JP4186269B2 - Nucleic acid synthesis method - Google Patents
Nucleic acid synthesis method Download PDFInfo
- Publication number
- JP4186269B2 JP4186269B2 JP26679298A JP26679298A JP4186269B2 JP 4186269 B2 JP4186269 B2 JP 4186269B2 JP 26679298 A JP26679298 A JP 26679298A JP 26679298 A JP26679298 A JP 26679298A JP 4186269 B2 JP4186269 B2 JP 4186269B2
- Authority
- JP
- Japan
- Prior art keywords
- nucleic acid
- pcr
- dtt
- reaction solution
- acid synthesis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Description
【0001】
【発明の属する技術分野】
本発明は核酸合成法、特に、ポリメラーゼ連鎖反応(Polymerase Chain Reaction :以下PCRと略す)法による核酸合成法に関する。
【0002】
【従来の技術】
PCR法は、DNA鎖の1本鎖への解離、DNA鎖の中の特定の領域をはさんだプライマーの結合、DNAポリメラーゼによるDNA合成反応を繰り返すことによって、目的のDNA断片を数十万倍にも増幅できる方法である。PCR法は、マリス氏らの発明である特開昭61−274697号公報に述べられている。PCR法は種々の試料中の核酸の高感度分析法として使用可能で、特に動物体液由来の試料中の核酸の分析法に使用できる。従って、PCR法は感染症や遺伝病やガンの診断等に利用される。さらに、PCR法は移植や親子鑑定の際のDNAタイピングの検査にも適した方法である。これらの場合末梢血液が検査対象に選ばれる場合が多い。
【0003】
PCR法の1つの欠点は色素、たんぱく、糖類あるいは未知の夾雑物が反応を阻害することである。すなわち、代表的な耐熱性DNAポリメラーゼであるThermus aquaticus 由来のTaqDNAポリメラーゼをはじめ、多くのDNAポリメラーゼは、微量の体液由来の夾雑物がPCR反応液中に混在しても、PCRが強く阻害されることが広く知られている。
【0004】
そこで、PCR法によるDNA増幅に先立って、被験物から細胞、細菌、ウィルス等(以下、遺伝子包含体と称する)を分離し、次に、その遺伝子包含体から核酸を抽出する過程が必要となる。その方法としては、酵素、界面活性剤、カオトロピック剤等により遺伝子包含体を分解し、その後、フェノールあるいはフェノール・クロロホルム等を用いて、遺伝子包含体の分解物から核酸を抽出する方法が従来より使用されている。
最近では核酸抽出の過程において、イオン交換樹脂、ガラスフィルター、ガラスビーズあるいはタンパク凝集作用を有する試薬等が使用されている。
【0005】
【発明が解決しようとする課題】
しかし、これらの方法を用いて試料中の核酸の精製を行っても、不純物の完全な除去は困難であり、かつ試料中の核酸の回収量が一定しない場合も多く、このため引き続く核酸合成が、とりわけ試料中の目的とする核酸の含量が少ない場合には、うまくできない場合もある。また、これら精製法は操作が煩雑で時間を要し、また操作中のコンタミネーションの機会が高い。
従って、これらの問題点を解決するためには、より簡便で、かつ効果的な試料前処理法が望まれる。
【0006】
そこで、本発明は、更に改良を加え、試料の種類に関係なく、PCR阻害物質の作用を抑制して、試料中のDNAを効率よく増幅させる新規な方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記課題を解決するため、血液を含む生体由来試料中の目的とする遺伝子をPCR法によって増幅する核酸合成法において、遺伝子増幅反応液に血液を含む生体由来試料及び0.25〜2mMのジチオスレイトールを添加することを特徴とする。ここで、ジチオスレイトール(DTT)は、試料に加えてから、遺伝子増幅反応液に添加しても、遺伝子増幅反応液に直接添加してもよい。また、DTTは、遺伝子増幅反応液に均一に入っていない状態(たとえば試料にDTTを加えて、この試料を反応液に攪拌せずに添加した場合など)でも同様の効果がある。
【0008】
本発明において、試料は生体由来試料中の遺伝子包含体もしくは生体由来試料そのものをいい、生体由来試料とは、動植物組織、体液、排泄物等をいい、遺伝子包含体とは、細胞、細菌、ウィルス等をいう。体液には血液、唾液、髄液、尿、乳が含まれ、細胞には血液から分離した白血球が含まれるが、これらに限定されるものではない。生体由来試料中の遺伝子包含体もしくは生体由来試料そのものは、特別な前処理なしに直接遺伝子増幅反応液に添加される。
【0009】
遺伝子増幅反応液は、通常、pH緩衝液並びにMgCl2、KCl等の塩類、プライマー、デオキシリボヌクレオチド類及び耐熱酵素を含むものである。また、上記の塩類は適宜他の塩類に変更して使用されている。また、ゼラチン、アルブミン等のタンパク、ジメチルスルホキシド、界面活性剤等種々の物質が添加される場合がある。
【0010】
pH緩衝液は、トリス(ヒドロキシメチル)アミノメタンと塩酸、硝酸、硫酸等の鉱酸の組合せであり、鉱酸の中で望ましいものは塩酸である。また、トリシン、CAPSO(3ーNーCyclohexylamino −2 −hydroxypropanesulfonic acid )あるいはCHES(2ー(Cyclohexylamino )ethanesulfonic acid )と苛性ソーダ、苛性カリとの組み合わせによるpH緩衝液等種々のpH緩衝液が使用され得る。pH調整された緩衝液は、遺伝子増幅反応液の中で10mMから100mMの間の濃度で使用される。
【0011】
プライマーは、核酸と増幅用試薬等の存在下に合成の開始点として働くオリゴヌクレオチドをいう。プライマーは一本鎖であることが望ましいが、二本鎖も使用できる。もし、プライマーが二本鎖の場合には、増幅反応に先立って一本鎖にすることが望ましい。プライマーは、公知の方法により合成することができるし、また、生物界から単離することもできる。
【0012】
耐熱酵素は、プライマー付加による核酸を合成する酵素、あるいはかような化学合成系を意味する。適切な耐熱酵素としては、E.coliのDNAポリメラーゼI、E.coliのDNAポリメラーゼのクレノーフラグメント、T4DNAポリメラーゼ、TaqDNAポリメラーゼ、T.litoralisDNAポリメラーゼ、TthDNAポリメラーゼ、PfuDNAポリメラーゼそして逆転写酵素などがあるが、これらにのみ限定されるものではない。
【0013】
また、本発明では遺伝子増幅反応液のpHを調節することにより、相乗効果が得られる。例えば、pHは、25℃の温度条件下で8.1以上、好ましくは8.5〜9.5である。
また、本発明では、遺伝子増幅反応液にポリアミンを添加してもよい。
【0014】
なお、本発明の核酸合成法の手順は、DTTを添加する以外、通常の方法と何ら変わらない。すなわち、先ず、増幅しようとする目的の2本鎖DNA断片を熱変性により、1本鎖のDNAにする(ディナチュレーション工程)。次に増幅させたい領域を挟むプライマーをハイブリダイズさせる(アニーリング工程)。次に4種類のデオキシリボヌクレオチド類(dATP、dGTP、dCTP、dTTP)の共存下にDNAポリメラーゼを作用させ、プライマーの伸長反応を行う(ポリメライゼーション工程)。
【0015】
【実施例】
PCR反応液(50μl)にクエン酸処理したヒト血液を2または1μl添加し、PCRを行った。PCRのプライマーはヒトのβ−グロビン遺伝子領域内に位置するplus鎖の塩基配列をもつオリゴヌクレオチド(GH20)及びminus 鎖の塩基配列をもつオリゴヌクレオチド(GH21)であり、配列は次の通りである。この2種類のプライマーを用いたPCRの結果、408bp の増幅産物を得ることができる。
GH20:5’GAAGAGCCAAGGACAGGTAC3’
GH21:5’GGAAAATAGACCAATAGGCAG3’
【0016】
PCR反応液には、pH8.3 に調節した10mM Tris-HCl、50MKCl,1.5mMMgCl2, 200 μM のdATP,dCTP,dGTP及びdTTP, 各0.4 μM のprimer, 1.25units/50μl のTaq DNA ポリメラーゼ(TaKaRa Taq: Takara shuzo, Kyoto, Japan)反応液を用いた。
PCRは、94℃、3分のプレヒーティングの後、94℃ 30秒間、55℃1分間、72℃ 1分間の条件で40サイクル、最後に72℃ 7分間のポリメライゼーションを行った。PCR終了後、反応液5μlを用いて、2.5%アガロースを含む、0.5μg/ ml臭化エチジウム添加TAE(40mM Tris-acetate, 1mM EDTA, pH8.0) 液中で電気泳動を行い検出した。
【0017】
DTTを反応液に直接添加して、PCRを行ったときの増幅産物の電気泳動図を図1に示す。図中Mはサイズマーカー(HincIIで切断した250ng のφ X174-RF DNA)、1、8はDTTが0%、2、9はDTTを0.125mM添加、3、10はDTTを0.25mM添加、4、11はDTTを0.5mM添加、5、12はDTTを1mM添加、6、13はDTTを2mM添加、7、14はDTTを4mM添加したものを示している。また、1〜7は血液を2μl添加、8〜14は血液を1μl添加したものである。
結果、DTTを添加することによって、PCR増幅産物が得られることがわかった、特にDTTを1mM添加するのが良好である。
【0018】
【発明の効果】
本発明により、核酸の分離・精製の過程を経ずに、血液等のPCR阻害物質を多く含んだ試料から、直接、目的のDNAを効率よく増幅することが可能となった。また、本発明により、簡便、迅速に核酸合成の操作を行えるようになり、コンタミネーションの機会の軽減が可能となった。
【配列表】
【図面の簡単な説明】
【図1】PCR反応液(50μl)にヒトクエン酸処理したヒト血液を2または1μl、濃度の異なるDTTを添加し、PCRを行った電気泳動図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nucleic acid synthesis method, and more particularly to a nucleic acid synthesis method by a polymerase chain reaction (hereinafter abbreviated as PCR) method.
[0002]
[Prior art]
The PCR method is intended to multiply the target DNA fragment several hundred thousand times by repeating the dissociation of the DNA strand into a single strand, the binding of a primer across a specific region in the DNA strand, and the DNA synthesis reaction by DNA polymerase. Can be amplified. The PCR method is described in Japanese Patent Laid-Open No. 61-274697 which is an invention of Maris et al. The PCR method can be used as a high-sensitivity analysis method for nucleic acids in various samples, and can be used particularly for analysis methods for nucleic acids in samples derived from animal body fluids. Therefore, the PCR method is used for diagnosis of infectious diseases, genetic diseases and cancer. Furthermore, the PCR method is also suitable for DNA typing examinations during transplantation and parentage testing. In these cases, peripheral blood is often selected for testing.
[0003]
One disadvantage of the PCR method is that dyes, proteins, sugars or unknown contaminants inhibit the reaction. That is, many DNA polymerases including Taq DNA polymerase derived from Thermus aquaticus, which is a typical thermostable DNA polymerase, strongly inhibits PCR even if a small amount of contaminants derived from body fluids are mixed in the PCR reaction solution. It is widely known.
[0004]
Therefore, prior to DNA amplification by the PCR method, it is necessary to separate cells, bacteria, viruses, etc. (hereinafter referred to as gene inclusions) from the test substance, and then extract nucleic acids from the gene inclusions. . As the method, a method in which a gene inclusion body is decomposed with an enzyme, a surfactant, a chaotropic agent, etc., and then a nucleic acid is extracted from the decomposition product of the gene inclusion body using phenol or phenol / chloroform is conventionally used. Has been.
Recently, in the process of nucleic acid extraction, ion exchange resins, glass filters, glass beads, reagents having a protein aggregating action, and the like are used.
[0005]
[Problems to be solved by the invention]
However, even if nucleic acid in a sample is purified using these methods, it is difficult to completely remove impurities, and the amount of recovered nucleic acid in the sample is often not constant. In particular, it may not be successful if the content of the target nucleic acid in the sample is low. In addition, these purification methods are complicated and require time, and there is a high chance of contamination during operation.
Therefore, in order to solve these problems, a simpler and more effective sample pretreatment method is desired.
[0006]
Accordingly, the present invention aims to provide a novel method for further amplifying DNA in a sample efficiently by further improving and suppressing the action of a PCR inhibitor regardless of the type of the sample.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a nucleic acid synthesis method for amplifying a target gene in a biological sample containing blood by a PCR method , a biological sample containing blood in a gene amplification reaction solution, and 0.25- It is characterized by adding 2 mM dithiothreitol. Here, dithiothreitol (DTT) may be added to the gene amplification reaction solution after being added to the sample or may be added directly to the gene amplification reaction solution. DTT has the same effect even when it is not uniformly contained in the gene amplification reaction solution (for example, when DTT is added to the sample and this sample is added to the reaction solution without stirring).
[0008]
In the present invention, a sample refers to a gene inclusion body in a biological sample or a biological sample itself, and the biological sample refers to animal and plant tissue, body fluid, excrement, etc., and a gene inclusion includes cells, bacteria, viruses Etc. Body fluids include blood, saliva, spinal fluid, urine, and milk, and cells include, but are not limited to, white blood cells separated from blood. The gene inclusion body in the biological sample or the biological sample itself is directly added to the gene amplification reaction solution without any special pretreatment.
[0009]
The gene amplification reaction solution usually contains a pH buffer solution, salts such as MgCl 2 and KCl, primers, deoxyribonucleotides and a thermostable enzyme. Further, the above salts are used by appropriately changing to other salts. In addition, various substances such as proteins such as gelatin and albumin, dimethyl sulfoxide, and surfactants may be added.
[0010]
The pH buffer is a combination of tris (hydroxymethyl) aminomethane and a mineral acid such as hydrochloric acid, nitric acid, sulfuric acid, etc., and a desirable mineral acid is hydrochloric acid. In addition, various pH buffer solutions such as a pH buffer solution using a combination of tricine, CAPSO (3-N-Cyclohexylamino-2-hydroxypropanesulfonic acid) or CHES (2- (Cyclohexylamino) ethanesulfonic acid) with caustic soda and caustic potash can be used. The pH-adjusted buffer is used in the gene amplification reaction solution at a concentration between 10 mM and 100 mM.
[0011]
A primer refers to an oligonucleotide that serves as a starting point for synthesis in the presence of a nucleic acid and an amplification reagent. The primer is preferably single-stranded, but double-stranded can also be used. If the primer is double-stranded, it is desirable to make it single-stranded prior to the amplification reaction. The primer can be synthesized by a known method, or can be isolated from the biological world.
[0012]
The thermostable enzyme means an enzyme that synthesizes nucleic acid by adding a primer, or such a chemical synthesis system. Suitable thermoenzymes include E. coli. DNA polymerase I, E. coli Examples include, but are not limited to, the Klenow fragment of Escherichia coli DNA polymerase, T4 DNA polymerase, Taq DNA polymerase, T. litoralis DNA polymerase, Tth DNA polymerase, Pfu DNA polymerase, and reverse transcriptase.
[0013]
In the present invention, a synergistic effect can be obtained by adjusting the pH of the gene amplification reaction solution. For example, the pH is 8.1 or more, preferably 8.5 to 9.5 under a temperature condition of 25 ° C.
In the present invention, a polyamine may be added to the gene amplification reaction solution.
[0014]
In addition, the procedure of the nucleic acid synthesis method of the present invention is not different from a normal method except that DTT is added. That is, first, the target double-stranded DNA fragment to be amplified is converted into single-stranded DNA by heat denaturation (dynalation step). Next, a primer sandwiching the region to be amplified is hybridized (annealing step). Next, a DNA polymerase is allowed to act in the presence of four types of deoxyribonucleotides (dATP, dGTP, dCTP, dTTP) to perform a primer extension reaction (polymerization step).
[0015]
【Example】
PCR was carried out by adding 2 or 1 μl of citrated human blood to the PCR reaction solution (50 μl). PCR primers are an oligonucleotide (GH20) having a plus strand base sequence located within the human β-globin gene region and an oligonucleotide (GH21) having a minus strand base sequence, and the sequences are as follows. . As a result of PCR using these two kinds of primers, an amplification product of 408 bp can be obtained.
GH20: 5'GAAGAGCCAAGGACAGGTAC3 '
GH21: 5′GGAAAATAGCCAATAGGGCAG3 ′
[0016]
The PCR reaction solution contained 10 mM Tris-HCl, 50 MKCl, 1.5 mM MgCl 2 adjusted to pH 8.3, 200 μM dATP, dCTP, dGTP and dTTP, 0.4 μM each primer, 1.25 units / 50 μl Taq DNA polymerase (TaKaRa Taq: Takara shuzo, Kyoto, Japan).
PCR was performed at 94 ° C. for 3 minutes, followed by 40 cycles of 94 ° C. for 30 seconds, 55 ° C. for 1 minute, 72 ° C. for 1 minute, and finally 72 ° C. for 7 minutes. After completion of PCR, 5 μl of the reaction mixture was used to perform electrophoresis in 0.5 μg / ml ethidium bromide-added TAE (40 mM Tris-acetate, 1 mM EDTA, pH 8.0) solution containing 2.5% agarose. did.
[0017]
FIG. 1 shows an electrophoretogram of amplification products when DTT is directly added to the reaction solution and PCR is performed. In the figure, M is a size marker (250 ng φX174-RF DNA cut with HincII), 1 and 8 are 0% DTT, 2 and 9 are 0.125 mM DTT added, 3 and 10 are 0.25 mM DTT added 4, 11 show the addition of 0.5 mM DTT, 5 and 12 show the addition of 1 mM DTT, 6 and 13 show the addition of 2 mM DTT, and 7 and 14 show the addition of 4 mM DTT. Moreover, 1-7
As a result, it was found that a PCR amplification product can be obtained by adding DTT, and it is particularly preferable to add 1 mM of DTT.
[0018]
【The invention's effect】
According to the present invention, it is possible to efficiently amplify a target DNA directly from a sample containing a large amount of a PCR-inhibiting substance such as blood without going through a process of separating and purifying nucleic acid. In addition, according to the present invention, nucleic acid synthesis can be performed simply and quickly, and the chance of contamination can be reduced.
[Sequence Listing]
[Brief description of the drawings]
FIG. 1 is an electrophoretic diagram of PCR performed by adding 2 or 1 μl of human citrate-treated human blood to DPCR with different concentrations to a PCR reaction solution (50 μl).
Claims (1)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26679298A JP4186269B2 (en) | 1998-09-21 | 1998-09-21 | Nucleic acid synthesis method |
EP99118116A EP0989192A3 (en) | 1998-09-21 | 1999-09-10 | Method for synthesis of nucleic acids |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26679298A JP4186269B2 (en) | 1998-09-21 | 1998-09-21 | Nucleic acid synthesis method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000093175A JP2000093175A (en) | 2000-04-04 |
JP4186269B2 true JP4186269B2 (en) | 2008-11-26 |
Family
ID=17435761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26679298A Expired - Lifetime JP4186269B2 (en) | 1998-09-21 | 1998-09-21 | Nucleic acid synthesis method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4186269B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10465239B2 (en) | 2013-12-25 | 2019-11-05 | Coyote Bioscience Co., Ltd. | Methods and systems for nucleic acid amplification |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1403379A1 (en) * | 2002-09-24 | 2004-03-31 | QIAGEN GmbH | Enhanced coamplification of nucleic acids |
KR100746372B1 (en) * | 2005-02-28 | 2007-08-03 | 바이오퀘스트(주) | Methods for performing direct enzymatic reactions involving nucleic acid molecules |
WO2023127774A1 (en) * | 2021-12-28 | 2023-07-06 | 株式会社ダナフォーム | Method and kit for detecting gene inclusion |
-
1998
- 1998-09-21 JP JP26679298A patent/JP4186269B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10465239B2 (en) | 2013-12-25 | 2019-11-05 | Coyote Bioscience Co., Ltd. | Methods and systems for nucleic acid amplification |
Also Published As
Publication number | Publication date |
---|---|
JP2000093175A (en) | 2000-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9518302B2 (en) | Method for direct amplification from crude nucleic acid samples | |
KR100238833B1 (en) | Method for suppressing inhibition of enzyme-mediated reactions by ionic detergents | |
JP4480715B2 (en) | Double-end sequencing | |
JP2020522243A (en) | Multiplexed end-tagging amplification of nucleic acids | |
JP4886298B2 (en) | Nucleic acid amplification | |
EP1069190B1 (en) | Method for amplification of RNA | |
EP0585660B1 (en) | Exonuclease decontamination method | |
US20040126796A1 (en) | Extraction of DNA from biological samples | |
US6962780B2 (en) | Method for synthesis of nucleic acids | |
JP4470275B2 (en) | Nucleic acid synthesis method | |
JP3452717B2 (en) | Nucleic acid synthesis method | |
CN114391043A (en) | Methylation detection and analysis of mammalian DNA | |
JPH1080280A (en) | Synthesis of nucleic acid | |
JP4186269B2 (en) | Nucleic acid synthesis method | |
JP4186270B2 (en) | Nucleic acid synthesis method | |
EP0989192A2 (en) | Method for synthesis of nucleic acids | |
JP4503712B2 (en) | Nucleic acid synthesis method | |
EP0751226B1 (en) | Process for amplifying nucleic acid sequences | |
JP4629167B2 (en) | Nucleic acid synthesis method | |
JP2001008685A (en) | Method for synthesizing nucleic acid | |
JP2003310265A (en) | Method for extracting nucleic acid | |
JP3724321B2 (en) | Nucleic acid synthesis method | |
JP4187057B2 (en) | Nucleic acid synthesis method | |
EP2743355B1 (en) | HAV detection | |
JP2007151470A (en) | Method for amplifying nucleic acid using sample |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080311 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080512 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080603 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080718 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080819 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080901 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130919 Year of fee payment: 5 |
|
EXPY | Cancellation because of completion of term |