Nothing Special   »   [go: up one dir, main page]

JP4171823B2 - Depolymerization of polyester using supercritical carbon dioxide and process for producing polyester from depolymerization product - Google Patents

Depolymerization of polyester using supercritical carbon dioxide and process for producing polyester from depolymerization product Download PDF

Info

Publication number
JP4171823B2
JP4171823B2 JP2002193114A JP2002193114A JP4171823B2 JP 4171823 B2 JP4171823 B2 JP 4171823B2 JP 2002193114 A JP2002193114 A JP 2002193114A JP 2002193114 A JP2002193114 A JP 2002193114A JP 4171823 B2 JP4171823 B2 JP 4171823B2
Authority
JP
Japan
Prior art keywords
polyester
depolymerization
carbon dioxide
reaction
lipase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002193114A
Other languages
Japanese (ja)
Other versions
JP2003079388A (en
Inventor
秀一 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2002193114A priority Critical patent/JP4171823B2/en
Publication of JP2003079388A publication Critical patent/JP2003079388A/en
Application granted granted Critical
Publication of JP4171823B2 publication Critical patent/JP4171823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/105Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with enzymes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高分子化合物を完全な循環型として利用することが可能な、酵素による高分子化合物の解重合と再重合に関する。
【0002】
【従来の技術】
現在、様々な分野において製品からの有用材料の回収および再利用が検討され、サステイナブル(持続可能)材料利用システムの構築が急がれている。高分子材料製品の再利用については、限りのある炭素資源(C資源)の有効利用と有限エネルギー資源の節約の観点から、使用後はそのまま再使用されるか(この中にはPETボトルの繊維素材化なども含まれる)、リサイクルされている。リサイクルの方法としては、マテリアルリサイクル法、ケミカルリサイクル法、サーマルリサイクル法などが用いられているが、マテリアルリサイクル法は分子量低下などの品質劣化を伴い、ケミカルリサイクル法はエネルギー多消費型であり、またサーマルリサイクル法は多量の炭酸ガスが発生するなど、それぞれ問題を内包していて、最終的にはどの方法でも廃プラスチックを排出することになり、焼却、埋め立などにより処理されているのが現状である。
炭素資源の有効利用の観点からは、最終的にはケミカルリサイクル法により原料に戻すことが理想的であり、ケミカルリサイクル法には、解重合反応によるモノマーの回収や化学的分解反応による原料モノマーの回収が知られているが、いずれもエネルギー多消費型で環境に対する負荷は大きく、また一般に採算性はない。
【0003】
本発明者は、先に、酵素を利用することによって消費エネルギーが少なく、かつ完全循環型のポリマー分解およびポリマー製造法を提案した。特願2000−198867号は、トリメチレンカーボネート重合体を加水分解酵素の存在下、解重合させてトリメチレンカーボネート(1,3−ジオキサン−2−オン)を製造する方法であり、また、特願2000−198866号は、カプロラクトン重合体に加水分解酵素を作用させてカプロラクトンの環状二量体であるジカプロラクトンを製造する方法と、このジカプロラクトンを加水分解酵素の存在下重合させてカプロラクトン重合体を製造する方法である。さらに、特願2001−131768号は、前記と同様に加水分解酵素を利用することにより、ポリアルキレンアルカノエートまたはポリ(3−ヒドロキシアルカノエート)を、環状体を主成分とするオリゴマーに解重合する方法、および前記環状オリゴマーを重合する方法に関するものである。
これらの方法における解重合法は、酵素を利用するため低エネルギー消費であり、また、解重合により得られる生成物は、酵素により再び重合して高分子化されるので、炭素資源を無駄無く有効に利用することができ、いわば、完全循環型のポリマー再利用と位置付けることができる。したがって、前記の方法はサステイナブル材料構築の観点からみると、現実的なケミカルリサイクル法である。
【0004】
しかし、固形のプラスチック材料をそのまま酵素に作用させることは、不可能であり、前記3つの方法においても、プラスチック材料を溶解させるために、アセトニトリル、テトラヒドロフラン、トルエン、ベンゼンなどの有機溶媒を必要とする。特に再重合性の優れた環状オリゴマーを得るためには、大量の有機溶媒を必要とする。しかし、有機溶媒の多くは通常揮発性化合物で環境に放出されると汚染するので、この点が次に解決すべき問題となっている。
【0005】
一方、超臨界流体は、最近注目を浴びている流体である。超臨界流体は、気相と液相の相変化を示す蒸気圧曲線における臨界点以上の温度、圧力領域にある流体で、気体と液体の中間的性質をもち、密度は液体に近いが、粘性は気体とほぼ同じで非常に低く、物質中の拡散性も液体よりはるかに高いという性質がある。超臨界流体のこの性質を利用して、様々な材料から有用な物質を抽出、あるいは不要物質を除去する分離・精製技術が実現されている。特に二酸化炭素は、無害であり、かつ安価で不燃性であることに加え、32℃、7.2MPa程度に加圧すると容易に超臨界流体となるので、熱や有機溶媒に不安定な性質を示す物質を抽出あるいは除去するのに好都合で、従来抽出等に用いられていた有機溶媒に代わる媒体として利用されつつある。たとえば、現在、超臨界流体二酸化炭素を用いてコーヒーあるいは紅茶からカフェインを除去することが工業的に実用化されている。
【0006】
また、超臨界流体の粘性が低く拡散性が高いという性質は反応溶媒(反応媒体)としても期待が持たれている。すなわち、拡散性が高いことから、不均一系の反応の場合に、拡散律速の制約を受けている反応が促進される。さらに、超臨界流体は、圧力および温度を変えることにより、密度、極性および粘性などの物性を連続的にしかも大きく変えること、つまり、溶媒としての超臨界流体の物性を制御することが容易である。また、反応終了後に系を大気圧に戻すことで、生成物を反応媒体から容易に分離することができる。
この他、超臨界水によるフロン等の難分解性有害物質の分解処理に関する研究も行われている。
また、本発明者は先に、超臨界流体(二酸化炭素、フロロホルム)を用いた、キシランと長鎖アルコールとのワンポットグリコシル化反応を発表した(T.Nakamura,K.Toshima,S.Matsumura,Biotechnology Letters Vol.22,1183-1189 2000;S.Matsumura,T.Nakamura,E.Yao,.K.Toshima,Chemistry Letters,581-582,1999)。このように、超臨界流体は、気体、液体につぐ第三の媒体として期待されているが、超臨界流体を、酵素を用いてポリマーを解重合および再重合する、低エネルギー消費の完全循環型ケミカルリサイクリングに適用するとの報告はされていない。
【0007】
【発明が解決しようとする課題】
本発明は、前記問題点に鑑みてなされたものであり、その目的は、ポリエステルを再重合可能な解重合生成物に変換する方法、および前記解重合生成物からポリエステルを製造する方法を、低エネルギー消費でかつ環境受容型の方法として提供するものである。
【0008】
【課題を解決するための手段】
本発明の前記目的は、以下の解重合方法および重合方法を提供することにより解決される。
(1)ポリエステルをリパーゼの存在下、超臨界二酸化炭素中で、超臨界二酸化炭素に対するポリエステルの濃度を0.1〜10質量%に、かつポリエステルに対する水の濃度を45〜200質量%にして環状二量体を主成分とする解重合生成物に解重合させる、ポリエステルの解重合方法。
(2)ポリエステルをリパーゼの存在下、超臨界二酸化炭素中で、超臨界二酸化炭素に対するポリエステルの濃度を0.1〜10質量%に、かつポリエステルに対する水の濃度を45〜200質量%にして環状二量体を主成分とする解重合生成物に解重合させ、得られる前記解重合生成物を、リパーゼの存在下、超臨界二酸化炭素中で重合させることを特徴とするポリエステルの製造方法。
(3)ポリエステルをリパーゼの存在下、超臨界二酸化炭素中で、超臨界二酸化炭素に対するポリエステルの濃度を0.1〜10質量%に、かつポリエステルに対する水の濃度を45〜200質量%にして環状二量体を主成分とする解重合生成物に解重合させ、得られる前記解重合生成物を、重合触媒の存在下、超臨界二酸化炭素中で重合させることを特徴とするポリエステルの製造方法。
【0010】
【発明の実施の形態】
初めに、ポリエステルを解重合する方法について説明する。本発明の解重合に用いることのできるポリエステルとしては、ポリカルボン酸とポリオールからのポリエステルのほか、ヒドロキシカルボン酸あるいはその分子内エステル(ラクトン)からのポリエステルまたはポリラクトンが含まれる。ポリカルボン酸とポリオールからのポリエステルとしては、ポリブチレンサクシネート、ポリブチレンアジペート、ポリ(ブチレンサクシネート−アジペート)共重合体など、以下のごとき構造式(1)で示される繰り返し単位を有するものが好適に挙げられる。
【0011】
【化1】

Figure 0004171823
【0012】
前記構造式(1)中、Aは炭素数2〜8の直鎖状または分岐状のアルキレン基を表し、Bは炭素数2〜6の直鎖状または分岐状のアルキレン基を表す。AおよびBはそれぞれ、2つ以上の異なるもの(すなわち共重合体)であってもよい。さらに、A(COOH)2で表されるジカルボン酸の50モル%以下を芳香族ジカルボン酸、たとえばテレフタル酸、フタル酸、イソフタル酸などで置換してもよい。
本発明のポリエステルとしては、前記構造式(1)で示される以外の繰り返し単位、たとえば、以下の構造式(2)および/または(3)で示す繰り返し単位(単位中、Dは炭素数2〜6の直鎖状または分岐状のアルキレン基、アルケニレン基またはアルキニレン基を表す)を、50モル%以下含んでいてもよい。
【0013】
【化2】
Figure 0004171823
【0014】
前記ポリエステルの分子量(数平均分子量)は特に制限はなく、また、ポリエステルの末端基部分にはポリマー合成法により決定されるいずれの置換基によって置換されていることが可能である。
【0015】
また、前記ヒドロキシカルボン酸からのポリエステルまたはポリラクトンとしては、炭素数3〜20のヒドロキシカルボン酸またはラクトンの重合体の他、下記構造式(4)で示される繰り返し単位を1種以上有するポリエステルまたはポリラクトンも含まれる。
式中、Rは水素原子または炭素数1から12の直鎖状または分岐状のアルキル基を表す。
【0016】
【化3】
Figure 0004171823
【0017】
前記Rは、水素原子および炭素数1〜12のアルキル基より選ばれる、異なる2種以上(共重合体)であってもよい。Rがメチル基の場合、ポリ(3−ヒドロキシ酪酸)であり、Rがメチル基および水素原子の場合3−ヒドロキシ酪酸/3−ヒドロキシプロピオン酸共重合体(PHB/PHP)であり、Rがメチル基およびエチル基の場合3−ヒドロキシ酪酸/3−ヒドロキシバレリアン酸共重合体(PHB/PHV)である。これらは、微生物が産生するポリマーとして知られている。このポリラクトンの末端基部分にはポリマー合成法により決定されるいずれの置換基によって置換されていることが可能である。
また、前記ポリラクトンは、分子中にさらに以下の構造式(5)ないし(7)で示す繰り返し単位を1種以上有していてもよい。
【0018】
【化4】
Figure 0004171823
【0019】
式中R1は炭素数1〜17の直鎖または分岐のアルキレン基を、R2は炭素数2〜11の直鎖または分岐のアルキレン基を、R3は炭素数1〜10の直鎖または分岐のアルキレン基を、R4は炭素数2〜10の直鎖または分岐のアルキレン基をそれぞれ表わす。(繰り返し単位(5)を含む場合は、他のラクトンを含む共重合体であることを表す。)
【0021】
次に、本発明において超臨界流体としては二酸化炭素が用いられる。二酸化炭素は前記のように、無害、安価、不燃性であり、また、その臨界点は、32℃、7.2MPa程度であるので、臨界点に達し易く、本発明の解重合および重合に用いる媒体として好適である
【0022】
本発明のポリエステル(以下において「解重合ポリマー」ということがある。)の解重合は、解重合ポリマーとリパーゼを耐圧反応管に入れ、これに液化炭酸を、送液ポンプにより加圧しながら注入することにより、二酸化炭素を超臨界状態にし、超臨界二酸化炭素を適切な温度に保持しつつ、好ましくは攪拌しながら、適切な時間解重合反応をさせることにより行われる。解重合の際の超臨界二酸化炭素の温度は、31〜90℃程度、好ましくは40〜80℃程度であり、また、圧力は7.2〜30MPa程度、好ましくは7.5〜20MPa程度である。
また、解重合反応媒体中に含まれる解重合ポリマーの濃度は、0.1〜50g/L、中でも1〜20g/Lが適切である。0.1g/Lより低い濃度の場合は、収率自体は特に低くないが濃度が低いため得られる解重合生成物の量を十分に確保しにくく、また50g/Lを超えると解重合生成物への変換率が低下するので、前記範囲が好ましい。
また、解重合の反応時間は少なくとも3時間であることが望ましい。反応時間の上限は特にないが、48時間以上行ってもそれ以上解重合は進行せず経済的に不利となる。
【0023】
本発明の解重合に用いる酵素であるリパーゼは、固定化していても固定化していなくてもよいが、解重合生成物の回収や酵素の再利用の観点からは固定化しているものが利便である。中でもCandida antarctica由来のリパーゼが好ましい。リパーゼとしては、例えば、Candida antarctica由来の固定化酵素である、ノボザイムズジャパン(株)の「Novozym 435(商品名)」を挙げることができる。
本発明の解重合における固定化リパーゼの添加量は、ポリマー当たり1〜1000質量%、好ましくは、1〜500質量%、より好ましくは5〜200質量%である。1質量%未満では、解重合反応が著しく低下し、また、1000質量%を超えても解重合生成物の収量に顕著な変化はみられないので、前記範囲が適切である。
【0024】
さらに、解重合の系の中に全く水が存在しないとリパーゼの活性が保てないので、系に微量の水分を添加することが好ましい。リパーゼ自体が水分を保持している場合には、水を添加する必要はない。リパーゼの活性を保つための水分は、反応系中解重合ポリマーに対して0.1〜1000質量%程度である。
【0025】
ポリエステルの解重合生成物は、線状あるいは環状のオリゴマーまたはモノマーである(ただし環状二量体を主成分とする。)。解重合条件により環状のものが多く得られたり、線状のものが多く得られたりするが、本発明においては、環状オリゴマーを多く得るために、解重合ポリマーに対する水分濃度を低く(45〜200質量%)、また、反応媒体に対する解重合ポリマーの濃度を低く(0.1〜10質量%)する。いずれのオリゴマーおよびモノマーも再重合によりもとのポリマーに再生させることが可能である。特に環状オリゴマーの再重合は、開環重合であるため、水等の縮合成分が発生せず、これらを反応系外に出す必要もないので、重合反応操作が簡便であるというメリットがある。
また、オリゴマーの分子量は、温度、圧力、解重合ポリマー濃度等の反応条件にもよるが、一般に500以下である。
【0026】
環状オリゴマーを多く生成させるための条件で解重合させると、たとえば、ポリカプロラクトンではカプロラクトンの環状二量体であるジカプロラクトン(1,8−ジオキサシクロテトラデカリン−2,9−ジオン)を主生成物として得ることができる。また、前記構造式(1)および(4)で示される繰り返し単位を有するポリエステルからは、後述の実施例4及び6で示される環状二量体を主生成物として得ることができる。
【0027】
[前記解重合生成物の重合]
リパーゼを用いる方法)
本発明のポリエステルからの解重合生成物は、リパーゼの存在下、超臨界二酸化炭素中で重合させることが可能である。解重合生成物とリパーゼを耐圧反応管に入れ、これに液化炭酸を、送液ポンプにより加圧しながら注入することにより、二酸化炭素を超臨界状態にし、超臨界二酸化炭素を適切な温度に保持しつつ、好ましくは攪拌しながら、適切な時間解重合反応をさせることにより行われる。解重合の際の超臨界二酸化炭素の温度は、31〜85℃程度、好ましくは40〜75℃程度であり、また、圧力は7.2〜30MPa程度、好ましくは7.5〜20MPa程度である。
また、重合反応溶液中に含まれる解重合生成物の濃度は、0.1〜50g/L、中でも1〜20g/Lが適切である。0.1g/Lより低い濃度の場合は、収率自体は特に低くないが濃度が低いため得られるポリマーの量を十分に確保しにくく、また50g/Lを超えるとポリマーへの変換率が低下するので、前記範囲が好ましい。
また、重合時間は、0.5〜48時間が適当である。0.5時間より短いと十分反応が進行せず、また、48時間を超えると生成したポリマーが解重合を起こしたりするので、前記範囲が好ましい。
【0028】
本発明の解重合生成物を重合させるのに用いる固定化リパーゼの添加量は、解重合生成物に対してリパーゼ0.1〜50質量%、好ましくは、リパーゼ0.1〜10質量%である。0.1質量%未満では、重合速度が低下し、モノマー変換率も低くなりやすく、また、50質量%を超えると生成するポリマーの分子量が低くなりやすいので、前記範囲が適切である。
【0029】
本発明の重合法により、数平均分子量で1万程度までの分子量のポリエステルが得られる。前記解重合生成物のポリマーへの変換率は100%を達成することも可能である。
【0030】
(化学的合成方法)
ポリエステルの一例を挙げると、絶対乾燥条件下、解重合生成物に対して0.1質量%のジスタノキサンを触媒として加え、100℃で、塊状重合を行うことにより対応するポリエステルを得ることができる。
【0036】
本発明の解重合方法および重合方法は、超臨界二酸化炭素を反応溶媒として用いるため、反応後に系の圧力を常圧に戻すだけで、反応溶媒を系外に容易に放出することができ、系から生成物を分離することが容易である。また、放出された反応溶媒を回収して再利用することも可能である。更に、溶媒が反応系外に漏れた場合でも環境を汚染する虞はない。
さらに、通常の有機溶媒を用いた解重合方法および重合方法に比較して、解重合および重合の反応効率に遜色はなく、リパーゼを用いる解重合反応の場合、ポリマーを100%解重合させるのに必要な時間は、トルエンを用いる場合より若干長くなるものの、アセトニトリルを用いた場合に比較すると顕著に短くなる。
また、本発明のリパーゼを用いる解重合方法および重合方法は、ワンポットによる簡便な操作でよい他、反応条件は温和でありまた低エネルギー消費でもある。さらに解重合により得られるオリゴマーおよびモノマーは再重合によりもとのポリマーに再生させることが可能である。そして、解重合または重合を行うのに用いるリパーゼは、回収して繰り返し用いることができ、その際酵素としての活性の減少は実質的にないという有利な点を有する。
したがって、本発明により、環境受容型であり、かつ炭素資源を完全再利用することが可能な、完全循環型の高分子材料利用システムを構築することが可能になった。
【0037】
【実施例】
以下に実施例を示し本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
【0039】
実施例
14員環ジカプロラクトン(1,8−dioxacyclotetradecane−2,9−dione)を(50mg)および固定化リパーゼ(Novozym 435)(5mg)を10mLステンレス製耐圧反応管に秤り取り、次いで、液化炭酸を8MPaで充填し、超臨界二酸化炭素中、磁気撹拌子を用いて70℃で6時間8MPaで撹拌を行い重合を行った。反応終了後、反応管をドライアイス−メタノール浴で冷却し、ガス導入用コックを開け、徐々に炭酸ガスを排気し、常圧に戻した後、反応管中の重合物にクロロホルムを少量加え、不溶の固定化リパーゼをセライトを用いて濾別し、濾液よりクロロホルムをエバポレーターを用いて減圧濃縮し、ポリカプロラクトンをほぼ定量的に得た。GPC法により分子量を測定したところ、Mw=48,000、Mn=26,000,Mw/Mn=1.8であった。
【0042】
実施例
14員環ジカプロラクトン(1,8−dioxacyclotetradecane−2,9−dione)(200mg)、オレイン酸カリウム(1.5mg)および18−クラウン−6(1.2mg)を、10mLステンレス製耐圧反応管に秤り取り、次いで、液化炭酸を10MPaで充填し、超臨界二酸化炭素中、磁気撹拌子を用いて40℃で24時間10MPaで撹拌を行い重合を行った。反応終了後、反応管をドライアイス−メタノール浴で冷却し、ガス導入用コックを開け、徐々に炭酸ガスを排気し、常圧に戻した後、反応管中の重合物にクロロホルムを少量加え、不溶物を濾別し、濾液よりクロロホルムをエバポレーターを用いて減圧濃縮し、ポリカプロラクトンを得た。GPC法により分子量を測定したところ、Mw=30,000、Mn=20,000,Mw/Mn=1.5であった。
【0044】
実施例
ポリ(カプロラクトン)(分子量Mn=110,000,Mw/Mn=1.6)25mg、固定化リパーゼ(Novozym435)10mgおよび水12mgを10mLステンレス製耐圧反応管に秤り取り、ついで液化炭酸を16MPaで充填し、超臨界二酸化炭素中、磁気攪拌子を用いて40℃で6時間、16MPaで攪拌を行い分解を行った。反応終了後、反応管をドライアイス−メタノール浴で冷却し、ガス導入用コックを開け、徐々に炭酸ガスを排気した。常圧に戻した後、反応管中に残った分解物にクロロホルムを少量加え、不溶の固定化リパーゼをセライトを用いて濾別し、濾液より溶媒をエバポレーターを用いて減圧濃縮し、環状ジカプロラクトンを92%含む再重合性オリゴマーをほぼ定量的に得た。環状ジカプロラクトンの定量はGPCおよびMALDI−TOF MSによった。また、環状ジカプロラクトン生成の確認は、粗生成物のテトラヒドロフラン(THF)溶液から再結晶を行うことにより精製し、分析を行った。結果を以下に示す。
【0045】
融点(m.p)113−115℃(文献値111−113℃).[F.J.Van Natta,J.W.Hill,W.H.Carothers,J.Am.Chem.Soc.1934,56,455.]
赤外分光スペクトル IR(KBr):2936,2866(CH2),1721(COO,ester),1472cm-1(CH2).1H−NMR(300MHz,CDCl3):δ=1.35−1.75(m,12H,CH2ofC−3,3’,4,4’,5and5’),2.38(t,J=6.05Hz,4H,CH2ofC−2and2’),4.16(t,J=5.63Hz,4H,CH2ofC−6and6’).13C−NMR(75MHz,CDCl3):δ=24.6,28.1(C−3,3’,4,4’,5and5’,CH2),34.6(C−2and2’,CH2),63.0(C−6and6’,CH2),173.5(C−1and1’,C=0).
元素分析値 C12204(228.3):計算値 C63.13;H8.83;理論値 C63.12;H8.79.
【0046】
同様にして、超臨界二酸化炭素の圧力を変化させたときの環状ジカプロラクトン(DCL)の収率の変化を図1に示す。図1よりDCLの収率は圧力を上げるにつれて上昇し、16MPaで最大値に達し、それ以上圧力を上げても効果は認められなかった。なお、この範囲の圧力では、圧力を変えることによりDCLの含量のみが変化し、環状ジカプロラクトンを含む環状体を主成分とするオリゴマーにほぼ定量的に変換されていた。
【0047】
また、16MPaで反応を行ったときの温度と環状ジカプロラクン(DCL)の収率の関係(6時間反応)を図2に示す。
図2より、反応温度は40〜50℃でDCLの最高収率が得られることが分かった。これ以上の反応温度では、酵素の活性が低下し、収率も低下する。
環状ジカプロラクン(DCL)の収率は初めに添加する水分量にも大きく依存しており、水分量が極端に多くなれば加水分解により線状ヒドロキシ酸が多くなる。反応系における水分量と環状ジカプロラクン(DCL)の収率の関係を図3に示す。
【0048】
実施例
ポリ(ブチレンアジぺート)(分子量Mw22,000)30mg、固定化リパーゼ(Novozym 435)30mgおよび水20mgを、10mLステンレス製耐圧反応管に秤り取り、ついで液化炭酸を16MPaで充填し、超臨界二酸化炭素中、磁気攪拌子を用いて40℃で6時間、16MPaで攪拌を行い分解を行った。反応終了後、反応管をドライアイス−メタノール浴で冷却し、ガス導入用コックを開け、徐々に炭酸ガスを排気した。常圧に戻した後、反応管中に残った分解物にクロロホルムを少量加え、不溶の固定化リパーゼをセライトを用いて濾別し、濾液より溶媒をエバポレーターを用いて減圧濃縮し、環状ブチレンアジペート2量体(前記構造式(8)においてL:(CH24,M(CH24m=2)を主成分とする再重合性オリゴマーをほぼ定量的に得た。環状ブチレンアジペート2量体の定量はGPCおよびMALDI−TOF MSによった。また、環状ブチレンアジペート2量体生成の確認は、粗生成物をカラムクロマトグラフィーにより精製し、分析を行った。
1H−NMR(300MHz,CDCl3):δ(ppm)=4.12(−CH2−O−CO−)(4H,m),2.34(−CH2−CO−O)(4H,m),1.73(−CO−CH2−CH2−CH2−CH2−CO−)(4H,m),1.68(−O−CH2−CH2−CH2−CH2−O−)(4H,m).
【0049】
実施例
実施例で得た環状ブチレンアジペート2量体50mgおよび固定化リパーゼ(Novozym 435)5mgを、10mLステンレス製耐圧反応管に秤り取り、ついで液化炭酸を8MPaで充填し、超臨界二酸化炭素中、磁気攪拌子を用いて70℃で6時間、8MPaで攪拌を行い重合を行った。反応終了後、反応管をドライアイス−メタノール浴で冷却し、徐々に炭酸ガスを排気し、常圧に戻した後、反応管中の重合物にクロロホルムを少量加え、不溶の固定化リパーゼをセライトを用いて濾別し、濾液より溶媒をエバポレーターを用いて減圧濃縮し、ポリ(ブチレンアジペート)をほぼ定量的に得た。GPC法により分子量を測定したところ、Mw=52,000であった。
【0050】
実施例
ポリ(ブチレンサクシネート)(分子量Mw99,000)25mg、固定化リパーゼ(Novozym 435)30mgおよび水12mgを、10mLステンレス製耐圧反応管に秤り取り、ついで液化炭酸を16MPaで充填し、超臨界二酸化炭素中、磁気攪拌子を用いて40℃で6時間、16MPaで攪拌を行い分解を行った。反応終了後、反応管をドライアイス−メタノール浴で冷却し、ガス導入用コックを開け、徐々に炭酸ガスを排気した。常圧に戻した後、反応管中に残った分解物にクロロホルムを少量加え、不溶の固定化リパーゼをセライトを用いて濾別し、濾液より溶媒をエバポレーターを用いて減圧濃縮し、環状2〜3量体を主成分とする再重合性オリゴマーを得た。環状ブチレンサクシネート2量体(前記構造式(8)においてL:(CH22,M(CH24m=2)の定量はGPCおよびMALDI−TOF MSによった。また、環状ブチレンサクシネート2量体生成の確認は、粗生成物をカラムクロマトグラフィーにより精製し、分析を行った。
1H−NMR(300MHz,CDCl3):δ(ppm)=4.11(−CH2−O−CO−)(4H,m),2.63(−CH2−CO−O)(4H,m),1.71(−O−CH2−CH2−CH2−CH2−O−)(4H,m).
【0051】
【発明の効果】
本発明の解重合方法および重合方法は、超臨界二酸化炭素を反応溶媒として用いるため、反応後に系の圧力を常圧に戻すだけで、反応溶媒を系外に容易に放出することができ、系から生成物を分離することが容易である。また、放出された反応溶媒を回収して再利用することも可能である。更に、溶媒が反応系外に漏れた場合でも環境を汚染する虞はない。
さらに、通常の有機溶媒を用いた解重合方法および重合方法に比較して、解重合および重合の反応効率に遜色はなく、リパーゼを用いる解重合反応の場合、ポリマーを100%解重合させるのに必要な時間は、トルエンを用いる場合より若干長くなるものの、アセトニトリルを用いた場合に比較すると顕著に短くなる。
また、本発明のリパーゼを用いる解重合方法および重合方法は、ワンポットによる簡便な操作でよい他、反応条件は温和でありまた低エネルギー消費でもある。さらに解重合により得られるオリゴマーおよびモノマーは再重合によりもとのポリマーに再生させることが可能である。そして、解重合または重合を行うのに用いるリパーゼは、回収して繰り返し用いることができ、その際酵素としての活性の減少は実質的にないという有利な点を有する。
したがって、本発明により、環境受容型であり、かつ炭素資源を完全再利用することが可能な、完全循環型の高分子材料利用システムを構築することが可能になった。
【図面の簡単な説明】
【図1】 実施例において超臨界二酸化炭素の圧力と環状ジカプロラクトンの収率との関係を示すグラフである。
【図2】 実施例において反応温度と環状ジカプロラクトンの収率との関係を示すグラフである。
【図3】 実施例において反応系における水分含有量と環状ジカプロラクトンの収率との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to depolymerization and repolymerization of a polymer compound by an enzyme, which can utilize the polymer compound as a complete circulation type.
[0002]
[Prior art]
Currently, in various fields, collection and reuse of useful materials from products are being studied, and the construction of a sustainable (sustainable) material utilization system is urgently needed. Regarding the reuse of polymer material products, from the viewpoint of effective utilization of limited carbon resources (C resources) and saving of limited energy resources, they can be reused as they are (including PET bottle fibers) Recycling is also included). As recycling methods, the Material Recycling Law, Chemical Recycling Law, Thermal Recycling Law, etc. are used, but the Material Recycling Law is accompanied by quality degradation such as a decrease in molecular weight, and the Chemical Recycling Law is energy intensive. The Thermal Recycling Law has problems such as the generation of a large amount of carbon dioxide gas. Each method eventually discharges waste plastic, and is currently treated by incineration, landfill, etc. It is.
From the viewpoint of effective utilization of carbon resources, it is ideal to return to the raw material by the chemical recycling method. The chemical recycling method uses the recovery of monomer by depolymerization reaction and the raw material monomer by chemical decomposition reaction. Although recovery is known, all of them are energy intensive, have a heavy environmental impact, and are generally not profitable.
[0003]
The present inventor has previously proposed a method for polymer degradation and production of a polymer that consumes less energy by using an enzyme and is completely circulated. Japanese Patent Application No. 2000-198867 is a process for producing trimethylene carbonate (1,3-dioxan-2-one) by depolymerizing a trimethylene carbonate polymer in the presence of a hydrolase. No. 2000-198866 describes a method for producing dicaprolactone, which is a cyclic dimer of caprolactone, by reacting a caprolactone polymer with a hydrolase, and polymerizing the dicaprolactone in the presence of the hydrolase to produce a caprolactone polymer. It is a manufacturing method. Furthermore, Japanese Patent Application No. 2001-131768 depolymerizes polyalkylene alkanoate or poly (3-hydroxyalkanoate) into an oligomer mainly composed of a cyclic product by utilizing a hydrolase as described above. The present invention relates to a method and a method for polymerizing the cyclic oligomer.
In these methods, the depolymerization method uses an enzyme and consumes low energy, and the product obtained by the depolymerization is polymerized again by the enzyme to be polymerized. In other words, it can be regarded as a completely recycled polymer recycling. Therefore, the above method is a realistic chemical recycling method from the viewpoint of building a sustainable material.
[0004]
However, it is impossible to allow a solid plastic material to act on an enzyme as it is, and even in the above three methods, an organic solvent such as acetonitrile, tetrahydrofuran, toluene, or benzene is required to dissolve the plastic material. . In particular, a large amount of organic solvent is required to obtain a cyclic oligomer having excellent repolymerization properties. However, many organic solvents are usually volatile compounds that are contaminated when released to the environment, and this is the next problem to be solved.
[0005]
On the other hand, a supercritical fluid is a fluid that has recently attracted attention. A supercritical fluid is a fluid that is in the temperature and pressure region above the critical point in the vapor pressure curve showing the phase change between the gas phase and the liquid phase, has an intermediate property between gas and liquid, has a density close to that of a liquid, but is viscous. Is almost the same as a gas and is very low, and has a property that the diffusivity in a substance is much higher than that of a liquid. Utilizing this property of the supercritical fluid, separation / purification techniques for extracting useful substances from various materials or removing unnecessary substances have been realized. In particular, carbon dioxide is harmless, inexpensive and non-flammable, and can easily become a supercritical fluid when pressurized to about 7.2 MPa at 32 ° C. It is convenient for extracting or removing the substances to be shown, and is being used as a medium replacing an organic solvent conventionally used for extraction or the like. For example, at present, it is industrially practical to remove caffeine from coffee or tea using supercritical fluid carbon dioxide.
[0006]
In addition, the property of a supercritical fluid having low viscosity and high diffusibility is expected as a reaction solvent (reaction medium). That is, since the diffusibility is high, in the case of a heterogeneous reaction, a reaction that is restricted by diffusion rate control is promoted. Furthermore, the supercritical fluid can easily change the physical properties such as density, polarity and viscosity continuously and greatly by changing the pressure and temperature, that is, it is easy to control the physical properties of the supercritical fluid as a solvent. . In addition, the product can be easily separated from the reaction medium by returning the system to atmospheric pressure after completion of the reaction.
In addition, research on the decomposition treatment of refractory harmful substances such as chlorofluorocarbon with supercritical water is also being conducted.
The present inventor previously announced a one-pot glycosylation reaction between xylan and a long-chain alcohol using a supercritical fluid (carbon dioxide, fluoroform) (T. Nakamura, K. Toshima, S. Matsumura, Biotechnology). Letters Vol. 22, 1183-1189 2000; S. Matsumura, T. Nakamura, E. Yao, K. Toshima, Chemistry Letters, 581-582, 1999). In this way, supercritical fluid is expected as a third medium that connects to gas and liquid, but supercritical fluid is a complete circulation type with low energy consumption that depolymerizes and repolymerizes polymer using enzymes. It has not been reported to be applied to chemical recycling.
[0007]
[Problems to be solved by the invention]
  The present invention has been made in view of the above problems, and its purpose is to provide polyester.LeMethod for converting to repolymerizable depolymerization product, and from said depolymerization product to polyesterLeThe manufacturing method is provided as an environment-accepting method with low energy consumption.
[0008]
[Means for Solving the Problems]
  The object of the present invention is solved by providing the following depolymerization method and polymerization method.
(1) PolyesterLipase leSupercritical in the presence ofcarbon dioxideIn supercriticalcarbon dioxidePolyester againstLeConcentrate to 0.1-10% by mass and polyesterLeThe water concentration is 45-200% by massDimerTo depolymerize a depolymerized product mainly composed ofLeDepolymerization method.
(2) PolyesterLipase leSupercritical in the presence ofcarbon dioxideIn supercriticalcarbon dioxidePolyester againstLeConcentrate to 0.1-10% by mass and polyesterLeThe water concentration is 45-200% by massDimerIs depolymerized into a depolymerized product containing as a main component, and the resulting depolymerized product isLipaseSupercritical in the presence ofcarbon dioxidePolyester characterized by being polymerized inLeProduction method.
(3) PolyesterLipase leSupercritical in the presence ofcarbon dioxideIn supercriticalcarbon dioxidePolyester againstLeConcentrate to 0.1-10% by mass and polyesterLeThe water concentration is 45-200% by massDimerIn the presence of a polymerization catalyst and supercritical.carbon dioxidePolyester characterized by being polymerized inLeProduction method.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
  First, PolyesterLeA method for depolymerization will be described. Polyesters that can be used in the depolymerization of the present invention include polyesters from polycarboxylic acids and polyols, as well as polyesters or polylactones from hydroxycarboxylic acids or their intramolecular esters (lactones). Examples of polyesters from polycarboxylic acids and polyols include those having a repeating unit represented by the following structural formula (1), such as polybutylene succinate, polybutylene adipate, and poly (butylene succinate-adipate) copolymer. Preferably mentioned.
[0011]
[Chemical 1]
Figure 0004171823
[0012]
In the structural formula (1), A represents a linear or branched alkylene group having 2 to 8 carbon atoms, and B represents a linear or branched alkylene group having 2 to 6 carbon atoms. Each of A and B may be two or more different (ie, copolymers). Furthermore, A (COOH)2Or less than 50 mol% of the dicarboxylic acid represented by the formula (1) may be substituted with an aromatic dicarboxylic acid such as terephthalic acid, phthalic acid, isophthalic acid or the like.
Examples of the polyester of the present invention include repeating units other than those represented by the structural formula (1), for example, repeating units represented by the following structural formulas (2) and / or (3) (in the unit, D represents 2 to 2 carbon atoms). 6 linear or branched alkylene groups, alkenylene groups or alkynylene groups) may be contained in an amount of 50 mol% or less.
[0013]
[Chemical 2]
Figure 0004171823
[0014]
The molecular weight (number average molecular weight) of the polyester is not particularly limited, and the terminal group portion of the polyester can be substituted with any substituent determined by a polymer synthesis method.
[0015]
Moreover, as the polyester or polylactone derived from the hydroxycarboxylic acid, in addition to a polymer of a hydroxycarboxylic acid or lactone having 3 to 20 carbon atoms, a polyester or polylactone having one or more repeating units represented by the following structural formula (4) Is also included.
In the formula, R represents a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms.
[0016]
[Chemical 3]
Figure 0004171823
[0017]
The R may be two or more different types (copolymers) selected from a hydrogen atom and an alkyl group having 1 to 12 carbon atoms. When R is a methyl group, it is poly (3-hydroxybutyric acid). When R is a methyl group and a hydrogen atom, it is a 3-hydroxybutyric acid / 3-hydroxypropionic acid copolymer (PHB / PHP), and R is methyl. In the case of a group and an ethyl group, it is a 3-hydroxybutyric acid / 3-hydroxyvaleric acid copolymer (PHB / PHV). These are known as polymers produced by microorganisms. The terminal group portion of the polylactone can be substituted with any substituent determined by a polymer synthesis method.
The polylactone may further have one or more repeating units represented by the following structural formulas (5) to (7) in the molecule.
[0018]
[Formula 4]
Figure 0004171823
[0019]
Where R1Is a linear or branched alkylene group having 1 to 17 carbon atoms, R2Is a linear or branched alkylene group having 2 to 11 carbon atoms, RThreeIs a linear or branched alkylene group having 1 to 10 carbon atoms, RFourRepresents a linear or branched alkylene group having 2 to 10 carbon atoms. (When the repeating unit (5) is included, it represents a copolymer containing another lactone.)
[0021]
  Next, in the present inventionIsCarbon dioxide as a supercritical fluidIs used. twoAs described above, carbon oxide is harmless, inexpensive, and non-flammable, and its critical point is about 32 ° C. and about 7.2 MPa, so that it easily reaches the critical point and is used for depolymerization and polymerization of the present invention. Suitable as a medium.
[0022]
  Polyester of the present inventionLe (Smell"Sometimes referred to as “depolymerized polymer”. ) Depolymerization and depolymerization polymerLipaseIs put in a pressure-resistant reaction tube, and liquefied carbonic acid is injected into the pressure-resistant reaction tube while pressurizing with a liquid feed pump, thereby bringing the carbon dioxide into a supercritical state and preferably stirring while maintaining the supercritical carbon dioxide at an appropriate temperature. However, it is carried out by carrying out an appropriate time depolymerization reaction. The temperature of supercritical carbon dioxide during depolymerization is about 31 to 90 ° C, preferably about 40 to 80 ° C, and the pressure is about 7.2 to 30 MPa, preferably about 7.5 to 20 MPa. .
  The concentration of the depolymerized polymer contained in the depolymerization reaction medium is suitably 0.1 to 50 g / L, particularly 1 to 20 g / L. When the concentration is lower than 0.1 g / L, the yield itself is not particularly low, but the concentration is low, so that it is difficult to secure a sufficient amount of the depolymerized product, and when it exceeds 50 g / L, the depolymerized product is exceeded. The above-mentioned range is preferable because the conversion rate to is reduced.
  The depolymerization reaction time is preferably at least 3 hours. Although there is no upper limit for the reaction time, depolymerization does not proceed any longer even if it is performed for 48 hours or more, which is economically disadvantageous.
[0023]
  Enzyme used for depolymerization of the present inventionLipaseMay or may not be immobilized, but from the viewpoint of recovery of the depolymerized product and reuse of the enzyme, the immobilized one is convenient.. During ~However, lipases derived from Candida antarctica are preferred. Examples of the lipase include “Novozym 435 (trade name)” of Novozymes Japan, which is an immobilized enzyme derived from Candida antarctica.
  Immobilization in the depolymerization of the present inventionLipaseIs added in an amount of 1-1000 mass%, preferably 1-500 mass%, more preferably 5-200 mass% per polymer. When the amount is less than 1% by mass, the depolymerization reaction is remarkably reduced, and when the amount exceeds 1000% by mass, no significant change is observed in the yield of the depolymerized product, so the above range is appropriate.
[0024]
  Furthermore, if there is no water in the depolymerization systemLipaseTherefore, it is preferable to add a small amount of water to the system.LipaseWhen the water itself retains moisture, it is not necessary to add water.LipaseThe water content for maintaining the activity is about 0.1 to 1000% by mass relative to the depolymerized polymer in the reaction system.
[0025]
  PolyesteLeThe depolymerization product is a linear or cyclic oligomer or monomer(However, a cyclic dimer is the main component.)Depending on the depolymerization conditions, many cyclic products or many linear products can be obtained.But,In the present invention, in order to obtain a large amount of cyclic oligomer, the water concentration with respect to the depolymerized polymer is low (45 to 200% by mass), and the concentration of the depolymerized polymer with respect to the reaction medium is low (0.1 to 10% by mass). Do. NoMisaligned oligomers and monomers can also be regenerated to the original polymer by repolymerization. In particular, the re-polymerization of the cyclic oligomer is a ring-opening polymerization, so that no condensation component such as water is generated, and there is no need to take them out of the reaction system, so that there is an advantage that the polymerization reaction operation is simple.
  The molecular weight of the oligomer is generally 500 or less, although it depends on the reaction conditions such as temperature, pressure and depolymerized polymer concentration.
[0026]
  For example, polycaprolactone produces mainly dicaprolactone (1,8-dioxacyclotetradecalin-2,9-dione), which is a cyclic dimer of caprolactone, when it is depolymerized under conditions for generating a large amount of cyclic oligomers. Can get as a thingwear. Further, from the polyester having a repeating unit represented by the structural formulas (1) and (4),Examples 4 and 6The ring indicated byDimerCan be obtained as the main product.
[0027]
[Polymerization of the depolymerized product]
(LipaseMethod using
  Polyester of the present inventionLeThese depolymerized products areLipaseIt is possible to polymerize in supercritical carbon dioxide in the presence of. Depolymerized products andLipaseIs put in a pressure-resistant reaction tube, and liquefied carbonic acid is injected into the pressure-resistant reaction tube while pressurizing with a liquid feed pump, thereby bringing the carbon dioxide into a supercritical state and preferably stirring while maintaining the supercritical carbon dioxide at an appropriate temperature. However, it is carried out by carrying out an appropriate time depolymerization reaction. The temperature of supercritical carbon dioxide during depolymerization is about 31 to 85 ° C, preferably about 40 to 75 ° C, and the pressure is about 7.2 to 30 MPa, preferably about 7.5 to 20 MPa. .
  Further, the concentration of the depolymerization product contained in the polymerization reaction solution is suitably 0.1 to 50 g / L, particularly 1 to 20 g / L. When the concentration is lower than 0.1 g / L, the yield itself is not particularly low, but the concentration is low, so it is difficult to secure a sufficient amount of polymer, and when it exceeds 50 g / L, the conversion rate to the polymer decreases. Therefore, the above range is preferable.
  The polymerization time is suitably 0.5 to 48 hours. When the time is shorter than 0.5 hours, the reaction does not proceed sufficiently, and when the time exceeds 48 hours, the produced polymer causes depolymerization. Therefore, the above range is preferable.
[0028]
  Used to polymerize the depolymerized product of the present inventionRuStylizationLipaseIs added to the depolymerized product.Lipase0.1 to 50% by weight, preferablyLipaseIt is 0.1-10 mass%. If the amount is less than 0.1% by mass, the polymerization rate decreases and the monomer conversion rate tends to be low, and if it exceeds 50% by mass, the molecular weight of the polymer to be formed tends to be low.
[0029]
  By the polymerization method of the present invention, a polyester having a number average molecular weight of up to about 10,000 is obtained.Be. The conversion rate of the depolymerized product into a polymer can be 100%.
[0030]
(Chemical synthesis method)
  As an example of polyester, 0.1% by mass of distanoxane is added as a catalyst to the depolymerized product under absolute drying conditions, and the corresponding polyester can be obtained by bulk polymerization at 100 ° C.The
[0036]
  The depolymerization method and polymerization method of the present invention are supercritical.carbon dioxideIs used as a reaction solvent, the reaction solvent can be easily released out of the system by simply returning the system pressure to normal pressure after the reaction, and the product can be easily separated from the system. It is also possible to recover and reuse the released reaction solvent.MoreEven if the solvent leaks out of the reaction system, there is no possibility of contaminating the environment.
  Furthermore, the depolymerization and polymerization reaction efficiency is comparable to the depolymerization method and polymerization method using ordinary organic solvents.LipaseIn the case of the depolymerization reaction using, the time required for 100% depolymerization of the polymer is slightly longer than when toluene is used, but is significantly shorter than when acetonitrile is used.
  In addition, the present inventionLipaseThe depolymerization method and the polymerization method using a simple one-pot operation may be used, and the reaction conditions are mild and low energy consumption. Furthermore, the oligomer and monomer obtained by depolymerization can be regenerated to the original polymer by repolymerization. And used to perform depolymerization or polymerizationLipaseCan be recovered and used repeatedly, with the advantage that there is virtually no decrease in enzymatic activity.
  Therefore, according to the present invention, it has become possible to construct a system for utilizing a polymer material that is environmentally acceptable and that can completely reuse carbon resources.
[0037]
【Example】
  Examples The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples.Yes.
[0039]
Example1
  14-membered ring dicaprolactone (1,8-dioxacyclotetradecane-2,9-dione) (50 mg) and immobilized lipase (Novozym 435) (5 mg) were weighed into a 10 mL stainless steel pressure-resistant reaction tube, and then liquefied carbonic acid was added. Polymerization was carried out by charging at 8 MPa and stirring in supercritical carbon dioxide using a magnetic stir bar at 70 ° C. for 6 hours at 8 MPa. After completion of the reaction, the reaction tube is cooled in a dry ice-methanol bath, the gas introduction cock is opened, the carbon dioxide gas is gradually exhausted, and after returning to normal pressure, a small amount of chloroform is added to the polymer in the reaction tube, Insoluble immobilized lipase was filtered off using celite, and chloroform was concentrated from the filtrate under reduced pressure using an evaporator to obtain polycaprolactone almost quantitatively. When the molecular weight was measured by the GPC method, it was Mw = 48,000, Mn = 26,000, Mw / Mn = 1.8.
[0042]
Example2
  14-membered ring dicaprolactone (1,8-dioxacyclotetradecane-2,9-dione) (200 mg), potassium oleate (1.5 mg) and 18-crown-6 (1.2 mg) were added to a 10 mL stainless steel pressure-resistant reaction tube. Weighed and then filled with liquefied carbonic acid at 10 MPa, and polymerization was carried out in supercritical carbon dioxide by stirring at 10 MPa for 24 hours at 40 ° C. using a magnetic stirrer. After completion of the reaction, the reaction tube is cooled in a dry ice-methanol bath, the gas introduction cock is opened, the carbon dioxide gas is gradually exhausted, and after returning to normal pressure, a small amount of chloroform is added to the polymer in the reaction tube, Insoluble matter was filtered off, and chloroform was concentrated from the filtrate under reduced pressure using an evaporator to obtain polycaprolactone. When the molecular weight was measured by the GPC method, it was Mw = 30,000, Mn = 20,000, Mw / Mn = 1.5.
[0044]
Example3
  25 mg of poly (caprolactone) (molecular weight Mn = 110,000, Mw / Mn = 1.6), 10 mg of immobilized lipase (Novozym 435) and 12 mg of water are weighed into a 10 mL stainless steel pressure-resistant reaction tube, and then liquefied carbonic acid at 16 MPa. The sample was charged and decomposed in supercritical carbon dioxide using a magnetic stirrer at 40 ° C. for 6 hours and at 16 MPa. After completion of the reaction, the reaction tube was cooled in a dry ice-methanol bath, the gas introduction cock was opened, and the carbon dioxide gas was gradually exhausted. After returning to normal pressure, a small amount of chloroform is added to the decomposition product remaining in the reaction tube, insoluble immobilized lipase is filtered off using Celite, and the solvent is concentrated under reduced pressure using an evaporator from the filtrate, and cyclic dicaprolactone is obtained. Was obtained almost quantitatively. Cyclic dicaprolactone was quantified by GPC and MALDI-TOF MS. In addition, the formation of cyclic dicaprolactone was purified and analyzed by recrystallization from a tetrahydrofuran (THF) solution of the crude product. The results are shown below.
[0045]
Melting point (mp) 113-115 ° C. (literature value 111-113 ° C.). [F. J. et al. Van Natta, J.A. W. Hill, W.M. H. Carothers, J. et al. Am. Chem. Soc. 1934, 56, 455. ]
Infrared spectrum IR (KBr): 2936, 2866 (CH2), 1721 (COO, ester), 1472 cm-1(CH2).1H-NMR (300 MHz, CDClThree): Δ = 1.35-1.75 (m, 12H, CH2ofC-3,3 ', 4,4', 5and5 '), 2.38 (t, J = 6.05 Hz, 4H, CH2ofC-2and2 '), 4.16 (t, J = 5.63 Hz, 4H, CH2ofC-6and6 ').13C-NMR (75 MHz, CDClThree): Δ = 24.6, 28.1 (C-3, 3 ', 4, 4', 5and 5 ', CH2), 34.6 (C-2and2 ', CH2), 63.0 (C-6and6 ', CH2), 173.5 (C-1 and 1 ', C = 0).
Elemental analysis value C12H20OFour(228.3): Calculated value C63.13; H8.83; Theoretical value C63.12; H8.79.
[0046]
Similarly, the change in the yield of cyclic dicaprolactone (DCL) when the pressure of supercritical carbon dioxide is changed is shown in FIG. From FIG. 1, the yield of DCL increased with increasing pressure, reached the maximum value at 16 MPa, and no effect was observed even when the pressure was increased further. In this range of pressure, only the content of DCL was changed by changing the pressure, and it was almost quantitatively converted into an oligomer mainly composed of a cyclic product containing cyclic dicaprolactone.
[0047]
FIG. 2 shows the relationship between the temperature when the reaction is carried out at 16 MPa and the yield of cyclic dicaprolacun (DCL) (reaction for 6 hours).
From FIG. 2, it was found that the maximum yield of DCL can be obtained at a reaction temperature of 40 to 50 ° C. At a reaction temperature higher than this, the enzyme activity decreases and the yield also decreases.
The yield of cyclic dicaprolacun (DCL) greatly depends on the amount of water initially added. If the amount of water is extremely large, the amount of linear hydroxy acid is increased by hydrolysis. FIG. 3 shows the relationship between the amount of water in the reaction system and the yield of cyclic dicaprolacun (DCL).
[0048]
Example4
  30 mg of poly (butylene adipate) (molecular weight Mw 22,000), 30 mg of immobilized lipase (Novozym 435) and 20 mg of water were weighed into a 10 mL stainless steel pressure-resistant reaction tube, and then filled with liquefied carbonic acid at 16 MPa. Decomposition was performed in carbon using a magnetic stirrer at 40 ° C. for 6 hours at 16 MPa. After completion of the reaction, the reaction tube was cooled in a dry ice-methanol bath, the gas introduction cock was opened, and the carbon dioxide gas was gradually exhausted. After returning to normal pressure, a small amount of chloroform is added to the decomposition product remaining in the reaction tube, insoluble immobilized lipase is filtered off using Celite, and the solvent is concentrated under reduced pressure using an evaporator from the filtrate, and cyclic butylene adipate is added. Dimer (in the structural formula (8), L: (CH2)Four, M (CH2)FourA repolymerizable oligomer mainly composed of m = 2) was obtained almost quantitatively. Cyclic butylene adipate dimer was quantified by GPC and MALDI-TOF MS. Moreover, the confirmation of cyclic butylene adipate dimer formation was performed by purifying the crude product by column chromatography.
1H-NMR (300 MHz, CDClThree): Δ (ppm) = 4.12 (—CH2-O-CO-) (4H, m), 2.34 (-CH2-CO-O) (4H, m), 1.73 (-CO-CH2-CH2-CH2-CH2-CO-) (4H, m), 1.68 (-O-CH2-CH2-CH2-CH2-O-) (4H, m).
[0049]
Example5
  Example450 mg of cyclic butylene adipate dimer and 5 mg of immobilized lipase (Novozym 435) obtained in the above were weighed into a 10 mL stainless steel pressure-resistant reaction tube, and then filled with liquefied carbon dioxide at 8 MPa, and a magnetic stirrer in supercritical carbon dioxide. Was used for polymerization for 6 hours at 70 ° C. and agitation at 8 MPa. After completion of the reaction, the reaction tube was cooled in a dry ice-methanol bath, the carbon dioxide gas was gradually exhausted, the pressure was returned to normal pressure, a small amount of chloroform was added to the polymer in the reaction tube, and insoluble immobilized lipase was added to celite. And the solvent was concentrated under reduced pressure from the filtrate using an evaporator to obtain poly (butylene adipate) almost quantitatively. When the molecular weight was measured by the GPC method, it was Mw = 52,000.
[0050]
Example6
  25 mg of poly (butylene succinate) (molecular weight Mw 99,000), 30 mg of immobilized lipase (Novozym 435) and 12 mg of water were weighed into a 10 mL stainless steel pressure-resistant reaction tube, and then filled with liquefied carbonic acid at 16 MPa. Decomposition was performed in carbon using a magnetic stirrer at 40 ° C. for 6 hours at 16 MPa. After completion of the reaction, the reaction tube was cooled in a dry ice-methanol bath, the gas introduction cock was opened, and the carbon dioxide gas was gradually exhausted. After returning to normal pressure, a small amount of chloroform is added to the decomposition product remaining in the reaction tube, insoluble immobilized lipase is filtered off using Celite, and the solvent is concentrated under reduced pressure using an evaporator from the filtrate. A repolymerizable oligomer having a trimer as a main component was obtained. Cyclic butylene succinate dimer (in the structural formula (8), L: (CH2)2, M (CH2)FourQuantification of m = 2) was performed by GPC and MALDI-TOF MS. Moreover, the confirmation of cyclic | annular butylene succinate dimer production | generation confirmed the crude product by column chromatography, and analyzed.
1H-NMR (300 MHz, CDClThree): Δ (ppm) = 4.11 (—CH2-O-CO-) (4H, m), 2.63 (-CH2-CO-O) (4H, m), 1.71 (-O-CH2-CH2-CH2-CH2-O-) (4H, m).
[0051]
【The invention's effect】
  The depolymerization method and polymerization method of the present invention are supercritical.carbon dioxideIs used as a reaction solvent, the reaction solvent can be easily released out of the system by simply returning the system pressure to normal pressure after the reaction, and the product can be easily separated from the system. It is also possible to recover and reuse the released reaction solvent.MoreEven if the solvent leaks out of the reaction system, there is no possibility of contaminating the environment.
  Furthermore, the depolymerization and polymerization reaction efficiency is comparable to the depolymerization method and polymerization method using ordinary organic solvents.LipaseIn the case of the depolymerization reaction using, the time required for 100% depolymerization of the polymer is slightly longer than when toluene is used, but is significantly shorter than when acetonitrile is used.
  In addition, the present inventionLipaseThe depolymerization method and the polymerization method using a simple one-pot operation may be used, and the reaction conditions are mild and low energy consumption. Furthermore, the oligomer and monomer obtained by depolymerization can be regenerated to the original polymer by repolymerization. And used to perform depolymerization or polymerizationLipaseCan be recovered and used repeatedly, with the advantage that there is virtually no decrease in enzymatic activity.
  Therefore, according to the present invention, it has become possible to construct a system for utilizing a polymer material that is environmentally acceptable and that can completely reuse carbon resources.
[Brief description of the drawings]
FIG. 1 Example32 is a graph showing the relationship between the pressure of supercritical carbon dioxide and the yield of cyclic dicaprolactone.
FIG. 2 Example3Is a graph showing the relationship between the reaction temperature and the yield of cyclic dicaprolactone.
FIG. 3 Example3Is a graph showing the relationship between the water content in the reaction system and the yield of cyclic dicaprolactone.

Claims (3)

ポリエステルをリパーゼの存在下、超臨界二酸化炭素中で、超臨界二酸化炭素に対するポリエステルの濃度を0.1〜10質量%に、かつポリエステルに対する水の濃度を45〜200質量%にして環状二量体を主成分とする解重合生成物に解重合させる、ポリエステルの解重合方法。The presence of polyester Le lipase, in supercritical carbon dioxide, the concentration of the polyester Le for the supercritical carbon dioxide from 0.1 to 10 wt%, and the concentration of water against the polyester Le in the 45 to 200 wt% cyclic dimer is depolymerized to depolymerization products mainly, polyester Le depolymerization method. ポリエステルをリパーゼの存在下、超臨界二酸化炭素中で、超臨界二酸化炭素に対するポリエステルの濃度を0.1〜10質量%に、かつポリエステルに対する水の濃度を45〜200質量%にして環状二量体を主成分とする解重合生成物に解重合させ、得られる前記解重合生成物を、リパーゼの存在下、超臨界二酸化炭素中で重合させることを特徴とするポリエステルの製造方法。The presence of polyester Le lipase, in supercritical carbon dioxide, the concentration of the polyester Le for the supercritical carbon dioxide from 0.1 to 10 wt%, and the concentration of water against the polyester Le in the 45 to 200 wt% cyclic dimer is depolymerized depolymerization product composed mainly of, the depolymerization product obtained in the presence of a lipase, polyester Le method for producing characterized in that the polymerization in supercritical carbon dioxide . ポリエステルをリパーゼの存在下、超臨界二酸化炭素中で、超臨界二酸化炭素に対するポリエステルの濃度を0.1〜10質量%に、かつポリエステルに対する水の濃度を45〜200質量%にして環状二量体を主成分とする解重合生成物に解重合させ、得られる前記解重合生成物を、重合触媒の存在下、超臨界二酸化炭素中で重合させることを特徴とするポリエステルの製造方法。The presence of polyester Le lipase, in supercritical carbon dioxide, the concentration of the polyester Le for the supercritical carbon dioxide from 0.1 to 10 wt%, and the concentration of water against the polyester Le in the 45 to 200 wt% cyclic dimer is depolymerized depolymerization product composed mainly of, the depolymerization product obtained in the presence of a polymerization catalyst, a polyester Le, characterized in that the polymerization in supercritical carbon dioxide production Method.
JP2002193114A 2001-07-05 2002-07-02 Depolymerization of polyester using supercritical carbon dioxide and process for producing polyester from depolymerization product Expired - Fee Related JP4171823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002193114A JP4171823B2 (en) 2001-07-05 2002-07-02 Depolymerization of polyester using supercritical carbon dioxide and process for producing polyester from depolymerization product

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-204999 2001-07-05
JP2001204999 2001-07-05
JP2002193114A JP4171823B2 (en) 2001-07-05 2002-07-02 Depolymerization of polyester using supercritical carbon dioxide and process for producing polyester from depolymerization product

Publications (2)

Publication Number Publication Date
JP2003079388A JP2003079388A (en) 2003-03-18
JP4171823B2 true JP4171823B2 (en) 2008-10-29

Family

ID=26618222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002193114A Expired - Fee Related JP4171823B2 (en) 2001-07-05 2002-07-02 Depolymerization of polyester using supercritical carbon dioxide and process for producing polyester from depolymerization product

Country Status (1)

Country Link
JP (1) JP4171823B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020263201A1 (en) * 2019-06-26 2020-12-30 Orta Doğu Tekni̇k Üni̇versi̇tesi̇ High yield, eco-friendly recycling method of polylactic acid using supercritical or dense gas carbon dioxide

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1548053A1 (en) 2002-08-05 2005-06-29 Keio University Method of enzymatic depolymerization of polylactic acid and process for producing polylactic acid from depolymerization product
JP2005082710A (en) * 2003-09-09 2005-03-31 Keio Gijuku Method for continuous depolymerization of polyester, polycarbonate or polylactic acid with supercritical fluid and continuous depolymerization apparatus
US7365149B2 (en) 2005-12-12 2008-04-29 Hans-Peter Brack Equipment cleaning in the manufacture of polycarbonates
CN101680010A (en) 2007-03-19 2010-03-24 苏德-化学股份公司 Produce the chemical building piece by the selectivity unzipping from plant biomass
JP5644405B2 (en) 2010-11-18 2014-12-24 株式会社リコー toner
US10124512B2 (en) 2012-11-20 2018-11-13 Carbios Method for recycling plastic products
LT3143075T (en) 2014-05-16 2022-09-12 Carbios Process of recycling mixed pet plastic articles
JP6804440B2 (en) 2014-10-21 2020-12-23 キャルビオスCarbios Polyester-degrading activity polypeptides and their use
WO2016097325A1 (en) 2014-12-19 2016-06-23 Carbios Plastic compound and preparation process
EP3268469A1 (en) 2015-03-13 2018-01-17 Carbios New polypeptide having a polyester degrading activity and uses thereof
ES2982423T3 (en) 2015-06-12 2024-10-16 Carbios Composition of biodegradable polyester and its uses
US10717996B2 (en) 2015-12-21 2020-07-21 Carbios Recombinant yeast cells producing polylactic acid and uses thereof
CN116199935A (en) 2016-05-19 2023-06-02 卡比奥斯公司 Method for degrading plastic products
WO2024150799A1 (en) * 2023-01-12 2024-07-18 ダイキン工業株式会社 Composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020263201A1 (en) * 2019-06-26 2020-12-30 Orta Doğu Tekni̇k Üni̇versi̇tesi̇ High yield, eco-friendly recycling method of polylactic acid using supercritical or dense gas carbon dioxide

Also Published As

Publication number Publication date
JP2003079388A (en) 2003-03-18

Similar Documents

Publication Publication Date Title
JP4171823B2 (en) Depolymerization of polyester using supercritical carbon dioxide and process for producing polyester from depolymerization product
Mannina et al. Recovery of polyhydroxyalkanoates (PHAs) from wastewater: a review
Jacquel et al. Isolation and purification of bacterial poly (3-hydroxyalkanoates)
JP4359718B2 (en) Enzymatic depolymerization method of polylactic acid and method for producing polylactic acid using depolymerization product
Shi et al. Recyclable and (Bio) degradable polyesters in a circular plastics economy
Koller et al. Strategies for recovery and purification of poly [(R)‐3‐hydroxyalkanoates](PHA) biopolyesters from surrounding biomass
Zhang et al. Recent developments in lipase-catalyzed synthesis of polymeric materials
Yu et al. Lipase/esterase-catalyzed synthesis of aliphatic polyesters via polycondensation: A review
Gabirondo et al. Poly (hydroxy acids) derived from the self-condensation of hydroxy acids: from polymerization to end-of-life options
Tachibana et al. Biodegradability of polyesters comprising a bio-based monomer derived from furfural
Hermanová et al. Biodegradation of waste PET based copolyesters in thermophilic anaerobic sludge
Zhou et al. Chemical upcycling of poly (lactide) plastic waste to lactate ester, lactide and new poly (lactide) under Mg-catalysis condition
JP5678663B2 (en) Method for producing 2-hydroxyisobutyric acid polymer and depolymerization method
US7098298B2 (en) Method for producing polyhydroxyalkanoate crystal
US5229528A (en) Rapid depolymerization of polyhydroxy acids
JP2002320499A (en) Depolymerization method to oligomer consisting essentially of ring compound of polyalkylene alkanoate or poly(3-hydroxyalkanoate), and method for polymerizing the cyclic oligomer
JP2005082710A (en) Method for continuous depolymerization of polyester, polycarbonate or polylactic acid with supercritical fluid and continuous depolymerization apparatus
Pivsa-Art et al. Synthesis of poly (D-lactic acid) using a 2-steps direct polycondensation process
US8513379B2 (en) Depolymerization method for polymer containing ester bond in main chain and method for producing polymer containing ester bond in main chain from depolymerization product
JP4140804B2 (en) Method for producing dicaprolactone and caprolactone polymer
JPWO2004029266A1 (en) Method for purifying 3-hydroxyalkanoic acid copolymer
Cheng et al. Closed-loop recycling of PET fabric and bottle waste by tandem pre-amorphization and enzymatic hydrolysis
JPWO2003091444A1 (en) Method for separating poly-3-hydroxyalkanoic acid
WO2005049692A1 (en) Process for producing polyhydroxyalkanoate crystal
Grause Depolymerisation of Fossil Fuel and Biomass-derived Polyesters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080723

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees