JP4191120B2 - Plasma processing equipment - Google Patents
Plasma processing equipment Download PDFInfo
- Publication number
- JP4191120B2 JP4191120B2 JP2004284368A JP2004284368A JP4191120B2 JP 4191120 B2 JP4191120 B2 JP 4191120B2 JP 2004284368 A JP2004284368 A JP 2004284368A JP 2004284368 A JP2004284368 A JP 2004284368A JP 4191120 B2 JP4191120 B2 JP 4191120B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- plasma processing
- electrode
- temperature
- processing apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Chemical Vapour Deposition (AREA)
- Drying Of Semiconductors (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Description
本発明は、半導体製造プロセス等の微細加工に適用されるプラズマ処理装置にかかり、特に、半導体ウェハを載置するための保持ステージを備えたプラズマ処理装置に関する。 The present invention relates to a plasma processing apparatus applied to fine processing such as a semiconductor manufacturing process, and more particularly to a plasma processing apparatus having a holding stage for mounting a semiconductor wafer.
近年、半導体の高集積化に伴い、回路パターンは微細化の一途をたどっており、要求される加工寸法の精度は、ますます厳しくなっている。しかも、スループット向上、半導体ウェハ等の被処理体の大面積化への対応が、要求されている。そのため、プラズマ処理装置に投入される電力は増大する傾向にある。特に、絶縁膜をエッチングするプラズマ処理装置では、エッチングレートを速くするために、プラズマ生成時に投入される電力を増大する傾向にある。ここで、プラズマ処理装置に投入された電力の大部分は熱となるので、たとえば、半導体ウェハ等の温度を高精度に制御する静電吸着電極(保持ステージ)では、高効率で、大容量の温調ユニット(冷却装置)が必要となっている。また、温調ユニットには、高効率のみならず、設置面積の小さな環境影響負荷の少ないことが要求されている。 In recent years, with the high integration of semiconductors, circuit patterns have been increasingly miniaturized, and the accuracy of required processing dimensions has become increasingly severe. In addition, there is a demand for improving throughput and responding to an increase in the area of an object to be processed such as a semiconductor wafer. Therefore, the electric power input to the plasma processing apparatus tends to increase. In particular, in a plasma processing apparatus that etches an insulating film, there is a tendency to increase the electric power input when generating plasma in order to increase the etching rate. Here, since most of the electric power supplied to the plasma processing apparatus becomes heat, for example, an electrostatic adsorption electrode (holding stage) that controls the temperature of a semiconductor wafer or the like with high accuracy has high efficiency and a large capacity. A temperature control unit (cooling device) is required. In addition, the temperature control unit is required to have not only high efficiency but also a small environmental impact load with a small installation area.
ところで、プラズマ処理装置内の半導体ウェハ等の温度制御は、静電吸着電極の表面温度の制御により実現するのが一般的であり、このような処理中の温度制御に対処する方法が提案されている。すなわち、従来の静電吸着電極では、静電吸着電極の構成部材である電極ブロック内に温媒を循環させて、温度制御を行っている。循環させる温媒は、一般に不活性なフッ素系の液体で、例えばフロンを用いた冷凍サイクルで冷却、又はヒータにより加熱されて所定の温度に保持されている。このような温媒を循環させる温調ユニットでは、循環している温媒自体の熱容量があるので温度変動を小さくできるが、その反面、温度レスポンスが悪くなる。また、熱交換機を介して温媒の温度を制御しているので熱効率的にも無駄があり、かつ装置の構成上、温媒を循環するためのポンプも必要であるため装置が大きくなってしまう(例えば、特許文献1参照)。 By the way, the temperature control of the semiconductor wafer or the like in the plasma processing apparatus is generally realized by controlling the surface temperature of the electrostatic adsorption electrode, and a method for dealing with such temperature control during the processing has been proposed. Yes. That is, in the conventional electrostatic adsorption electrode, temperature control is performed by circulating a heating medium in an electrode block that is a constituent member of the electrostatic adsorption electrode. The heating medium to be circulated is generally an inert fluorine-based liquid, and is cooled by a refrigeration cycle using, for example, chlorofluorocarbon, or heated by a heater and maintained at a predetermined temperature. In such a temperature control unit that circulates the heating medium, the temperature variation can be reduced because of the heat capacity of the circulating heating medium itself, but on the other hand, the temperature response is deteriorated. In addition, since the temperature of the heating medium is controlled via a heat exchanger, there is waste in terms of heat efficiency, and the apparatus becomes large because a pump for circulating the heating medium is also necessary due to the configuration of the apparatus. (For example, refer to Patent Document 1).
このようなことから、フッ素系の不活性な温媒を用いず、冷媒であるプロパンガスを直接、静電吸着電極内に直結して、循環する温調ユニットが提案されている(例えば、特許文献2参照)。
上記従来技術は、静電吸着電極の温調ユニットに配慮がされておらず、高効率に、かつ高精度に静電吸着電極の温度制御を実現する点に問題があった。 The above prior art does not consider the temperature adjustment unit of the electrostatic adsorption electrode, and has a problem in that the temperature control of the electrostatic adsorption electrode is realized with high efficiency and high accuracy.
例えば、特許文献1に記載の温媒を循環する温調ユニットでは、前述したように、温媒を温調ユニット内の熱交換機を介して、所定の温度に制御しているので熱効率が悪く、かつ温媒を循環するためのポンプも必要である。また、多量の温媒が必要であるとともに、温度レスポンスも悪くなってしまう。 For example, in the temperature control unit that circulates the heat medium described in Patent Document 1, as described above, the heat medium is controlled to a predetermined temperature via the heat exchanger in the temperature control unit, so that the heat efficiency is poor, In addition, a pump for circulating the heating medium is also necessary. In addition, a large amount of heating medium is required and the temperature response is also deteriorated.
一方、特許文献2に開示されている方法では、静電吸着電極に関する詳細な構造が記載されていない。たとえば、静電吸着電極内に冷媒を直接、循環させると、冷媒の圧力が高いので、電極ブロックが凸型に変形してしまうことが懸念される。
On the other hand, in the method disclosed in
本発明の目的は、高効率で処理中の半導体ウェハの温度を調節して処理を行うことのできるプラズマ処理装置を提供することにある。 An object of the present invention is to provide a plasma processing apparatus capable of performing an adjustment and processing temperature of the semiconductor wafer during processing with high efficiency.
上記課題を解決するために、本発明は、内部が真空にされてプラズマが形成される処理室と、この処理室内に配置され前記プラズマを用いて処理されるウェハを保持する表面に誘電体膜を備え内部に冷媒の流路が形成された電極ブロックを具備し該電極ブロック表面の誘電体膜を介してウェハを保持して温度制御する保持ステージと、この冷媒の流路と圧縮機と凝縮器と膨張弁とが連結されて前記冷媒を循環し前記金属性の部材を前記冷媒が加熱されて気化する冷凍サイクルの蒸発器として用いる冷凍サイクルとを備えたプラズマ処理装置であって、前記冷凍サイクルが前記冷媒を加熱する別の加熱手段を前記冷凍サイクルの前記蒸発器の前に備えた。 In order to solve the above problems, the present invention includes a processing chamber internal plasma is the vacuum is formed, a dielectric on the surface for holding the wafer to be processed using the plasma disposed in the treatment chamber A holding stage that includes an electrode block having a film and in which a coolant channel is formed, holds the wafer via a dielectric film on the surface of the electrode block, and controls the temperature; the coolant channel and a compressor; A refrigeration cycle comprising a condenser and an expansion valve connected to circulate the refrigerant and use the metallic member as an evaporator of a refrigeration cycle in which the refrigerant is heated and vaporized, Another heating means for the refrigeration cycle to heat the refrigerant was provided in front of the evaporator of the refrigeration cycle .
さらに、本発明は、上記プラズマ処理装置において、前記別の加熱手段は前記プラズマによる処理の開始前後の前記保持ステージの温度差を低減するように動作が調節される。 Further, according to the present invention, in the plasma processing apparatus, the operation of the another heating unit is adjusted so as to reduce a temperature difference of the holding stage before and after the start of the plasma processing .
本発明は、上記プラズマ処理装置において、前記別の加熱手段が前記プラズマが生成された状態で前記冷媒の加熱を停止する。 According to the present invention, in the plasma processing apparatus, the heating of the refrigerant is stopped in a state where the another heating unit generates the plasma .
以下、本発明にかかるプラズマ処理装置について、図を用いて詳細に説明する。
[プラズマ処理装置の構成]
Hereinafter, a plasma processing apparatus according to the present invention will be described in detail with reference to the drawings.
[Configuration of plasma processing apparatus]
図1は、本発明の一実施例に係るプラズマ処理装置の断面図である。図1に示すプラズマ処理装置は、処理室100、その上部に電磁波を放射するアンテナ101を、下部には半導体ウェハWなどの被処理体を載置する保持ステージSを備えている。アンテナ101は、真空容器の一部としてのハウジング105に保持され、アンテナ101と保持ステージSは平行して対向する形で設置される。処理室100の周囲には、たとえば電磁コイルとヨークよりなる磁場形成手段102が設置されている。保持ステージSは、一般に静電吸着電極と呼ばれているものであり、よって、以下、静電吸着電極Sと記載することにする。
FIG. 1 is a cross-sectional view of a plasma processing apparatus according to an embodiment of the present invention. The plasma processing apparatus shown in FIG. 1 includes a
処理室100は、真空排気系103により、10000分の1Pa程度の圧力の真空を達成できる真空容器である。被処理体のエッチング、成膜等の処理を行なう処理ガスは、図示しないガス供給手段から所定の流量と混合比をもって処理室100内に供給され、真空排気系103と排気調整手段104により処理室100内の圧力が制御される。一般に、プラズマ処理装置では、エッチング中の処理圧力を0.1Paから10Pa以下の範囲に調整して使用することが多い。
The
アンテナ101には、マッチング回路122を介してアンテナ電源121が接続される。アンテナ電源121は、300MHzから1GHzのUHF帯周波数の電力を供給するもので、本実施例ではアンテナ電源121の周波数を450MHzとしている。静電吸着電極Sには、静電吸着用の高電圧電源106がマッチング回路109を介して、たとえば200kHzから13.56MHzの範囲のバイアス電力を供給するバイアス電源107がマッチング回路108を介して、それぞれ接続される。なお、本実施例では、バイアス電源107の周波数を2MHzとしている。
[静電吸着電極Sの構成]
An
[Configuration of Electrostatic Suction Electrode S]
図2は、このプラズマ処理装置において、半導体ウェハWの保持ステージとして使用される静電吸着電極Sの一部断面による斜視図である。この図を用いて、静電吸着電極Sの構造について詳細に説明する。図2に示すように、静電吸着電極Sはチタン製の電極ブロック1内にアルミニウム製の熱拡散用のプレート2、チタン製のガイド部材3、誘電体膜4、それにセラミックス製の電極カバー5で構成され、電極ブロック1、プレート2およびガイド部材3を低融点の金属ろう材で接合した後、その表面にシリコン系の接着剤で誘電体膜4を接着した構造となっている。
FIG. 2 is a perspective view with a partial cross section of the electrostatic chucking electrode S used as a holding stage for the semiconductor wafer W in this plasma processing apparatus. The structure of the electrostatic chucking electrode S will be described in detail using this figure. As shown in FIG. 2, the electrostatic adsorption electrode S includes a titanium
静電吸着電極Sの大きさは、12インチ(直径300mm)の半導体ウェハを対象とした場合には、直径が340mmで、全体の厚さが40mmである。電極ブロック1内には冷媒用の流路6が形成され、誘電体膜4内には金属の電極7が埋め込まれている。誘電体膜4内の電極7には、図1に示した高電圧電源106とバイアス電源107がそれぞれ接続されている。誘電体膜4には、図2に示すように、ガス導入孔8に連通して放射状に伸びる直線状のスリット41と、これに連通した複数条の同心円状のスリット42が設けてある。ガス導入孔8からは伝熱用のHeガスが導入され、スリットにより半導体ウェハWの裏面に均一な圧力のHeガス(通常1000Pa程度)が充填される。
The size of the electrostatic chucking electrode S is 340 mm in diameter when the semiconductor wafer of 12 inches (diameter 300 mm) is targeted, and the total thickness is 40 mm. A coolant channel 6 is formed in the electrode block 1, and a metal electrode 7 is embedded in the dielectric film 4. The high
本実施例に示す誘電体膜4は、厚さは3mmの高純度のアルミナセラミックスからなる、この誘電体膜4の材質や厚さは、この例に限られたものではなく、例えば合成樹脂の場合は、それに応じて0.1mmから数mmの厚さが選択できる。 The dielectric film 4 shown in the present embodiment is made of high-purity alumina ceramic having a thickness of 3 mm. The material and thickness of the dielectric film 4 are not limited to this example. In this case, a thickness of 0.1 mm to several mm can be selected accordingly.
静電吸着電極Sの温度制御は、温調ユニット50を用いて行われる。温調ユニット50は、冷媒が循環する冷媒配管51、圧縮機52、膨張弁53、ヒーターが内蔵された熱付加ユニット54、凝縮器55および制御システム56、蒸発器として働く冷媒用通路6から構成される。制御システム56には、電極ブロック1の温度を間接的又は直接モニターしながら、圧縮機52、膨張弁53および熱付加ユニット54を制御して、電極ブロック1が所定の温度になるような制御回路が内蔵されている。
[静電吸着電極の温度制御メカニズム]
The temperature control of the electrostatic adsorption electrode S is performed using the
[Temperature control mechanism of electrostatic adsorption electrode]
次に、この実施形態における静電吸着電極Sの温度制御の原理について説明する。この静電吸着電極Sは、誘電体膜4に高電圧を印加することにより発現されるクーロン力又はジョンソンランベック力により半導体ウェハWを吸着させるものである。高電圧の印加方法としては、単極型と双極型の2種があり、単極型は、半導体ウェハと誘電体膜間に一様な電位を与える方法、一方、双極型は誘電体膜間に2種以上の電位差を与える方法である。本実施形態では単極型の静電吸着電極であるが、これに限らず何れの方法でもよい。 Next, the principle of temperature control of the electrostatic adsorption electrode S in this embodiment will be described. The electrostatic adsorption electrode S is for adsorbing the semiconductor wafer W by a Coulomb force or a Johnson Lambeck force that is expressed by applying a high voltage to the dielectric film 4. There are two types of high voltage application methods: a monopolar type and a bipolar type. The monopolar type gives a uniform potential between the semiconductor wafer and the dielectric film, while the bipolar type applies between the dielectric films. Is a method in which two or more potential differences are given. In the present embodiment, the electrode is a single electrode type electrostatic chucking electrode, but not limited to this, any method may be used.
エッチング処理中の半導体ウェハWの温度は、プラズマからの入熱量、He層での熱抵抗と静電吸着電極Sの表面温度で決まる。静電吸着電極Sの表面温度は、プラズマからの入熱量、電極ブロック内1の熱抵抗、さらに電極ブロック1内に循環される冷媒と電極ブロック1との熱抵抗、循環している冷媒の温度で規定される。
[プラズマ処理装置の動作]
The temperature of the semiconductor wafer W during the etching process is determined by the amount of heat input from the plasma, the thermal resistance in the He layer, and the surface temperature of the electrostatic adsorption electrode S. The surface temperature of the electrostatic adsorption electrode S includes the amount of heat input from the plasma, the thermal resistance in the electrode block 1, the thermal resistance between the refrigerant circulating in the electrode block 1 and the electrode block 1, and the temperature of the circulating refrigerant. It is prescribed by.
[Operation of plasma processing equipment]
次に、本実施例のプラズマ処理装置を用いて、たとえばシリコンのエッチングを行う場合の具体的なプロセスを説明する。図1において、まず処理の対象物である半導体ウェハWは、図示しない被処理体搬入機構から処理室100に搬入された後、静電吸着電極Sの上に載置・吸着され、必要に応じて静電吸着電極Sの高さが調整されて所定のギャップに設定される。ついで、半導体ウェハWのエッチング処理に必要なガス、たとえば塩素と臭化水素と酸素が図示しないガス供給手段から供給され、所定の流量と混合比をもって処理室100内に供給される。同時に、処理室100は、真空排気系103および排気制御手段104により、所定の処理圧力に調整される。次に、アンテナ電源121からの450MHzの電力供給により、アンテナ101から電磁波が放射される。そして、磁場形成手段102により処理室100の内部に形成される160ガウス(450MHzに対する電子サイクロトロン共鳴磁場強度)の概略水平な磁場との相互作用により、処理室100内にプラズマPが生成され、処理ガスが解離されてイオンやラジカルが発生する。さらに静電吸着電極Sのバイアス電源107からのバイアス電力により、プラズマ中のイオンやラジカルの組成比やエネルギーを制御して、半導体ウェハWの温度を制御しながらエッチングを行う。そして、エッチング処理の終了にともない、電力・磁場および処理ガスの供給を停止してエッチングを終了する。
Next, a specific process for etching silicon, for example, using the plasma processing apparatus of this embodiment will be described. In FIG. 1, first, a semiconductor wafer W, which is an object to be processed, is loaded into a
なお、本発明によるプラズマ処理装置の実施形態としては、ここに示したUHFを使用する方式に限らず、他の方式のプラズマ処理装置でも良い。
[温調ユニットの詳細]
The embodiment of the plasma processing apparatus according to the present invention is not limited to the system using the UHF shown here, and other types of plasma processing apparatuses may be used.
[Details of temperature control unit]
図3に、従来の温調ユニットと本発明にかかる温調ユニットを比較して示す。図3(a)は従来の循環型の温調ユニットであり、図3(b)は本発明にかかる温調ユニッ50である。
FIG. 3 shows a comparison between a conventional temperature control unit and a temperature control unit according to the present invention. FIG. 3A shows a conventional circulation type temperature control unit, and FIG. 3B shows a
図3(a)に示す従来の温調ユニットは、フロン等の冷媒が循環する冷媒配管51、圧縮機52、膨張弁53、凝縮器55、蒸発器として働く熱交換器59から構成される冷凍サイクルと、フッ素系の不活性な温媒が流れる配管71、温媒を循環させるためのポンプ72、さらに、冷媒と温媒とが熱交換する熱交換機59、温媒加熱用のヒータ70から構成される。このような従来の温調ユニットでは、循環している温媒自体の熱容量があるので温度変動を小さくできるが、その反面、温度レスポンスが悪くなる。ここで、半導体ウェハWの許容最大温度は、表面に形成されたレジストの耐熱温度になるが、プラズマからの入熱が大きくなった場合は、入熱量に見合って誘電体膜4表面の温度、すなわち、循環している温媒の温度を低くしなけらばならない。
The conventional temperature control unit shown in FIG. 3A is a refrigeration unit including a
しかし、図4に示すように、温媒の温度が低くなると、温媒の粘性が高くなるので、電極ブロック1との熱通過率が低くなる。たとえば、高さ15mm、幅5mmの矩形状の配管を4L/分で循環している20℃の温媒の熱通過率は、約800W/m2Kであるが、0℃の場合は600W/m2K(再計算)に低くなる。このことは、温調ユニット内の熱交換機にも同様な事が言え、温媒の温度が低くなると、熱効率が悪くなるので、温調ユニットで吸収できる熱量が小さくなる。そのため、循環している温媒の温度が徐々に高くなる場合があった。 However, as shown in FIG. 4, when the temperature of the heating medium decreases, the viscosity of the heating medium increases, so that the heat passage rate with the electrode block 1 decreases. For example, the heat transfer rate of a heating medium at 20 ° C. circulating through a rectangular pipe having a height of 15 mm and a width of 5 mm at 4 L / min is about 800 W / m 2 K, but 600 W / m at 0 ° C. Lower to m 2 K (recalculation). The same applies to the heat exchanger in the temperature control unit. When the temperature of the heating medium is lowered, the heat efficiency is deteriorated, so that the amount of heat that can be absorbed by the temperature control unit is reduced. For this reason, the temperature of the circulating heating medium may gradually increase.
一方、図3(b)に示す本発明にかかる温調ユニット50は、冷媒を直接、静電吸着電極S内に循環させるもので、供給側冷媒配管51−1、排出側冷媒配管51−2、圧縮機52、膨張弁53、ヒーターが内蔵された熱付加ユニット54、凝縮器55、予備タンク57および制御システム56から構成される。なお、温調ユニット50では、循環している冷媒の量を一定にするために、冷媒の予備タンク57を設けている。冷媒は、電極ブロック内1で気化することで吸熱し、さらに、気化された冷媒は圧縮機52で加圧され(沸点が下がる)、凝縮器55で冷却されて凝縮する。
On the other hand, the
プラズマ処理装置では、安定したエッチング行うために、エッチング開始前のプラズマ処理室100や静電吸着電極Sの温度を所定の値にする必要がある。この時のプラズマ処理室100内は高真空に保持されており、静電吸着電極Sはほぼ断熱された状態にある。そのため、単純に温調ユニット50の冷媒を循環すると、冷媒は気化されず、所定の温度にすることができない。そこで、本実施例に示す温調ユニット50では、静電吸着電極Sの温度を温度センサ58(熱電対)でモニタしながら、制御システム56が、熱付加ユニット54の出力、膨張弁53の開度およびインバータ制御により圧縮機52の出力を調整しながら温度制御を行うシステムとしている。
In the plasma processing apparatus, in order to perform stable etching, it is necessary to set the temperature of the
プラズマ生成時の熱付加ユニット54は発熱しない。なお、温度センサ58は、静電吸着電極Sに直接高周波が印加されている場合等は、他の部材の温度をモニタ、又は直接冷媒の温度を測定しても良い。
The
このような本実施例に示す温調ユニット50では、冷媒の特性上、温度制御範囲が若干狭くなるが、冷媒により直接静電吸着電極Sを冷却しているので熱効率が優れる。また、温媒に比べ、電極ブロック内の冷媒の熱通過率は、5℃で約5000W/m2Kと大きく、従来装置の冷媒に比べ設定温度を低くする必要がない。これより、温調ユニット50を運転する動力も小さくすることができる。
In the
本実施例に示す熱付加ユニット54は、ヒータを内蔵したものであるが、例えば、ヒータの代わりに温水を流すようにしてもよいし、さらに、図3(b)に示すように供給側冷媒配管51−1と排出側冷媒配管51−2との間に電極ブロック1を側路するバイパス配管80を設け、熱付加ユニット54と組み合わせて、温度制御を行っても良い。
[温調ユニットを用いた場合に留意すべき電極構造]
The
[Electrode structure to be noted when using a temperature control unit]
次に、本実施例の温調ユニット50を用いた場合に留意すべき静電吸着電極Sの構造について説明する。留意するべき点は大きく2点あり、その一つは電極ブロック内を循環している冷媒に対する耐圧、もう一つは冷媒の熱的特性を考慮した冷媒の流路構造である。
Next, the structure of the electrostatic adsorption electrode S to be noted when using the
本実施例の温調ユニット50では、循環型の温調ユニットに比べて、冷媒の気化を用いた冷却法であるので、冷媒の圧力が高く、電極ブロック1の変形を考慮した電極構造にする必要がある。たとえば、半導体ウェハWが接触する面が0.05mm以上の凸状に変形すると、Heガスの漏れ量が多くなり、高精度な温度制御できなくなることを確認している。たとえば、冷媒の圧力を5気圧とすれば、電極ブロック1の平面には約3500kgの荷重が負荷されるので、単に電極ブロック1とガイド部材3の円周部のみをろう付けした構造では、電極ブロック1が凸状に変形してしまう。
Since the
このことから、本実施例の静電吸着電極Sでは、図5に示すように、電極ブロック1の外周のみならず、電極ブロック1内の冷媒流路24の側壁20も剛性部材と考え、ガイド部材3とろう付け21した構造としている。電極ブロック1とガイド部材3の締結する手段はろう付けのみならず、ブレージング、拡散接合、それに電子ビーム溶接の何れかであってもよく、更に、ガイド部材3は、前記電極ブロック1より熱伝導率が低い材料で作られているようにしてもよい。冷媒は、冷媒導入口22から冷媒用通路6内に導入され、並行して設けられた複数の側壁20間の複数の冷媒流路24を通して冷媒排出口23から排出される。側壁20は、冷媒と電極ブロック1との間の熱伝達手段として働くとともに、電極ブロック1の強度を増すリブとしても働く。
From this, in the electrostatic adsorption electrode S of the present embodiment, as shown in FIG. 5, not only the outer periphery of the electrode block 1 but also the
一方、冷媒の流路構造では、循環している冷媒が滞留しないこと、さらに、循環している冷媒の熱通過率を考慮した構造設計が必要である。電極ブロックを循環している冷媒熱通過率について説明する電極ブロックの入り口の冷媒は液体であるが、電極ブロック内を流入するに伴って吸熱して気化するため、液体と気体の混合率が変化し、流入している途中の熱通過率が変化してしまう。したがって、図7に示すように、熱伝導性に優れた熱拡散プレート2(アルミニウム、銅、ALN)を設けて、電極ブロック内の温度を均一化すれば良い。 On the other hand, in the flow path structure of the refrigerant, it is necessary to design the structure in consideration of the fact that the circulating refrigerant does not stay and the heat passing rate of the circulating refrigerant . Although the entrance of the refrigerant to that electrodes blocks described refrigerant heat transfer coefficient circulating the electrodes block is a liquid, for vaporizing and absorbs heat with the flowing of the electrode block, the mixing of liquid and gas The rate changes, and the heat passing rate during the inflow changes. Therefore, as shown in FIG. 7, it is only necessary to provide a thermal diffusion plate 2 (aluminum, copper, ALN) having excellent thermal conductivity to make the temperature in the electrode block uniform.
また、冷媒が滞留しない構造の一例として、図8および図9に流路の構造の一例を示す。図8に示す静電吸着電極では、電極ブロック内に整流板25を設け、冷媒導入口22から導入された冷媒が均一に分散して冷媒排出口23へ流れるようにするとともに、千鳥状に配置した円柱26を設けて剛性を向上させた構造の一例である。
Further, as an example of a structure in which the refrigerant does not stay, FIGS. 8 and 9 show an example of a flow path structure. In the electrostatic chucking electrode shown in FIG. 8, a rectifying
また、図9に示す構造は、冷媒導入口22と冷媒排出口23を近接させて配置し、一部に切り欠きのある環状の側壁20を同心円状に多重に配置し、円周方向の冷媒流路24を多重に設け、隣接する冷媒流路24を渡り流路27で接続して、冷媒が円周方向に循環するようにした構造の一例である。
[静電吸着電極交換時の動作]
Further, in the structure shown in FIG. 9, the
[Operation when replacing electrostatic adsorption electrode]
静電吸着電極Sは、プラズマによるエッチングやエッチング処理中のデポ物の付着により、性能(吸着性能や電気的な性能)が劣化するため交換する必要がある。静電吸着電極Sを交換時する際の温調ユニット50の動作について、図6を用いて説明する。本実施例に示す温調ユニット50では、供給側冷媒配管51−1と電極ブロック1の冷媒導入口22との間にバルブ60を、電極ブロック1の冷媒排出口23と排出側冷媒配管51−2との間にバルブ61を設けている。さらに、この調温ユニット50は、バルブ60と冷媒導入口22との間に例えば窒素などのガス供給バルブ63を、バルブ61と冷媒排出口23との間に排出バルブ62を設けている。排出バルブ62の先には、圧力センサ64と、真空ポンプ65が設けられている。
The electrostatic adsorption electrode S needs to be replaced because performance (adsorption performance and electrical performance) deteriorates due to etching by plasma and adhesion of deposits during the etching process. The operation of the
調温ユニット50は、真空ポンプが内蔵され、自動で静電吸着電極Sを交換可能な状態、および取り付け後は自動で運転可能な状態にすることができる。
The
静電吸着電極Sを取り外す場合は、圧縮機52を作動させて冷媒を循環させた状態でバルブ60を閉じ、数分経過後、バルブ61を閉じる。この工程により、電極ブロック1の冷媒配管内にある冷媒は、全て予備タンク57へ回収される。その後、バルブ62を開とすると同時に真空ポンプ65を作動させ、静電吸着電極Sの電極ブロック1内の冷媒配管を真空に排気する。この時、圧力センサ64により、冷媒配管内の圧力がモニタされ所定の圧力に到達した後、バルブ62を閉じ、バルブ63を開いて、電極ブロック1の冷媒配管内に窒素ガスを導入する。電極ブロック1の冷媒配管内圧力が大気圧に達すると、バルブ63を閉じ、プラズマ処理装置の制御画面上に静電吸着電極Sの交換が可能であることを表示する。
When removing the electrostatic adsorption electrode S, the
この後、手作業で、冷媒導入口22と供給側冷媒配管51−1の接続および冷媒排出口23と排出側冷媒配管52の接続を外し、静電吸着電極Sを取り外した後、新たな静電吸着電極Sを取りつけ、冷媒導入口22と供給側冷媒配管51−1、および冷媒排出口23と排出側冷媒配管52を接続して静電吸着電極Sを交換する。
静電吸着電極Sの交換後は、バルブ62を開いた後ポンプ65を動作させ、静電吸着電極S内の冷媒配管を排気後、バルブ62を閉じて、バルブ60およびバルブ61を開き、プラズマ処理装置の制御画面上に温調ユニット50が運転可能であることを表示する。
[静電吸着電極の温度確認]
Then, after manually disconnecting the connection between the
After replacement of the electrostatic adsorption electrode S, the
[Confirmation of electrostatic adsorption electrode temperature]
以上のような温調ユニット50と、図2に示した静電吸着電極Sを具備したプラズマ処理装置を用いて、プラズマ放電時の半導体ウェハWの温度を測定した。その結果、プラズマ放電中の静電吸着電極は、所定の温度(0〜10℃の範囲で確認)に設定することができ、かつ静電吸着電極Sに投入されるバイアス電源の電力を3000Wとしても、温度、再現性が良く、問題ないことが確認された。
The temperature of the semiconductor wafer W during plasma discharge was measured using the
1…電極ブロック、2…熱拡散用プレート、3…ガイド部材、4…誘電体膜、5…電極カバー、6…冷媒用通路、7…電極、8…ガス導入孔、20…側壁、21…ロー付け、22…冷媒導入口、23…冷媒排出口、24…冷媒流路、25…整流板、26…円柱、27…渡り流路、41…スリット、42…スリット、50…調温ユニット、51…冷媒配管、52…圧縮機、53…膨張弁、54…熱付加手段、55…凝縮機、56…制御システムト、57…予備タンク、58…温度センサ、59…熱交換機、60、61…バルブ、62…排出バルブ、63…ガス供給バルブ、64…圧力センサ、65…真空ポンプ、100…処理室、101…アンテナ、102…磁場形成手段、103…真空排気系、104 排気制御手段、105…アンテナ、106…高電圧電源、107…バイアス電源、108…マッチング回路、109…フィルタ、121…アンテナ電源、122…マッチング回路、P…プラズマ、S…静電吸着電極、W…ウェハ
DESCRIPTION OF SYMBOLS 1 ... Electrode block, 2 ... Thermal diffusion plate, 3 ... Guide member, 4 ... Dielectric film, 5 ... Electrode cover, 6 ... Refrigerant passage, 7 ... Electrode, 8 ... Gas introduction hole, 20 ... Side wall, 21 ... Brazing, 22 ... refrigerant inlet, 23 ... refrigerant outlet, 24 ... refrigerant flow path, 25 ... rectifier plate, 26 ... cylinder, 27 ... transition channel, 41 ... slit, 42 ... slit, 50 ... temperature control unit DESCRIPTION OF
Claims (4)
前記冷凍サイクルが前記冷媒を加熱する別の加熱手段を前記冷凍サイクルの前記蒸発器の前に備えたプラズマ処理装置。 A processing chamber in which the inside is evacuated and plasma is formed, and a dielectric film is provided on the surface that holds the wafer that is disposed in the processing chamber and that is processed using the plasma, and a coolant channel is formed in the inside. A holding stage that includes an electrode block and holds the wafer via a dielectric film on the surface of the electrode block to control the temperature, and a flow path of the refrigerant, a compressor, a condenser, and an expansion valve are connected to connect the refrigerant. A refrigeration cycle that circulates and uses the refrigerant flow path of the electrode block as an evaporator of a refrigeration cycle in which the refrigerant is heated and vaporized,
The plasma processing apparatus provided with another heating means for heating the refrigerant in the refrigeration cycle before the evaporator of the refrigeration cycle.
前記別の加熱手段が前記プラズマによる処理の開始前後の前記保持ステージの温度差を低減するように動作が調節されるプラズマ処理装置。 The plasma processing apparatus according to claim 1,
The plasma processing apparatus in which the operation is adjusted so that the separate heating means reduces the temperature difference of the holding stage before and after the start of the plasma processing.
前記別の加熱手段が前記プラズマが生成された状態で前記冷媒の加熱が停止されているプラズマ処理装置。 The plasma processing apparatus according to claim 1 or 2,
The plasma processing apparatus, wherein the heating of the refrigerant is stopped in a state where the plasma is generated by the another heating unit.
前記別の加熱手段がヒータを備えた熱交換器であるプラズマ処理装置。 The plasma processing apparatus according to any one of claims 1 to 3,
The plasma processing apparatus, wherein the another heating means is a heat exchanger provided with a heater .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004284368A JP4191120B2 (en) | 2004-09-29 | 2004-09-29 | Plasma processing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004284368A JP4191120B2 (en) | 2004-09-29 | 2004-09-29 | Plasma processing equipment |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003311730A Division JP2005079539A (en) | 2003-09-03 | 2003-09-03 | Plasma treatment apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005089864A JP2005089864A (en) | 2005-04-07 |
JP4191120B2 true JP4191120B2 (en) | 2008-12-03 |
Family
ID=34464121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004284368A Expired - Fee Related JP4191120B2 (en) | 2004-09-29 | 2004-09-29 | Plasma processing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4191120B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190116089A (en) * | 2018-04-03 | 2019-10-14 | 도쿄엘렉트론가부시키가이샤 | Temperature adjustment system |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7988872B2 (en) | 2005-10-11 | 2011-08-02 | Applied Materials, Inc. | Method of operating a capacitively coupled plasma reactor with dual temperature control loops |
US8157951B2 (en) * | 2005-10-11 | 2012-04-17 | Applied Materials, Inc. | Capacitively coupled plasma reactor having very agile wafer temperature control |
US8034180B2 (en) | 2005-10-11 | 2011-10-11 | Applied Materials, Inc. | Method of cooling a wafer support at a uniform temperature in a capacitively coupled plasma reactor |
US8092638B2 (en) | 2005-10-11 | 2012-01-10 | Applied Materials Inc. | Capacitively coupled plasma reactor having a cooled/heated wafer support with uniform temperature distribution |
US8012304B2 (en) | 2005-10-20 | 2011-09-06 | Applied Materials, Inc. | Plasma reactor with a multiple zone thermal control feed forward control apparatus |
JP4648877B2 (en) | 2006-07-04 | 2011-03-09 | 住友重機械工業株式会社 | Liquid discharge method and liquid discharge device in temperature control device |
JP4815295B2 (en) * | 2006-07-26 | 2011-11-16 | 株式会社日立ハイテクノロジーズ | Plasma processing equipment |
JP4906425B2 (en) | 2006-07-26 | 2012-03-28 | 株式会社日立ハイテクノロジーズ | Plasma processing equipment |
US8422193B2 (en) * | 2006-12-19 | 2013-04-16 | Axcelis Technologies, Inc. | Annulus clamping and backside gas cooled electrostatic chuck |
JP4564973B2 (en) | 2007-01-26 | 2010-10-20 | 株式会社日立ハイテクノロジーズ | Plasma processing equipment |
US8034181B2 (en) | 2007-02-28 | 2011-10-11 | Hitachi High-Technologies Corporation | Plasma processing apparatus |
JP4898556B2 (en) * | 2007-05-23 | 2012-03-14 | 株式会社日立ハイテクノロジーズ | Plasma processing equipment |
JP5091654B2 (en) * | 2007-12-19 | 2012-12-05 | 株式会社ディスコ | Chuck table mechanism |
JP5210706B2 (en) | 2008-05-09 | 2013-06-12 | 株式会社日立ハイテクノロジーズ | Plasma processing apparatus and plasma processing method |
JP5185790B2 (en) * | 2008-11-27 | 2013-04-17 | 株式会社日立ハイテクノロジーズ | Plasma processing equipment |
JP5250490B2 (en) * | 2009-06-24 | 2013-07-31 | 株式会社日立ハイテクノロジーズ | Plasma processing apparatus and maintenance method thereof |
JP5975754B2 (en) | 2012-06-28 | 2016-08-23 | 株式会社日立ハイテクノロジーズ | Plasma processing apparatus and plasma processing method |
JP6276919B2 (en) * | 2013-02-01 | 2018-02-07 | 株式会社日立ハイテクノロジーズ | Plasma processing apparatus and sample stage |
JP6982394B2 (en) | 2017-02-02 | 2021-12-17 | 東京エレクトロン株式会社 | Work piece processing device and mounting table |
JP2019201086A (en) * | 2018-05-15 | 2019-11-21 | 東京エレクトロン株式会社 | Processing device, component, and temperature control method |
JP7112915B2 (en) * | 2018-09-07 | 2022-08-04 | 東京エレクトロン株式会社 | temperature control system |
JP7278172B2 (en) * | 2018-10-23 | 2023-05-19 | 東京エレクトロン株式会社 | Substrate processing equipment |
JP7306195B2 (en) * | 2019-09-27 | 2023-07-11 | 東京エレクトロン株式会社 | Apparatus for processing substrate and method for cleaning stage |
GB2606142B (en) * | 2021-04-23 | 2023-06-14 | Edwards Vacuum Llc | Connecting and disconnecting a cooling loop from a refrigeration system |
-
2004
- 2004-09-29 JP JP2004284368A patent/JP4191120B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190116089A (en) * | 2018-04-03 | 2019-10-14 | 도쿄엘렉트론가부시키가이샤 | Temperature adjustment system |
KR102690146B1 (en) | 2018-04-03 | 2024-08-01 | 도쿄엘렉트론가부시키가이샤 | Temperature adjustment system |
Also Published As
Publication number | Publication date |
---|---|
JP2005089864A (en) | 2005-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4191120B2 (en) | Plasma processing equipment | |
JP2005079539A (en) | Plasma treatment apparatus | |
JP4898556B2 (en) | Plasma processing equipment | |
US9210791B2 (en) | Cooling block forming electrode | |
US7000416B2 (en) | Cooling apparatus and plasma processing apparatus having cooling apparatus | |
KR102251209B1 (en) | Gas Distribution Plate Assembly for High Power Plasma Etching Processes | |
JP4969259B2 (en) | Plasma processing equipment | |
KR100856592B1 (en) | Cooling block and plasma processing apparatus | |
US20100243620A1 (en) | Plasma processing apparatus | |
US11404251B2 (en) | Processing apparatus for processing target object | |
US11244839B2 (en) | Plasma processing apparatus | |
JP5416748B2 (en) | Plasma processing equipment | |
KR20200067630A (en) | Plasma processing apparatus | |
JP2003243490A (en) | Wafer treatment device and wafer stage, and wafer treatment method | |
JP2003243492A (en) | Wafer treatment device and wafer stage, and wafer treatment method | |
US20230274912A1 (en) | Cooling for a plasma-based reactor | |
JP2016082077A (en) | Loading table and manufacturing method therefor | |
US20040085706A1 (en) | Electrostatic chuck, supporting table and plasma processing system | |
JP2004259829A (en) | Plasma treatment device | |
US20210332931A1 (en) | Piping system and processing apparatus | |
JP7330017B2 (en) | HEAT MEDIUM CIRCUIT SYSTEM AND HEAT MEDIUM CIRCUIT SYSTEM CONTROL METHOD | |
JP2010199421A (en) | Plasma processing apparatus and plasma etching method | |
CN213546294U (en) | Electrostatic chuck and plasma processing equipment | |
JP2001156042A (en) | Plasma processing apparatus | |
KR20240006671A (en) | High-temperature susceptor with rapid heat dissipation ability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20050317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071211 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080212 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080401 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080602 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080624 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080825 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080916 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080917 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110926 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120926 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120926 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130926 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |