 ° C. by a subsequent 2 hour heat treatment. A shell-type catalyst S having 20% by mass of the active substance component to be used according to the present invention was obtained.
B) Implementation of the method according to the invention and the comparative method 35 g of the newly produced shell-type catalyst S were each placed in a single-tube reactor heated by an electric heating mat (tube length: 140 cm, inner diameter: 8.5 mm, outer Diameter: 60 mm, V2A steel, catalyst bulk length: 54.5 cm, in addition to preheating the reaction gas starting mixture, 30 cm length consisting of Fa. Ceramtec steatite spheres (diameter 2.2-3.2 mm) And the reaction tube was filled with the same steatite spheres after the end of the catalyst zone). The shell type catalyst was placed in a tubular reactor in air at a mat temperature of 350 ° C.
その後に、相互に無関係の4回の試験W、X、Y及びZで、4種の新規の管状反応器触媒装填物を、48時間、加熱マット温度50℃で、次の反応ガス出発混合物W、X、Y及びZで被覆した:
W:プロパン3.3容量%、O2 10容量%、N2 40容量%、H2O 46.7容量%
X:プロパン3.3容量%、O2 10容量%、N2 40容量%、H2O 46.7容量%
Y:プロパン3.3容量%、O2 10容量%、N2 70容量%、H2O 16.7容量%
Z:プロパン3.3容量%、O2 10容量%、N2 86.7容量%、H2O 0容量%。
Thereafter, in four unrelated tests W, X, Y and Z, four new tubular reactor catalyst charges were added to the next reaction gas starting mixture W at a heating mat temperature of 50 ° C. for 48 hours. Coated with X, Y and Z:
W: Propane 3.3 volume%, O 2 10 volume%, N 2 40 volume%, H 2 O 46.7 volume%
X: Propane 3.3 volume%, O 2 10 volume%, N 2 40 volume%, H 2 O 46.7 volume%
Y: Propane 3.3% by volume, O 2 10 vol%, N 2 70 vol%, H 2 O 16.7% by volume
Z: Propane 3.3% by volume, O 2 10 vol%, N 2 86.7% by volume, H 2 O 0 volume%.
滞留時間(触媒嵩容量に対して)は、全ての場合で、2.4秒間であった。操作圧は、全ての場合で、2バール絶対であった。 The residence time (relative to the catalyst bulk capacity) was 2.4 seconds in all cases. The operating pressure was 2 bar absolute in all cases.
48時間の終了で、反応管に、滞留時間の保持下に、次の反応ガス出発混合物組成を更に装入させ、この際、更に操作時間4時間後に、次の結果(単一の反応管通過で)が達成された(TM=適用された加熱マット温度):
W(本発明による):プロパン3.3容量%、O2 10容量%、N2 86.7容量%、H2O 0容量%、
TM=390℃、
1回の反応管通過でのプロパンの変換率(UP):25モル%、
1回の反応管通過でのアクリル酸生成の選択率(SAS):50モル%。
Z(Wに対する比較):プロパン3.3容量%、O2 10容量%、N2 86.7容量%、H2O 0容量%、
TM=390℃、
UP=25モル%、
SAS=40モル%。
X(本発明による)):プロパン3.3容量%、O2 10容量%、N2 70容量%、H2O 16.7容量%、
TM=370℃、
UP=25モル%、
SAS=70モル%。
Y(Xに対する比較):プロパン3.3容量%、O2 10容量%、N2 70容量%、H2O 16.7容量%、
TM=385℃、
UP=25モル%、
SAS=50モル%。
At the end of 48 hours, the reaction tube was further charged with the next reaction gas starting mixture composition while maintaining the residence time, with the following result (passing through a single reaction tube) after a further 4 hours of operation. Was achieved (T M = applied heating mat temperature):
W (according to the invention): propane 3.3% by volume, O 2 10% by volume, N 2 86.7% by volume, H 2 O 0% by volume,
T M = 390 ° C.
Propane conversion rate in one reaction tube ( UP ): 25 mol%,
Selectivity (S AS ) of acrylic acid production in one reaction tube passage: 50 mol%.
Z (compared to W): propane 3.3% by volume, O 2 10% by volume, N 2 86.7% by volume, H 2 O 0% by volume,
T M = 390 ° C.
U P = 25 mol%,
S AS = 40 mol%.
X (according to the invention): propane 3.3% by volume, O 2 10% by volume, N 2 70% by volume, H 2 O 16.7% by volume,
T M = 370 ° C.
U P = 25 mol%,
S AS = 70 mol%.
Y (compared to X): propane 3.3% by volume, O 2 10% by volume, N 2 70% by volume, H 2 O 16.7% by volume,
T M = 385 ° C.
U P = 25 mol%,
S AS = 50 mol%.
達成された結果は、本発明による方法の有利性を示す。 The results achieved show the advantages of the method according to the invention.
Claims (4)
M1は、Te及び/又はSbを表わし、
M2は、Nb、Ta、W、Ti、Al、Zr、Cr、Mn、Ga、Fe、Ru、Co、Rh、Ni、Pd、Pt、La、Bi、B、Ce、Sn、Zn、Si及びInを包含する群からの少なくとも1種の元素を表わし、
bは、0.01〜1であり、
cは、>0〜1であり、
dは、>0〜1であり、かつ
nは、(I)中の酸素とは異なる元素の原子価及び度数によって決定される数である]の多金属酸化物物質上に導き、この際、プロパンを部分的にアクリル酸に酸化させるに当たり、反応ガス混合物の組成を、方法の実施中に少なくとも1回変更させ、反応ガス出発混合物中で、反応ガス出発混合物中に含有されるプロパンのモル量に対して、変更前に含有される希釈ガス水蒸気の量が、変更後に、より少ない量であるようにすることを特徴とする、気相でのプロパンの不均一系触媒部分酸化によるアクリル酸を製造する方法。In a process for producing acrylic acid by heterogeneous catalytic partial oxidation of propane in the gas phase, a reaction gas starting material containing a diluent gas comprising propane, molecular oxygen and water vapor is heated at elevated temperature to a general chemical formula I:
M 1 represents Te and / or Sb,
M 2 is, Nb, Ta, W, Ti , Al, Zr, Cr, Mn, Ga, Fe, Ru, Co, Rh, Ni, Pd, Pt, La, Bi, B, Ce, Sn, Zn, Si and Represents at least one element from the group comprising In;
b is 0.01-1;
c is> 0 to 1,
where d is> 0 to 1 and n is a number determined by the valence and power of an element different from oxygen in (I)], wherein In the partial oxidation of propane to acrylic acid, the composition of the reaction gas mixture is changed at least once during the performance of the process, and in the reaction gas starting mixture, the molar amount of propane contained in the reaction gas starting mixture. On the other hand, the amount of the diluted gas water vapor contained before the change is smaller after the change, and the acrylic acid by the heterogeneous partial oxidation of propane in the gas phase is characterized in that How to manufacture .
プロパン:酸素:H2O:他の希釈ガス=1:(0.1〜10):(0.1〜50):(0〜50)
が存在する、請求項1に記載の方法。In the reaction gas starting mixture, before changing its composition, the following molar ratio:
Propane: Oxygen: H 2 O: Other dilution gas = 1: (0.1-10): (0.1-50): (0-50)
The method of claim 1, wherein:
プロパン:酸素:H2O:他の希釈ガス=1:(0.1〜10):(0〜30):(0〜30)
が存在する、請求項1に記載の方法。In the reaction gas starting mixture, after changing its composition, the following molar ratio:
Propane: Oxygen: H 2 O: Other dilution gas = 1: (0.1-10): (0-30): (0-30)
The method of claim 1, wherein:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10122027A DE10122027A1 (en) | 2001-05-07 | 2001-05-07 | Production of acrolein or acrylic acid involves absorption of propane and propene from a gas mixture followed by desorption and oxidation, with no catalytic dehydrogenation of propane and no added oxygen |
PCT/EP2002/004794 WO2002090308A1 (en) | 2001-05-07 | 2002-05-02 | Method for the production of acrylic acid by heterogeneously catalyzed partial propane oxidation |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004526800A JP2004526800A (en) | 2004-09-02 |
JP4197254B2 true JP4197254B2 (en) | 2008-12-17 |
Family
ID=7683838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002587391A Expired - Fee Related JP4197254B2 (en) | 2001-05-07 | 2002-05-02 | Production of acrylic acid by heterogeneous catalytic partial oxidation of propane |
Country Status (10)
Country | Link |
---|---|
US (1) | US6858754B2 (en) |
EP (1) | EP1387823B1 (en) |
JP (1) | JP4197254B2 (en) |
CN (1) | CN1231443C (en) |
AT (1) | ATE493376T1 (en) |
BR (1) | BR0209297B1 (en) |
DE (2) | DE10122027A1 (en) |
MY (1) | MY129762A (en) |
RU (1) | RU2308446C2 (en) |
WO (1) | WO2002090308A1 (en) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10051419A1 (en) * | 2000-10-17 | 2002-04-18 | Basf Ag | Production of acrolein or acrylic acid involves absorption of propane and propene from a gas mixture followed by desorption and oxidation, with no catalytic dehydrogenation of propane and no added oxygen |
TWI225426B (en) * | 2002-05-01 | 2004-12-21 | Rohm & Haas | Supported mixed metal oxide catalyst |
DE10220494A1 (en) | 2002-05-07 | 2003-11-20 | Basf Ag | Process for the preparation of an aqueous alkali acrylate solution |
TW200400851A (en) | 2002-06-25 | 2004-01-16 | Rohm & Haas | PVD supported mixed metal oxide catalyst |
US7238827B2 (en) | 2002-09-27 | 2007-07-03 | Basf Aktiengesellschaft | Preparation of at least one partial oxidation and/or ammoxidation product of propylene |
US7038080B2 (en) | 2002-09-27 | 2006-05-02 | Basf Aktiengesellschaft | Heterogeneously catalyzed gas-phase partial oxidation of acrolein to acrylic acid |
DE10316465A1 (en) | 2003-04-09 | 2004-10-28 | Basf Ag | Heterogeneously catalyzed partial oxidation of propane and/or isobutane to (meth)acrylic acid involves separating product, dividing residual product gas into portions to be recycled and discharged, and recycling at pressure of feeding step |
MY140509A (en) * | 2003-04-09 | 2009-12-31 | Basf Ag | Method for the heterogeneously catalyzed partial direct oxidation of propane and/or isobutane |
WO2004099081A1 (en) | 2003-05-12 | 2004-11-18 | Basf Aktiengesellschaft | Multimetal oxide materials provided in a pure i phase and containing mo, v, and alkali metal |
JP2007502254A (en) | 2003-08-14 | 2007-02-08 | ビーエーエスエフ アクチェンゲゼルシャフト | Method for producing (meth) acrolein and / or (meth) acrylic acid |
US7253310B2 (en) | 2003-08-19 | 2007-08-07 | Basf Aktiengesellschaft | Preparation of (meth)acrylic acid |
US7012157B2 (en) | 2003-09-23 | 2006-03-14 | Basf Aktiengesellschaft | Preparation of (meth)acrylic acid |
US7019169B2 (en) | 2003-09-23 | 2006-03-28 | Basf Aktiengesellschaft | Preparation of (meth)acrylic acid |
KR101278795B1 (en) * | 2005-11-03 | 2013-06-25 | 바스프 에스이 | Method for carrying out in a stable manner a process for continuously producing acrolein or acrylic acid or the mixture thereof from propane |
DE102006000996A1 (en) | 2006-01-05 | 2007-07-12 | Basf Ag | Heterogeneously catalyzed gas phase partial oxidation of organic compound in fixed catalyst bed involves recovering quality of catalyst bed by replacing its portion, with a catalyst having activity lower than that of the replaced catalyst |
EP1734030A1 (en) * | 2006-01-18 | 2006-12-20 | BASF Aktiengesellschaft | Method for long term operation of a heterogeneously catalysed gas phase partial oxidation of an organic educt |
DE102007004961A1 (en) | 2007-01-26 | 2008-07-31 | Basf Se | Preparing a catalyst molded body, useful e.g. to prepare catalyst for gas phase partial oxidation of an organic compound, comprises molding a precursor mixture to a desired geometry, using graphite, and thermally treating the molded body |
DE102007010422A1 (en) | 2007-03-01 | 2008-09-04 | Basf Se | Preparation of a catalyst, useful in the heterogeneously catalyzed partial gas phase oxidation of acrolein to acrylic acid, comprises attaching one of the active mass to the surface of the carrier body with the help of a binding agent |
DE102007025869A1 (en) | 2007-06-01 | 2008-07-03 | Basf Se | To service tube bundle of gas-phase hydrocarbon oxidation reactor immediately prior to re-charging with fresh bed of catalyst solids, they are brushed internally |
DE102007029053A1 (en) | 2007-06-21 | 2008-01-03 | Basf Ag | Heterogeneously-catalyzed partial direct oxidation of n-propane to acrylic acid comprises conducting initial reaction gas mixture comprising n-propane and molecular oxygen through a fixed bed catalyst and separating the acrylic acid |
DE102009017443A1 (en) | 2008-04-15 | 2009-11-05 | Basf Se | Partial oxidation of an alkylaromatic compound e.g. toluene and o-xylol, in the gas phase under the use of catalyst, whose catalytically active mass contains a multimetal oxide compound |
DE102008040093A1 (en) | 2008-07-02 | 2008-12-18 | Basf Se | Producing a ring like oxidic mold, useful e.g. in partial gas phase oxidation of e.g. an organic compound, comprising mechanical packing of a powdery material which is brought into the fill space of a die made of a metal compound |
DE102008040094A1 (en) | 2008-07-02 | 2009-01-29 | Basf Se | Production of an oxidic geometric molded body used as a catalyst in a heterogeneously catalyzed partial gas phase oxidation comprises mechanically compressing a powdered material inserted into a filling chamber of a die |
DE102008044946B4 (en) * | 2008-08-29 | 2022-06-15 | Evonik Superabsorber Gmbh | Use of foam bodies in oxidation reactors for the production of unsaturated carboxylic acids |
DE102008042064A1 (en) | 2008-09-12 | 2010-03-18 | Basf Se | Process for the preparation of geometric shaped catalyst bodies |
DE102008042061A1 (en) | 2008-09-12 | 2010-03-18 | Basf Se | Process for the preparation of geometric shaped catalyst bodies |
DE102008042060A1 (en) | 2008-09-12 | 2009-06-18 | Basf Se | Preparing catalyst molded body, useful e.g. in ammoxidation of propene to acrylonitrile, comprises mixing starting mass having fine particles of bismuth mixed oxide with another starting mass, and forming geometrical molded bodies |
EP2658643B1 (en) | 2010-12-29 | 2020-02-12 | Rohm and Haas Company | Process for the propane oxidation |
DE102015209638A1 (en) | 2015-05-27 | 2016-07-07 | Basf Se | A process for producing a bismuth and tungsten-containing multielement oxide by co-precipitation |
CA2904477A1 (en) | 2015-09-14 | 2017-03-14 | Nova Chemicals Corporation | Heat dissipating diluent in fixed bed reactors |
CA3031730A1 (en) | 2016-07-25 | 2018-02-01 | Mitsubishi Chemical Corporation | Catalyst, acrylic acid production method, and catalyst production method |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2056614C3 (en) * | 1970-11-18 | 1981-04-16 | Basf Ag, 6700 Ludwigshafen | Process for the production of acrylic acid from propylene |
DE3461782D1 (en) * | 1983-02-22 | 1987-02-05 | Halcon Sd Group Inc | Conversion of propane to acrylic acid |
CA1299193C (en) * | 1986-07-17 | 1992-04-21 | Gordon Gene Harkreader | Anhydrous diluents for the propylene oxidation reaction to acrolein and acrolein oxidation to acrylic acid |
JPH02191236A (en) * | 1988-09-26 | 1990-07-27 | Union Carbide Chem & Plast Co Inc | Anhydrous diluent in oxidation of isobutylene to methacrolein and oxidation of methacrolein to methacrylic acid |
DE69402567T2 (en) * | 1993-01-28 | 1997-11-27 | Mitsubishi Chem Corp | Method of producing an unsaturated carboxylic acid |
JP3237314B2 (en) * | 1993-06-24 | 2001-12-10 | 三菱化学株式会社 | Method for producing α, β-unsaturated carboxylic acid |
ES2139266T3 (en) * | 1995-03-10 | 2000-02-01 | Basf Ag | PROCEDURE FOR THE OBTAINING OF ACROLEIN, ACRYLIC ACID, OR ITS MIXTURE FROM PROPANE. |
EP0970942B1 (en) * | 1996-11-15 | 2004-03-03 | Mitsubishi Chemical Corporation | Process for the simultaneous preparation of acrylonitrile and acrylic acid |
DE19837519A1 (en) * | 1998-08-19 | 2000-02-24 | Basf Ag | Production of acrolein and/or acrylic acid involves two stage catalytic oxydehydrogenation of propane, using air as the oxygen source and removing nitrogen from residual gas before recycling |
DE10028582A1 (en) * | 2000-06-14 | 2001-12-20 | Basf Ag | Production of acrolein or acrylic acid from propane, involves partial gas-phase dehydrogenation, removal of hydrogen and partial gas-phase oxidation of propene with nitrogen as diluent, and recycling of unreacted propane |
-
2001
- 2001-05-07 DE DE10122027A patent/DE10122027A1/en not_active Withdrawn
-
2002
- 2002-04-29 MY MYPI20021560A patent/MY129762A/en unknown
- 2002-05-02 DE DE50214834T patent/DE50214834D1/en not_active Expired - Lifetime
- 2002-05-02 EP EP02740550A patent/EP1387823B1/en not_active Expired - Lifetime
- 2002-05-02 JP JP2002587391A patent/JP4197254B2/en not_active Expired - Fee Related
- 2002-05-02 WO PCT/EP2002/004794 patent/WO2002090308A1/en active Application Filing
- 2002-05-02 RU RU2003135615/04A patent/RU2308446C2/en not_active IP Right Cessation
- 2002-05-02 US US10/476,567 patent/US6858754B2/en not_active Expired - Lifetime
- 2002-05-02 AT AT02740550T patent/ATE493376T1/en active
- 2002-05-02 CN CNB02809476XA patent/CN1231443C/en not_active Expired - Fee Related
- 2002-05-02 BR BRPI0209297-2A patent/BR0209297B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
DE10122027A1 (en) | 2002-05-23 |
CN1231443C (en) | 2005-12-14 |
EP1387823B1 (en) | 2010-12-29 |
WO2002090308A1 (en) | 2002-11-14 |
BR0209297B1 (en) | 2012-11-27 |
US20040138500A1 (en) | 2004-07-15 |
CN1507430A (en) | 2004-06-23 |
US6858754B2 (en) | 2005-02-22 |
ATE493376T1 (en) | 2011-01-15 |
JP2004526800A (en) | 2004-09-02 |
BR0209297A (en) | 2004-07-13 |
RU2308446C2 (en) | 2007-10-20 |
EP1387823A1 (en) | 2004-02-11 |
DE50214834D1 (en) | 2011-02-10 |
RU2003135615A (en) | 2005-05-20 |
MY129762A (en) | 2007-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4197254B2 (en) | Production of acrylic acid by heterogeneous catalytic partial oxidation of propane | |
JP4465275B2 (en) | Multi-metal oxide composition | |
US6867328B2 (en) | Method for producing acrylic acid by the heterogeneously catalysed gas-phase oxidation of propane | |
JP4204327B2 (en) | Method for producing acrylic acid by vapor phase oxidation of propene with heterogeneous catalyst using molecular oxygen in reaction zone | |
JP2006502950A5 (en) | ||
US11161096B2 (en) | Synthesis of a MoVNbTe catalyst having an increased specific surface and higher activity for the oxidative dehydrogenation of ethane to ethylene | |
JP2004516129A (en) | Catalyst comprising a support and a catalytically active oxide material disposed on the support surface | |
JP5517407B2 (en) | Method for producing multi-metal oxide material | |
WO2018148240A1 (en) | Process for the preparation of propylene ammoxidation catalysts | |
WO2018148158A1 (en) | New synthetic methods for the preparation of propylene ammoxidation catalysts | |
US7038080B2 (en) | Heterogeneously catalyzed gas-phase partial oxidation of acrolein to acrylic acid | |
CN111132764A (en) | Synthesis of MoVNbTe Shell catalyst for the oxidative dehydrogenation of ethane to ethylene | |
ZA200503901B (en) | Multimetallic oxide composition | |
US7019169B2 (en) | Preparation of (meth)acrylic acid | |
US20050277546A1 (en) | Process for the preparation of a multimetal oxide material | |
US7012157B2 (en) | Preparation of (meth)acrylic acid | |
US7253310B2 (en) | Preparation of (meth)acrylic acid | |
JP2004231509A (en) | Production method of multi-metal oxide composition, heterogeneous catalytic partial gas-phase oxidation and/or ammoxidation of saturated and/or unsaturated hydrocarbon and multi-metal oxide composition | |
RU2352390C2 (en) | Mass of metal oxides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050208 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080111 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20080402 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20080409 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20080508 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20080515 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20080610 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20080617 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080710 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080827 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080925 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121010 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121010 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131010 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |