JP4171213B2 - 走査光学系 - Google Patents
走査光学系 Download PDFInfo
- Publication number
- JP4171213B2 JP4171213B2 JP2001388364A JP2001388364A JP4171213B2 JP 4171213 B2 JP4171213 B2 JP 4171213B2 JP 2001388364 A JP2001388364 A JP 2001388364A JP 2001388364 A JP2001388364 A JP 2001388364A JP 4171213 B2 JP4171213 B2 JP 4171213B2
- Authority
- JP
- Japan
- Prior art keywords
- scanning direction
- lens
- optical system
- scanning
- correction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/12—Scanning systems using multifaceted mirrors
- G02B26/123—Multibeam scanners, e.g. using multiple light sources or beam splitters
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Optical Scanning Systems (AREA)
- Lenses (AREA)
- Laser Beam Printer (AREA)
- Facsimile Heads (AREA)
- Facsimile Scanning Arrangements (AREA)
Description
【発明の属する技術分野】
この発明は、タンデム型のカラーレーザープリンター等の走査光学装置に用いられる複数の光束を同時に走査させる走査光学系に関する。
【0002】
【従来の技術】
タンデム型のカラーレーザープリンターは、Y(イエロー)、M(マゼンタ)、C(シアン)、K(黒)の各色に対応して設けられた4本の感光体ドラムを備え、用紙を一方向に移動させながらカラー画像を印刷する。このようなタンデム型カラーレーザープリンターの走査光学系は、各色に対応した4つの半導体レーザーと、これらの半導体レーザーから発したレーザー光を反射、偏向させる共通のポリゴンミラーと、ポリゴンミラーの近傍に設けられた共通のfθレンズと、それぞれの感光体ドラムの近傍に設けられた像面湾曲補正用の補正レンズとを備えている。
【0003】
それぞれの感光体ドラム上に形成されるスポットは、ポリゴンミラーの回転に伴って同時に走査し、この際それぞれのレーザー光をオンオフ変調することにより感光体ドラム上に静電潜像を形成する。静電潜像を各色のトナーにより現像し、これを用紙に転写して定着させることにより、カラー画像が印刷される。
【0004】
なお、この明細書では、感光体ドラム等の被走査面上でスポットが走査する方向を主走査方向、これに直交する方向を副走査方向と定義し、各光学素子の形状、パワーの方向性は、被走査面上での方向を基準に説明することとする。
【0005】
上記のように複数の光束に対してポリゴンミラーを共用する場合、各光束の副走査方向の断面内でのポリゴンミラーへの入射角度をそれぞれ異ならせると、複数の光束をポリゴンミラーの反射面上でほぼ同一の位置に入射させることができ、ポリゴンミラーを薄くし、そのコストを抑えることができる。ただし、上記のようにポリゴンミラーに対する副走査方向の入射角度が有限の値を持つ場合には、被走査面上ではビームスポットの軌跡である走査線が湾曲する。走査線の湾曲はボウ(Bow)と呼ばれる。タンデム型カラーレーザープリンターでは、4本の感光体ドラム上に形成される走査線の形状を一致させること、すなわち、ボウを揃えることが色ズレを防ぐために重要である。
【0006】
【発明が解決しようとする課題】
しかしながら、従来の走査光学系では、入射角度が異なる光束については異なる設計の像面湾曲補正レンズが用いられているため、設計上ボウを小さく抑えることができたとしても、実際の製造時の組み立て誤差等により、ボウが発生すると、その形状が異なるという問題がある。すなわち、像面湾曲補正レンズは、一般に入射する光束に対して最適な性能が得られるように設計されるため、これが誤差発生時のボウの形状の違いとなって現れる。
【0007】
このような誤差によりボウが発生したとき、発生するボウの形状が同一であれば、像面湾曲補正レンズを主走査方向の回転軸回りに回転調整することにより、ボウを合わせ込むことができる。このような合わせ込みが可能であれば、結果的にボウが残存していても、レーザーを駆動する描画信号を調整することにより、ボウの影響を電気的に除去することができる。しかしながら、従来のタンデム型カラーレーザープリンターにおいては、各走査線毎に、誤差により発生するのボウの形状が異なるため、像面湾曲補正レンズの調整によりボウの形状を合わせ込むことができず、上記のような誤差が生じた場合には、色ズレが生じ、印刷品質が悪化する。
【0008】
この発明は、上記の従来技術の問題点に鑑み、組み立て誤差等によりボウが発生した場合にも、ポリゴンミラーに対する入射角度が異なる複数の光束について、ボウの形状を合わせることができる走査光学系を提供することを目的とする。
【0009】
【課題を解決するための手段】
この発明にかかる走査光学系は、上記の目的を達成させるため、ポリゴンミラーに入射する4本の光束毎に配置された像面湾曲補正用の4つの補正レンズの1つの面をアナモフィック面とし、そのアナモフィック面の設計を内側の2本の光束が入射する補正レンズと外側の2本の光束が入射する補正レンズとで異ならせ、かつ、アナモフィック面の主走査方向の形状を、4つの補正レンズについてほぼ一致させたことを特徴とする。
【0010】
すなわち、この発明にかかる走査光学系は、4本の光束を発生する光源部と、光源部から発し、副走査方向の断面内で入射角度±β in で入射する内側の2本の光束、及び、入射角度±β out ( ただし、β in <β out ) で入射する外側の2本の光束を反射、偏向させるポリゴンミラーと、ポリゴンミラーにより反射された光束をそれぞれ対応する被走査面上で主走査方向に走査するスポットとして収束させる結像光学系とを備え、結像光学系は、4本の光束に対して共通に単数配置された走査レンズと、走査レンズより被走査面側に位置し、ポリゴンミラーに入射する光束毎に配置された像面湾曲補正用の4つの補正レンズとを備え、上記のように4つの補正レンズのアナモフィック面の設計を内側の2本の光束が入射する補正レンズと外側の2本の光束が入射する補正レンズとで異ならせ、かつ、主走査方向の形状をほぼ一致させたことを特徴とする。
【0011】
像面湾曲補正レンズを主走査方向の回転軸回りに回転調整することにより被走査面上に形成される走査線のボウの形状は、共通の走査レンズとそれぞれの光束に対して独立して設けられた補正レンズとを組み合わせて使用する場合には、補正レンズの主走査方向の形状に依存する。すなわち、主走査の面形状に類似した形状のボウが発生する。そこで、上記のように各補正レンズの主走査方向の形状をほぼ一致させた場合には、発生するボウの形状をほぼ一致させることができる。
【0012】
補正レンズのアナモフィック面は、副走査方向に対して垂直で面中心を含む平面に関して非対称な形状を有することが望ましい。なお、面中心は、面設計時に設定される原点であり、主走査方向については、被走査面上で走査範囲の中心に達する光束が非球面と交差する位置である。
【0013】
補正レンズのアナモフィック面は、面中心を原点として含んで走査レンズの光軸と直交する基準平面からのサグ量が主走査方向・副走査方向それぞれの面中心からの距離に関する二次元多項式で表現される二次元多項式非球面とすることができる。
複数の補正レンズのアナモフィック面は、それぞれの面中心からの主走査方向の距離Yにおけるサグ量をX(Y)、補正レンズの種類をn種類(nは2以上の整数)として、
ΔXn-1(Y)=Xn(Y)−Xn-1(Y)
で定義されるΔXn-1(Y)を形状の異なる補正レンズ間のサグ量の差とし、異なる被走査面上に形成される走査線間の湾曲差の許容量をΔpとしたとき、
|ΔXn-1 (Y)|≦50Δp
または、
|ΔXn-1 (Y)|≦0.2 (単位:mm)
を満たすことが望ましい。
【0014】
複数の補正レンズは、それぞれ1枚のプラスチックレンズのみで構成されることが望ましい。また、走査レンズの1つのレンズ面は、主走査方向の断面形状が当該走査レンズの光軸からの主走査方向の距離の関数として定義され、副走査方向の断面形状が円弧であって、その曲率が光軸からの主走査方向の距離の関数として主走査方向の断面形状とは独立して定義されるアナモフィック非球面であることが望ましい。
【0015】
光源部は、光源部から発する複数の光束がポリゴンミラーに対して副走査方向の断面内で絶対値が等しく符号が異なる入射角度で入射するように設定されることが望ましい。この場合、複数の補正レンズは、ポリンゴンミラーから各感光体ドラムまでの反射面を展開して考えた場合、走査レンズ系の光軸の延長線に対して対称に配置することができる。すなわち、同一設計の補正レンズを、走査レンズ系の光軸の延長線に対して等距離の位置に、180°回転させて配置することができる。
【0016】
【発明の実施の形態】
以下、この発明にかかる走査光学系の実施形態を説明する。図1は、実施形態にかかる走査光学系を利用したタンデム走査光学系を示す説明図であり、(A)はポリゴンミラーより光源部側の副走査方向の断面内での説明図、(B)はポリゴンミラーより被走査面である感光体ドラム側の副走査方向の断面内での説明図である。
【0017】
図1(A)に示すタンデム走査光学系の光源部10は、4個の半導体レーザー11、11…と、これらの半導体レーザーから発する発散光を平行光にする4個のコリメートレンズ12、12…とを備えている。半導体レーザー11は、図中の縦方向となる副走査方向に4段並んで配置されている。
【0018】
コリメートレンズ12により平行光とされた4本のレーザー光L1〜L4は、副走査方向にのみパワーを持つ単一のシリンドリカルレンズ13の作用により副走査方向に関して収束光となり、かつ、シリンドリカルレンズ13が持つプリズム作用により偏向されてポリゴンミラー20の近傍でほぼ同一位置に線像を形成する。すなわち、光源部10から発する4本の光束は、副走査方向の断面内での入射角度がそれぞれ異なり、ポリゴンミラー20の反射面上で交差する。これにより、ポリゴンミラー20の副走査方向の高さを小さく抑えることができる。内側の2本の光束L2,L3のポリゴンミラーに対する入射角度は±βin、外側の2本の光束L1,L4の入射角度は±βoutである。すなわち、対をなす2本ずつの光束が、ポリゴンミラー20に対して副走査方向の断面内で絶対値が等しく符号が異なる入射角度で入射するように設定されている。
【0019】
光源部10から発した4本の光束L1〜L4は、回転軸20a回りに回転するポリゴンミラー20により同時に偏向される。偏向された4本の光束L1〜L4は、副走査方向に関しては所定の角度で異なる方向に進み、第1レンズ31と第2レンズ32とから構成される走査レンズ30に入射する。走査レンズ30から射出した光束は、2本ずつそれぞれ一対のミラー40,41により反射され、各光束毎の光路に配置された像面湾曲補正用の補正レンズ51〜54を介して、それぞれ異なる感光体ドラム61〜64上に収束して各ドラム上にビームスポットを形成する。ポリゴンミラー20を回転軸20a回りに回転させることにより、4本の感光体ドラム61〜64上にそれぞれ1本の走査線を同時に形成することができる。
【0020】
なお、シリンドリカルレンズ13は、光源部から発する光束を副走査方向に収束させるアナモフィック光学素子としての機能を有しており、走査レンズ30及び補正レンズ51〜54は、ポリゴンミラー20により反射された光束を被走査面上で主走査方向に走査するスポットとして収束させる結像光学系としての機能を有している。
【0021】
結像光学系を構成する走査レンズ30の一面(第1レンズ31の被走査面側の面、あるいは、第2レンズ32の被走査面側の面)には、主走査方向の断面形状が走査レンズ30の光軸Axからの主走査方向の距離の関数として、副走査方向の断面形状の曲率が光軸Axからの主走査方向の距離の関数として、それぞれ独立に定義されるアナモフィック非球面が採用されている。走査レンズ30のアナモフィック非球面は、副走査方向の断面形状が円弧であり、その副走査方向の断面形状の曲率は、光軸からの主走査方向の距離が大きくなるにしたがって減少するように設定されている。アナモフィック非球面の形状は、光軸を通る主走査方向の境界線を境に対称である。
【0022】
また、補正レンズ51〜54の一面は、アナモフィック面であり、このアナモフィック面の主走査方向の形状が、全ての補正レンズについてほぼ一致するよう設定されている。具体的には、補正レンズ51〜54のアナモフィック面は、それぞれの面中心からの主走査方向の距離Yにおけるサグ量をX(Y)、補正レンズの種類をn種類(nは2以上の整数)として、
ΔXn-1(Y)=Xn(Y)−Xn-1(Y)
で定義されるΔXn-1(Y)を形状の異なる補正レンズ間のサグ量の差とし、異なる被走査面上に形成される走査線間の湾曲差の許容量をΔpとしたとき、
|ΔXn-1 (Y)|≦50Δp
を満たすよう設計されている。サグ量差とボウの差、すなわち湾曲量差とは比例関係にあり、かつ、後述する実施例の仕様では、サグ量差が2.5mmのときにボウの差、すなわち湾曲量差が0.05mmとなることから、比例定数は50となる。そこで、上記の条件のように、サグ量の最大値が湾曲量差の許容量Δpの50倍以下となるよう設定すれば、発生するボウの形状をほぼ一致させることができる。
【0023】
外側の光束L1,L4と内側の光束L2,L3との走査線の湾曲量差の許容量Δpをビーム径の1/10に設定すると、600dpiの場合にはビーム径は0.0423mmとなるため、Δp=0.00423mmとなる。したがって、50Δpは約0.2mmとなり、前述の条件|ΔXn-1 (Y)|≦50Δpは、
|ΔXn-1 (Y)|≦0.2 (単位:mm)
と表すことができる。
【0024】
補正レンズ51〜54のアナモフィック面は、副走査方向の断面の傾きが主走査方向の位置により変化し、副走査方向に対して垂直で面中心を含む平面に関して非対称な形状を有する非球面である。この非球面は、面中心を原点として含んで走査レンズの光軸と直交する基準平面からのサグ量が主走査方向・副走査方向それぞれの面中心からの距離に関する二次元多項式で表現される二次元多項式非球面であり、その形状は、面中心を通る副走査方向の境界線を境に対称である。二次元多項式非球面の副走査方向の断面の傾きは、面中心からの主走査方向の距離が大きくなるにしたがって増加するよう設定されている。
【0025】
外側の光束L1,L4が入射する補正レンズ51,54は、同一設計のレンズであり、これを光軸(反射面を展開して考えたときの走査レンズ30の光軸)を中心に180°回転させて配置している。また、内側の光束L2,L3が入射する補正レンズ52,53も、同一設計のレンズであり、これを光軸を中心に180°回転させて配置している。ただし、外側の光束と内側の光束とでは光軸に対する角度が異なるため、補正レンズ51,54と補正レンズ52,53とは異なる設計である。すなわち、補正レンズとしては、2種類のレンズを2個ずつ用意すればよい。なお、補正レンズの設計が異なるのは二次元多項式非球面のみであり、他方の面は4つの補正レンズでいずれも共通である。
【0026】
次に、図1に示したタンデム走査光学系の具体的な実施例を4例説明する。なお、以下の実施例では、ミラー40,41を省略し、光路を展開して説明する。
【0027】
【実施例1】
図2は、実施例1の走査光学系の主走査方向の説明図である。主走査方向のレンズ形状は、外側の光束L1が通る光学系と内側の光束L2が通る光学系とでほぼ同一であるため、図2では外側の光束L1が通る光学系を示している。実施例1の走査光学系は、走査レンズ30が第1レンズ31と第2レンズ32との2枚構成であり、第1レンズ31がプラスチック、第2レンズ32がガラス、そして、補正レンズ51−54がプラスチックにより形成されている。
【0028】
表1は、実施例1の走査光学系におけるシリンドリカルレンズ13より感光体ドラム61〜64側の構成を示す。表中の記号ryは主走査方向の曲率半径(単位:mm)、rzは副走査方向の曲率半径(回転対称面の場合には省略、単位:mm)、dは面間の光軸上の距離(単位:mm)、nは設計波長780nmでの屈折率、DECZは反射面を展開して考えたときの走査レンズ30の光軸を基準にした各面の副走査方向への偏心(単位:mm)である。入射角度は、各光束の中心軸がポリゴンミラー20に入射する際に反射面の法線に対してなす副走査方向の角度(主走査方向に対して垂直な平面に投影した際の角度)である。
【0029】
【表1】
【0030】
第1面はシリンドリカル面、第2面、第3面は平面、第4面は回転対称非球面、第5面はアナモフィック非球面、第6面は平面、第7面は球面、第8面、第11面は二次元多項式非球面、第9面、第12面は球面である。
【0031】
回転対称非球面は、光軸からの距離がhとなる非球面上の座標点の非球面の光軸上での接平面からの距離(サグ量)をX(h)、非球面の光軸上での曲率(1/r)をC、円錐係数をκ、4次、6次の非球面係数をA4,A6として、以下の式で表される。表1における回転対称非球面の曲率半径は、光軸上の曲率半径であり、円錐係数、非球面係数は表2に示される。
【0032】
【数1】
【0033】
【表2】
【0034】
アナモフィック非球面は、面上で光軸を通る主走査方向の曲線を想定した際に、光軸からの主走査方向の距離がyとなる上記曲線上の座標点での光軸上の接線からの距離(サグ量)をX(y)、当該座標点でこの曲線に接する副走査方向の円弧の曲率をCz(y)として、以下の式で定義される。
【0035】
【数2】
【0036】
式中、Cは主走査方向の曲率、κは円錐係数、AMmは主走査方向の曲率を定義するn次の非球面係数、Cz0は光軸上での副走査方向の曲率(=1/rz)、ASnは副走査方向の曲率を定義するn次の非球面係数である。第5面を定義する各係数の値は、表3に示されている。
【0037】
【表3】
【0038】
二次元多項式非球面は、面中心で接する平面上での主走査方向の距離y、副走査方向の距離zの点(y,z)におけるサグ量X(y,z)として、以下の二次元多項式により表される。ここで、Cは面中心における主走査方向の曲率(1/ry)、κは円錐係数、hは面中心からの距離(=(y2+z2)1/2)、Bmnは係数(mは主走査方向,nは副走査方向に関する次数)である。この二次元多項式は、回転非対称な光学曲面を表す一般式である。Bmnのnが奇数の場合の値を0以外の値にすると、面形状は副走査方向に対して垂直で面中心を含む平面に関して非対称となる。
【0039】
【数3】
【0040】
外側光束用の補正レンズ51に形成された二次元多項式非球面を定義する係数の値を表4、内側光束用の補正レンズ52に形成された二次元多項式非球面を定義する係数の値を表5に示す。
【0041】
【表4】
【0042】
【表5】
【0043】
図3は、実施例1の走査光学系において、各補正レンズを主走査方向の回転軸回りに1度傾けた際の走査線湾曲(ボウ)を示す。図中、実線が外側の光学系の光束L1に対するボウ、破線が内側の光学系の光束L2に対するボウである。グラフの縦軸は主走査方向の走査位置(単位:mm)、横軸はボウの発生量(単位:mm)を示す。図3に示されるように、補正レンズを傾けたことにより発生するボウの形状は、外側光束用、内側光束用の光学系でほぼ同一である。
【0044】
【実施例2】
図4は、実施例2の走査光学系の主走査方向の説明図である。実施例2の走査光学系は、走査レンズ30が第1レンズ31と第2レンズ32との2枚構成であり、第1レンズ31、第2レンズ32、そして、補正レンズ51−54の全てがプラスチックにより形成されている。表6は、実施例2の走査光学系におけるシリンドリカルレンズ13より感光体ドラム61〜64側の構成を示す。
【0045】
【表6】
【0046】
第1面はシリンドリカル面、第2面、第3面は平面、第4面は回転対称非球面、第5面は球面、第6面は平面、第7面はアナモフィック非球面、第8面、第11面は二次元多項式非球面、第9面、第12面は球面である。第4面の係数は表7、第7面の係数は表8、第8面の係数は表9、第11面の係数は表10にそれぞれ示される。
【0047】
【表7】
【0048】
【表8】
【0049】
【表9】
【0050】
【表10】
【0051】
図5は、実施例2の走査光学系において、各補正レンズを主走査方向の回転軸回りに1度傾けた際のボウを示す。図5に示されるように、補正レンズを傾けたことにより発生するボウの形状は、外側光束用、内側光束用の光学系でほぼ同一である。
【0052】
【実施例3】
図6は、実施例3の走査光学系の主走査方向の説明図である。実施例3の走査光学系は、走査レンズ30が1枚構成であり、この走査レンズと補正レンズ51−54とが共にプラスチックにより形成されている。表11は、実施例3の走査光学系におけるシリンドリカルレンズ13より感光体ドラム61〜64側の構成を示す。
【0053】
【表11】
【0054】
第1面はシリンドリカル面、第2面、第3面は平面、第4面は回転対称非球面、第5面はアナモフィック非球面、第6面、第9面は二次元多項式非球面、第7面、第10面は球面である。第4面の係数は表12、第5面の係数は表13、第6面の係数は表14、第9面の係数は表15にそれぞれ示される。
【0055】
【表12】
【0056】
【表13】
【0057】
【表14】
【0058】
【表15】
【0059】
図7は、実施例3の走査光学系において、各補正レンズを主走査方向の回転軸回りに1度傾けた際のボウを示す。図7に示されるように、補正レンズを傾けたことにより発生するボウの形状は、外側光束用、内側光束用の光学系でほぼ同一である。
【0060】
【実施例4】
図8は、実施例4の走査光学系の主走査方向の説明図である。実施例4の走査光学系は、走査レンズ30が第1レンズ31と第2レンズ32との2枚構成であり、第1レンズ31がプラスチック、第2レンズ32がガラス、そして、補正レンズ51−54がプラスチックにより形成されている。表16は、実施例4の走査光学系におけるシリンドリカルレンズ13より感光体ドラム61〜64側の構成を示す。
【0061】
【表16】
【0062】
第1面はシリンドリカル面、第2面、第3面は平面、第4面は回転対称非球面、第5面はアナモフィック非球面、第6面は平面、第7面、第8面、第11面は球面、、第9面、第12面は二次元多項式非球面である。第4面の係数は表17、第5面の係数は表18、第9面の係数は表19、第12面の係数は表20にそれぞれ示される。
【0063】
【表17】
【0064】
【表18】
【0065】
【表19】
【0066】
【表20】
【0067】
図9は、実施例4の走査光学系において、各補正レンズを主走査方向の回転軸回りに1度傾けた際のボウを示す。図9に示されるように、補正レンズを傾けたことにより発生するボウの形状は、外側光束用、内側光束用の光学系でほぼ同一である。
【0068】
【比較例】
上記の4つの実施例は、いずれも外側光束用、内側光束用の補正レンズの主走査方向の形状をほぼ一致させているが、走査光学系に求められる基本的な性能、すなわち、走査光の等速性、良好な収差補正等を実現するためには、補正レンズの主走査方向の形状を一致させる必要はない。そこで、基本的な性能を満たしつつ、補正レンズの主走査方向の形状が一致しない比較例を一例提示し、この比較例と前記の実施例とを比較しつつ、ボウの発生について説明する。
【0069】
比較例は、上記の実施例3の構成を基本に、内側光束用の補正レンズの形状を変更して構成される。図10は、実施例3の走査光学系の内側光束用の光学系を示す主走査方向の説明図、図11は、比較例の走査光学系の内側光束用の光学系を示す主走査方向の説明図である。図10と図6とを比較すると、実施例3では補正レンズの主走査方向の形状が内側光束用と外側光束用との光学系でほぼ一致するのに対し、図11と図6とを比較すると、比較例では補正レンズの主走査方向の形状が内側光束用と外側光束用との光学系で異なることが理解できる。比較例の内側光束用の補正レンズは、第9面が二次元多項式非球面、第10面が回転対称非球面であり、これらの面を規定する各数値は表21−23に示される。
【0070】
【表21】
【0071】
【表22】
【0072】
【表23】
【0073】
図12は、比較例の走査光学系において、各補正レンズを主走査方向の回転軸回りに1度傾けた際のボウを示す。図12に示されるように、補正レンズを傾けたことにより発生するボウの形状が、外側光束用、内側光束用の光学系とで異なる。
【0074】
次に、各実施例および比較例において、外側光束用の補正レンズと内側光束用の補正レンズの主走査方向のサグ量の差と、その結果生じるボウの差とについて説明する。サグ量の差は図13、ボウの差は図14にそれぞれ示される。これらのグラフに示されるサグ量差、ボウ差の絶対値の最大値を以下の表24に示す。
【0075】
【表24】
【0076】
異なる被走査面上に形成される走査線間の湾曲差の許容量をΔpをビーム径の1/10に設定すると、600dpiの場合には、前述のように条件|ΔXn-1(Y)|≦50Δpは、|ΔXn-1(Y)|≦0.2となる。実施例1−4は、いずれもサグ量差の絶対値が0.2mm以下であり、この条件を満たしている。この結果、ボウ差の最大値は0.0012〜0.0035の範囲であり、600dpiの場合にはビーム径の1/10以下(0.00423mm以下)という条件を満たしている。したがって、レンズの組み付け誤差や、調整のためにボウが発生した場合にも、各走査線の湾曲形状をほぼ一致させることができ、カラープリンターでの色ズレの発生を防ぐことができる。
【0077】
これに対して比較例では、サグ量差の最大値が2.5144mmとなっており、600dpiの場合には上記の条件の上限の10倍以上の値をとる。その結果、ボウ差は0.0544mmとなり、内側の光束と外側の光束とが副走査方向にビーム径より大きくずれるため、色ズレが顕著となり、印刷品質が低下する。
【0078】
【発明の効果】
以上説明したように、この発明によれば、ポリゴンミラーに入射する光束毎に配置された像面湾曲補正用の複数の補正レンズの1つの面をアナモフィック面とし、そのアナモフィック面の主走査方向の形状を、複数の補正レンズについてほぼ一致させることにより、発生するボウの形状をほぼ一致させることができる。したがって、レンズの組み付け誤差や、調整のためにボウが発生した場合にも、その湾曲形状をほぼ一致させることができ、カラープリンターでの色ズレの発生を防ぐことができる。
【図面の簡単な説明】
【図1】 この発明の実施形態の走査光学系の概要を示す副走査方向の断面内の説明図である。
【図2】 実施例1の走査光学系の外側光束用の光学例を示す主走査方向の説明図である。
【図3】 実施例1の走査光学系において、補正レンズを1度傾けた際のボウを示すグラフである。
【図4】 実施例2の走査光学系の外側光束用の光学例を示す主走査方向の説明図である。
【図5】 実施例2の走査光学系において、補正レンズを1度傾けた際のボウを示すグラフである。
【図6】 実施例3の走査光学系の外側光束用の光学例を示す主走査方向の説明図である。
【図7】 実施例3の走査光学系において、補正レンズを1度傾けた際のボウを示すグラフである。
【図8】 実施例4の走査光学系の外側光束用の光学例を示す主走査方向の説明図である。
【図9】 実施例4の走査光学系において、補正レンズを1度傾けた際のボウを示すグラフである。
【図10】 実施例3の走査光学系の内側光束用の光学系を示す主走査方向の説明図である。
【図11】 比較例の走査光学系の内側光束用の光学系を示す主走査方向の説明図である。
【図12】 比較例の走査光学系において、補正レンズを1度傾けた際のボウを示すグラフである。
【図13】 各実施例および比較例における外側光束用と内側光束用の補正レンズの主走査方向のサグ量の差を示すグラフである。
【図14】 各実施例および比較例における外側光束用と内側光束用の光学系のボウの差を示すグラフである。
【符号の説明】
10 光源部
11 半導体レーザー
12 コリメートレンズ
13 シリンドリカルレンズ
20 ポリゴンミラー
30 走査レンズ
51〜54 補正レンズ
61〜64 感光体ドラム
Claims (8)
- 4本の光束を発生する光源部と、
前記光源部から発し、副走査方向の断面内で入射角度±β in で入射する内側の2本の光束、及び、入射角度±β out ( ただし、β in <β out ) で入射する外側の2本の光束を反射、偏向させるポリゴンミラーと、
該ポリゴンミラーにより反射された光束をそれぞれ対応する被走査面上で主走査方向に走査するスポットとして収束させる結像光学系とを備え、
前記結像光学系は、前記4本の光束に対して共通に単数配置された走査レンズと、該走査レンズより前記被走査面側に位置し、前記ポリゴンミラーに入射する前記4本の光束毎に配置された像面湾曲補正用の4つの補正レンズとを備え、
前記4つの補正レンズは、それぞれ1つの面がアナモフィック面であり、該アナモフィック面は内側の2本の光束が入射する補正レンズと外側の2本の光束が入射する補正レンズとで異なる設計であり、かつ、該アナモフィック面の主走査方向の形状が、前記4つの補正レンズについてほぼ一致することを特徴とする走査光学系。 - 前記補正レンズのアナモフィック面は、副走査方向に対して垂直で面中心を含む平面に関して非対称な形状を有することを特徴とする請求項1に記載の走査光学系。
- 前記補正レンズのアナモフィック面は、面中心を原点として含んで走査レンズの光軸と直交する基準平面からのサグ量が主走査方向・副走査方向それぞれの前記面中心からの距離に関する二次元多項式で表現される二次元多項式非球面であることを特徴とする請求項1または2に記載の走査光学系。
- 前記複数の補正レンズのアナモフィック面は、それぞれの面中心からの主走査方向の距離Yにおけるサグ量をX(Y)、補正レンズの種類をn種類(nは2以上の整数)として、
ΔXn-1(Y)=Xn(Y)−Xn-1(Y)
で定義されるΔXn-1(Y)を形状の異なる補正レンズ間のサグ量の差とし、異なる被走査面上に形成される走査線間の湾曲差の許容量をΔpとしたとき、
|ΔXn-1(Y)|≦50Δp
を満たすことを特徴とする請求項1〜3のいずれかに記載の走査光学系。 - 前記複数の補正レンズのアナモフィック面は、それぞれの面中心からの主走査方向の距離Yにおけるサグ量をX(Y)、補正レンズの種類をn種類(nは2以上の整数)として、
ΔXn-1(Y)=Xn(Y)−Xn-1(Y)
で定義されるΔXn-1(Y)を形状の異なる補正レンズ間のサグ量の差としたとき、
|ΔXn-1(Y)|≦0.2 (単位:mm)
を満たすことを特徴とする請求項1〜3のいずれかに記載の走査光学系。 - 前記複数の補正レンズは、それぞれ1枚のプラスチックレンズのみで構成されていることを特徴とする請求項1〜5のいずれかに記載の走査光学系。
- 前記走査レンズの1つのレンズ面は、主走査方向の断面形状が当該走査レンズの光軸からの主走査方向の距離の関数として定義され、副走査方向の断面形状が円弧であって、その曲率が前記光軸からの主走査方向の距離の関数として主走査方向の断面形状とは独立して定義されるアナモフィック非球面であることを特徴とする請求項1〜6のいずれかに記載の走査光学系。
- 前記光源部は、該光源部から発する複数の光束を前記ポリゴンミラーに対して副走査方向の断面内で絶対値が等しく符号が異なる入射角度で入射させ、前記複数の補正レンズは、前記走査レンズの光軸の延長線に対して対称に配置されていることを特徴とする請求項7に記載の走査光学系。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001388364A JP4171213B2 (ja) | 2001-12-20 | 2001-12-20 | 走査光学系 |
US10/322,524 US6961163B2 (en) | 2001-12-20 | 2002-12-19 | Scanning optical system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001388364A JP4171213B2 (ja) | 2001-12-20 | 2001-12-20 | 走査光学系 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2003185957A JP2003185957A (ja) | 2003-07-03 |
JP2003185957A5 JP2003185957A5 (ja) | 2005-06-30 |
JP4171213B2 true JP4171213B2 (ja) | 2008-10-22 |
Family
ID=27596899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001388364A Expired - Fee Related JP4171213B2 (ja) | 2001-12-20 | 2001-12-20 | 走査光学系 |
Country Status (2)
Country | Link |
---|---|
US (1) | US6961163B2 (ja) |
JP (1) | JP4171213B2 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4507830B2 (ja) | 2004-10-29 | 2010-07-21 | ブラザー工業株式会社 | 光学装置 |
JP4654350B2 (ja) * | 2004-12-13 | 2011-03-16 | Hoya株式会社 | 走査光学系 |
JP2007133334A (ja) * | 2005-10-12 | 2007-05-31 | Pentax Corp | 走査装置及び走査光学系 |
KR100765780B1 (ko) | 2006-05-03 | 2007-10-12 | 삼성전자주식회사 | 광 주사 장치 및 이를 채용한 칼라 레이저 프린터 |
JP4747995B2 (ja) | 2006-08-18 | 2011-08-17 | 富士ゼロックス株式会社 | 光走査装置 |
JP2008224965A (ja) * | 2007-03-12 | 2008-09-25 | Ricoh Co Ltd | 光走査装置、および画像形成装置 |
US10268854B1 (en) * | 2018-04-13 | 2019-04-23 | Zebra Technologies Corporation | Illumination assemblies for use in barcode readers and devices and methods associated therewith |
US20210314462A1 (en) * | 2020-04-02 | 2021-10-07 | Canon Kabushiki Kaisha | Light scanning apparatus and image forming apparatus |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4024866A (en) * | 1974-12-02 | 1977-05-24 | Hydro Pulse Corporation | Surgical apparatus for removal of tissue |
US5251055A (en) * | 1989-03-23 | 1993-10-05 | Canon Kabushiki Kaisha | Optical scanning apparatus |
US5788667A (en) * | 1996-07-19 | 1998-08-04 | Stoller; Glenn | Fluid jet vitrectomy device and method for use |
JP2001133707A (ja) | 1999-11-01 | 2001-05-18 | Asahi Optical Co Ltd | 走査光学装置 |
JP2001004948A (ja) | 1999-06-25 | 2001-01-12 | Asahi Optical Co Ltd | マルチビーム光源走査装置 |
JP2001010107A (ja) | 1999-06-25 | 2001-01-16 | Asahi Optical Co Ltd | マルチビーム光源走査装置 |
JP3831560B2 (ja) | 1999-11-01 | 2006-10-11 | ペンタックス株式会社 | 走査光学装置 |
JP3869704B2 (ja) * | 2001-11-16 | 2007-01-17 | ペンタックス株式会社 | 走査光学系 |
JP4171284B2 (ja) * | 2002-11-05 | 2008-10-22 | Hoya株式会社 | 走査光学系 |
-
2001
- 2001-12-20 JP JP2001388364A patent/JP4171213B2/ja not_active Expired - Fee Related
-
2002
- 2002-12-19 US US10/322,524 patent/US6961163B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US20030183747A1 (en) | 2003-10-02 |
US6961163B2 (en) | 2005-11-01 |
JP2003185957A (ja) | 2003-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4454186B2 (ja) | 走査光学系 | |
JP4717285B2 (ja) | 走査光学装置及びそれを用いた画像形成装置 | |
JP4227334B2 (ja) | 走査光学系 | |
JP3869704B2 (ja) | 走査光学系 | |
JP2000249948A (ja) | マルチビーム走査装置および画像形成装置 | |
JP2009014953A (ja) | 光走査装置及びそれを用いた画像形成装置 | |
US6831764B2 (en) | Light scanning device and image forming apparatus using the same | |
JP4439141B2 (ja) | 走査光学系 | |
JP4171213B2 (ja) | 走査光学系 | |
JP2004070109A (ja) | 光走査装置及びそれを用いた画像形成装置 | |
JP6212528B2 (ja) | 光走査装置 | |
JP4430855B2 (ja) | 走査光学系 | |
JP4293780B2 (ja) | 走査光学系 | |
JP5168753B2 (ja) | 光走査装置および画像形成装置、並びにレンズ | |
JP2002333590A (ja) | 走査光学系 | |
JP4898203B2 (ja) | 光走査装置及びそれを用いた画像形成装置 | |
JP4565890B2 (ja) | 走査光学系 | |
JP2004309559A (ja) | 走査光学系 | |
JP4191562B2 (ja) | 走査光学系の生産方法 | |
KR100484199B1 (ko) | 광주사 장치 | |
JP4902279B2 (ja) | 画像形成装置 | |
JP5882692B2 (ja) | 光走査装置および画像形成装置 | |
JP4378416B2 (ja) | 走査光学装置及びそれを用いた画像形成装置 | |
JP3752124B2 (ja) | 走査光学系 | |
JP3558847B2 (ja) | マルチビーム走査装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041020 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041102 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080218 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20080425 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080729 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080808 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110815 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4171213 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110815 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120815 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130815 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |