Nothing Special   »   [go: up one dir, main page]

JP4179783B2 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
JP4179783B2
JP4179783B2 JP2002010064A JP2002010064A JP4179783B2 JP 4179783 B2 JP4179783 B2 JP 4179783B2 JP 2002010064 A JP2002010064 A JP 2002010064A JP 2002010064 A JP2002010064 A JP 2002010064A JP 4179783 B2 JP4179783 B2 JP 4179783B2
Authority
JP
Japan
Prior art keywords
indoor
outdoor
temperature
load
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002010064A
Other languages
English (en)
Other versions
JP2003207191A (ja
Inventor
大成 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002010064A priority Critical patent/JP4179783B2/ja
Publication of JP2003207191A publication Critical patent/JP2003207191A/ja
Application granted granted Critical
Publication of JP4179783B2 publication Critical patent/JP4179783B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は室外ユニットと複数台の室内ユニットを有し、複数台の室内ユニットを冷房運転若しくは暖房運転可能とする空気調和装置に関する。
【0002】
【従来の技術】
一般に、容量可変型圧縮機及び室外熱交換器を備えた室外ユニットと、室内熱交換器及び室内ファンを備えた複数台の室内ユニットとがユニット間配管により接続され、室内ユニットを冷房運転若しくは暖房運転可能とするよう構成された空気調和装置が知られている。
【0003】
この種の空気調和装置として、各室内ユニットの要求する空調要求負荷に基づいて、圧縮機の容量(能力)を制御するとともに、室外熱交換器の熱交換能力を制御するものが知られている。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の構成による室内ユニットの空調要求負荷の計算には、外気温度や室内ユニットの吹出温度の因子が含まれていないため、室内ユニットの空調要求負荷が過大又は過小に計算される場合があり、このような各室内ユニットの空調要求負荷の過大又は過小計算によって、要求された運転状態に到達するまでに時間を要するだけでなく、空気調和装置の各機器の耐久性に影響を及ぼす恐れがあり、また、室内ユニットの空気の吹出温度が安定せず、例えば、冷房運転時は冷風感、暖房運転時は温風感が得られない場合があり、また、外気温度の変化に対して空調能力が変化してしまうため、空気調和装置の空調性や運転の安定性に支障を来す場合があるという問題がある。
【0005】
また、圧縮機が、例えば、エンジンで駆動される場合、各室内ユニットの空調要求負荷の過大又は過小計算によりエンジンの発停回数が増えると、スタータなどのエンジンを構成する機器の寿命にも影響を及ぼす恐れがあり、運転の安定性に支障を来す場合があるという問題がある。
【0006】
そこで、本発明の目的は、上述した従来技術が有する課題を解消し、空調性や運転の安定性を向上させることができる空気調和装置を提供することにある。
【0007】
【課題を解決するための手段】
請求項1記載の発明は、容量可変型圧縮機及び室外熱交換器を備えた室外ユニットと、室内熱交換器及び室内ファンを備えた複数台の室内ユニットとがユニット間配管により接続され、前記室外熱交換器の一端が、前記容量可変型圧縮機の冷媒吐出管と冷媒吸込管とに択一に接続され、前記ユニット間配管が、前記冷媒吐出管に接続された高圧ガス管と、前記冷媒吸込管に接続された低圧ガス管と、前記室外熱交換の他端に接続された液管とを有して構成され、前記各室内ユニットは、前記室内熱交換器の一端が前記高圧ガス管と前記低圧ガス管に弁ユニットを介して択一に接続され、他端が前記液管に接続され、前記複数台の室内ユニットを同時に冷房運転若しくは暖房運転可能とすると共に、これらの冷房運転と暖房運転を混在して実施可能とするよう構成された空気調和装置において、各室内ユニットの要求する空調要求負荷を室内ユニットごとに算出し、これらの空調要求負荷に基づいて、前記圧縮機の容量を制御する圧縮機容量制御手段と、前記空調要求負荷に基づいて、室外熱交換器の必要負荷を算出する室外必要負荷算出手段と、この室外熱交換器の必要負荷に応じて前記室外熱交換器の熱交換能力を制御する熱交換能力制御手段と、前記複数台の室内ユニットを同時に冷房運転と暖房運転を混在して実施しているときに、前記室外熱交換器の必要負荷に基づいて、前記室外ユニットの動作モードを冷房運転モード及び暖房運転モードのいずれかに決定する運転モード決定手段と、を備え、前記複数台の室内ユニットを同時に冷房運転と暖房運転を混在して実施している場合には、前記室内ユニットごとに算出された空調要求負荷の各々に対して前記室内ユニットごとに該室内ユニットの吹出温度と目標吹出温度との差温に応じた分だけ増加させる補正を加えると共に、外気温度に対応する前記室外ユニットの空調能力が基準となる所定外気温度での空調能力に対して大のときは、その差に応じて前記室外熱交換器の必要負荷を増大させ、また、小のときは、その差に応じて前記室外熱交換器の必要負荷を減少させることを特徴とする。
【0011】
請求項記載の発明は、請求項に記載の発明において、前記室内ユニットごとに、前記室内ファンの回転数に対応する吹出風速レベルが低くなるほど前記空調要求負荷を減少させることを特徴とする。
【0013】
請求項記載の発明は、請求項1又は2記載の発明において、前記圧縮機が、エンジンで駆動されることを特徴とするものである。
【0016】
請求項記載の発明では、圧縮機容量制御手段により、各室内ユニットの要求する空調要求負荷に基づいて、圧縮機の容量(能力)が制御され、室外必要負荷算出手段により、各室内ユニットの要求する空調要求負荷に基づいて、室外熱交換器の必要負荷が算出され、熱交換能力制御手段により、室外熱交換器の必要負荷に応じて室外熱交換器の熱交換能力が制御され、第1補正手段により、各室内ユニットの吹出温度と設定される目標吹出温度とに差が生じる場合、各室内ユニットの吹出温度を目標吹出温度に近づけるべく空調要求負荷が補正され、第2補正手段により、外気温度と基準となる所定外気温度とに差が生じる場合、要求される空調能力に近づけるべく前記室外熱交換器の必要負荷が外気温度に応じて補正されることから、各室内ユニットの吹出温度が目標吹出温度に近づけられるとともに、空調能力が要求される空調能力に近づくように外気温度に応じて室外熱交換器の熱交換能力が制御されるので、空調性や運転の安定性を向上させることができる。
【0017】
請求項記載の発明では、第1補正手段として、各室内ユニットの目標吹出温度と吹出温度との差温に基づいて空調要求負荷が補正されることから、各室内ユニットの吹出温度が目標吹出温度に近づけられるので、空調性や運転の安定性を向上させることができる。
【0018】
請求項記載の発明では、第1補正手段として、室内ファンの回転数に基づいて空調要求負荷が補正されることから、各室内ユニットの吹出温度が目標吹出温度に近づけられるので、空調性や運転の安定性を向上させることができる。
【0020】
請求項3記載の発明では、圧縮機がエンジンで駆動されることから、空調要求負荷の過大計算又は過小計算が減少し、空調要求負荷の過大計算又は過小計算によるエンジンの発停回数が減少するので、エンジンの耐久性を向上させることができる。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態を、図面に基づき説明する。
【0022】
図1は、本発明に係る空気調和装置の一実施の形態を示す冷媒回路図である。この空気調和装置50は、室外ユニット1と、複数台(例えば4台)の室内ユニット2a、2b、2c、2dとを備えて構成される。室外ユニット1は、室外に設置され、室内ユニット2a、2b、2c、2dは、室内に設置される。
【0023】
室外ユニット1には、圧縮機10と、室外熱交換器11と、室外ユニット側の減圧機構としての室外膨張弁18と、室外ファン31とが備えられている。室外ファン31は、室外熱交換器11に近接して配置される。この室外ファン31は、例えば、プロペラファンである。室外熱交換器11は、少なくとも1台の室外熱交換器である。少なくとも1台の室外熱交換器として、室外熱交換器11は、複数台(例えば2台)の室外熱交換器11a、11bであり、互いに並列に接続される。また、室外膨張弁18は、例えば、2つの室外膨張弁18a、18bである。
【0024】
圧縮機10は、容量可変型圧縮機である。この圧縮機10は、図示しないエンジン(例えば、ガスエンジン)によって駆動され、そのエンジンの回転数に応じて容量(能力)が可変される。
【0025】
各室内ユニット2a、2b、2c、2dのそれぞれには、室内熱交換器20a、20b、20c、20dのそれぞれと室内ユニット側の減圧機構としての室内膨張弁21a、21b、21c、21dのそれぞれとが備えられている。各室内ユニット2a、2b、2c、2dのそれぞれを冷房運転させる場合は、室内熱交換器20a、20b、20c、20dのそれぞれを蒸発器として機能させ、室内ユニット2a、2b、2c、2dのそれぞれを暖房運転させる場合は、室内熱交換器20a、20b、20c、20dのそれぞれを凝縮器として機能させる。また、各室内ユニット2a、2b、2c、2dには、室内ファン30a、30b、30c、30dが備えられている。各室内ファン30a、30b、30c、30dは、室内熱交換器20a、20b、20c、20dのそれぞれに近接配置されて、これらそれぞれの室内熱交換器20a、20b、20c、20dで熱交換した空気を室内に送風する。室内ファン30a、30b、30c、30dは、例えば、クロスフローファンである。
【0026】
室外ユニット1と室内ユニット2a〜2dとがユニット間配管4により接続される。このユニット間配管4は、高圧ガス管5、低圧ガス管6及び液管7を備えてなる。高圧ガス管5が冷媒吐出管13に接続され、低圧ガス管6が冷媒吸込管14に接続される。
【0027】
上記室外ユニット1では、室外熱交換器11aの一端が、圧縮機10の冷媒吐出管13と冷媒吸込管14とに、それぞれ切換弁15a、16aを配設した高圧ガス分岐管8a、低圧ガス分岐管9aを介して択一に分岐して接続されており、室外熱交換器11bの一端が、圧縮機10の冷媒吐出管13と冷媒吸込管14とに、それぞれ切換弁15b、16bを配設した高圧ガス分岐管8b、低圧ガス分岐管9bを介して択一に分岐して接続されている。また、冷媒吸込管14にアキュムレータ12が配設されている。液管7は、室外膨張弁18a、18bを配設した液分岐管19a、19bを介して室外熱交換器11a、11bの他端に接続される。
【0028】
室内ユニット2a、2b、2c、2dの室内熱交換器20a、20b、20c、20dは、その一端が、室内側高圧ガス分岐管22a、22b、22c、22dを介して高圧ガス管5に接続されるとともに、室内側低圧ガス分岐管23a、23b、23c、23dを介して低圧ガス管6に接続される。また、室内ユニット2a、2b、2c、2dの室内熱交換器20a、20b、20c、20dは、その他端が、室内膨張弁21a、21b、21c、21dを配設した室内側液分岐管24a、24b、24c、24dを介して液管7にそれぞれ接続される。
【0029】
室内側高圧ガス分岐管22a、22b、22c、22dのそれぞれに、第1開閉弁25a、25b、25c、25dが配設される。また、室内側低圧ガス分岐管23a、23b、23c、23dのそれぞれに、第2開閉弁26a、26b、26c、26dが配設される。
【0030】
第1開閉弁25a、25b、25c、25dと第2開閉弁26a、26b、26c、26dを備えて開閉弁ユニット27a、27b、27c、27dが構成される。第1開閉弁25a、25b、25c、25dと第2開閉弁26a、26b、26c、26dは、一方が開操作されたとき、他方が閉操作される。これにより、各室内熱交換器20a、20b、20c、20dの一端は、開閉弁ユニット27a、27b、27c、27dのそれぞれにより、ユニット間配管4の高圧ガス管5と低圧ガス管6とに択一に接続される。
【0031】
室内ユニット2a、2b、2c、2dのそれぞれの運転が停止される場合は、室内膨張弁21a、21b、21c、21dのそれぞれが全閉操作される。
【0032】
室内ユニット2a、2b、2c、2dには、室内制御装置28a、28b、28c、28dが備えられている。室内制御装置28a、28b、28c、28dは、室内膨張弁21a、21b、21c、21d、開閉弁ユニット27a、27b、27c、27dの第1開閉弁25a、25b、25c、25d及び第2開閉弁26a、26b、26c、26d、室内ファン30a、30b、30c、30d等を制御する。
【0033】
室内ユニット2a、2b、2c、2dの室内制御装置28a、28b、28c、28dは、室内ユニット2a、2b、2c、2dを冷房運転若しくは暖房運転させる制御を行う。
【0034】
具体的に、室内ユニット2a、2b、2c、2dの室内制御装置28a、28b、28c、28dは、室内ユニット2a、2b、2c、2dを冷房運転若しくは暖房運転させるべく、開閉弁ユニット27a、27b、27c、27dの第1開閉弁25a、25b、25c、25dと第2開閉弁26a、26b、26c、26dとを開閉操作する信号を開閉弁ユニット27a、27b、27c、27dへ出力し、更に、室内膨張弁21a、21b、21c、21dの開度等を制御する。
【0035】
つまり、室内ユニット2a、2b、2c、2dのそれぞれにおいて暖房運転するときは、室内制御装置28a、28b、28c、28dによって、第1開閉弁25a、25b、25c、25dのそれぞれが開操作、第2開閉弁26a、26b、26c、26dのそれぞれが閉操作される。これによって、室内熱交換器20a、20b、20c、20dのそれぞれは凝縮器として機能する。
【0036】
室内ユニット2a、2b、2c、2dのそれぞれにおいて冷房運転するときは、室内制御装置28a、28b、28c、28dによって、第1開閉弁25a、25b、25c、25dのそれぞれが閉操作、第2開閉弁26a、26b、26c、26dのそれぞれが開操作される。これによって、室内熱交換器20a、20b、20c、20dのそれぞれは蒸発器として機能する。
【0037】
尚、これら室内ユニット2a、2b、2c、2dのうち、運転が停止している室内ユニットにおいては、冷房運転若しくは暖房運転させる制御が行われないことはいうまでもない。
【0038】
室外ユニット1には室外制御装置17が備えられている。この室外制御装置17は、室外ユニット1内の圧縮機10、室外膨張弁18a、室外膨張弁18b、切換弁15a及び16a、切換弁15b及び16b、室外ファン31等を制御する。室内制御装置28a、28b、28c、28dは、この室外制御装置17に接続されている。
【0039】
室外ユニット1は、室内ユニット2a、2b、2c、2dの空調要求負荷に応じて室外制御装置17の制御の下で運転される。空調要求負荷とは、室内ユニット2a、2b、2c、2dの要求する空調負荷である。例えば、圧縮機10は、空調要求負荷に応じて容量(能力)が制御され、室外熱交換器11a、11bは、室内ユニット2a、2b、2c、2dにおいて暖房要求負荷よりも冷房要求負荷が大きい場合、凝縮器として動作するように制御され、室内ユニット2a、2b、2c、2dにおいて暖房要求負荷よりも冷房要求負荷が小さい場合、蒸発器として動作するように制御される。具体的には、室外熱交換器11a、11bを凝縮器として動作させる場合、切換弁15a、15bが開操作され、切換弁16a、16bが閉操作され、室外膨張弁18a、18bの弁開度が制御される。また、室外熱交換器11a、11bを蒸発器として動作させる場合、切換弁15a、15bが閉操作され、切換弁16a、16bが開操作され、室外膨張弁18a、18bの弁開度が制御される。尚、室外熱交換器11a、11bは、空調要求負荷に応じて運転台数が決まる。室外熱交換器11a、11bのいずれかのみを動作させる場合、動作させない室外熱交換器11a、11b側の室外膨張弁18a、18bのいずれかが全閉操作される。室内ユニット2a、2b、2c、2dにおいて負荷がバランスするときは、室外膨張弁18a、18bの全てが全閉操作される。
【0040】
従って、複数台(例えば4台)の室内ユニット2a、2b、2c、2dを同時に冷暖房運転が可能であり、又は、これらの冷房運転と暖房運転とを混在して実施可能である。
【0041】
次に、室外制御装置17及び室内制御装置28a、28b、28c、28dの制御による空気調和装置50の冷房運転と暖房運転について説明する。尚、室内膨張弁21a、21b、21c、21dは、暖房運転時は冷媒流量を調整し、冷房運転時は冷媒を減圧するものである。また、室外膨張弁18a、18bは、室内ユニット2a、2b、2c、2dの冷房要求負荷が暖房要求負荷よりも大きい場合、即ち、室外熱交換器11a、11bが凝縮器として動作する場合、冷媒流量を調整し、室内ユニット2a、2b、2c、2dの暖房要求負荷が冷房要求負荷よりも大きい場合、即ち、室外熱交換器11a、11bが蒸発器として動作する場合、冷媒を減圧するものである。
【0042】
全室内ユニット2a、2b、2c、2dを同時に冷房する場合は、室外熱交換器11a、11bの一方の切換弁15a、15bを開くとともに他方の切換弁16a、16bを閉じ、且つ開閉弁ユニット27a、27b、27c、27dの第1開閉弁25a、25b、25c、25dを閉じるとともに、第2開閉弁26a、26b、26c、26dを開く。これにより、圧縮機10から吐出された冷媒は、冷媒吐出管13、切換弁15a及び15b、室外熱交換器11a及び11bへと順次流れ、この室外熱交換器11a、11bで凝縮液化した後、液管7と室内側液分岐管24a、24b、24c、24dを経て各室ユニット2a、2b、2c、2dの室内膨張弁21a、21b、21c、21dに分配され、ここで減圧される。しかる後、冷媒は、各室内熱交換器20a、20b、20c、20dで蒸発気化した後、それぞれ第2開閉弁26a、26b、26c、26dを流れた後、低圧ガス管6、冷媒吸込管14、アキュムレータ12を順次経て圧縮機10に吸入される。このように、蒸発器として機能する各室内熱交換器20a、20b、20c、20dの作用で全室内ユニット2a、2b、2c、2dが同時に冷房される。
【0043】
逆に、全室内ユニット2a、2b、2c、2dを同時に暖房する場合には、室外熱交換器11a、11bの一方の切換弁15a、15bを閉じるとともに他方の切換弁16a、16bを開き、且つ開閉弁ユニット27a、27b、27c、27dの第1開閉弁25a、25b、25c、25dを開くとともに、第2開閉弁26a、26b、26c、26dを閉じる。これにより、圧縮機10から吐出された冷媒は、冷媒吐出管13、高圧ガス管5を順次経て室内側高圧ガス分岐管22a、22b、22c、22dに分配された後、第1開閉弁25a、25b、25c、25d、室内熱交換器20a、20b、20c、20dへと流れ、ここでそれぞれ凝縮液化した後、室内側液分岐管24a、24b、24c、24dを経て液管7で合流される。しかる後、室外膨張弁18a、18bで減圧され室外熱交換器11a、11bで蒸発気化した後、切換弁16a、16b、冷媒吸込管14、アキュムレータ12を順次経て圧縮機10に吸入される。このように凝縮器として機能する各室内熱交換器20a、20b、20c、20dの作用で、全室内ユニット2a、2b、2c、2dが同時に暖房される。
【0044】
また、例えば、室内ユニット2a及び2bを冷房し、室内ユニット2c、2dを暖房する場合において、例えば、冷房要求負荷が暖房要求負荷よりも大きい場合について説明する。室外ユニット1の運転モードは、冷房運転モードである。このとき、室外熱交換器11a、11bの一方の切換弁15a、15bを開くとともに他方の切換弁16a、16bを閉じ、且つ、冷房する室内ユニット2a、2bに対応する開閉弁ユニット27a、27bの第1開閉弁25a、25bを閉じるとともに、第2開閉弁26a、26bを開き、且つ暖房する室内ユニット2c、2dに対応する開閉弁ユニット27c、27dの第1開閉弁25c、25dを開くとともに、第2開閉弁26c、26dを閉じる。すると、圧縮機10から吐出された冷媒の一部が冷媒吐出管13、切換弁15a、15bを順次経て室外熱交換器11a、11bに流れるとともに、残りの冷媒が高圧ガス管5を経て暖房する室内ユニット2c、2dに対応する開閉弁ユニット27c、27dの第1開閉弁25c、25d、室内熱交換器20c、20dへと流れ、これらの室内熱交換器20c、20d及び室外熱交換器11a、11bで凝縮液化される。
【0045】
そして、これら室内熱交換器20c、20d、室外熱交換器11a、11bで凝縮液化された冷媒は、液管7を経て室内ユニット2a、2bの室内膨張弁21a、21bで減圧された後、それぞれの室内熱交換器20a、20bで蒸発気化される。しかる後、冷媒は、第2開閉弁26a、26bを流れて低圧ガス管6で合流され、冷媒吸込管14、アキュムレータ12を順次経て圧縮機10に吸入される。このように、凝縮器として機能する室内熱交換器20c、20dの作用で室内ユニット2c、2dが暖房され、蒸発器として機能する他の室内熱交換器20a、20bの作用で室内ユニット2a、2bがそれぞれ冷房される。
【0046】
次に、例えば、室内ユニット2a及び2bを冷房し、室内ユニット2c、2dを暖房する場合において、例えば、暖房要求負荷が冷房要求負荷よりも大きい場合について説明する。室外ユニット1の運転モードは、暖房運転モードである。このとき、室外熱交換器11a、11bの一方の切換弁15a、15bを閉じるとともに他方の切換弁16a、16bを開き、且つ、冷房する室内ユニット2a、2bに対応する開閉弁ユニット27a、27bの第1開閉弁25a、25bを閉じるとともに、第2開閉弁26a、26bを開き、且つ暖房する室内ユニット2c、2dに対応する開閉弁ユニット27c、27dの第1開閉弁25c、25dを開くとともに、第2開閉弁26c、26dを閉じる。すると、圧縮機10から吐出された冷媒が冷媒吐出管13、高圧ガス管5を順次経て第1開閉弁25c、25dへと分配され、それぞれの室内熱交換器20c、20dで凝縮液化される。そして、この液化された冷媒は、それぞれ室内膨張弁21c、21dを経て液管7に流れる。この液管7中の液冷媒の一部が、室内膨張弁21a、21bで減圧された後に室内熱交換器20a、20bで、且つ、残りの液冷媒が室外膨張弁18a、18bで減圧された後に室外熱交換器11a、11bでそれぞれ蒸発気化され、冷媒吸込管14、アキュムレータ12を順次経て圧縮機10に吸入される。このように、凝縮器として機能する室内熱交換器20c、20dの作用で室内ユニット2c、2dが暖房され、蒸発器として機能する他の室内熱交換器20a、20bの作用で室内ユニット20a、20bが冷房される。
【0047】
ところで、室外ユニット1には、外気温度Toを検出する外気温度検出手段として外気温度センサ32が備えられている。この外気温度センサ32は、例えば、室外熱交換器11の吸込側に設置される。そして、この外気温度センサ32により検出した外気温度Toのデータは、室外制御装置17に送信される。また、各室内ユニット2a、2b、2c、2dには、各室内ユニット2a、2b、2c、2dの空気の吸込温度Trを検出する吸込温度検出手段として吸込温度センサ33a、33b、33c、33dが室内熱交換器20a、20b、20c、20dの吸込側に備えられている。また、各室内ユニット2a、2b、2c、2dには、各室内ユニット2a、2b、2c、2dの空気の吹出温度Tbを検出する吹出温度検出手段として吹出温度センサ34a、34b、34c、34dが備えられている。尚、吸込温度は、室内温度である。この吸込温度センサ33a、33b、33c、33d及び吹出温度センサ34a、34b、34c、34dにより検出された吸込温度Tr及び吹出温度Tbのそれぞれのデータは、室内制御装置28a、28b、28c、28dのそれぞれを介して室外制御装置17に送信される。
【0048】
室内ユニット2a、2b、2c、2dから吹き出す空気の吹出風速は、室内ファン30a、30b、30c、30dの回転数に対応している。吹出風速(即ち、室内ファン30a、30b、30c、30dの回転数)は、複数段階(例えば5段階)のステップに設定されている。そして、吹出風速のレベルが1から5まで順次規定される。1が最小風速レベルであり、5が最大風速レベルである。
【0049】
各室内ユニット2a、2b、2c、2dには、図示は省略するが、各室内ユニット2a、2b、2c、2dの運転モード(冷房又は暖房)を設定する運転モード設定手段と、室温を設定する室温設定手段と、運転の開始又は運転の停止を設定する運転設定手段と、吹出風速レベルを設定する風速設定手段とが設けられている。以下、室温設定手段により設定される室温を室内設定温度Tsという。運転モード設定手段、室温設定手段、運転設定手段及び風速設定手段は、例えば、図示しないリモートコントローラである。このリモートコントローラ、即ち、運転モード設定手段、室温設定手段、運転設定手段、風速設定手段のそれぞれにより、運転モード(冷房又は暖房)、室内設定温度Ts、運転の開始又は運転の停止、吹出風速レベルのそれぞれが設定されたときに送出される信号は、室内制御装置28a、28b、28c、28dに送信され、また、この室内制御装置28a、28b、28c、28dを介して室外制御装置17に送信されて設定に応じて各室内ユニット2a、2b、2c、2d及び室外ユニット1が制御される。尚、風速設定手段が室内制御装置28a、28b、28c、28dに含まれ、自動的に吹出風速レベルが設定される場合であってもよい。
【0050】
次に、室内ユニット2a、2bが冷房運転、室内ユニット2c、2dが暖房運転する場合を一例に、負荷計算に基づく空気調和装置50の運転制御について説明する。尚、以下に説明する負荷計算は室外制御装置17において行われるものとする。
【0051】
まず、各室内ユニット2a、2b、2c、2dの吸込温度Trと室内設定温度Tsとの差温ΔT(=|Tr−Ts|)と、各室内ユニット2a、2b、2c、2dの基本能力Wとに基づいて室内ユニット2a、2b、2c、2dの空調要求負荷が算出される(空調要求負荷算出手段)。
【0052】
この空調要求負荷算出手段として、冷房運転される各室内ユニット2a、2bの吸込温度Trと室内設定温度Tsとの差温ΔT(=|Tr−Ts|)と、冷房運転される各室内ユニット2a、2bの基本能力Wとに基づいて室内ユニット2a、2bの冷房要求負荷が算出される(冷房要求負荷算出手段)。また、この空調要求負荷算出手段として、暖房運転される各室内ユニット2c、2dの吸込温度Trと室内設定温度Tsとの差温ΔT(=|Tr−Ts|)と、暖房運転される各室内ユニット2c、2dの基本能力Wとに基づいて室内ユニット2c、2dの暖房要求負荷が算出される(暖房要求負荷算出手段)。
【0053】
尚、この空調要求負荷算出手段において、空調要求負荷(冷房要求負荷、暖房要求負荷)は、各室内ユニット2a、2b、2c、2d毎に算出される。
【0054】
上記の冷房要求負荷算出手段として、冷房運転される各室内ユニット2a、2bの基本能力Wに、冷房運転される各室内ユニット2a、2bの吸込温度Trと室内設定温度Tsとの差温ΔT(=|Tr−Ts|)がそれぞれ乗じられる。これによって、各室内ユニット2a、2bの冷房要求負荷Lca、Lcb(空調要求負荷)が算出される。次に、各室内ユニット2a、2bの冷房要求負荷Lca、Lcbの総和ΣLcが算出される。この総和ΣLcが、室内ユニット2a、2b全体の冷房要求負荷である。尚、この実施の形態における冷房要求負荷Lca、Lcbは、負荷の大きさを表す係数である。
【0055】
また、上記の暖房要求負荷算出手段として、暖房運転される各室内ユニット2c、2dの基本能力Wに、暖房運転される各室内ユニット2c、2dの吸込温度Trと室内設定温度Tsとの差温ΔT(=|Tr−Ts|)がそれぞれ乗じられる。これによって、各室内ユニット2c、2dの暖房要求負荷Lhc、Lhd(空調要求負荷)が算出される。次に、各室内ユニット2c、2dの暖房要求負荷Lhc、Lhdの総和ΣLhが算出される。この総和ΣLhが、室内ユニット2c、2d全体の暖房要求負荷である。尚、この実施の形態における暖房要求負荷Lhc、Lhdは、負荷の大きさを表す係数である。
【0056】
そして、各室内ユニットの要求する空調要求負荷に基づいて、圧縮機10の容量(能力)が制御されるとともに、室外熱交換器11a、11bの熱交換能力が制御される(制御手段)。即ち、空調要求負荷算出手段により算出された空調要求負荷に基づいて、圧縮機10の容量(能力)が制御されるとともに、室外熱交換器11a、11bの熱交換能力が制御される。
【0057】
この制御手段として、算出された空調要求負荷(冷房要求負荷ΣLc、暖房要求負荷ΣLh)に基づいて、圧縮機10の必要負荷(以下、「圧縮機必要負荷」という。)が算出される(圧縮機必要負荷算出手段)。具体的には、冷房要求負荷ΣLcと暖房要求負荷ΣLhとの内、いずれか大きい方の空調要求負荷が圧縮機必要負荷Lcoとして算出される。そして、空調要求負荷(冷房要求負荷ΣLc、暖房要求負荷ΣLh)に基づいて(即ち、圧縮機必要負荷Lcoに応じて)圧縮機10の容量(能力)が制御される(圧縮機容量制御手段)。
【0058】
具体的には、圧縮機必要負荷Lcoに応じて圧縮機10の回転数(図示しないエンジンの回転数)が制御される。室外制御装置17には、圧縮機必要負荷Lcoに対応する圧縮機10の回転数(図示しないエンジンの回転数)が記憶されている。そして、算出された圧縮機必要負荷Lcoに対応する圧縮機10の回転数(図示しないエンジンの回転数)がこの室外制御装置17により決定される。そして、この決定された回転数となるように圧縮機10の回転数(図示しないエンジンの回転数)が制御される。
【0059】
また、制御手段として、空調要求負荷(冷房要求負荷ΣLc、暖房要求負荷ΣLh)に基づいて、室外熱交換器11a、11bの必要負荷(以下、「室外必要負荷」という。)が算出される(室外必要負荷算出手段)。具体的には、冷房要求負荷ΣLcと暖房要求負荷ΣLhとの差|ΣLc−ΣLh|が室外必要負荷Loとして算出される。そして、室外必要負荷Loに応じて室外熱交換器11a、11bの熱交換能力が制御される(熱交換能力制御手段)。
【0060】
例えば、ΣLc>ΣLhである場合、室内ユニット2a、2b、2c、2d側(室内熱交換器20a、20b、20c、20d)は全体として冷房要求負荷が大きいので、室外熱交換器11a、11bは、その差(ΣLc−ΣLh)の負荷に基づいて凝縮器として運転される。また、ΣLc<ΣLhである場合、室内ユニット2a、2b、2c、2d側(室内熱交換器20a、20b、20c、20d)は全体として暖房要求負荷が大きいので、室外熱交換器11a、11bは、その差(ΣLh−ΣLc)の負荷に基づいて蒸発器として運転される。
【0061】
具体的には、室外必要負荷Loに基づいて、動作させる室外熱交換器11a、11bの台数、室外熱交換器11a、11bへの冷媒流量、室外ファン31の風量が制御されることにより、室外熱交換器11a、11bの熱交換能力が制御される。即ち、室外必要負荷Loに基づいて室外膨張弁18a、18bの弁開度及び室外ファン31の回転数が制御されることにより室外熱交換器11a、11bの熱交換能力が制御される。
【0062】
尚、室外制御装置17には、室外必要負荷Loに対応する室外膨張弁18a、18bの弁開度及び室外ファン31の回転数が記憶されている。そして、算出された室外必要負荷Loに対応する室外膨張弁18a、18bの弁開度及び室外ファン31の回転数がこの室外制御装置17により決定される。そして、この決定された弁開度及び回転数となるように室外膨張弁18a、18bの弁開度及び室外ファン31の回転数が制御される。
【0063】
これらの制御によって、各室内ユニット2a、2b、2c、2dの吸込温度Trが室内設定温度Tsに近づけられる。
【0064】
このような負荷計算による制御によれば、室内ユニット2a、2bの冷房運転において空気の吹出温度Tbが上昇して冷風感が得られない場合や室内ユニット2c、2dの暖房運転において空気の吹出温度Tbが低下して温風感が得られない場合がある。従って、冷風感や温風感を得るために空調要求負荷(冷房要求負荷Lca、Lcb、暖房要求負荷Lhc、Lhd)を補正する必要が生じる。
【0065】
また、このような負荷計算による制御によれば、室内ユニット2a、2b、2c、2dにおいて空気の吹出風速(即ち、室内ファン30a、30b、30c、30dの回転数)が下げられたとき、室内ユニット2a、2bの冷房運転において空気の吹出温度Tbが過剰に低くなる場合があり、室内ユニット2c、2dの暖房運転において空気の吹出温度Tbが過剰に高くなる場合がある。従って、空気の吹出温度Tbが過剰に低く又は高くなるのを防止するために空調要求負荷(冷房要求負荷Lca、Lcb、暖房要求負荷Lhc、Lhd)を補正する必要が生じる。
【0066】
また、このような負荷計算による制御によれば、同じ値の室外必要負荷Loで室外熱交換器11a、11bの熱交換能力(即ち、室外膨張弁18a、18bの弁開度、室外ファン31の回転数)を制御しても、外気温度Toの変化で空調能力(冷房能力又は暖房能力)、即ち、室外熱交換器11a、11bの熱交換能力が変化する。
【0067】
つまり、冷房要求負荷ΣLcが暖房要求負荷ΣLhよりも大きい場合(即ち、室外熱交換器11a、11bが凝縮器として運転される場合)について説明すると、所定外気温度(冷房標準外気温度T1)を基準として、外気温度Toが冷房標準外気温度T1よりも低下する場合、冷房能力(即ち、室外熱交換器11a、11bの凝縮能力)が上昇する。逆に、外気温度Toが冷房標準外気温度T1よりも上昇する場合、冷房能力(即ち、室外熱交換器11a、11bの凝縮能力)が低下する。
【0068】
また、暖房要求負荷ΣLhが冷房要求負荷ΣLcよりも大きい場合(即ち、室外熱交換器11a、11bが蒸発器として運転される場合)について説明すると、所定外気温度(暖房標準外気温度T2)を基準として、外気温度Toが暖房標準外気温度T2よりも低下する場合、暖房能力(即ち、室外熱交換器11a、11bの蒸発能力)が低下する。逆に、外気温度Toが暖房標準外気温度T2よりも上昇する場合、暖房能力(即ち、室外熱交換器11a、11bの蒸発能力)が上昇する。
【0069】
従って、要求される空調能力に近づけるには、外気温度Toに応じて室外必要負荷Loを補正する必要が生じる。つまり、外気温度Toが変化することによって室外熱交換器11a、11bの熱交換能力が変化するので、外気温度Toに応じて室外必要負荷Loを補正して、室外熱交換器11a、11bの熱交換能力(室外膨張弁18a、18bの弁開度及び室外ファン31の回転数)を補正する必要が生じる。
【0070】
尚、所定外気温度(室外熱交換器11a、11bが凝縮器として動作する場合の冷房標準外気温度T1及び室外熱交換器11a、11bが蒸発器として動作する場合の暖房標準外気温度T2)は、室外必要負荷Loを補正せずとも要求される空調能力で運転されるときの外気温度Toである。以下、所定外気温度(冷房標準外気温度T1、暖房標準外気温度T2)のときの空調能力を定格能力とする。
【0071】
本実施の形態における空気調和装置50では、室内ユニット2a、2b、2c、2dの目標吹出温度Tsbが設定される。この目標吹出温度Tsbは、暖房運転時と冷房運転時とで異なる値に設定される。暖房運転時の目標吹出温度Tsbは、温風感が得られる温度(例えば、45℃)に設定され、冷房運転時の目標吹出温度は、冷風感が得られる温度(例えば、10℃)に設定される。
【0072】
まず、空調要求負荷が補正される場合について説明する。
【0073】
各室内ユニット2a、2b、2c、2dの吹出温度Tbと目標吹出温度Tsbとに差が生じる場合、各室内ユニット2a、2b、2c、2dの吹出温度Tbを目標吹出温度Tsbに近づけるべく、空調要求負荷(冷房要求負荷Lca、Lcb及び暖房要求負荷Lhc、Lhd)が補正される(第1補正手段)。具体的には、各室内ユニット2a、2b、2c、2dの吹出温度Tbと目標吹出温度Tsbとに差が生じる場合、各室内ユニット2a、2b、2c、2dの吹出温度Tbを目標吹出温度Tsbに近づけるべく第1補正係数が演算され、この第1補正係数を用いて空調要求負荷(冷房要求負荷Lca、Lcb及び暖房要求負荷Lhc、Lhd)が補正される。この第1補正係数を用いて空調要求負荷(冷房要求負荷Lca、Lcb及び暖房要求負荷Lhc、Lhd)が補正されることにより、吹出温度Tbは目標吹出温度Tsbに近づけられる。
【0074】
この第1補正手段として、各室内ユニット2a、2b、2c、2dの目標吹出温度Tsbと吹出温度Tbとの差温ΔTb(=|Tsb−Tb|)に基づいて、算出された空調要求負荷Lca、Lcb、Lhc、Lhdが補正される。例えば、各室内ユニット2a、2b、2c、2dの目標吹出温度Tsbと吹出温度Tbとの差温ΔTbから、所定の計算式により第1補正係数として吹出温度補正係数Qbが求められる。この吹出温度補正係数Qbは、各室内ユニット2a、2b、2c、2d毎に求められる。そして、各吹出温度補正係数Qbが各室内ユニット2a、2b、2c、2dの空調要求負荷Lca、Lcb、Lhc、Lhdに乗じられることにより、各室内ユニット2a、2b、2c、2dの空調要求負荷Lca、Lcb、Lhc、Lhdが補正される。この所定の計算式は、例えば、実験により求められる。この空調要求負荷Lca、Lcb、Lhc、Lhdが補正されることにより、圧縮機必要負荷Lcoが補正され、この補正された圧縮機必要負荷Lcoに基づいて圧縮機10の容量(能力)が制御される。また、空調要求負荷Lca、Lcb、Lhc、Lhdが補正されることにより、室外必要負荷Loが補正され、この補正された室外必要負荷Loに基づいて室外熱交換器11a、11bの熱交換能力が制御される。
【0075】
この吹出温度補正係数Qbを求める場合について説明する。
【0076】
【表1】
Figure 0004179783
【0077】
この吹出温度補正係数Qbは、上述したように、各室内ユニット2a、2b、2c、2dの目標吹出温度Tsbと吹出温度Tbとの差温ΔTbから、所定の計算式により求められる。例えば、表1に示すように、冷房運転される室内ユニット2a、2bの目標吹出温度Tsbは、冷風感が得られる温度(例えば、10℃)に設定され、暖房運転される室内ユニット2c、2dの目標吹出温度Tsbは、温風感が得られる温度(例えば、45℃)に設定されるものとする。目標吹出温度Tsbと吹出温度Tbとの差温ΔTbが0のとき、即ち、吹出温度Tbが目標吹出温度Tsbであるとき、吹出温度補正係数Qbは、吹出温度Tbが目標吹出温度Tsbに達しているので、1となるように所定の計算式により求められる。そして、差温ΔTbが大きければ大きいほど、吹出温度補正係数Qbが大きくなるように所定の計算式により求められる。
【0078】
即ち、差温ΔTbが大きいほど吹出温度Tbが目標吹出温度Tsbから離れていることを示しているから、差温ΔTbが大きいほど空調要求負荷Lca、Lcb、Lhc、Lhdが大きくなるよう補正される。この補正された空調要求負荷Lca、Lcb、Lhc、Lhdに基づいて圧縮機10の容量(能力)が制御され、室外熱交換器11a、11bの熱交換能力が制御されるので、吹出温度Tbが目標吹出温度Tsbに近づけられ、温風感又は冷風感が得られる。
【0079】
また、第1補正手段として、室内ファン30a、30b、30c、30dの回転数に基づいて、算出された空調要求負荷Lca、Lcb、Lhc、Lhdが補正される。例えば、吹出風速レベルに対応して第1補正係数として吹出風速補正係数Qvが規定されているテーブルにより、吹出風速レベルに対応した吹出風速補正係数Qvが求められる。そして、各室内ユニット2a、2b、2c、2dの空調要求負荷Lca、Lcb、Lhc、Lhdに各吹出風速補正係数Qvが乗じられることにより補正される。この吹出風速レベルに対応して吹出風速補正係数Qvが規定されているテーブルは、例えば、実験により求められる。この空調要求負荷Lca、Lcb、Lhc、Lhdが補正されることにより、圧縮機必要負荷Lcoが補正され、この補正された圧縮機必要負荷Lcoに基づいて圧縮機10の容量(能力)が制御される。また、空調要求負荷Lca、Lcb、Lhc、Lhdが補正されることにより、室外必要負荷Loが補正され、この補正された室外必要負荷Loに基づいて室外熱交換器11a、11bの熱交換能力が制御される。
【0080】
この吹出風速補正係数Qvを求める場合について説明する。この吹出風速補正係数Qvは、上述したように、室内ファン30a、30b、30c、30dの回転数、即ち、吹出風速レベルから、吹出風速レベルに対応して吹出風速補正係数Qvが規定されているテーブル(表2)により求められる。
【0081】
【表2】
Figure 0004179783
【0082】
このテーブル(表2)では、吹出風速レベルが低くなればなるほど、吹出風速補正係数Qvが小さくなるように規定されている。そして、例えば、吹出風速レベル5が基準、即ち、吹出風速補正係数Qvが1.0に規定されている。従って、吹出風速が低下したとき、吹出風速補正係数Qvが小さくなるので、この吹出風速補正係数Qvにより空調要求負荷Lca、Lcb、Lhc、Lhdが小さくなるよう補正される。この補正された空調要求負荷Lca、Lcb、Lhc、Lhdに基づいて圧縮機10の容量(能力)が制御されるとともに、室外熱交換器11a、11bの熱交換能力が制御されるので、冷房運転される室内ユニット2a、2bでは、空気の吹出温度Tbが目標吹出温度Tsbを超えて過剰に低くなるのが防止され、また、暖房運転される室内ユニット2c、2dでは、空気の吹出温度Tbが目標吹出温度Tsbを超えて過剰に高くなるのが防止されて、各室内ユニット2a、2b、2c、2dの吹出温度Tbが目標吹出温度Tsbに近づけられる。
【0083】
次に、室外必要負荷Loが補正される場合について説明する。
【0084】
外気温度センサ32(外気温度検出手段)により検出される外気温度Toと、基準となる所定外気温度とに差が生じる場合、要求される空調能力に近づけるべく、外気温度Toに応じて室外必要負荷Loが補正される(第2補正手段)。この第2補正手段として、外気温度センサ32(外気温度検出手段)により検出される外気温度Toと、基準となる所定外気温度とに差が生じる場合、外気温度Toに応じて第2補正係数が演算され、この第2補正係数を用いて室外必要負荷Loが補正される。
【0085】
具体的には、まず、外気温度Toに応じて第2補正係数として外気温度補正係数Qxが演算される。この外気温度補正係数Qxを演算する手段として、まず、外気温度センサ32により検出された外気温度Toに対応する空調能力(冷房能力又は暖房能力)が求められる。このとき、外気温度に対応する空調能力の線図(図示せず)を基に、外気温度センサ32により検出された外気温度Toに対応する空調能力(冷房能力又は暖房能力)が求められる。この線図は、室外制御装置17に記憶されている。この線図(図示せず)により求められた空調能力(冷房能力又は暖房能力)が、定格能力(所定外気温度のときの空調能力)のX%、即ち、要求される空調能力のX%であるとすれば、外気温度補正係数Qxが、100/Xで演算される。
【0086】
そして、冷房要求負荷ΣLcと暖房要求負荷ΣLhとの差|ΣLc−ΣLh|(室外必要負荷Lo)において、いずれか大きい方の空調要求負荷(冷房要求負荷ΣLc又は暖房要求負荷ΣLh)に外気温度補正係数Qxを乗じることで室外必要負荷Loが補正される。これによって、室外熱交換器11a、11bの熱交換能力が補正され、空調能力が補正され、要求された空調能力に近づけられる。
【0087】
つまり、線図(図示せず)により求められた空調能力が定格能力以下であれば、外気温度補正係数Qxが1以上となるよう演算され、線図(図示せず)により求められた空調能力が定格能力以上であれば、外気温度補正係数Qxが1以下となるよう演算される。これによって、求められた空調能力が定格能力よりも大であれば、室外熱交換器11a、11bの熱交換能力が増大するように補正されて、空調能力が要求される空調能力に近づけられる。また、求められた空調能力が定格能力よりも小であれば、室外熱交換器11a、11bの熱交換能力が低下するようにするように補正されて、空調能力が要求される空調能力に近づけられる。
【0088】
ここで、外気温度補正係数Qxは、冷房要求負荷ΣLcが暖房要求負荷ΣLhよりも大きければ、冷房能力に基づいて外気温度補正係数Qxが演算され、暖房要求負荷ΣLhが冷房要求負荷ΣLcよりも大きければ、暖房能力に基づいて外気温度補正係数Qxが演算される。
【0089】
例えば、冷房運転時の定格能力条件としての冷房標準外気温度T1は35℃であり、暖房運転時の定格能力条件としての暖房標準外気温度T2は7℃であるとする。そして、室外熱交換器11a、11bが凝縮器として運転される場合、即ち、冷房要求負荷ΣLcが暖房要求負荷ΣLhよりも大きい場合について説明する。例えば、外気温度Toが15℃であるとして、この外気温度To(15℃)に対応する冷房能力が線図(図示せず)により求められる。この冷房能力が、定格能力(冷房標準外気温度T1のときの冷房能力)の110%である場合、即ち、要求される冷房能力の110%である場合、室外必要負荷Loの算出において、まず、外気温度補正係数Qxとして100/110が求められ、この外気温度補正係数Qxが冷房要求負荷ΣLcに乗じられる。さらに暖房運転される室内ユニット2c、2dの暖房要求負荷ΣLhが減じられる。
【0090】
つまり、冷房要求負荷ΣLcが暖房要求負荷ΣLhよりも大きい場合、室外必要負荷Loは、|(ΣLc)×Qx−ΣLh|で求められる。この室外必要負荷Loに基づいて室外熱交換器11a、11bの熱交換能力が制御される。これによって、外気温度Toと基準となる所定外気温度(冷房標準外気温度T1)とに差が生じる場合、即ち、外気温度Toが変化して空調能力(冷房能力)が変化する場合、外気温度Toに基づいて外気温度補正係数Qxが演算され、この外気温度補正係数Qxを用いて室外必要負荷Loが補正されることから、室外熱交換器11a、11bの熱交換能力が補正され、要求される空調能力(冷房能力)に近づけられる。
【0091】
また、室外熱交換器11a、11bが蒸発器として運転される場合、即ち、暖房要求負荷ΣLhが冷房要求負荷ΣLcよりも大きい場合について説明する。例えば、外気温度Toが15℃であるとして、この外気温度To(15℃)に対応する暖房能力が線図(図示せず)により求められる。この暖房能力が、定格能力(暖房標準外気温度T2のときの暖房能力)の115%である場合、即ち、要求される暖房能力の115%である場合、室外必要負荷Loの算出において、まず、外気温度補正係数Qxとして100/115が求められ、この外気温度補正係数Qxが暖房要求負荷ΣLhに乗じられる。さらに冷房運転される室内ユニット2a、2bの冷房要求負荷ΣLcが減じられる。
【0092】
つまり、暖房要求負荷ΣLhが冷房要求負荷ΣLcよりも大きい場合、室外必要負荷Loは、|ΣLc−(ΣLh)×Qx|で求められる。この室外必要負荷Loに基づいて室外熱交換器11a、11bの熱交換能力が制御される。これによって、外気温度Toと基準となる所定外気温度(暖房標準外気温度T2)とに差が生じる場合、即ち、外気温度Toが変化して空調能力(暖房能力)が変化する場合、外気温度Toに基づいて外気温度補正係数Qxが演算され、この外気温度補正係数Qxを用いて室外必要負荷Loが補正されることから、室外熱交換器11a、11bの熱交換能力が補正され、要求される空調能力(暖房能力)に近づけられる。
【0093】
次に、これら負荷計算の一例について説明する。
【0094】
【表3】
Figure 0004179783
【0095】
表3は、空気調和装置50を運転したときの諸条件(運転モード、基本能力W、吸込温度Tr、室内設定温度Ts、差温ΔT、吹出温度Tb、吹出風速レベル、外気温度To)の一例を示すものである。この表3における条件の下、表1に示す吹出温度補正係数Qb及び表2に示す吹出風速補正係数Qvを参照して負荷計算する。
【0096】
冷房要求負荷ΣLcは、
冷房要求負荷ΣLc=Lca+Lcb=(1馬力/10馬力×3℃(ΔT)×1.2(Qb)×0.6(Qv))+(5馬力/10馬力×5℃(ΔT)×1.5(Qb)×0.8(Qv))≒3.22
である。
【0097】
暖房要求負荷ΣLhは、
暖房要求負荷ΣLh=Lhc+Lhd=(2馬力/10馬力×4℃(ΔT)×1.5(Qb)×1.0(Qv))+(5馬力/10馬力×1℃(ΔT)×1(Qb)×0.6(Qv))=1.5
である。
【0098】
ここで、各室内ユニット2a、2b、2c、2dの基本能力を室外ユニット1の基本能力(10馬力)で割ったのは、室外ユニット1に対する各室内ユニット2a、2b、2c、2dの能力の割合を算出するためである。尚、本実施の形態における負荷計算で算出される各室内ユニット2a、2b、2c、2dの空調要求負荷Lca、Lcb、Lhc、Lhdは、負荷の大きさを表す係数であるので、各室内ユニット2a、2b、2c、2dの基本能力を室外ユニット1の基本能力(10馬力)で割るのことは、省略可能である。
【0099】
次に、冷房要求負荷ΣLc>暖房要求負荷ΣLhであるので、圧縮機必要負荷Lcoは、
圧縮機必要負荷Lco=冷房要求負荷ΣLc≒3.22
である。従って、圧縮機10は、3.22の負荷に相当する容量(能力)で運転される。この補正によって、室内ユニット2a、2bでは、冷風感が得られる温度(例えば、10℃)の空気が吹き出され、室内ユニット2c、2dでは、温風感が得られる温度(例えば、45℃)の空気が吹き出される。
【0100】
次に、冷房要求負荷ΣLc>暖房要求負荷ΣLhであり、外気温度Toが15℃であるので、この外気温度(15℃)のときは、110%の冷房能力が出る。従って、外気温度補正係数Qxは、上記の例のように、100/110で求められ、室外必要負荷Loは、
室外必要負荷Lo=|(ΣLc)×Qx−ΣLh|=|3.22×(100/110)−1.5|≒1.43
となる。従って、冷房要求負荷ΣLc>暖房要求負荷ΣLhであるので、室外熱交換器11a、11bは、1.43の負荷に基づいて凝縮器として運転される。この補正によって、要求される冷房能力に近づけられる。
【0101】
本実施の形態によれば、各室内ユニット2a、2b、2c、2dの吸込温度Trと室内設定温度Tsとの差温ΔT(=|Tr−Ts|)と、各室内ユニット2a、2b、2c、2dの基本能力Wとに基づいて各室内ユニット2a、2b、2c、2d毎に空調要求負荷(冷房要求負荷Lca、Lcb及び暖房要求負荷Lhc、Lhd)が算出されることから、例えば、冷房運転される各室内ユニットの基本能力の総和に、冷房運転される各室内ユニットの吸込温度と室内設定温度との差温の平均を乗じて室内ユニット全体の冷房要求負荷を算出するとともに、暖房運転される各室内ユニットの基本能力の総和に、暖房運転される各室内ユニットの吸込温度と室内設定温度との差温の平均を乗じて室内ユニット全体の暖房要求負荷を算出する場合によっても室内ユニット全体の冷房要求負荷及び室内ユニット全体の暖房要求負荷が算出されるが、この場合と比べて、室内ユニット2a、2b全体の冷房要求負荷ΣLc及び室内ユニット2c、2d全体の暖房要求負荷ΣLhの誤差が小さくなり、圧縮機必要負荷Lco及び室外必要負荷Loの正確さが向上するので、空気調和装置50の冷凍サイクルにおける各機器の耐久性を向上させることができ、空気調和装置50の空調性を向上させることができ、空気調和装置50の運転の安定性を向上させることができる。
【0102】
また、本実施の形態によれば、各室内ユニット2a、2b、2c、2dの吹出温度Tbと目標吹出温度Tsbとに差が生じる場合、各室内ユニット2a、2b、2c、2dの吹出温度Tbを目標吹出温度Tsbに近づけるべく第1補正係数が演算され、この第1補正係数を用いて空調要求負荷(冷房要求負荷Lca、Lcb及び暖房要求負荷Lhc、Lhd)が補正されることから、負荷の計算の正確さが向上するので空気調和装置50の冷凍サイクルにおける各機器の耐久性を向上させることができ、また、圧縮機10の容量(能力)が補正され、室外熱交換器11a、11bの熱交換能力が補正され、各室内ユニット2a、2b、2c、2dの空気の吹出温度Tbが目標吹出温度Tsbに近づけられるので、空気調和装置50の空調性を向上させることができ、空気調和装置50の運転の安定性を向上させることができる。
【0103】
また、本実施の形態によれば、目標吹出温度Tsbと吹出温度Tbとの差温ΔTbから、所定の計算式により各室内ユニット2a、2b、2c、2d毎の第1補正係数としての吹出温度補正係数Qbが求められ、各吹出温度補正係数Qbが室内ユニット2a、2b、2c、2dの空調要求負荷Lca、Lcb、Lhc、Lhdに乗じられることにより、室内ユニット2a、2b、2c、2dの空調要求負荷Lca、Lcb、Lhc、Lhdが補正されることから、負荷の計算の正確さが向上するので空気調和装置50の冷凍サイクルにおける各機器の耐久性を向上させることができ、また、圧縮機10の容量(能力)が補正され、室外熱交換器11a、11bの熱交換能力が補正され、各室内ユニット2a、2b、2c、2dの空気の吹出温度Tbが目標吹出温度Tsbに近づけられるので、空気調和装置50の空調性を向上させることができ、空気調和装置50の運転の安定性を向上させることができる。
【0104】
また、本実施の形態によれば、所定の計算式により、目標吹出温度Tsbと吹出温度Tbとの差温ΔTbが0のとき、吹出温度補正係数Qbが1となるように求められ、目標吹出温度Tsbと吹出温度Tbとの差温ΔTbが大きければ大きいほど、吹出温度補正係数Qbが大きくなるように求められることから、差温ΔTbが大きいほど空調要求負荷Lca、Lcb、Lhc、Lhdが大きくなるよう補正され、この補正された空調要求負荷Lca、Lcb、Lhc、Lhdに基づいて圧縮機10の容量(能力)が制御され、室外熱交換器11a、11bの熱交換能力が制御されるので、より早く各室内ユニット2a、2b、2c、2dの空気の吹出温度Tbが目標吹出温度Tsbに近づけられる。従って、空気調和装置50の空調性を向上させることができ、空気調和装置50の運転の安定性を向上させることができる。
【0105】
また、本実施の形態によれば、各室内ユニット2a、2b、2c、2dの室内ファン30a、30b、30c、30dの回転数(即ち、吹出風速レベル)に対応した第1補正係数としての吹出風速補正係数Qvが、吹出風速レベルに対応して吹出風速補正係数Qvが規定されているテーブルにより求められ、各吹出風速補正係数Qvが各室内ユニット2a、2b、2c、2dの空調要求負荷Lca、Lcb、Lhc、Lhdに乗じられることにより、各室内ユニット2a、2b、2c、2dの空調要求負荷Lca、Lcb、Lhc、Lhdが補正されることから、負荷の計算の正確さが向上するので空気調和装置50の冷凍サイクルにおける各機器の耐久性を向上させることができ、また、圧縮機10の容量(能力)が補正され、室外熱交換器11a、11bの熱交換能力が補正され、各室内ユニット2a、2b、2c、2dの空気の吹出温度Tbが目標吹出温度Tsbに近づけられるので、冷房運転される室内ユニット2a、2bの空気の吹出温度Tbが目標吹出温度Tsbを超えて過剰に低くなるのが防止され、また、暖房運転される室内ユニット2c、2dの空気の吹出温度Tbが目標吹出温度Tsbを超えて過剰に高くなるのが防止される。従って、各室内ユニット2a、2b、2c、2dの空気の吹出温度Tbが安定し、空気調和装置50の空調性を向上させることができ、空気調和装置50の運転の安定性を向上させることができる。
【0106】
また、本実施の形態によれば、吹出風速レベルに対応して吹出風速補正係数Qvが規定されているテーブルには、吹出風速レベルが低くなればなるほど、吹出風速補正係数Qvが小さくなるように規定されていることから、吹出風速が低下したとき、吹出風速補正係数Qvが小さくなるので、この吹出風速補正係数Qvにより空調要求負荷Lca、Lcb、Lhc、Lhdが小さくなるよう補正され、この補正された空調要求負荷Lca、Lcb、Lhc、Lhdに基づいて圧縮機10の容量(能力)が制御されるとともに、室外熱交換器11a、11bの熱交換能力が制御される。よって、吹出温度Tbが目標吹出温度Tsbに近づけられ、暖房運転される室内ユニット2c、2dの空気の吹出温度Tbが目標吹出温度Tsbを超えて過剰に高くなるのが防止され、また、冷房運転される室内ユニット2a、2bの空気の吹出温度Tbが目標吹出温度Tsbを超えて過剰に低くなるのが防止されるので、各室内ユニット2a、2b、2c、2dの空気の吹出温度Tbが安定し、空気調和装置50の空調性を向上させることができ、空気調和装置50の運転の安定性を向上させることができる。
【0107】
また、本実施の形態によれば、目標吹出温度Tsbが冷風感又は温風感の得られる温度に設定され、吹出温度Tbが冷風感又は温風感の得られる目標吹出温度Tsbに近づけられるため、空調性を向上させることができる。
【0108】
また、本実施の形態によれば、外気温度検出手段としての外気温度センサ32により検出される外気温度Toと、基準となる所定外気温度とに差が生じる場合、要求される空調能力に近づけるべく、外気温度Toに応じて第2補正係数が演算され、この第2補正係数を用いて室外必要負荷Loが補正されることから、負荷の計算の正確さが向上するので空気調和装置50の冷凍サイクルにおける各機器の耐久性を向上させることができ、また、室外熱交換器11a、11bの熱交換能力が補正されて、要求される空調能力に近づけられるので、空気調和装置50の運転の安定性を向上させることができ、空調性を向上させることができる。
【0109】
また、本実施の形態によれば、外気温度に対応する空調能力の線図(図示せず)を基に、外気温度検出手段としての外気温度センサ32により検出された外気温度Toに対応する空調能力(冷房能力又は暖房能力)が求められ、この線図(図示せず)により求められた空調能力(冷房能力又は暖房能力)が、定格能力(所定外気温度のときの空調能力)のX%、即ち、要求される空調能力のX%であれば、第2補正係数としての外気温度補正係数Qxが、100/Xで演算され、この外気温度補正係数Qxを用いて室外必要負荷Loが補正されることから、負荷の計算の正確さが向上するので空気調和装置50の冷凍サイクルにおける各機器の耐久性を向上させることができ、また、室外熱交換器11a、11bの熱交換能力が補正され、要求される空調能力に近づけられるので、空気調和装置50の運転の安定性を向上させることができ、空調性を向上させることができる。
【0110】
また、本実施の形態によれば、室内ユニット2a、2b全体の冷房要求負荷ΣLcと室内ユニット2c、2d全体の暖房要求負荷ΣLhとの差|ΣLc−ΣLh|が室外必要負荷Loとして演算され、この室外必要負荷Loの演算における冷房要求負荷ΣLcと暖房要求負荷ΣLhとの内、いずれか大きい方の空調要求負荷に外気温度補正係数Qxを乗じることで室外必要負荷Loが補正されることから、負荷の計算の正確さが向上するので空気調和装置50の冷凍サイクルにおける各機器の耐久性を向上させることができ、また、室外熱交換器11a、11bの熱交換能力が補正され、要求される空調能力に近づけられるので、空気調和装置50の運転の安定性を向上させることができ、空調性を向上させることができる。
【0111】
また、本実施の形態によれば、圧縮機10がエンジン(図示せず)で駆動されることから、空調要求負荷Lca、Lcb、Lhc、Lhdの計算の正確さの向上により、空調要求負荷Lca、Lcb、Lhc、Lhdの過大計算又は過小計算によるエンジンの発停回数が減少するので、例えば、エンジンのスタータ等のエンジンを構成する機器の耐久性を向上させることができる。
【0112】
尚、上記の実施の形態では、負荷の大きさを表す係数として、各室内ユニット2a、2b、2c、2dの基本能力Wに各室内ユニット2c、2dの吸込温度Trと室内設定温度Tsとの差温ΔT(=|Tr−Ts|)がそれぞれ乗じられることにより、各室内ユニット2a、2b、2c、2dの空調要求負荷(冷房要求負荷Lca、Lcb、暖房要求負荷Lhc、Lhd)が算出される場合を説明したが、これに限るものではなく、負荷の大きさを表す係数である各室内ユニット2a、2b、2c、2dの空調要求負荷(冷房要求負荷Lca、Lcb、暖房要求負荷Lhc、Lhd)と、実際の各室内ユニット2a、2b、2c、2dの空調要求負荷(冷房要求負荷、暖房要求負荷)とは比例関係にあるので、実際の各室内ユニット2a、2b、2c、2dの空調要求負荷(冷房要求負荷、暖房要求負荷)が算出される場合であってもよい。この場合、圧縮機必要負荷及び室外必要負荷は係数ではなく実際の必要負荷である。そして、例えば、負荷の大きさを表す係数である各室内ユニット2a、2b、2c、2dの空調要求負荷(冷房要求負荷Lca、Lcb、暖房要求負荷Lhc、Lhd)を基に実際の各室内ユニット2a、2b、2c、2dの空調要求負荷(冷房要求負荷、暖房要求負荷)を算出することは可能である。
【0113】
また、上記の実施の形態では、各室内ユニット2a、2b、2c、2dの吹出温度Tbを目標吹出温度Tsbに近づけるべく、算出された空調要求負荷Lca、Lcb、Lhc、Lhdが補正され、吹出温度Tbが目標吹出温度Tsbに近づけられる場合について説明したが、吹出温度Tbが目標吹出温度Tsbにされる場合も含まれているものとする。
【0114】
また、上記の実施の形態では、要求される空調能力に近づけるべく、外気温度Toに応じて室外必要負荷Loが補正され、要求される空調能力に近づけられる場合について説明したが、要求される空調能力にされる場合も含まれているものとする。
【0115】
また、上記の実施の形態では、室内ユニット2a、2b、2c、2dのそれぞれの運転が停止される場合は、室内膨張弁21a、21b、21c、21dのそれぞれが全閉操作されるとして説明したが、これに限るものではなく、第1開閉弁25a、25b、25c、25dのそれぞれと第2開閉弁26a、26b、26c、26dのそれぞれとが閉操作される場合であってもよい。
【0116】
また、上記の実施の形態では、室外熱交換器11a、11bのいずれかのみを動作させる場合、動作させない室外熱交換器11a、11b側の室外膨張弁18a、18bのいずれかが全閉操作されるとして説明したが、これに限るものではなく、動作させない室外熱交換器11a、11b側の切換弁15a及び16a又は切換弁15b及び16bが閉操作される場合であってもよい。
【0117】
また、上記の実施の形態では、室内ユニット2a、2b、2c、2dにおいて負荷がバランスするときは、室外膨張弁18a、18bの全てが全閉操作されるとして説明したが、これに限るものではなく、切換弁15a及び16a並びに切換弁15b及び16bの全てが閉操作される場合であってもよい。
【0118】
また、上記の実施の形態では、容量可変型圧縮機及び室外熱交換器を備えた室外ユニットと、室内熱交換器及び室内ファンを備えた複数台の室内ユニットとがユニット間配管により接続され、室内ユニットを冷房運転若しくは暖房運転可能とするよう構成された場合の例として、容量可変型圧縮機10及び室外熱交換器11a、11bを備えた室外ユニット1と、室内熱交換器20a、20b、20c、20d及び室内ファン30a、30b、30c、30dを備えた室内ユニット2a、2b、2c、2dとがユニット間配管4により接続され、室外熱交換器11a、11bの一端が、圧縮機10の冷媒吐出管13と冷媒吸込管14とに択一に分岐して接続され、ユニット間配管4が、冷媒吐出管13に接続された高圧ガス管5と、冷媒吸込管14に接続された低圧ガス管6と、室外熱交換11a、11bの他端に接続された液管7とを有して構成され、室内熱交換器11a、11bの一端が高圧ガス管5及び低圧ガス管6に、他端が液管7にそれぞれ接続され、複数台の室内ユニット2a、2b、2c、2dを同時に冷房運転若しくは暖房運転可能とし、または、これらの冷房運転と暖房運転を混在して実施可能とするよう構成された場合について説明したが、これに限るものではない。例えば、容量可変型圧縮機及び室外熱交換器を備えた室外ユニットと、室内熱交換器及び室内ファンを備えた複数台の室内ユニットとが、ガス管及び液管の2本の管からなるユニット間配管により接続され、室内ユニットを冷房運転若しくは暖房運転可能とするよう構成された場合であってもよい。
【0119】
以上、本発明を上記実施の形態に基づいて説明したが、本発明はこれに限定されるものではない。
【0120】
【発明の効果】
以上のように、本発明によれば、空気調和装置の空調性や運転の安定性を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係る空気調和装置の一実施の形態を示す冷媒回路図である。
【符号の説明】
1 室外ユニット
2a、2b、2c、2d 室内ユニット
4 ユニット間配管
5 高圧ガス管
6 低圧ガス管
7 液管
10 圧縮機(容量可変型圧縮機)
11 室外熱交換器
17 室外制御装置
18 室外膨張弁
20a、20b、20c、20d 室内熱交換器
21a、21b、21c、21d 室内膨張弁
28a、28b、28c、28d 室内制御装置
30a、30b、30c、30d 室内ファン
31 室外ファン
50 空気調和装置

Claims (3)

  1. 容量可変型圧縮機及び室外熱交換器を備えた室外ユニットと、
    室内熱交換器及び室内ファンを備えた複数台の室内ユニットとがユニット間配管により接続され、
    前記室外熱交換器の一端が、前記容量可変型圧縮機の冷媒吐出管と冷媒吸込管とに択一に接続され、
    前記ユニット間配管が、前記冷媒吐出管に接続された高圧ガス管と、前記冷媒吸込管に接続された低圧ガス管と、前記室外熱交換の他端に接続された液管とを有して構成され、
    前記各室内ユニットは、前記室内熱交換器の一端が前記高圧ガス管と前記低圧ガス管に弁ユニットを介して択一に接続され、他端が前記液管に接続され、
    前記複数台の室内ユニットを同時に冷房運転若しくは暖房運転可能とすると共に、これらの冷房運転と暖房運転を混在して実施可能とするよう構成された空気調和装置において、
    各室内ユニットの要求する空調要求負荷を室内ユニットごとに算出し、これらの空調要求負荷に基づいて、前記圧縮機の容量を制御する圧縮機容量制御手段と、
    前記空調要求負荷に基づいて、室外熱交換器の必要負荷を算出する室外必要負荷算出手段と、
    この室外熱交換器の必要負荷に応じて前記室外熱交換器の熱交換能力を制御する熱交換能力制御手段と、
    前記複数台の室内ユニットを同時に冷房運転と暖房運転を混在して実施しているときに、前記室外熱交換器の必要負荷に基づいて、前記室外ユニットの動作モードを冷房運転モード及び暖房運転モードのいずれかに決定する運転モード決定手段と、を備え、
    前記複数台の室内ユニットを同時に冷房運転と暖房運転を混在して実施している場合には、前記室内ユニットごとに算出された空調要求負荷の各々に対して前記室内ユニットごとに該室内ユニットの吹出温度と目標吹出温度との差温に応じた分だけ増加させる補正を加えると共に、外気温度に対応する前記室外ユニットの空調能力が基準となる所定外気温度での空調能力に対して大のときは、その差に応じて前記室外熱交換器の必要負荷を増大させ、また、小のときは、その差に応じて前記室外熱交換器の必要負荷を減少させる
    ことを特徴とする空気調和装置。
  2. 前記室内ユニットごとに、前記室内ファンの回転数に対応する吹出風速レベルが低くなるほど前記空調要求負荷を減少させることを特徴とする請求項1に記載の空気調和装置
  3. 前記圧縮機が、エンジンで駆動されることを特徴とする請求項1又は2に記載の空気調和装置。
JP2002010064A 2002-01-18 2002-01-18 空気調和装置 Expired - Lifetime JP4179783B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002010064A JP4179783B2 (ja) 2002-01-18 2002-01-18 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002010064A JP4179783B2 (ja) 2002-01-18 2002-01-18 空気調和装置

Publications (2)

Publication Number Publication Date
JP2003207191A JP2003207191A (ja) 2003-07-25
JP4179783B2 true JP4179783B2 (ja) 2008-11-12

Family

ID=27647895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002010064A Expired - Lifetime JP4179783B2 (ja) 2002-01-18 2002-01-18 空気調和装置

Country Status (1)

Country Link
JP (1) JP4179783B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112233A (ja) * 2009-11-24 2011-06-09 Mitsubishi Electric Corp 空気調和装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200930955A (en) * 2008-01-15 2009-07-16 Chunghwa Telecom Co Ltd Management system for scheduling air condition apparatus
JP5369953B2 (ja) * 2009-07-14 2013-12-18 三菱電機株式会社 多室型空気調和装置の性能計算装置
CN104838211B (zh) * 2012-12-28 2018-09-04 三菱电机株式会社 空气调节装置
JP7153864B2 (ja) 2018-07-30 2022-10-17 パナソニックIpマネジメント株式会社 空気調和装置
CN112443947B (zh) * 2019-08-30 2021-11-26 青岛海尔空调电子有限公司 同时冷暖多联机空调系统的控制方法
CN114251717B (zh) * 2020-09-24 2023-09-01 广东美的制冷设备有限公司 一拖多空调及分歧器、分歧器与室外机的控制方法、介质
JP7533557B2 (ja) 2022-11-25 2024-08-14 株式会社富士通ゼネラル 空気調和装置
CN116182321B (zh) * 2023-05-04 2023-06-27 中铁信大数据科技有限公司 基于机器学习的暖通空调自动调温系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112233A (ja) * 2009-11-24 2011-06-09 Mitsubishi Electric Corp 空気調和装置

Also Published As

Publication number Publication date
JP2003207191A (ja) 2003-07-25

Similar Documents

Publication Publication Date Title
US20090211281A1 (en) Air conditioning apparatus and method for determining the amount of refrigerant of air-conditioning apparatus
JP4779791B2 (ja) 空気調和装置
EP1431677B1 (en) Air conditioner
JP6479181B2 (ja) 空気調和装置
WO2008032581A1 (en) Refrigeration device
JP4179783B2 (ja) 空気調和装置
WO2006013938A1 (ja) 冷凍装置
JP2004170023A (ja) 多室形空気調和機の制御方法
JP3668750B2 (ja) 空気調和装置
JP2013002749A (ja) 空気調和装置
JP3596506B2 (ja) 冷凍装置
KR101152936B1 (ko) 멀티 에어컨 시스템 및 멀티 에어컨 시스템의 배관연결탐색방법
JP2018071864A (ja) 空気調和機
JP3627101B2 (ja) 空気調和機
JP4105413B2 (ja) マルチ式空気調和機
JP3661014B2 (ja) 冷凍装置
US7513125B2 (en) Method for controlling air conditioner
KR101450545B1 (ko) 공기조화 시스템
KR101144805B1 (ko) 멀티형 공기조화기 및 상기 멀티형 공기조화기의 제어방법
KR20070088077A (ko) 공기조화기 및 그 제어방법
JP4420393B2 (ja) 冷凍空調装置
JP2005291558A (ja) 空気調和装置
JP7533557B2 (ja) 空気調和装置
KR100639488B1 (ko) 공기조화기 및 그 과부하 제어방법
JP4033779B2 (ja) 多室形空気調和装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080826

R151 Written notification of patent or utility model registration

Ref document number: 4179783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term