Nothing Special   »   [go: up one dir, main page]

JP4187018B2 - 耐リラクセーション特性に優れた鋳造アルミニウム合金とその熱処理方法 - Google Patents

耐リラクセーション特性に優れた鋳造アルミニウム合金とその熱処理方法 Download PDF

Info

Publication number
JP4187018B2
JP4187018B2 JP2006183919A JP2006183919A JP4187018B2 JP 4187018 B2 JP4187018 B2 JP 4187018B2 JP 2006183919 A JP2006183919 A JP 2006183919A JP 2006183919 A JP2006183919 A JP 2006183919A JP 4187018 B2 JP4187018 B2 JP 4187018B2
Authority
JP
Japan
Prior art keywords
mass
aluminum alloy
cast aluminum
relaxation resistance
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006183919A
Other languages
English (en)
Other versions
JP2008013792A (ja
Inventor
元 生野
山田  明
浩 北條
博 川原
昇次 堀田
勇 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2006183919A priority Critical patent/JP4187018B2/ja
Priority to US11/769,290 priority patent/US20080000561A1/en
Publication of JP2008013792A publication Critical patent/JP2008013792A/ja
Application granted granted Critical
Publication of JP4187018B2 publication Critical patent/JP4187018B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)

Description

本発明は、耐リラクセーション特性に優れた鋳造アルミニウム合金とその熱処理方法に関する。
鋳造によって製造したアルミニウム合金である鋳造アルミニウム合金は、軽量でありながら比較的強度が高いために、様々な分野で利用されている。一方、アルミニウム合金は、一定の歪みを与えて放置すると、その歪みにより生じる応力が時間と共に減少する応力緩和(リラクセーション)現象が生じることが知られている。そのため、鋳造アルミニウム合金の用途が、リラクセーション現象が生じやすい用途である場合には、その材料自体が耐リラクセーション特性に優れたものであることが好ましい。
これまで知られているAl−Si系の鋳造アルミニウム合金としては、耐熱性等に関して検討を加えたものはあるが、耐リラクセーション特性について検討し、何らかの工夫をしたものは、殆ど開示されていない。
AlとSiの過共晶系合金において耐熱性を高めたものとしては、例えばピストン用アルミニウム鋳造合金に関する特許文献1に記載の技術がある。
また、AlとSiの亜共晶系合金において延性や靱性向上を図ったものとしては、例えば非特許文献1に記載の技術がある。
特開2004−76110号公報 「鋳造凝固」平成4年1月20日、日本金属学会発行
上記特許文献1には、Niを1.8〜3質量%含有させた鋳造アルミニウム合金が開示されている。この例の様に、従来合金では、耐熱性を高めるためにNiを添加するこが常識的に行われている。しかし、Niは高価なため、できれば使用したくないというニーズが大きい。また、本発明で目的とする耐リラクセーション特性に対して、Niの含有がどのように作用するかは、従来不明である。また、この特許文献1に記載のアルミニウム合金はAlとSiの過共晶組織である。
また、上記非特許文献1には、AlとSiの亜共晶系合金では、共晶Siを微細化するために、Sr、Na、Sbなどを添加することが示されている。また、この文献に示された合金は、延性や靭性の向上を狙って共晶Siの微細化を行っており、Cuの含有量が高いと延性や靭性が低下すため、Cu含有量は低くなっている。
いずれにしても、従来においては、耐リラクセーション特性を向上させることが可能な鋳造アルミニウム合金についての開示はあまりない。そこで、本発明は、従来よりも耐リラクセーション特性に優れた鋳造アルミニウム合金のコンセプトを明らかにして、様々な部品の特性改善に寄与することを目的とするものである。
第1の発明は、Si:9〜17質量%、
Cu:3〜6質量%、
Mg:0.2〜1.2質量%、
Fe:0.4〜1.5質量%、及び
Mn:0.2〜1質量%を含有し、
Ni含有量が0.5質量%以下であり、
残部がAl及び不可避的不純物よりなり、
過時効処理によりピーク時効より硬さを低下させており、
平均硬さがHV130〜HV160であることを特徴とする耐リラクセーション特性に優れた鋳造アルミニウム合金にある(請求項1)。
本発明の鋳造アルミニウム合金は、上記特定の組成を有し、かつ、初晶SiがないAlとSiの亜共晶組織を有する鋳造アルミニウム合金である。そして、鋳造後に上記溶体化加熱及び水焼入れを行い、さらに、上記特定の温度で特定の時間時効処理をすることによって、その平均硬さをHV130〜HV160としてある。これにより、従来よりも耐リラクセーション特性に優れた鋳造アルミニウム合金を得ることができる。
すなわち、上記特定の組成を選択した場合には、上記時効処理を行って、硬さを上記特定の範囲に調整することによって初めて非常に優れた耐リラクセーション特性を得ることができるのである。
第2の発明は、Si:9〜17質量%、
Cu:3〜6質量%、
Mg:0.3〜1.2質量%、
Fe:0.4〜1質量%、
Mn:0.2〜1質量%、及び
Ti:0.15〜0.3質量%を含有し、
Ni含有量が0.5質量%以下であり、
残部がAl及び不可避的不純物よりなり、
5個以上のデンドライトセルが略一方向に整列するデンドライトの割合が面積率で20%以下であって実質的にデンドライトの整列が無い等方均質組織を有し、
平均硬さがHV130〜HV160であることを特徴とする耐リラクセーション特性に優れた鋳造アルミニウム合金にある(請求項4)。
本発明の鋳造アルミニウム合金は、上記特定の組成を有することによって、上記のごとく実質的にデンドライトの整列が無く、共晶領域がネットワーク状に存在する等方均質組織よりなる初晶Siのない亜共晶組織を有するものである。そして、鋳造後に上記溶体化加熱及び水焼入れを行い、さらに、上記特定の温度で特定の時間時効処理をすることによって、その平均硬さをHV130〜HV160としてある。これにより、従来よりもさらに一層耐リラクセーション特性に優れた鋳造アルミニウム合金を得ることができる。
第3の発明は、Si:9〜17質量%、
Cu:3〜6質量%、
Mg:0.2〜1.2質量%、
Fe:0.4〜1.5質量%、及び
Mn:0.2〜1質量%を含有し、
Ni含有量が0.5質量%以下であり、
残部がAl及び不可避的不純物よりなる鋳造アルミニウム合金の熱処理方法であって、
鋳造後に、450〜510℃の処理温度に0.5時間以上保持する溶体化加熱を行った後、
水焼入れを行い、
その後170〜230℃の処理温度に1〜24時間保持する時効処理を行うことにより、平均硬さをHV130〜HV160とすることを特徴とする耐リラクセーション特性に優れた鋳造アルミニウム合金の熱処理方法にある(請求項13)。
本発明の熱処理方法は、上述した第1の発明の鋳造アルミニウム合金を得るための熱処理方法であって、これを実施することにより上記の耐リラクセーション特性に優れた鋳造アルミニウム合金を得ることができるのである。
第4の発明は、Si:9〜17質量%、
Cu:3〜6質量%、
Mg:0.3〜1.2質量%、
Fe:0.4〜1質量%、
Mn:0.2〜1質量%、及び
Ti:0.15〜0.3質量%を含有し、
Ni含有量が0.5質量%以下であり、
残部がAl及び不可避的不純物よりなる鋳造アルミニウム合金の熱処理方法であって、
鋳造後に、450〜510℃の処理温度に0.5時間以上保持する溶体化加熱を行った後、
水焼入れを行い、
その後170〜230℃の処理温度に1〜24時間保持する時効処理を行うことにより、平均硬さをHV130〜HV160とすることを特徴とする耐リラクセーション特性に優れた鋳造アルミニウム合金の熱処理方法にある(請求項14)。
本発明の熱処理方法は、上述した第2の発明の鋳造アルミニウム合金を得るための熱処理方法であって、これを実施することにより上記のより一層耐リラクセーション特性に優れた鋳造アルミニウム合金を得ることができる。
まず、第1、第3の発明における各合金元素量の限定理由を示す。
Si:9〜17質量%、
Siは、鋳造性の確保、熱膨張の抑制、及び耐リラクゼーション特性の確保のために必須の元素である。Si添加量が9質量%未満の場合には、共晶Si量が少なく、リラクゼーションを抑制するためのネットワーク骨格が十分に形成されない。また、Si含有量が17質量%を超えると、液相線温度が著しく高くなり、鋳造温度を高くしなければならないので、ガス吸収、酸化、型の消耗などの問題が生じ好ましくない。
好ましくは、Si含有量は9〜12質量%とし、初晶Siが存在しない亜共晶組織とするのがよい(請求項3)。さらに最適なSi含有量の範囲は10〜11質量%である。Si含有量が12質量%を超えると、粗大な初晶Siが生成し、高い引張平均応力下での疲労において、粗大な初晶Siが破壊して疲労強度が低下する場合がある。
Cu:3〜6質量%、
Cuは、Cuを含有する析出物を生成させ、合金の強度を向上させるのに有効な元素である。特に高温での強度向上に寄与が大きい。3%未満では強度向上効果が小さく、6%を超えると凝固偏析が大きく均質な材料ができない。また、延性が著しく低下し引張平均応力下での疲労強度が低下する懸念がある。好ましくは、Cu含有量は4〜5質量%とするのがよい。
Mg:0.2〜1.2質量%、
Mgは、Mg2Si系の析出物を生成させ、その析出強化によって強度を改善する。またMg2Siの晶出物を生成し、晶出物による分強化によって強度を改善する。Mg含有量が1.2質量%を超えると、Mg2Siの晶出量が多すぎるため靭性が低下して、疲労強度が低くなるデメリットが生じる。0.2質量%以下では析出量が少なく疲労強度が十分でない。好ましくは、Mg含有量は0.6〜1質量%とするのがよい。
Fe:0.2〜1.5質量%、
Feは、耐熱性の高い晶出物を形成し、これが晶出Siと共に均一分散又はネットワーク状に分散することによってリラクゼーションを抑制するという効果を発揮する。Fe含有量が0.2%未満ではその効果は小さく、Fe含有量が1.5%を超えると粗大な晶出物を形成し、その晶出物が破壊起点となって引張平均応力下の疲労強度が低下する懸念がある。また、鋳型への耐焼付き性を向上に寄与する。好ましくは、Fe含有量は0.3〜1質量%とするのがよい。
Mn:0〜1質量%、
Mnは、必須添加元素ではないが、Feと同様に耐熱性の高い晶出物を形成し、基地アルミ相の耐熱性を向上してリラクゼーションの抑制に寄与すると共に、鋳型への耐焼付き性の向上に寄与するので添加することが好ましい。Mn含有量が0.2質量%未満ではその効果は小さく、Mn含有量が1質量%を超えると粗大な晶出物を形成し、その晶出物が破壊起点となって引張平均応力下の疲労強度が低下する懸念がある。好ましくは、Mn含有量は0.2〜0.7質量%とするのがよい。
Ni:0.5質量%以下、
Niは、粗大な晶出物を形成し、組織を不均質にするためリラクゼーションが生じ易いので0.5質量%以下の範囲に制限する。特にCu含有量が高い場合にはCuとNiを含有する粗大晶を形成しやすいのでNi添加は好ましくない。また、Ni添加は、合金の密度を著しく増大させてしまう。そして、Ni含有量が0.5質量%を超える場合には粗大な晶出部が形成され、リラクゼーションが生じ易くなると共に密度が高くなり製品が重くなるという問題がある。
次に、第1の発明においては、鋳造後に、450〜510℃の処理温度に0.5時間以上保持する溶体化加熱を行った後、水焼入れを行い、その後170〜230℃の処理温度に1〜24時間保持する時効処理を行うことにより上記平均硬さを調整してあることが好ましい(請求項2)。また、第3の発明においてはこれを必須とする。
すなわち、上記第1、第3の発明に記載の上記化学組成を有する鋳造アルミニウム合金での平均硬さは、通常の強度重視のT6処理を行うとHV162以上であり、熱処理を行わないとHV120以下であるが、上記の特定の溶体化処理と時効処理を行って、積極的に平均硬さをHV130〜HV160とすることによって、耐リラクゼーション特性を向上させることができるのである。
平均硬さは、鋳造アルミニウム合金の断面の定常部において荷重10kgf、保持時間30secという条件で、鋳造欠陥のない部分について5点以上のビッカース硬さを測定し、その平均値を算出して求める。なお、組織が細かく圧痕位置によるばらつきが小さい場合には荷重5kgfとしてもほぼ同様の値が得られる。
上記平均硬さがHV130未満の場合には、強度が低く、部品に急激な負荷が生じた際に変形し易いという問題があり、一方、HV160を超える場合にはリラクゼーションが生じ易いという問題がある。好ましくは、上記平均硬さはHV140〜HV160とするのがよく、より好ましくは、上記平均硬さはHV150〜HV160とするのがよい。
このように、硬さをピーク時効の最高値より少し下げた方が、リラクゼーションが生じ難いというコンセプトは、従来無く、本発明において初めて見出したものである。このメカニズムはまだ不明の点もあるが、次のように推定している。
リラクゼーションは、高温での保持に伴って応力が低下する現象であり、CuやMgを含有する本発明の合金では熱処理で生成した析出物が基地アルミ相中に存在し、この析出物が基地アルミ相内の滑り変形を抑制し、リラクゼーションが生じ難い効果を持つと考えられる。また、この析出物はより微細で緻密に分布するほど、すべり変形を抑制する効果が大きいため、ピーク時効で硬さを高くした合金ほど析出物が微細でかつ分布が緻密であるので、リラクゼーションが生じ難いと従来は考えられていた。
しかし、高温で保持されると、析出物の粗大化が生じるが、応力が負荷された状態ではこの析出物の粗大化が、応力が低減するように生じることが考えられる。これを応力時効という。一方、過時効処理によってピーク時効よ硬さを下げた合金では、同じ温度で加熱されても析出物の変化が小さい。すなわち、硬さを少し下げた合金の方が、析出物の組織変化が小さく、組織変化に伴う応力低減が生じ難いので、リラクセーションが生じ難いと考えられる。
また、上記溶体化処理の条件は、溶体化加熱の処理温度は450〜510℃の範囲とし、保持時間は0.5時間以上の範囲とする。溶体化加熱の処理温度が450℃未満の場合には、CuやMgの過飽和固溶体を形成するのに極めて長時間を要し、上記の範囲の短い処理時間では適正な強度が出ないという問題がある。一方、510℃を超える場合には、合金の一部が溶融するバーニングが生じ、気孔欠陥が生じるという問題がある。また、保持時間が0.5時間未満の場合には十分な溶体化処理ができないという問題がある。そのため、保持時間は1時間以上であることが好ましい。一方、10時間を超える場合にはそれ以上保持しても変化が生じないので生産効率が低下する。
また、上記水焼入れに使用する冷却水は、通常の水でもよいし、何らかの添加剤を加えたものでもよく、公知の水焼入れ用の冷却水であれば様々なものを適用できる。
また、上記時効処理の条件は、処理温度は170〜230℃の範囲とし、保持時間は1〜24時間の範囲とする。時効処理の処理温度が170℃未満の場合には硬さが高くなりすぎる、または使用中にさらに硬度が上昇してしまうという問題がある。一方、230℃を超える場合には硬さが必要以上に低下し、強度が著しく低下するという問題がある。また、保持時間が1時間未満の場合には十分な時効硬化が得られないという問題があり、一方、24時間を超える場合には硬さが低くなりすぎる、または、硬さが飽和し生産効率が低下するという問題がある。好ましい時効温度は190〜210℃であり、最適な時効温度は190〜200℃である。
次に、第2の発明は、5個以上のデンドライトセルが略一方向に整列するデンドライトの割合が面積率で20%以下であって実質的にデンドライトの整列が無く、共晶領域がネットワーク状に存在または晶出物が均一に分散するような等方均質組織を有することを最大の特徴とし、これによって、より一層耐リラクゼーション特性を向上させることができる。
すなわち、上記の合金成分および組織形態の制御によって、高温変形を抑制する強固な分散強化組織が形成されるとともに、基地Al相中に存在する耐熱性向上成分によって高温変形が抑制されるため、合金の耐リラクゼーション特性が向上すると考えられる。また、晶出物が等方的に分散して強化されるため、応力分布が均一になり疲労強度が向上すると考えられる。
さらに、高価なNiを殆ど含有しないので、材料コストの低減が図れる。また、Niを殆ど含有しないことで粗大晶出物の生成が抑制され、微細な大きさの揃った晶出物を等方的に分散させることにより、晶出物を無駄なく疲労強度および耐リラクゼーション特性の向上に寄与できる。特に200℃以下の高温環境においてその効果が顕著となる。
共晶領域がネットワーク状に存在または晶出物が均一に分散するような等方均質組織は、実質的にデンドライトの整列が無いことによって実現できる。本発明では、実質的にデンドライトの整列が無い状態の定義は、上記のごとく、5個以上のデンドライトセルが略一方向に整列しているデンドライト組織(以下、適宜、整列デンドライト組織という)の面積が、組織全体の面積の20%以下の割合である場合であるとする。
より好ましく、上記整列デンドライト組織の面積率を10%以下とするのがよく、最も好ましくは、上記整列デンドライト組織の面積率を5%以下とするのがよい。
このような等方均質組織を得るためには、上述した特定の成分組成を必須要件とする必要がある。この第2の発明(第4の発明)の鋳造アルミニウム合金における各合金元素量の限定理由を示す。
Si:9〜17質量%、
Siは、共晶Siのネットワーク骨格を形成するのに必須の元素である。Si含有量が9.5%未満では共晶Si量が少なく、ネットワークが不完全となるため、リラクゼーション特性が低下する懸念がある。また、Si含有量が17質量%を超えると、液相線温度が著しく高くなり、鋳造温度を高くしなければならないので、ガス吸収、酸化、型の消耗などの問題が生じ好ましくない。好ましくは、Si含有量は9〜12質量%とするのがよい。さらに最適なSi含有量の範囲は10〜11質量%である。Si含有量が12質量%を超えると、粗大な初晶Siが生成し、高い引張平均応力下での疲労において、粗大な初晶Siが破壊して疲労強度が低下する場合がある。
Cu:3〜6質量%、
Cuは、Cuを含有する析出物を生成させ、合金の強度を向上させるのに有効な元素である。特に高温での強度向上に寄与が大きい。3%未満では強度向上効果が小さく、6%を超えると凝固偏析が大きく均質な材料ができない。また、延性が著しく低下し引張平均応力下での疲労強度が低下する懸念がある。好ましくは、Cu含有量は4〜5質量%とするのがよい。
Mg:0.3〜1.2質量%、
Mgは、Mg2Si系の析出物を生成させ、その析出強化によって強度を改善する。またMg2Siの晶出物を生成し、晶出物による分強化によって強度を改善する。Mg含有量が1.2質量%を超えると、Mg2Siの晶出量が多すぎるため靭性が低下して、疲労強度が低くなるデメリットが生じる。0.3質量%以下では析出量が少なく疲労強度が十分でない。好ましくは、Mg含有量は0.4〜1質量%とするのがよく、さらに好ましくは、Mg含有量は0.6〜1質量%とするのがよい。
Fe:0.1〜1質量%、
Feは、耐熱性の高い晶出物を形成し、晶出物からなるネットワーク骨格を強化し、耐リラクゼーション特性の向上に寄与する。Fe含有量が0.1%未満ではその効果は小さく、Fe含有量が1%を超えると粗大な晶出物を形成し、その晶出物が破壊起点となって引張平均応力下の疲労強度が低下する懸念がある。また、鋳型への耐焼付き性を向上に寄与する。好ましくは、Fe含有量は0.3〜1質量%とするのがよい。
Mn:0.1〜1質量%、
Mnは、添加することによって耐熱性の高い晶出物を形成し、晶出物からなるネットワーク骨格を強化し、耐リラクゼーション特性の向上に寄与すると共に、鋳型への耐焼付き性を向上に寄与する。Mn含有量が0.1%未満ではその効果は小さく、Mn含有量が1%を超えると粗大な晶出物を形成し、その晶出物が破壊起点となって引張平均応力下の疲労強度が低下する懸念がある。好ましくは、Mn含有量は0.2〜1質量%とするのがよい。
Ti:0.15〜0.3質量%、
Tiにはα−Al相の結晶粒を微細化して、デンドライトセルの整列を抑制し凝固組織を均質化する効果と、基地アルミ相の耐熱性を改善し、同相の耐リラクゼーション特性を改善する効果がある。
Ti含有量が0.15質量%未満の場合、凝固組織を均質化し、亜共晶組織の場合には晶出物からなるネットワーク状骨格組織が等方的に形成されない。また、過共晶組織の場合、晶出物の等方均一分散組織が形成されない。さらに、基地アルミ相中のTi量が低く、同相の耐リラクゼーション特性が十分に得らない。
Ti含有量が0.3質量%を超える場合、粗大なTi化合物が生成し靭性が低下するとともに、その化合物が疲労破壊の起点となり引張平均応力下の疲労強度を低下させるおそれがある。
なお、Tiの添加をAl−Ti−B合金、Al−Ti−C合金などによって行う場合には、BおよびCの含有を許容する。好ましいTi含有量の範囲は、0.15〜0.25質量%である。Ti含有量が0.15質量%以上では十分な結晶粒の微細化によって組織の均質性とネットワーク骨格組織の等方性が増し、より耐リラクゼーション特性がより高くなるとともに疲労強度のばらつきが小さくなり、疲労強度の下限値が向上する。さらに最適なTi含有量は0.2〜0.25質量%である。この範囲で耐リラクゼーション特性が最も高くなる。
Ni:0.5質量%以下、
Niは、粗大な晶出物を形成し、組織を不均質にするためリラクゼーションが生じ易いので0.5質量%以下の範囲に制限する。特にCu含有量が高い場合にはCuとNiを含有する粗大晶を形成しやすいのでNi添加は好ましくない。また、Ni添加は、合金の密度を著しく増大させてしまう。そして、Ni含有量が0.5質量%を超える場合には粗大な晶出部が形成され、リラクゼーションが生じ易くなると共に密度が高くなり製品が重くなるという問題がある。
また、上記第2、第4の発明の鋳造アルミニウム合金は、さらに、Zr:0.05〜0.15質量%、及びV:0.02〜0.15質量%を含有していることが好ましい(請求項5、14)。
Zr:0.05〜0.15質量%、
ZrもTiと同様にα−Al相の結晶粒を微細化して、デンドライトセルの整列を抑制し凝固組織を均質化する効果と、基地アルミ相の耐熱性を高め耐リラクゼーション特性を向上させる効果がある。Zrを0.05質量%以上含有することが十分な凝固組織の均質化と耐熱性を得る上で好ましい。Zr含有量が0.05質量%未満の場合、凝固組織を均質化するに十分な結晶粒の微細化が達成できないおそれがある。また、基地アルミ相中の含有量が低く、十分な耐熱性が得られないおそれがある。Zr含有量が0.3質量%を超える場合、粗大なZr化合物が生成し疲労起点になる恐れがある。さらに、Tiと併用するとさらにその効果が高まる。
V:0.02〜0.15質量%、
Vは主に基地アルミ相内に存在して耐熱性向上により耐リラクゼーション特性の向上に効果がある。0.02質量%以上含有するとその効果が明確に現れるので好ましい。Vを0.15質量%を超えて含有させるには溶解温度が高くなりガス吸収の問題などが生じるので望ましくない。また、粗大なV化合物が生成し疲労破壊の起点になるおそれがある。好ましくは、V含有量は、0.02〜0.12質量%とするのがよい。さらに、Tiと併用すると基地アルミ相の耐熱性が最も高まり、最適である。
また、Ti、Zr、Vを共に含むと、上記の相乗効果により、最も優れた耐リラクセーション特性が得られる。
また、上記第1、第2の発明では、上記鋳造アルミニウム合金の密度が2.8g/cm3以下となるように、成分組成を調整することが好ましい。これにより、アルミニウム合金を採用することによる軽量化効果をより一層高めることができる。
また、上記第2、第4の発明における鋳造アルミニウム合金は、Si含有量が9〜12質量%であり、さらに、P含有量が0.001質量%以下であり、初晶Siが存在しない亜共晶組織を有することが好ましい(請求項6、15)。すなわち、亜共晶組織とした場合には、P含有量を0.001質量%以下に制限することが好ましい。
Pを多く含有すると合金の共晶点がずれて、本発明の合金の成分範囲において、粗大な初晶Siを生成し、それが疲労破壊の起点となって引張平均応力下の疲労強度が低下する懸念がある。そのため、P含有量は0.001質量%以下とし、理想的には0とすることが好ましい。
一方、過共晶組織の場合には、P含有量を0.005〜0.015質量%とすることが好ましい。Pの含有により、初晶Siが微細化し、引張平均応力下の疲労強度が向上する。P含有量が0.005質量%未満では初晶Siの微細化が不十分となる。また、Pを0.015質量%を超えて含有しても効果が飽和し、湯流れが悪くなる弊害が出やすいので好ましくない。
また、上記第2、第4の発明における鋳造アルミニウム合金は、さらに、Ca:0.0005〜0.01質量%、Na:0.0005〜0.003質量%、Sr:0.003〜0.03質量%、及びSb:0.05〜0.2質量%、のうち1種以上を含有することが好ましい(請求項7、16)。
Ca:0.0005〜0.01質量%、
Caは、共晶Siを微細化し、微細Siからなる広幅のネットワーク骨格を形成し、リラクゼーションを抑制するという効果が得られるので添加することが好ましい。Ca含有量が0.0005質量%未満の場合には共晶Siの微細化が不十分であるという問題があり、一方、0.01質量%を超える場合には溶湯が酸化しやすく、鋳物中に酸化物が混入したり、ガス吸収が増えて気孔欠陥が多くなるという問題がある。
Na:0.0005〜0.003質量%、
Naは、共晶Siを微細化し、Caと同様の効果が得られるので添加することが好ましい。Na含有量が0.0005質量%未満の場合には共晶Siの微細化が不十分であるという問題があり、一方、0.003質量%を超える場合にはガス吸収が増えて気孔欠陥が多くなるという問題がある。
Sr:0.003〜0.03質量%、
Srは、共晶Siを微細化し、Caと同様の効果が得られるので添加することが好ましい。Sr含有量が0.003質量%未満の場合には共晶Siの微細化が不十分であるという問題があり、一方、0.03質量%を超える場合にガス吸収が増えて気孔欠陥が多くなるという問題がある。
Sb:0.05〜0.2質量%、
Sbは、共晶Siを微細化し、Caと同様の効果が得られるので添加することが好ましい。Sb含有量が0.05質量%未満の場合には共晶Siの微細化が不十分であるという問題があり、一方、0.2質量%を超える場合にはガス吸収が増えて気孔欠陥が多くなるという問題がある。
なお、Naは、炉壁の塗型材と反応し、炉壁を傷めやすいという問題、Srはガス吸収が生じ易いという問題、Sbは比較的共晶Siの微細化効果が小さいという問題があるため、Caの含有が最も好ましい。
また、上記第2の発明における鋳造アルミニウム合金でも、上記と同様に、平均硬さがHV130〜HV160である
また、上記鋳造アルミニウム合金は、鋳造後に、450〜510℃の処理温度に0.5時間以上保持する溶体化加熱を行った後、水焼入れを行い、その後190〜230℃の処理温度に1〜24時間保持する時効処理を行うことにより上記平均硬さを調整してあることが好ましい(請求項8)。第4の発明ではこれを必須とする。
これにより、上述した等方均質組織の実現と相俟って、より一層耐リラクゼーション特性を向上させることができる。
また、第2の発明においては、上記鋳造アルミニウム合金における晶出Siの平均長径が5μm以下であることが好ましい(請求項9)。ここでいう晶出Siは、主として共晶Siであるが、その粒径は小さいほど好ましい。晶出Siの平均長径が5μmを超える場合には、晶出物と基地アルミ相の界面ですべり変形が生じてリラクゼーションが抑制されにくいという問題がある。好ましくは、晶出Siの平均長径は4μm以下とするのがよく、より好ましくは3μm以下とするのがよい。
また、第1〜第4の発明における鋳造アルミニウム合金は、さらに、Sn:0.01〜0.1質量%、Pb:0.02〜0.15質量%、Zn:0.1〜1質量%、のうち1種以上を含有することが好ましい(請求項10、17)。
Sn:0.01〜0.1質量%、
Snは、その含有を許容することにより、再生塊を原料として用いることができるためリサイクル性が向上するので含有を許容することが好ましい。Sn含有量が0.01質量%未満に規制するとリサイクル合金を使用できず原料の範囲が限定されるという問題があり、一方、0.1質量%を超える場合には耐熱性が低下してリラクゼーションが生じ易くなるという問題がある。
Pb:0.02〜0.15質量%、
Pbは、Snと同様にリサイクル性が向上するという効果が得られるので含有を許容することが好ましい。Pb含有量が0.02質量%未満の場合には使用原料の範囲が制限されるという問題があり、一方、0.15質量%を超える場合には耐熱性が低下してリラクゼーションが生じ易くなるという問題がある。
Zn:0.1〜1質量%、
Znは、Sn,Pbと同様にリサイクル性を向上させることができるので含有を許容することが好ましい。Zn含有量が0.1質量%未満の場合には使用原料の範囲が限定されるという問題があり、一方、1質量%を超える場合には耐熱性が低下してリラクゼーションが生じ易くなるという問題がある。
また、上記鋳造アルミニウム合金における基地Al相中のSi量が0.95質量%以上であることが好ましい(請求項11)。これにより、基地アルミ相のすべり変形が抑制され、リラクゼーションが生じ難いという効果を得ることができる。
ここで、本願における発明のコンセプトについて簡単に記載する。
リラクセーションとはクリープと表裏をなす現象であるので、クリープ特性が優れる材料がリラクセーション特性にも優れると考えられてきた。すなわち、一般的には耐力や強度が高い材料がリラクセーション特性にも優れると推定される。
これに対して、本発明の鋳造アルミニウム合金では、まず、強度や耐力が最大の材料がリラクセーション特性に最も優れるのではないことを初めて見出した。すなわち、通常の強度がピークとなるT6熱処理よりも強度がやや低下する過時効処理を行い硬さをやや低くした材料の方が、ピーク硬さの従来材よりもリラクセーションが生じ難いことを初めて見出したのである。
さらに、リラクセーションが生じ易く、それが実用上の大きな課題である耐熱マグネシウム合金の研究においてこれまでに得られている知見として、耐熱粒子が連続的に連なったネットワーク骨格により粒内の変形が拘束され、リラクセーションが抑制されることが知られている。しかし、本発明では、その骨格は連続的でなくてよく、微細粒子の集合体が幅広のネットワーク骨格領域を形成することによって、より効果的にリラクセーションが抑制できることを初めて見出した。
加えて、そのネットワークが等方的であり、さらにネットワークで囲まれた基地アルミ相を耐熱元素の含有によってすべり難くすることで、ミクロ組織制御とマクロ組織制御を融合したマルチスケール組織制御により、組織全体をリラクセーションが生じ難いように最適設計することにより、従来にない高い耐リラクセーション特性をを初めて実現できた。
また、このような最適設計により、低融点金属でリラクセーションを生じ易くする有害元素であるSn、Pb、Znなどの成分を含有してもその害が無害化され優れた耐リラクセーション特性を維持できる効果が得られることも初めて見出した。なおこの無害化効果により、合金のリサイクル性が飛躍的に高まることになり、環境負荷が極めて低く実用価値が極めて高い合金を提供できるため、産業上の利用価値が極めて高い。
本発明の実施例に係る鋳造アルミニウム合金につき説明する。
本例では、表1〜表3に示す各種の鋳造アルミニウム合金(実施例1〜9、比較例1〜10)を作製し、その特性を評価した。
表1に示す群は上述した第1の発明に関する例であり、表2に示す群は上述した第2の発明に関する例であり、表3に示す群は上述した第2の発明のうち、さらに、再生地金を利用することを想定して必須成分を増やしたものに関する例である。
まず、表1〜表3に示す化学成分組成のアルミニウム合金を溶製した。いずれも成分を調整した溶湯を作製後、740〜760℃の溶湯にフラックスを添加して脱酸処理を施した後、ヘキサクロロエタンおよびArガスバブリングによる脱ガス処理を施し、得られた溶湯を200℃に予熱したJIS4号試験片採取用舟型またはランズレ銅金型に鋳込んだ。注湯温度は730℃である。得られた鋳造素材は、500℃に3時間保持する溶体化加熱を行った後、水焼入れし、次いで、各表に示す条件で時効処理を実施した。
この様に熱処理した鋳造素材から機械加工により組織観察試料および耐リラクゼーション特性評価試験片を採取した。
各試験片の詳細及び試験方法は次の通りである。
<耐リラクゼーション特性評価試験>
耐リラクゼーション特性評価試験片は、幅10mm×厚さ1.3mm×長さ55mmであり、舟型底面部から幅方向が舟型素材の上下方向による様に採取した。
耐リラクゼーション特性の評価は、図1〜図4に示すごとく、以下に示すリラクゼーション試験治具1を用いて行った。
リラクゼーション試験治具1は、図1に示すごとく、一対の試験片11、12の間に挟持させる支持部材3と、試験片11、12の両端部111、112、121、122を拘束する拘束部材4と、試験片11、12に生じた歪み変位を検出する変位検出手段としての高温ひずみゲージ21、22とを有している。
同図に示すごとく、支持部材3は、耐熱性に優れたSUS304製の丸棒状のものであり、その外周側面300は円弧状を呈している。また、支持部材3の寸法は、直径6mm、長さ25mmである。
また、拘束部材4としては、2本のボルト41、42及びボルト41、42に螺合するナット413、423で構成されている。また、ナット413、423の締め付け安定化、緩み防止のためのワッシャー415、416、425、426も用いた。なお、拘束部材4は、全ての部材が支持部材3と同じ耐熱性に優れたSUS304製である。
そして、本例では、図1〜図3に示すごとく、変位測定部を外方に向けた状態で試験片11、12を対面させると共に両者の間の中央部110、120に支持部材3を挟持させた後、拘束部材4により試験片11、12を拘束して所定の曲げ応力を付与させると共に該曲げ応力によって試験片11、12に生じた歪み変位を一定に保つ。
リラクゼーション試験装置5は、図4に示すごとく、リラクゼーション試験治具1と、試験片11、12を加熱する加熱槽51と、高温ひずみゲージ21、22に接続され、試験片11、12に生じた歪み変位を測定するひずみ測定器としての多チャンネル型の静ひずみ計52とを有する。加熱槽51としては、温風循環式の恒温槽(設定温度50〜300℃、温度分布±5℃以内)を用いた。
また、同図に示すごとく、高温ひずみゲージ21(22)には、ゲージリード211、212(221、222)が接続されており、静ひずみ計52には、電気抵抗が小さいリード線521〜523(524〜526)が接続されており、両者は接続部210においてはんだ付けにより接続されている。
リラクゼーション試験は、図2に示すごとく、曲げ応力によって試験片11、12に生じた歪み変位を一定に保って、所定の時間加熱する加熱工程と、その後、図3に示すごとく、冷却後、試験片11、12に付与されている曲げ応力を開放し、その際に試験片11、12に生じた歪み変位を高温ひずみゲージ21、22により検出し、残留応力を求める工程とにより行う。本例では、試験温度(加熱温度)は180℃とし、初期負荷応力200MPaとして、180℃で300h保持後に残留する応力σrを測定した。
<組織観察>
組織観察は、疲労試験片の平行部と同じ舟型底から高さ14mmの位置で実施した。5個以上のデンドライトセルが略一方向に整列しているデンドライト組織(整列デンドライト組織)の面積率Adp(%)は、具体的には、100倍の光学顕微鏡で観察した視野約1.4×1mm角の組織写真において、デンドライトセルが5個以上一方向に整列したデンドライト組織の部分を全て塗りつぶし、その塗りつぶした部分の面積率を画像処理ソフトにより求めた。
また、晶出Siの平均長径DsL(μm)は、粒子の重心を通り粒子の外周上の2点を結ぶ最も長い直線の長さを、観察される全粒子について求め、その平均値により算出した。
<硬さ試験>
硬さ試験の試験片は、舟形鋳物の底部から約14mm高さの位置から切り出し、表面を鏡面研磨仕上げとした。そして、鋳造欠陥のない部分に荷重10kgf、負荷時間30secの条件で圧痕を打ち、鋳造欠陥の影響を受けた異常値を除く5点以上の正常測定値の平均をとるという手順で、平均硬さとしてのビッカース硬さHVを求めた。
各試験の結果は表4〜表6に示す。
表4には、表1に示した第1の発明に関する例の結果を示す。
表1、表4に示すごとく、実施例1の合金は、Cu含有量が高く高強度となりやすいものであるが、200℃5h(200℃に5時間保持)という時効処理を採用することにより、平均硬さHVが160以下に調整されており、上記耐リラクゼーション特性評価試験による180℃300時間保持後に残留する応力(残留応力σr)が高い。
実施例2、3の合金は、Cu含有量が本発明の上下限地に近い合金であるが、硬さが第1の発明の範囲内にあり、残留応力σrも高い。
比較例2の合金は同様にCu含有量が高いが、180℃8hの熱処理により平均硬さHVが160を超えており、その結果、残留応力σrが低い。
比較例1の合金は、Cu、Mg量が低すぎるため、平均硬さHVが130未満となり、残留応力σrが低い。
比較例3〜5の合金は、Cu含有量が低くNiを含有するため、残留応力σrが低い。
比較例6の合金は、Cu含有量が低く、Mg含有量が高いため、残留応力σrが低い。
また、比較例2、5、6の合金は平均硬さHVが160を超えており、残留応力σrが低い。
比較例7の合金は、Cu含有量が6%を超えており、平均硬さHVが160を超えており、残留応力σrが低い。また、密度も2.8g/cm3より高い。
以上の結果から、Cuが3〜5mass%で、Niが0.5mass%以下で、熱処理によりHV130〜160に硬さが調整された第1の発明の鋳造アルミニウム合金が優れた耐リラクゼーション特性を示すことが分かる。
表5には、表2に示した第2の発明に関する例の結果を示す。
表2、表5に示すごとく、実施例4〜8の合金は、上記第2の発明に属する合金であり、適量のTi、Zr、Vを含有し、上記整列デンドライト組織の領域の面積率が20%以下である均質な組織を有する。また、熱処理により、硬さが適度に調整されている。その結果として、Ti、Zr、V等を含有しない実施例1の合金に比べて、さらに高い耐リラクゼーション特性を示している。
比較例9は、上記第2の発明の成分範囲に比べてSi量が高く、NiとPを含有しており、平均硬さHVが高い。その結果として、残留応力σrは実施例1〜8に比べて低くなっている。
さらに、比較例9の合金は密度が2.8g/cm3以上と実施例1〜8の合金に比べて高く、鋳物の重量が増加するデメリットがある。
実施例6の合金は、第2の発明における最適な合金であり、整列デンドライト組織の面積率が5%以下と低く非常に等方的なネットワーク組織を有している。さらに実施例6の合金は、晶出Siの平均長径が3μm以下と小さく、微細な共晶Siの集合体が広幅のネットワーク骨格を形成する組織を有している。その結果として実施例6の合金は、実施例4、5、7、8の合金よりもさらに高い耐リラクゼーション特性を示している。
実施例4、5、7は、実施例6の最適合金に比べて晶出Siの平均長径が5μm以上と大きく、実施例8の合金は、同じく実施例6の最適合金に比べて整列デンドライト組織の面積率が10%以上とやや大きい。そのため、上記のごとくこれらの実施例4、5、7、8の合金の耐リラクゼーション特性が実施例6の最適合金にはやや劣るものの、比較例1〜9の従来合金に比べて十分に高い性能を有している。
表6には、表3に示したように、表2のものよりもさらに必須成分を増やして、いわゆる再生地金を使用可能とした第2発明に関する例の結果を示す。
表3、表6に示すごとく、実施例9の合金は、再生地金を配合して作製した合金であるが、適量のPb、Sn、Znを含有するように調整してある。含有量が適度であるので残留応力σrは比較例1〜9の合金に比べて高い値が得られている。さらに実施例9の合金はSn、Pb、Znを含有するので、上記のごとく再生地金を原料に利用できるので、リサイクル性に優れる特徴がある。これにより合金の製造にかかるエネルギを画期的に低減でき、CO2削減効果が極めて大きい。
比較例10の合金は、同じくSn、Pb、Znを含有する再生地金を用いて作製した合金であるが、含有量が適正でないため、残留応力σrが実施例9に比べ著しく低下している。この結果より、第2の発明の合金において、Sn、Pb、Znの含有量を適量に調整すれば、リサイクル性と耐リラクゼーション特性を兼備した合金が実現できることが分かる。
参考のために、上述した各鋳造アルミニウム合金のうち代表的なものの金属組織写真を図5〜図14に示す。
耐リラクセーション特性試験を行うための治具の構成を示す説明図。 耐リラクセーション特性試験における曲げ応力を付与した状態を示す説明図。 耐リラクセーション特性試験における曲げ応力を解放した状態を示す説明図。 耐リラクセーション特性試験を行うための装置の構成を示す説明図。 実施例6の金属組織を示す図面代用の100倍の顕微鏡写真。 実施例6の金属組織を示す図面代用の400倍の顕微鏡写真。 実施例8の金属組織を示す図面代用の100倍の顕微鏡写真。 実施例8の金属組織を示す図面代用の400倍の顕微鏡写真。 比較例2の金属組織を示す図面代用の100倍の顕微鏡写真。 比較例2の金属組織を示す図面代用の400倍の顕微鏡写真。 比較例1の金属組織を示す図面代用の100倍の顕微鏡写真。 比較例1の金属組織を示す図面代用の400倍の顕微鏡写真。 比較例9の金属組織を示す図面代用の100倍の顕微鏡写真。 比較例9の金属組織を示す図面代用の400倍の顕微鏡写真。
符号の説明
1 リラクセーション試験治具、
11、12 試験片、
21、22 高温歪みゲージ、
3 支持部材、
4 拘束部材

Claims (17)

  1. Si:9〜17質量%、
    Cu:3〜6質量%、
    Mg:0.2〜1.2質量%、
    Fe:0.4〜1.5質量%、及び
    Mn:0.2〜1質量%を含有し、
    Ni含有量が0.5質量%以下であり、
    残部がAl及び不可避的不純物よりなり、
    過時効処理によりピーク時効より硬さを低下させており、
    平均硬さがHV130〜HV160であることを特徴とする耐リラクセーション特性に優れた鋳造アルミニウム合金。
  2. 請求項1において、鋳造後に、450〜510℃の処理温度に0.5時間以上保持する溶体化加熱を行った後、水焼入れを行い、その後170〜230℃の処理温度に1〜24時間保持する時効処理を行うことにより上記平均硬さを調整してあることを特徴とする耐リラクセーション特性に優れた鋳造アルミニウム合金。
  3. 請求項1又は2において、Si含有量が9〜12質量%であり、初晶Siが存在しない亜共晶組織を有することを特徴とする耐リラクセーション特性に優れた鋳造アルミニウム合金。
  4. Si:9〜17質量%、
    Cu:3〜6質量%、
    Mg:0.3〜1.2質量%、
    Fe:0.4〜1質量%、
    Mn:0.2〜1質量%、及び
    Ti:0.15〜0.3質量%を含有し、
    Ni含有量が0.5質量%以下であり、
    残部がAl及び不可避的不純物よりなり、
    5個以上のデンドライトセルが略一方向に整列するデンドライトの割合が面積率で20%以下であって実質的にデンドライトの整列が無い等方均質組織を有し、
    過時効処理によりピーク時効より硬さを低下させており、
    平均硬さがHV130〜HV160であることを特徴とする耐リラクセーション特性に優れた鋳造アルミニウム合金。
  5. 請求項4において、さらに、
    Zr:0.05〜0.15質量%、及び
    V:0.02〜0.15質量%を含有していることを特徴とする耐リラクセーション特性に優れた鋳造アルミニウム合金。
  6. 請求項4又は5において、Si含有量が9〜12質量%であり、さらに、P含有量が0.001質量%以下であり、初晶Siが存在しない亜共晶組織を有することを特徴とする耐リラクセーション特性に優れた鋳造アルミニウム合金。
  7. 請求項6において、さらに、
    Ca:0.0005〜0.01質量%、
    Na:0.0005〜0.003質量%、
    Sr:0.003〜0.03質量%、及び
    Sb:0.05〜0.2質量%、
    のうち1種以上を含有することを特徴とする耐リラクセーション特性に優れた鋳造アルミニウム合金。
  8. 請求項4〜7のいずれか1項において、鋳造後に、450〜510℃の処理温度に0.5時間以上保持する溶体化加熱を行った後、水焼入れを行い、その後170〜230℃の処理温度に1〜24時間保持する時効処理を行うことにより上記平均硬さを調整してあることを特徴とする耐リラクセーション特性に優れた鋳造アルミニウム合金。
  9. 請求項6〜8のいずれか1項において、晶出Siの平均長径が5μm以下であることを特徴とする耐リラクセーション特性に優れた鋳造アルミニウム合金。
  10. 請求項1〜9のいずれか1項において、さらに、
    Sn:0.01〜0.1質量%、
    Pb:0.02〜0.15質量%、
    Zn:0.1〜1質量%、
    のうち1種以上を含有することを特徴とする耐リラクセーション特性に優れた鋳造アルミニウム合金。
  11. 請求項1〜10のいずれか1項において、基地Al相中のSi量が0.95質量%以上であることを特徴とする耐リラクセーション特性に優れた鋳造アルミニウム合金。
  12. Si:9〜17質量%、
    Cu:3〜6質量%、
    Mg:0.2〜1.2質量%、
    Fe:0.4〜1.5質量%、及び
    Mn:0.2〜1質量%を含有し、
    Ni含有量が0.5質量%以下であり、
    残部がAl及び不可避的不純物よりなる鋳造アルミニウム合金の熱処理方法であって、
    鋳造後に、450〜510℃の処理温度に0.5時間以上保持する溶体化加熱を行った後、
    水焼入れを行い、
    その後170〜230℃の処理温度に1〜24時間保持する時効処理を行うことにより、
    過時効処理によりピーク時効より硬さを低下させて、平均硬さをHV130〜HV160とすることを特徴とする耐リラクセーション特性に優れた鋳造アルミニウム合金の熱処理方法。
  13. Si:9〜17質量%、
    Cu:3〜6質量%、
    Mg:0.3〜1.2質量%、
    Fe:0.4〜1質量%、
    Mn:0.2〜1質量%、及び
    Ti:0.15〜0.3質量%を含有し、
    Ni含有量が0.5質量%以下であり、
    残部がAl及び不可避的不純物よりなる鋳造アルミニウム合金の熱処理方法であって、
    鋳造後に、450〜510℃の処理温度に0.5時間以上保持する溶体化加熱を行った後、
    水焼入れを行い、
    その後170〜230℃の処理温度に1〜24時間保持する時効処理を行うことにより、
    過時効処理によりピーク時効より硬さを低下させて、平均硬さをHV130〜HV160とすることを特徴とする耐リラクセーション特性に優れた鋳造アルミニウム合金の熱処理方法。
  14. 請求項13において、上記鋳造アルミニウム合金は、さらに、
    Zr:0.05〜0.15質量%、及び
    V:0.02〜0.15質量%を含有することを特徴とする耐リラクセーション特性に優れた鋳造アルミニウム合金の熱処理方法。
  15. 請求項13又は14において、上記鋳造アルミニウム合金は、Si含有量が9〜12質量%であり、さらに、P含有量が0.001質量%以下であり、初晶Siが存在しない亜共晶組織を有することを特徴とする耐リラクセーション特性に優れた鋳造アルミニウム合金の熱処理方法。
  16. 請求項15において、上記鋳造アルミニウム合金は、さらに、
    Ca:0.0005〜0.01質量%、
    Na:0.0005〜0.003質量%、
    Sr:0.003〜0.03質量%、及び
    Sb:0.05〜0.2質量%、
    のうち1種以上を含有することを特徴とする耐リラクセーション特性に優れた鋳造アルミニウム合金の熱処理方法。
  17. 請求項12〜16のいずれか1項において、上記鋳造アルミニウム合金は、さらに、
    Sn:0.01〜0.1質量%、
    Pb:0.02〜0.15質量%、
    Zn:0.1〜1質量%、
    のうち1種以上を含有することを特徴とする耐リラクセーション特性に優れた鋳造アルミニウム合金の熱処理方法。
JP2006183919A 2006-07-03 2006-07-03 耐リラクセーション特性に優れた鋳造アルミニウム合金とその熱処理方法 Expired - Fee Related JP4187018B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006183919A JP4187018B2 (ja) 2006-07-03 2006-07-03 耐リラクセーション特性に優れた鋳造アルミニウム合金とその熱処理方法
US11/769,290 US20080000561A1 (en) 2006-07-03 2007-06-27 Cast aluminum alloy excellent in relaxation resistance property and method of heat-treating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006183919A JP4187018B2 (ja) 2006-07-03 2006-07-03 耐リラクセーション特性に優れた鋳造アルミニウム合金とその熱処理方法

Publications (2)

Publication Number Publication Date
JP2008013792A JP2008013792A (ja) 2008-01-24
JP4187018B2 true JP4187018B2 (ja) 2008-11-26

Family

ID=38875354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006183919A Expired - Fee Related JP4187018B2 (ja) 2006-07-03 2006-07-03 耐リラクセーション特性に優れた鋳造アルミニウム合金とその熱処理方法

Country Status (2)

Country Link
US (1) US20080000561A1 (ja)
JP (1) JP4187018B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8168015B2 (en) * 2008-10-23 2012-05-01 GM Global Technology Operations LLC Direct quench heat treatment for aluminum alloy castings
CN103374674B (zh) * 2012-04-28 2015-05-06 福州钜全汽车配件有限公司 一种柴油机高强度铝合金活塞及其制备方法
CN103757497A (zh) * 2013-12-26 2014-04-30 安徽欣意电缆有限公司 一种汽车线用Al-Fe-Cu-Ca铝合金及其线束
KR101596818B1 (ko) * 2014-01-20 2016-02-23 알티전자 주식회사 전자기기에 사용되는 다이캐스팅용 알루미늄 합금 및 이의 제조방법
CN105543740B (zh) * 2015-12-14 2017-10-03 百色学院 提高铝合金防腐蚀性能的热处理工艺
CN105543585B (zh) * 2016-01-27 2017-09-19 广西平果铝合金精密铸件有限公司 一种发动机机体用压铸铝合金及其生产方法
CN106756295A (zh) * 2016-12-20 2017-05-31 重庆顺博铝合金股份有限公司 用于制备船用气缸活塞的铝合金及其制备方法
US10445004B2 (en) * 2017-03-30 2019-10-15 Pavilion Data Systems, Inc. Low latency metadata log
CN107496187A (zh) 2017-08-22 2017-12-22 上海蔻沣生物科技有限公司 一种贴肤性极好疏水疏油的化妆品颜料粉末及其制备方法和应用
CN109402473B (zh) * 2018-12-11 2019-12-03 贵州大学 一种具有高Fe含量的Al-Si-Cu-Mn耐热铝合金及其制备方法
CN111533446B (zh) * 2020-05-26 2022-04-15 成都光明光电股份有限公司 光学玻璃、玻璃预制件、光学元件和光学仪器
CN112593127A (zh) * 2020-12-14 2021-04-02 东北轻合金有限责任公司 一种铸造铝合金及其制备方法
JP2023054459A (ja) * 2021-10-04 2023-04-14 トヨタ自動車株式会社 アルミニウム合金材料及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4055417A (en) * 1974-03-13 1977-10-25 Toyota Jidosha Kogyo Kabushiki Kaisha Hyper-eutectic aluminum-silicon based alloys for castings
JPS53115407A (en) * 1977-03-17 1978-10-07 Mitsubishi Keikinzoku Kogyo Kk Engine cylinder block and the manufacture thereof
US7069897B2 (en) * 2001-07-23 2006-07-04 Showa Denko K.K. Forged piston for internal combustion engine and manufacturing method thereof
US20050199318A1 (en) * 2003-06-24 2005-09-15 Doty Herbert W. Castable aluminum alloy

Also Published As

Publication number Publication date
US20080000561A1 (en) 2008-01-03
JP2008013792A (ja) 2008-01-24

Similar Documents

Publication Publication Date Title
JP4187018B2 (ja) 耐リラクセーション特性に優れた鋳造アルミニウム合金とその熱処理方法
JP5300118B2 (ja) アルミニウム合金鋳物の製造方法
JP5431233B2 (ja) アルミニウム合金鍛造材およびその製造方法
JP4800864B2 (ja) コンプレッサ
JP5582532B2 (ja) Co基合金
JP2008274403A (ja) 鋳物用アルミニウム合金、アルミニウム合金鋳物およびその製造方法
EP1524324A2 (en) Aluminum alloys for casting, aluminum alloy castings and manufacturing method thereof
JP5655953B2 (ja) Al−Fe−Si系化合物及び初晶Siを微細化させたアルミニウム合金の製造方法
JP2009114513A (ja) TiAl基合金
JP2010150624A (ja) 鋳造用アルファ+ベータ型チタン合金及びこれを用いたゴルフクラブヘッド
Shehadeh et al. The Effect of Adding Different Percentages of Manganese (Mn) and Copper (Cu) on the Mechanical Behavior of Aluminum.
Lü et al. Effect of Ce on castability, mechanical properties and electric conductivity of commercial purity aluminum.
Kaiser Effect of solution treatment on the age-hardening behavior of Al-12Si-1Mg-1Cu piston alloy with trace-Zr addition
JP4145242B2 (ja) 鋳物用アルミニウム合金、アルミニウム合金製鋳物およびアルミニウム合金製鋳物の製造方法
WO2009123084A1 (ja) マグネシウム合金およびその製造方法
JP2008075176A (ja) 高温での強度と伸びに優れたマグネシウム合金およびその製造方法
JP4093221B2 (ja) 鋳物用アルミニウム合金、アルミニウム合金鋳物およびその製造方法
JP4676906B2 (ja) 展伸加工用耐熱アルミニウム合金
JP2004002987A (ja) 高温特性に優れたアルミニウム合金鍛造材
JP6900199B2 (ja) 鋳造用アルミニウム合金、アルミニウム合金鋳物製品およびアルミニウム合金鋳物製品の製造方法
JP5607960B2 (ja) 疲労強度特性に優れた耐熱マグネシウム合金およびエンジン用耐熱部品
EP3192883B1 (en) Ai alloy containing cu and c and its manufacturing method
JP2018168468A (ja) アルミニウム合金クラッド材及びその製造方法
JP5449754B2 (ja) エンジンまたはコンプレッサーのピストンの鍛造方法
Aravindh et al. Effect of samarium (Sm) addition on microstructure and mechanical properties of AA5083 alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees