Nothing Special   »   [go: up one dir, main page]

JP4156097B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4156097B2
JP4156097B2 JP27606398A JP27606398A JP4156097B2 JP 4156097 B2 JP4156097 B2 JP 4156097B2 JP 27606398 A JP27606398 A JP 27606398A JP 27606398 A JP27606398 A JP 27606398A JP 4156097 B2 JP4156097 B2 JP 4156097B2
Authority
JP
Japan
Prior art keywords
temperature
outdoor heat
defrosting
defrosting operation
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27606398A
Other languages
Japanese (ja)
Other versions
JP2000104975A (en
Inventor
徹 久保
泰史 佐野
芳浩 伊藤
一郎 本郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP27606398A priority Critical patent/JP4156097B2/en
Publication of JP2000104975A publication Critical patent/JP2000104975A/en
Application granted granted Critical
Publication of JP4156097B2 publication Critical patent/JP4156097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は暖房運転中に除霜運転を行なう制御手段を具備したヒートポンプ型空気調和機に係り、特に、暖房運転中に、所定時間経過毎に除霜運転を開始させる除霜運転制御手段を設けた空気調和機に関する。
【0002】
【従来の技術】
一般に、この種のヒートポンプ型空気調和機では、暖房運転中に、四方弁の切換操作により、冷凍サイクルの冷媒の循環方向を逆転させることにより、室外熱交換器を凝縮器として作用させる除霜運転を行なって、この室外熱交換器の着霜を除霜することができる。しかし、低外気温度の暖房運転時には、室外熱交換器の着霜過剰による暖房能力低下と、この暖房能力低下を補償するために上昇される圧縮機の運転周波数(単位時間当りの回転数)の上昇に伴う吐出温度の上昇による圧縮機のケースサーモ異常と、を生ずる場合がある。
【0003】
これらの課題に対し、従来の空気調和機は次のように対応している。
【0004】
(1)室外熱交換器の着霜過剰に対しては、図8で示す、いわゆる低下量検出方式により設定された除霜運転開始条件が充足されたときに、暖房運転中に除霜運転を開始させる制御手段を設けている。
【0005】
この低下量検出方式は、暖房起動時、あるいは除霜運転から暖房運転へ復帰時(図8では0時間)から所定時間(例えば10分)経過してサイクル温度が安定した後、所定時間(例えば5分間)の室外熱交温度最低値TE0検出時間において、室外熱交換器の温度(以下、室外熱交温度TEという)が最も低下したときの最低値TE0を検出し、この最低値TE0に対する室外熱交温度TEとその低下量(TE0−TE)に応じて、除霜運転をそれぞれ開始させる領域を、図9にも示すように例えば3つA,B,Cのゾーンにそれぞれ設定している。そして、室外熱交温度TEまたはこれと熱交温度最低値TE0との差がA,B,Cゾーンのいずれかの領域にそれぞれ到達し、その到達が所定時間(例えば3分間)継続したときに、除霜運転が開始される。
【0006】
(2)一方、吐出温度上昇に対しては、圧縮機の吐出温度を検出する吐出温度センサを設け、この吐出温度センサにより所定の吐出温度上昇を検出したときに、圧縮機の運転周波数を低下させて圧縮機のケースサーモ異常を防止するように構成している。
【0007】
これに対し、吐出温度センサを設けない吐出温度推定方式もある。この方式は、吐出温度を、室内熱交温度センサと室外熱交温度センサとによる両検出温度と、圧縮機の運転周波数の関数とにより推定し、吐出温度上昇に対応するものである。
【0008】
【発明が解決しようとする課題】
しかしながら、上記のように吐出温度センサを設ける従来例では、その分コストがアップするという課題がある。
【0009】
また、上記のように吐出温度センサを設けない吐出温度推定方式では、冷媒が循環する冷媒配管が短かい短配管接続の場合に室内熱交温度センサによる検出温度が低くなり過ぎてしまう場合がある。
【0010】
すなわち、図10に示すように、室外熱交換器の着霜量が増えると、室外熱交換器での冷媒蒸発量が減少するので、その分、圧縮機への冷媒の液バック量が増加する。これを防止するために、電子膨張弁が絞られ、室内熱交換器への冷媒ホールド量が増加して行くので、室内熱交温度センサの位置で過冷却状態になる。このために、吐出温度を低目に推定してしまうので、コンプレッサのケースサーモによる異常停止に至ってしまうという課題がある。
【0011】
さらに、長配管接続や冷媒量不足による室外熱交温度TEの最低値TE0の低下、その最低値TE0の検出後の外気条件の変化等の場合には、これらTEやこれとTE0との差が除霜開始領域A,B,C内に入りにくくなって除霜運転が開始し難くなり、着霜過剰による暖房能力低下を招くという課題がある。
【0012】
本発明はこのような事情を考慮してなされたもので、その目的は、吐出温度センサの有無に拘らず、圧縮機のケースサーモによる異常停止と、室外熱交換器の着霜過剰による暖房能力の低下を防止することができる空気調和機を提供することにある。
【0013】
【課題を解決するための手段】
請求項1ないし3の発明は、暖房運転時の室外熱交換器の温度である室外熱交温度が予め定めた第1の除霜領域に到達し、暖房起動もしくは除霜復帰後所定時間における室外熱交温度の最低値と上記室外熱交温度との差である低下値が、所定値以上になったときに、除霜運転を開始させる制御手段を有する空気調和機において、上記制御手段に、上記室外熱交温度、上記室外熱交温度の最低値、または外気温度のいずれかが予め定めた第2の除霜領域内にそれぞれ到達したときに、除霜運転を、上記暖房起動時もしくは除霜復帰時から所定時間経過毎に開始させる除霜運転制御手段を設けたことを特徴とする空気調和機である。
【0014】
この発明によれば、暖房運転中、室外熱交温度が第1の除霜領域内に到達したとき、あるいはこの室外熱交換温度とその所定時間内の最低値との差である低下値が所定値以上のときには、除霜運転がそれぞれ開始される。
【0015】
一方、外気温度、室外熱交温度およびその最低値のいずれかが第2の除霜領域に到達したときには、暖房起動時あるいは除霜運転復帰時(以下暖房起動時等という)から所定時間経過毎に、除霜運転が開始される。すなわち、従来の低下量検出方式と並行して所定時間経過毎に除霜運転を行なう除霜開始条件を設定している。
【0016】
したがって、室外熱交温度、その最低値、外気温度のいずれかがそれぞれの第2の所定領域に到達したときには、除霜運転が開始される。しかも、その後は、仮に長配管接続や冷媒量不足の暖房起動時に室外熱交換温度の最低値が低下し、さらに、この室外熱交温度最低値検出後に外気温度が上昇して室外熱交温度も高くなったときには、これら両温度差(TE0−TE)が縮小して低下値が所定値以下になり易くなるが、一旦、第2の除霜領域に到達すると、以後、暖房起動時等から所定時間経過毎に除霜運転を毎回開始するので、室外熱交換器の着霜過剰を未然に防止することができる。このために、着霜過剰による圧縮機の運転周波数の上昇を抑制できる。
【0017】
したがって、一旦、第2の除霜領域内において除霜運転を開始させると、以後は、所定時間経過毎に除霜運転を開始させるので、吐出温度センサがなくてもコンプレッサのケースサーモ異常に至らず暖房運転を継続することができる。すなわち、吐出温度センサを省略できるので、その分、コストを低減させることができる。
【0018】
請求項4の発明は、除霜運転制御手段は、外気温度に応じて、除霜運転を所定時間経過毎に開始させる当該所定時間を制御する機能を有することを特徴とする請求項1ないし請求項3のいずれかに記載の空気調和機であり、請求項5の発明は、外気温度が低くなるに従って上記所定時間を長くするものである。
【0019】
これらの発明によれば、外気温度に応じて、除霜運転を所定時間経過毎に開始させる当該所定時間を制御するので、吐出温度センサがなくてもコンプレッサのケースサーモ異常に至らず暖房運転を継続することができる。
【0020】
請求項6の発明は、除霜運転制御手段は、室外熱交温度に応じて、除霜運転を所定時間経過毎に開始させる当該所定時間を制御する機能を有することを特徴とする請求項1記載の空気調和機であり、請求項7の発明は、室外熱交温度が低くなるに従い、上記所定時間を長くするものである。
【0021】
これらの発明によれば、室外熱交温度に応じて、除霜運転を所定時間経過毎に開始させる当該所定時間を制御するので、吐出温度センサがなくてもコンプレッサのケースサーモ異常に至らず暖房運転を継続することができる。
【0022】
請求項8の発明は、除霜運転制御手段は、室外熱交温度の最低値が低くなるに従い、除霜運転を所定時間経過毎に開始させる当該所定時間を長くするよう制御する機能を有することを特徴とする請求項1ないし請求項3のいずれかに記載の空気調和機である。
【0023】
この発明によれば、室外熱交温度の最低値に応じて、除霜運転を所定時間経過毎に開始させる当該所定時間を制御するので、吐出温度センサがなくてもコンプレッサのケースサーモ異常に至らず暖房運転を継続することができる。
【0024】
【発明の実施の形態】
以下、本発明の実施形態を図1〜図7に基づいて説明する。
【0025】
図2は本発明の一実施形態に係る空気調和機1の冷凍サイクル図である。この空気調和機1は、コンプレッサ2、冷媒流路切り換え機能を有する四方弁3、室内ファン4aを有する室内熱交換器4、膨張弁としての電子制御弁(PMV)5、および室外ファン6aを有する室外熱交換器6を、冷媒配管7を介して順次かつ環状に連通させて冷媒を可逆的に循環させる冷凍サイクルを構成している。
【0026】
冷媒としては、R22よりも同一温度で飽和圧力が高い、例えば50℃における飽和圧力が2500kPa以上の代替冷媒を用いている。なお、このような代替冷媒として特にオゾン層を破壊しないものとしては、R32(CH2 2 )とR125(CHF2 CF3 )との合成組成が80%以上の冷媒、R143a(CH3 CF3 )との合成組成が80%以上の冷媒、およびR32(CH2 2 )の組成が45%以上の冷媒等がある。
【0027】
そして、空気調和機1は、室内ファン4aおよび室外ファン6aの運転時における四方弁3の切換制御により、冷媒を、図中実線矢印に示すように、コンプレッサ2→四方弁3→室外熱交換器(凝縮作用)6→膨張弁(PMV)5→室内熱交換器(蒸発作用)4→四方弁3→コンプレッサ2に循環させることにより冷房運転する一方、冷媒を図中破線矢印に示すように、コンプレッサ2→四方弁3→室内熱交換器(凝縮作用)4→膨張弁5→室外熱交換器(蒸発作用)6→四方弁3→コンプレッサ2に循環させることにより暖房運転するように構成されている。
【0028】
さらに、暖房運転時において室内ファン4aおよび室外ファン6aを停止させるとともに四方弁3を切り換え制御して、冷媒を暖房時における循環方向とは逆方向(図中実線矢印方向)に循環させることにより、室外熱交換器に凝縮作用をさせて除霜運転を行なうようになっている。
【0029】
そして、コンプレッサ2、四方弁3、PMV5、室外熱交換器6、および室外ファン6aは、室外に設置される室外ユニット内に設けられる。また、室外ユニットには、室外熱交換器6に設置されて、その室外熱交換器6の温度を検出する室外熱交温度センサ9と、室外熱交換器6自体に、あるいはその室外熱交換器6近傍に設けられて、外気温度を検出する外気温センサ10とを備えている。
【0030】
また、室内熱交換器4と室内ファン4aとは室内に設置される室内ユニット13に設けられる。室内ユニット13には、室内の温度を検出する室温センサ11と、室内熱交換器4に設置されて、その室内熱交換器4の冷媒凝縮温度を検出する室内熱交温度センサ12とを備えている。
【0031】
図3は上記室内ユニット13および室外ユニット14を具備した空気調和機1全体の制御系を示す。室外ユニット14は、例えばマイクロコンピュータを搭載した室外制御部15を有する。この室外制御部15は、その制御に必要な情報データ等を記憶するメモリとしてEEPROM15aを備えており、この室外制御部15には交流電源供給ラインLaと通信線Lbとを介して室内制御部16を電源供給と双方向通信可能に接続している。
【0032】
また、室外制御部15には、室外熱交温度センサ9、外気温センサ10、室外ファン6aのファンモータ6bを駆動制御するファン駆動回路17、例えば電磁弁等よりなる四方弁(4V)3、電子膨張弁(PMV)5、コンプレッサ2のモータ2に印加する印加電圧とその運転周波数を制御することにより、このモータ2aの単位時間当りの回転数を制御するインバータ回路18をそれぞれ電気的に接続している。
【0033】
一方、室内ユニット13は、例えばマイクロコンピュータを搭載した室内制御部16を備えている。この室内制御部16には、電源供給用の交流電源19および遠隔操作制御用のリモコン20がそれぞれ接続されている。
【0034】
また、室内制御部18には、前述した室温センサ11、室内熱交温度センサ12、室内ファン4aを回転させるファンモータ(FM)21の回転速度を制御する速度制御回路22、上下風向調節ルーバの揺動軸を中心に回転させて揺動させるルーバモータ(RM)23の回転角度を制御しながら駆動させるルーバ駆動回路24をそれぞれ電気的に接続している。
【0035】
そして、室内制御部16には、暖房運転中に、所定の除霜運転開始条件が充足されたときに、除霜運転を開始させる除霜運転制御手段16aを設けている。
【0036】
図1はこの除霜運転制御手段16aにより設定された除霜運転開始条件を示す模式図であり、暖房運転中に、除霜運転を開始させる条件として、例えば5つの除霜運転開始ゾーン(除霜領域)A,B,C,D,Eを設けている。
【0037】
これら除霜運転開始ゾーンA〜Eは、図8,図9で示す従来の、いわゆる低下量検出方式に基づいて設定された第1の除霜領域である2領域の除霜運転開始ゾーンC,Aと室外熱交温度が−20℃以下のような極低温時に低下量に関係なく除霜運転を強制実行させる除霜運転開始ゾーンに、本発明の一実施形態として今回新たに設定された第2の除霜領域である例えば2つの除霜領域の除霜運転開始ゾーンD,Eを併行条件として追加することにより構成されている。
【0038】
すなわち、図8,図9でも示すように除霜運転開始ゾーンAは、暖房起動時、あるいは除霜運転から暖房運転に復帰後から所定時間、例えば10〜15分間のTE0検出時間において、室外熱交温度センサ9により検出された室外熱交換器6の温度(以下室外熱交温度TEという)の最低値TR0と、このTE0検出時間後の室外熱交温度TEとの差(TE0−TE)、つまり低下量が所定値、例えば2.5℃以上(TE0−TE≧2.5℃)に到達し、その状態が3分間継続したときに、除霜運転を開始させる領域である。
【0039】
また、除霜運転開始ゾーンBは、室外熱交温度TEが所定値、例えば−20℃以下(TE≦−20℃)に3分間継続して到達したときに、除霜運転が開始され、除霜運転開始ゾーンCは、室外熱交温度TEとその最低値TE0の差が所定値、3.0℃以上(TE0−TE≧3.0℃)に3分間継続して到達したときに除霜運転が開始されるようになっている。
【0040】
したがって、例えば外気温度T0が0℃で暖房起動し、起動後10〜15分間での室外熱交温度最低値TE0が−3℃、かつ起動から37分経過後(34+3分)に室外熱交温度TEが−6℃以下になった時点でCゾーンで除霜運転が開始される。さらに、外気温度が比較的に低い−5℃で暖房起動した場合、室外熱交温度最低値TE0が−8℃で、起動から31分(28+3分)経過後に室外熱交温度TEが−10.5℃以下になった時点でAゾーンで除霜運転が開始される。
【0041】
一方、図4〜図6に示すように、本実施形態に係る除霜運転開始ゾーンDは、外気温度T0が例えば−10≦T0<−5℃を充足したとき、または室外熱交温度TEが−16≦TE<−11℃を充足したとき、あるいは室外熱交温度最低値TE0が−13≦TE0<−8℃を充足したときに、除霜運転を開始させる領域である。そして、Dゾーンに到達すると、除霜運転制御手段16aにより、暖房起動時、あるいは除霜運転から暖房運転への復帰時から所定の除霜間隔時間T1(例えば80分)経過毎に除霜運転が開始され、所定ないし所要時間除霜運転が実行される。
【0042】
さらに、図4〜図6に示すように、外気温度T0が、T0<−10℃を充足したとき、または室外熱交温度TEが、TE<−16℃を充足したとき、あるいは室外熱交温度最低値TE0が、TE0<−13℃を充足したときには、Eゾーンに入り、除霜間隔時間T1は例えば80分から150分に延長され、暖房起動時等から150分経過毎に除霜運転が開始される。
【0043】
そして、除霜運転制御手段16aは、コンプレッサ2の吐出温度の推定を、室内熱交温度センサ12により検出された検出値、室外熱交温度センサ9により検出された検出値、コンプレッサ2の運転周波数(Hz)の関数により算出する機能を有する。したがって、コンプレッサ2の吐出温度を検出する温度センサを省略することができる。
【0044】
なお、コンプレッサ2の吐出温度Tdについては以下の通り推定することができる。
【0045】
まず、コンプレッサ2の吐出温度Tdはコンプレッサ2の圧縮行程を理想気体のポリトロープ変化と考えると、次の(1)式の状態式で算出することができる。
【0046】
【数1】

Figure 0004156097
【0047】
上記(1)式の吐出温度Tdを得るためには、コンプレッサ2の吐出圧力Pd、コンプレッサの吸込圧力Psおよびコンプレッサの吸込温度Tsが必要である。しかし、圧力センサは高価で、かつ、大形であるため実際的ではない。そこで、大雑把ではあるが、コンプレッサ2の吐出圧力を凝縮温度Tcからの圧力変換+圧損分ΔPdと見做し、また、コンプレッサ2の吸込圧力を蒸発温度Teからの圧力変換+圧損分ΔPdと見做すことにより、コンプレッサ2の吐出圧力Pdを凝縮器の温度Tcの関数として次の(2)式で演算する。
【0048】
【数2】
Figure 0004156097
【0049】
コンプレッサ2の吸込圧力Psを蒸発器の温度Teの関数として次の(3)式で演算する。
【0050】
【数3】
Figure 0004156097
【0051】
コンプレッサ2の吸込温度Tsを蒸発器の温度Teの関数として次の(4)式で演算することができる。
【0052】
【数4】
Figure 0004156097
【0053】
したがって、これらの演算結果に基づいて、コンプレッサ2の吐出温度Tdを次の(5)式によって推定することができるる。
【0054】
【数5】
Figure 0004156097
【0055】
上記(2)〜(4)式中の係数または定数a〜eは実験的に近似値を決定することが可能である。また、ポリトロープ指数nおよび固定値αも実験的に決めることができる。なお、コンプレッサ2の吐出側の圧力Pdと凝縮器の温度Tcとはほぼ比例関係にあるため、係数aは正の値をとる。
【0056】
また、インバータ回路18によってコンプレッサ2の回転速度を制御するものにおいても同様に(5)式によりコンプレッサ2の吐出温度Tdを推定することが可能であるが、コンプレッサ2の回転速度の変化によって冷媒流量が変化し、Pd=W(Tc)と、Ps=K(Te)に影響を及ぼすため、さらに、インバータ回路18の出力周波数HzをPd,Psの演算要素として加えることにより、吐出温度Tdをより正確に推定することが可能となる。
【0057】
この場合、吐出圧Pdを次の(6)式で演算し、
【数6】
Figure 0004156097
【0058】
吸込圧力Psを次の(7)式で演算することができる。
【0059】
【数7】
Figure 0004156097
【0060】
したがって、これらの演算結果に基づいて、コンプレッサ2の吐出温度Tdを次の(8)式によって推定することができる。
【0061】
【数8】
Figure 0004156097
【0062】
なお、上記(6),(7)式中の係数または定数a1 ,b1 ,z,c1 ,d1 ,xは実験的に求めることができる。
【0063】
また、冷媒流量はコンプレッサ2の吸込圧力Psへの影響が少ないため、コンプレッサ2の吐出圧力Pdについてのみインバータ回路18の出力周波数Hzを加味してコンプレッサ2の吐出温度Tdを次の(9)式によって推定することもできる。
【0064】
【数9】
Figure 0004156097
【0065】
以上、(5),(8),(9)式のいずれかの関係式を用いてコンプレッサ2の吐出温度の推定を行なうことができるものであり、制御部のマイクロコンピュータによって逐次演算すればよい。
【0066】
図7はこの除霜運転制御手段16aにより空気調和機1を除霜運転する場合の作用を示すグラフであり、外気温度T0が−8℃で暖房起動あるいは除霜復帰(以下単に暖房起動等という)したときの短配管時の暖房起動から除霜運転開始周辺までのコンプレッサ2の吐出温度とその推定値の変動を、図10で示す従来例と時間軸(横軸)を一致させて対応して示している。
【0067】
すなわち、図7と図10とに示すように、本実施形態と従来例と共に、室外熱交換器6の着霜が増えるに従って、この室外熱交換器6の熱交換機能が低下し、蒸発量が減少するので、コンプレッサ2への冷媒の液バック量が増加する。
【0068】
これを防止するために、電子膨張弁5の開度が徐々に絞られ、室内熱交換器4への冷媒ホールド量が増加していく。従来の低下量検出方式に基づくA,B,Cゾーンでは、これらのゾーンにそれぞれ入る前に、室内熱交温度センサ12の位置が過冷却状態になり、吐出温度を低目に推定してしまうので、コンプレッサ2の運転周波数が順次上昇させられてケースサーモ動作による異常停止に至ってしまう。
【0069】
しかし、本実施形態では、室外熱交温度最低値TE0と室外熱交温度TEとの差(TE0−TE)の如何に拘らず、除霜間隔時間T1の例えば80分(または150分)経過時毎に除霜運転に入るので、室内熱交温度センサ12の位置が過冷却状態に至る前に、除霜運転に入ることができる。このために、コンプレッサ2のケースサーモによる異常停止を未然に防止することができ、暖房運転を継続することができるので、暖房効率の向上を図ることができる。しかも、吐出温度センサを省略することができるので、コスト低減を図ることができる。
【0070】
そして、図8で示す従来方式では、例えば外気温度が−5℃で暖房起動したときには、室外熱交温度最低値TE0が−8℃で、室外熱交温度TEが−10.5℃に到達し、その状態が3分間継続したときに、Aゾーンに入って、除霜運転が開始される。
【0071】
しかし、長配管接続や冷媒量不足の暖房起動時には、室外熱交温度最低値TE0が低下し、さらに、この最低値TE0が低下し、さらに、この最低値TE0検出後に外気温度T0が上昇した場合には、室外熱交温度TEも高くなるので、これら両者の低下量(TE0−TE)が小さくなり、従来の低下量方式に基づくA,B,Cゾーンに入りにくくなり、除霜運転が開始されにくくなる。
【0072】
このために、A〜Cゾーンしかない従来例では室外熱交換器6の着霜過剰による暖房能力低下をきたすが、本実施形態ではかかる低下量(TE0−TE)の如何に拘らず、除霜間隔時間T1経過毎に除霜運転を実行することができるので、室外熱交換器6の着霜過剰を有効に防止することができる。その結果、室外熱交換器の着霜過剰に起因する圧縮機のケースサーモによる異常停止を防止ないし低減することができる。
【0073】
【発明の効果】
以上説明したように本発明によれば、低外気温の暖房運転時に所定時間経過毎に除霜運転を行なうので、吐出温度センサがなくてもコンプレッサのケースサーモによる異常停止に至らず運転を継続できると共に、除霜運転開始の遅れに伴う着霜過剰による暖房能力低下を防止できる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る除霜運転開始ゾーン(領域)をそれぞれ示す図。
【図2】本発明の一実施形態に係る空気調和機の冷凍サイクル図。
【図3】図1,図2で示す実施形態の制御系の全体構成を示すブロック図。
【図4】図1,図2で示す実施形態の外気温度によりD,Eゾーンを充足させるための条件を示す図。
【図5】図1,図2で示す実施形態の室外熱交温度によりD,Eゾーンを充足させるための条件を示す図。
【図6】図1,図2で示す実施形態の室外熱交温度最低値によりD,Eゾーンを充足させるための条件を示す図。
【図7】図1,図2で示す実施形態の作用を示すグラフ。
【図8】従来の除霜運転開始ゾーン(領域)をそれぞれ示す図。
【図9】従来の各除霜運転開始ゾーン(領域)に入るための条件を示す図。
【図10】図8,図9で示す従来例の暖房運転時の作用を示すグラフ。
【符号の説明】
1 空気調和機
2 コンプレッサ
3 四方弁
4 室内熱交換器
6 室外熱交換器
9 室外熱交温度センサ
10 外気温センサ
11 室温センサ
12 室内熱交温度センサ
15 室外制御部
16 室内制御部
16a 除霜運転制御手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pump type air conditioner having a control means for performing a defrosting operation during heating operation, and in particular, provided with a defrosting operation control means for starting the defrosting operation every predetermined time during the heating operation. Related to air conditioners.
[0002]
[Prior art]
Generally, in this type of heat pump type air conditioner, a defrosting operation in which the outdoor heat exchanger acts as a condenser by reversing the direction of refrigerant circulation in the refrigeration cycle by switching the four-way valve during heating operation. It is possible to defrost the outdoor heat exchanger. However, at the time of heating operation at a low outside air temperature, the heating capacity decline due to excessive frost formation of the outdoor heat exchanger, and the operating frequency of the compressor (the number of revolutions per unit time) increased to compensate for this heating capacity decline. There is a case where a case thermo abnormality of the compressor is caused due to an increase in discharge temperature accompanying the increase.
[0003]
Conventional air conditioners respond to these issues as follows.
[0004]
(1) For excessive frosting of the outdoor heat exchanger, when the defrosting operation start condition set by the so-called reduction amount detection method shown in FIG. 8 is satisfied, the defrosting operation is performed during the heating operation. Control means for starting is provided.
[0005]
This decrease amount detection method is performed after a predetermined time (for example, 10 minutes) has elapsed since the start of heating or when the defrosting operation is returned to the heating operation (0 hours in FIG. 8) and the cycle temperature has stabilized, for example, for a predetermined time (for example, The minimum value TE0 when the temperature of the outdoor heat exchanger (hereinafter referred to as the outdoor heat exchange temperature TE) has fallen the most in the outdoor heat exchange temperature minimum value TE0 detection time for 5 minutes is detected, and the outdoor with respect to this minimum value TE0 is detected. In accordance with the heat exchanger temperature TE and the amount of decrease (TE0-TE), the regions where the defrosting operation is started are set in, for example, three zones A, B, and C as shown in FIG. . When the difference between the outdoor heat exchange temperature TE or the heat exchange temperature minimum value TE0 reaches any of the A, B, and C zones, and the arrival continues for a predetermined time (for example, 3 minutes). The defrosting operation is started.
[0006]
(2) On the other hand, a discharge temperature sensor for detecting the discharge temperature of the compressor is provided for an increase in the discharge temperature, and when the predetermined discharge temperature rise is detected by this discharge temperature sensor, the operating frequency of the compressor is lowered. It is configured to prevent the compressor case thermo abnormality.
[0007]
On the other hand, there is a discharge temperature estimation method in which no discharge temperature sensor is provided. In this method, the discharge temperature is estimated from both the detected temperature by the indoor heat exchange temperature sensor and the outdoor heat exchange temperature sensor and a function of the operating frequency of the compressor, and corresponds to the increase in the discharge temperature.
[0008]
[Problems to be solved by the invention]
However, the conventional example in which the discharge temperature sensor is provided as described above has a problem that the cost is increased accordingly.
[0009]
In addition, in the discharge temperature estimation method in which the discharge temperature sensor is not provided as described above, the temperature detected by the indoor heat exchange temperature sensor may become too low when the refrigerant pipe through which the refrigerant circulates is short and connected to a short pipe. .
[0010]
That is, as shown in FIG. 10, when the amount of frost formation on the outdoor heat exchanger increases, the amount of refrigerant evaporated in the outdoor heat exchanger decreases, and accordingly, the amount of liquid back to the compressor increases accordingly. . In order to prevent this, the electronic expansion valve is throttled and the refrigerant hold amount to the indoor heat exchanger increases, so that the supercooling state is reached at the position of the indoor heat exchanger temperature sensor. For this reason, since the discharge temperature is estimated to be low, there is a problem that an abnormal stop is caused by the case thermostat of the compressor.
[0011]
Furthermore, in the case of a decrease in the minimum value TE0 of the outdoor heat exchange temperature TE due to a long pipe connection or a shortage of refrigerant, a change in the outdoor air condition after the detection of the minimum value TE0, etc., the difference between these TE and this and TE0 is There is a problem that it is difficult to enter the defrosting start areas A, B, and C and the defrosting operation is difficult to start, resulting in a decrease in heating capacity due to excessive frost formation.
[0012]
The present invention has been made in consideration of such circumstances, and its purpose is to provide an abnormal stoppage due to the case thermostat of the compressor and the heating capacity due to excessive frosting of the outdoor heat exchanger regardless of the presence or absence of the discharge temperature sensor. It is in providing the air conditioner which can prevent the fall of this.
[0013]
[Means for Solving the Problems]
According to the first to third aspects of the present invention, the outdoor heat exchanger temperature, which is the temperature of the outdoor heat exchanger during the heating operation, reaches the predetermined first defrosting region, and the outdoor in a predetermined time after heating activation or defrosting recovery In the air conditioner having a control means for starting the defrosting operation when the lowering value, which is the difference between the lowest value of the heat exchange temperature and the outdoor heat exchange temperature, is equal to or higher than a predetermined value, in the control means, When any one of the outdoor heat exchange temperature, the minimum value of the outdoor heat exchange temperature, or the outside air temperature reaches the predetermined second defrost region, the defrosting operation is performed when the heating is started or removed. An air conditioner provided with a defrosting operation control means that starts every predetermined time from the time of frost recovery.
[0014]
According to the present invention, during the heating operation, when the outdoor heat exchange temperature reaches the first defrosting region, or when the outdoor heat exchange temperature is the difference between the outdoor heat exchange temperature and the minimum value within the predetermined time, the decrease value is predetermined. When the value is greater than or equal to the value, the defrosting operation is started.
[0015]
On the other hand, when any one of the outside air temperature, the outdoor heat exchange temperature, and the minimum value thereof reaches the second defrosting region, every elapse of a predetermined time from the heating start-up or the defrosting operation return (hereinafter referred to as heating start-up). Then, the defrosting operation is started. That is, a defrosting start condition for performing a defrosting operation every predetermined time is set in parallel with the conventional reduction amount detection method.
[0016]
Therefore, when any of the outdoor heat exchange temperature, its minimum value, and the outside air temperature reaches the second predetermined area, the defrosting operation is started. In addition, after that, the minimum value of the outdoor heat exchange temperature decreases when a long pipe is connected or when the heating is started due to a shortage of the refrigerant. When the temperature becomes higher, the temperature difference (TE0-TE) is reduced and the decrease value tends to be less than or equal to the predetermined value. Since the defrosting operation is started every time, the excessive frosting of the outdoor heat exchanger can be prevented in advance. For this reason, the raise of the operating frequency of the compressor by excessive frost formation can be suppressed.
[0017]
Therefore, once the defrosting operation is started in the second defrosting region, the defrosting operation is started every time a predetermined time elapses, so that the compressor case thermo abnormality may occur even without the discharge temperature sensor. The heating operation can be continued. That is, since the discharge temperature sensor can be omitted, the cost can be reduced accordingly.
[0018]
According to a fourth aspect of the present invention, the defrosting operation control means has a function of controlling the predetermined time for starting the defrosting operation every predetermined time in accordance with the outside air temperature. The air conditioner according to any one of Items 3 and 5, wherein the predetermined time is lengthened as the outside air temperature decreases.
[0019]
According to these inventions, the predetermined time for starting the defrosting operation every predetermined time is controlled according to the outside air temperature. Therefore, even if there is no discharge temperature sensor, the case thermostat abnormality of the compressor does not occur and the heating operation is performed. Can continue.
[0020]
The invention of claim 6 is characterized in that the defrosting operation control means has a function of controlling the predetermined time for starting the defrosting operation every elapse of a predetermined time according to the outdoor heat exchange temperature. In the air conditioner described above, the predetermined time is increased as the outdoor heat exchange temperature decreases.
[0021]
According to these inventions, since the predetermined time for starting the defrosting operation every predetermined time is controlled according to the outdoor heat exchange temperature, the heater does not cause the compressor case thermo abnormality even without the discharge temperature sensor. Driving can be continued.
[0022]
The invention of claim 8 has a function of controlling the defrosting operation control means to lengthen the predetermined time for starting the defrosting operation every predetermined time as the minimum value of the outdoor heat exchange temperature becomes lower. It is an air conditioner in any one of Claim 1 thru | or 3 characterized by these.
[0023]
According to the present invention, the predetermined time for starting the defrosting operation every predetermined time is controlled according to the minimum value of the outdoor heat exchange temperature. Therefore, even if there is no discharge temperature sensor, the case thermo abnormality of the compressor is reached. The heating operation can be continued.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
[0025]
FIG. 2 is a refrigeration cycle diagram of the air conditioner 1 according to one embodiment of the present invention. The air conditioner 1 includes a compressor 2, a four-way valve 3 having a refrigerant flow switching function, an indoor heat exchanger 4 having an indoor fan 4a, an electronic control valve (PMV) 5 as an expansion valve, and an outdoor fan 6a. The outdoor heat exchanger 6 is communicated sequentially and annularly through the refrigerant pipe 7 to constitute a refrigeration cycle for reversibly circulating the refrigerant.
[0026]
As the refrigerant, an alternative refrigerant having a higher saturation pressure at the same temperature than R22, for example, a saturation pressure at 50 ° C. of 2500 kPa or more is used. In addition, as such an alternative refrigerant that does not particularly destroy the ozone layer, R32 (CH 2 F 2 ) And R125 (CHF 2 CF Three ) With a composition of 80% or more, R143a (CH Three CF Three ) And a refrigerant having a synthetic composition of 80% or more, and R32 (CH 2 F 2 ) And the like having a composition of 45% or more.
[0027]
Then, the air conditioner 1 controls the refrigerant 2 → the four-way valve 3 → the outdoor heat exchanger as indicated by the solid arrow in the figure by switching control of the four-way valve 3 during the operation of the indoor fan 4a and the outdoor fan 6a. (Condensation action) 6 → Expansion valve (PMV) 5 → Indoor heat exchanger (evaporation action) 4 → Four-way valve 3 → Cooling operation by circulating to compressor 2 Compressor 2 → four-way valve 3 → indoor heat exchanger (condensing action) 4 → expansion valve 5 → outdoor heat exchanger (evaporating action) 6 → four-way valve 3 → circulated to compressor 2 for heating operation Yes.
[0028]
Furthermore, by stopping the indoor fan 4a and the outdoor fan 6a during the heating operation and controlling the switching of the four-way valve 3, the refrigerant is circulated in the direction opposite to the circulation direction during heating (indicated by the solid arrow). The defrosting operation is performed by causing the outdoor heat exchanger to condense.
[0029]
The compressor 2, the four-way valve 3, the PMV 5, the outdoor heat exchanger 6, and the outdoor fan 6a are provided in an outdoor unit that is installed outdoors. Further, the outdoor unit is installed in the outdoor heat exchanger 6 to detect the temperature of the outdoor heat exchanger 6, the outdoor heat exchanger temperature sensor 9, the outdoor heat exchanger 6 itself, or the outdoor heat exchanger. 6 is provided with an outside air temperature sensor 10 provided in the vicinity of 6 for detecting the outside air temperature.
[0030]
The indoor heat exchanger 4 and the indoor fan 4a are provided in an indoor unit 13 installed indoors. The indoor unit 13 includes a room temperature sensor 11 that detects the indoor temperature, and an indoor heat exchanger temperature sensor 12 that is installed in the indoor heat exchanger 4 and detects the refrigerant condensing temperature of the indoor heat exchanger 4. Yes.
[0031]
FIG. 3 shows a control system of the entire air conditioner 1 including the indoor unit 13 and the outdoor unit 14. The outdoor unit 14 includes an outdoor control unit 15 on which, for example, a microcomputer is mounted. The outdoor control unit 15 includes an EEPROM 15a as a memory for storing information data necessary for the control. The outdoor control unit 15 includes an indoor control unit 16 via an AC power supply line La and a communication line Lb. Are connected to the power supply to enable bidirectional communication.
[0032]
The outdoor control unit 15 includes an outdoor heat exchanger temperature sensor 9, an outdoor air temperature sensor 10, a fan drive circuit 17 for driving and controlling the fan motor 6b of the outdoor fan 6a, for example, a four-way valve (4V) 3 including an electromagnetic valve, An electronic expansion valve (PMV) 5 and an inverter circuit 18 for controlling the number of revolutions per unit time of the motor 2a by controlling the applied voltage applied to the motor 2 of the compressor 2 and its operating frequency are electrically connected to each other. is doing.
[0033]
On the other hand, the indoor unit 13 includes, for example, an indoor control unit 16 equipped with a microcomputer. An AC power supply 19 for power supply and a remote control 20 for remote operation control are connected to the indoor control unit 16.
[0034]
The indoor control unit 18 includes the room temperature sensor 11, the indoor heat exchanger temperature sensor 12, the speed control circuit 22 that controls the rotational speed of the fan motor (FM) 21 that rotates the indoor fan 4a, and the up / down air direction adjustment louver. A louver drive circuit 24 that is driven while controlling a rotation angle of a louver motor (RM) 23 that is rotated about a swing axis is electrically connected.
[0035]
And the indoor control part 16 is provided with the defrost operation control means 16a which starts a defrost operation, when predetermined | prescribed defrost operation start conditions are satisfied during heating operation.
[0036]
FIG. 1 is a schematic diagram showing the defrosting operation start conditions set by the defrosting operation control means 16a. As conditions for starting the defrosting operation during the heating operation, for example, five defrosting operation start zones (removal) Frost area) A, B, C, D, E are provided.
[0037]
These defrosting operation start zones A to E are two defrosting operation start zones C, which are first defrosting regions set based on the conventional so-called reduction amount detection method shown in FIGS. A defrosting operation start zone that forcibly executes the defrosting operation regardless of the amount of decrease at an extremely low temperature such as A and the outdoor heat exchange temperature of −20 ° C. or lower is newly set as an embodiment of the present invention. For example, the defrosting operation start zones D and E of the two defrosting areas which are two defrosting areas are added as parallel conditions.
[0038]
That is, as shown in FIG. 8 and FIG. 9, the defrosting operation start zone A is the outdoor heat at a predetermined time, for example, 10 to 15 minutes TE0 detection time after starting the heating or after returning from the defrosting operation to the heating operation. The difference (TE0-TE) between the minimum value TR0 of the temperature of the outdoor heat exchanger 6 (hereinafter referred to as the outdoor heat exchange temperature TE) detected by the cross temperature sensor 9 and the outdoor heat exchange temperature TE after this TE0 detection time, That is, it is a region where the defrosting operation is started when the decrease amount reaches a predetermined value, for example, 2.5 ° C. or more (TE0−TE ≧ 2.5 ° C.) and the state continues for 3 minutes.
[0039]
In the defrosting operation start zone B, when the outdoor heat exchange temperature TE continuously reaches a predetermined value, for example, −20 ° C. or lower (TE ≦ −20 ° C.) for 3 minutes, the defrosting operation is started. The frost operation start zone C is defrosted when the difference between the outdoor heat exchange temperature TE and the minimum value TE0 reaches a predetermined value of 3.0 ° C. or higher (TE0−TE ≧ 3.0 ° C.) continuously for 3 minutes. Driving is started.
[0040]
Therefore, for example, heating is started when the outdoor temperature T0 is 0 ° C., the outdoor heat exchange temperature minimum value TE0 in the 10 to 15 minutes after the start is −3 ° C., and the outdoor heat exchange temperature is 37 minutes after the start (34 + 3 minutes). When TE becomes −6 ° C. or less, the defrosting operation is started in the C zone. Furthermore, when heating is started at a relatively low outside temperature of −5 ° C., the outdoor heat exchange temperature minimum value TE0 is −8 ° C., and the outdoor heat exchange temperature TE is −10. When the temperature becomes 5 ° C. or lower, the defrosting operation is started in the A zone.
[0041]
On the other hand, as shown in FIGS. 4 to 6, in the defrosting operation start zone D according to the present embodiment, when the outside air temperature T0 satisfies, for example, −10 ≦ T0 <−5 ° C., or the outdoor heat exchange temperature TE is This is a region where the defrosting operation is started when −16 ≦ TE <−11 ° C. is satisfied, or when the outdoor heat exchange temperature minimum value TE0 satisfies −13 ≦ TE0 <−8 ° C. When reaching the D zone, the defrosting operation control means 16a causes the defrosting operation every time a predetermined defrosting interval time T1 (for example, 80 minutes) elapses from the start of heating or the return from the defrosting operation to the heating operation. Is started, and the defrosting operation is executed for a predetermined or required time.
[0042]
Further, as shown in FIGS. 4 to 6, when the outdoor air temperature T0 satisfies T0 <−10 ° C., or when the outdoor heat exchanger temperature TE satisfies TE <−16 ° C., or the outdoor heat exchanger temperature. When the minimum value TE0 satisfies TE0 <−13 ° C., it enters the E zone, and the defrosting interval time T1 is extended from 80 minutes to 150 minutes, for example, and the defrosting operation is started every 150 minutes from the start of heating. Is done.
[0043]
The defrosting operation control means 16a estimates the discharge temperature of the compressor 2 by detecting the detected value detected by the indoor heat exchanger temperature sensor 12, the detected value detected by the outdoor heat exchanger temperature sensor 9, and the operating frequency of the compressor 2. It has a function of calculating with a function of (Hz). Therefore, the temperature sensor for detecting the discharge temperature of the compressor 2 can be omitted.
[0044]
The discharge temperature Td of the compressor 2 can be estimated as follows.
[0045]
First, the discharge temperature Td of the compressor 2 can be calculated by the following equation (1) when the compression stroke of the compressor 2 is considered as a change in the ideal gas polytrope.
[0046]
[Expression 1]
Figure 0004156097
[0047]
In order to obtain the discharge temperature Td of the above equation (1), the discharge pressure Pd of the compressor 2, the compressor suction pressure Ps, and the compressor suction temperature Ts are required. However, the pressure sensor is not practical because it is expensive and large. Thus, roughly, the discharge pressure of the compressor 2 is regarded as pressure conversion from the condensation temperature Tc + pressure loss ΔPd, and the suction pressure of the compressor 2 is regarded as pressure conversion from the evaporation temperature Te + pressure loss ΔPd. As a result, the discharge pressure Pd of the compressor 2 is calculated by the following equation (2) as a function of the condenser temperature Tc.
[0048]
[Expression 2]
Figure 0004156097
[0049]
The suction pressure Ps of the compressor 2 is calculated by the following equation (3) as a function of the evaporator temperature Te.
[0050]
[Equation 3]
Figure 0004156097
[0051]
The suction temperature Ts of the compressor 2 can be calculated by the following equation (4) as a function of the evaporator temperature Te.
[0052]
[Expression 4]
Figure 0004156097
[0053]
Therefore, based on these calculation results, the discharge temperature Td of the compressor 2 can be estimated by the following equation (5).
[0054]
[Equation 5]
Figure 0004156097
[0055]
The coefficients or constants a to e in the above equations (2) to (4) can be experimentally determined as approximate values. Also, the polytropic index n and the fixed value α can be determined experimentally. Since the pressure Pd on the discharge side of the compressor 2 and the condenser temperature Tc are substantially proportional, the coefficient a takes a positive value.
[0056]
Similarly, in the case where the rotation speed of the compressor 2 is controlled by the inverter circuit 18, the discharge temperature Td of the compressor 2 can be similarly estimated by the equation (5), but the refrigerant flow rate is changed by the change in the rotation speed of the compressor 2. Changes, and affects Pd = W (Tc) and Ps = K (Te). Further, by adding the output frequency Hz of the inverter circuit 18 as an arithmetic element of Pd and Ps, the discharge temperature Td is further increased. It is possible to estimate accurately.
[0057]
In this case, the discharge pressure Pd is calculated by the following equation (6):
[Formula 6]
Figure 0004156097
[0058]
The suction pressure Ps can be calculated by the following equation (7).
[0059]
[Expression 7]
Figure 0004156097
[0060]
Therefore, based on these calculation results, the discharge temperature Td of the compressor 2 can be estimated by the following equation (8).
[0061]
[Equation 8]
Figure 0004156097
[0062]
The coefficients or constants a1, b1, z, c1, d1, and x in the above equations (6) and (7) can be obtained experimentally.
[0063]
Further, since the refrigerant flow rate has little influence on the suction pressure Ps of the compressor 2, the discharge temperature Td of the compressor 2 is calculated by the following equation (9) by taking into account the output frequency Hz of the inverter circuit 18 only for the discharge pressure Pd of the compressor 2. Can also be estimated.
[0064]
[Equation 9]
Figure 0004156097
[0065]
As described above, the discharge temperature of the compressor 2 can be estimated using any one of the relational expressions (5), (8), and (9), and may be sequentially calculated by the microcomputer of the control unit. .
[0066]
FIG. 7 is a graph showing the operation when the air conditioner 1 is defrosted by the defrosting operation control means 16a. When the outside air temperature T0 is −8 ° C., heating activation or defrosting recovery (hereinafter simply referred to as heating activation or the like) is performed. 10), the discharge temperature of the compressor 2 from the start of heating in the short pipe to the vicinity of the start of the defrosting operation and the fluctuation of the estimated value are matched by matching the time axis (horizontal axis) with the conventional example shown in FIG. It shows.
[0067]
That is, as shown in FIGS. 7 and 10, together with the present embodiment and the conventional example, as the frost formation of the outdoor heat exchanger 6 increases, the heat exchange function of the outdoor heat exchanger 6 decreases and the evaporation amount decreases. Since it decreases, the liquid back amount of the refrigerant to the compressor 2 increases.
[0068]
In order to prevent this, the opening degree of the electronic expansion valve 5 is gradually reduced, and the refrigerant hold amount to the indoor heat exchanger 4 increases. In the A, B, and C zones based on the conventional drop amount detection method, the position of the indoor heat exchange temperature sensor 12 becomes supercooled before entering each of these zones, and the discharge temperature is estimated to be low. As a result, the operating frequency of the compressor 2 is sequentially increased, leading to an abnormal stop due to the case thermo-operation.
[0069]
However, in this embodiment, for example, when the defrosting interval time T1 is 80 minutes (or 150 minutes), regardless of the difference (TE0-TE) between the minimum outdoor heat exchange temperature TE0 and the outdoor heat exchange temperature TE. Since the defrosting operation is started every time, the defrosting operation can be started before the indoor heat exchanger temperature sensor 12 reaches the supercooled state. For this reason, the abnormal stop by the case thermostat of the compressor 2 can be prevented in advance, and the heating operation can be continued, so that the heating efficiency can be improved. In addition, since the discharge temperature sensor can be omitted, the cost can be reduced.
[0070]
In the conventional system shown in FIG. 8, for example, when heating is started at an outdoor temperature of −5 ° C., the outdoor heat exchange temperature minimum value TE0 is −8 ° C., and the outdoor heat exchange temperature TE reaches −10.5 ° C. When the state continues for 3 minutes, the A zone is entered and the defrosting operation is started.
[0071]
However, when long piping is connected or when heating is started with a shortage of refrigerant, the outdoor heat exchange temperature minimum value TE0 decreases, the minimum value TE0 decreases, and the outdoor air temperature T0 increases after detection of the minimum value TE0. Since the outdoor heat exchange temperature TE is also high, the reduction amount (TE0-TE) of both of them becomes small, it becomes difficult to enter the A, B, C zone based on the conventional reduction amount method, and the defrosting operation is started. It becomes difficult to be done.
[0072]
For this reason, in the conventional example having only the A to C zones, the heating capacity is reduced due to excessive frost formation of the outdoor heat exchanger 6, but in this embodiment, defrosting is performed regardless of the reduction amount (TE0-TE). Since the defrosting operation can be executed every time interval T1 elapses, excessive frosting of the outdoor heat exchanger 6 can be effectively prevented. As a result, it is possible to prevent or reduce an abnormal stop due to the case thermostat of the compressor due to excessive frost formation in the outdoor heat exchanger.
[0073]
【The invention's effect】
As described above, according to the present invention, the defrosting operation is performed every predetermined time during the heating operation at the low outside air temperature, so that the operation is not stopped due to the case thermostat of the compressor without the discharge temperature sensor. In addition, it is possible to prevent a decrease in heating capacity due to excessive frost formation accompanying a delay in starting the defrosting operation.
[Brief description of the drawings]
FIG. 1 is a diagram showing a defrosting operation start zone (region) according to an embodiment of the present invention.
FIG. 2 is a refrigeration cycle diagram of an air conditioner according to an embodiment of the present invention.
FIG. 3 is a block diagram showing the overall configuration of the control system of the embodiment shown in FIGS. 1 and 2;
4 is a diagram showing conditions for satisfying D and E zones according to the outside air temperature of the embodiment shown in FIGS. 1 and 2. FIG.
5 is a diagram showing conditions for satisfying D and E zones by the outdoor heat exchange temperature of the embodiment shown in FIGS. 1 and 2. FIG.
6 is a diagram showing conditions for satisfying the D and E zones with the lowest outdoor heat exchange temperature value of the embodiment shown in FIGS. 1 and 2. FIG.
7 is a graph showing the operation of the embodiment shown in FIGS. 1 and 2. FIG.
FIG. 8 is a diagram showing a conventional defrosting operation start zone (region).
FIG. 9 is a diagram showing conditions for entering each conventional defrosting operation start zone (area).
FIG. 10 is a graph showing the operation during heating operation of the conventional example shown in FIGS. 8 and 9;
[Explanation of symbols]
1 Air conditioner
2 Compressor
3 Four-way valve
4 indoor heat exchangers
6 Outdoor heat exchanger
9 Outdoor heat exchange temperature sensor
10 Outside air temperature sensor
11 Room temperature sensor
12 Indoor heat exchange temperature sensor
15 Outdoor control unit
16 Indoor control unit
16a Defrosting operation control means

Claims (8)

暖房運転時の室外熱交換器の温度である室外熱交温度が予め定めた第1の除霜領域に到達し、暖房起動もしくは除霜復帰後所定時間における室外熱交温度の最低値と上記室外熱交温度との差である低下値が所定値以上になったときに、除霜運転を開始させる制御手段を有する空気調和機において、上記制御手段に、上記室外熱交温度が予め定めた第2の除霜領域内に到達したときに、除霜運転を、上記暖房起動時もしくは除霜復帰時から所定時間経過毎に開始させる除霜運転制御手段を設けたことを特徴とする空気調和機。The outdoor heat exchanger temperature, which is the temperature of the outdoor heat exchanger during heating operation, reaches the predetermined first defrosting region, and the minimum value of the outdoor heat exchanger temperature in a predetermined time after heating activation or defrosting recovery and the above-mentioned outdoor In an air conditioner having control means for starting a defrosting operation when a drop value, which is a difference from the heat exchange temperature, exceeds a predetermined value, the outdoor heat exchange temperature is set in advance in the control means. An air conditioner provided with a defrosting operation control means for starting a defrosting operation every predetermined time from the time of starting the heating or defrosting when reaching the defrosting area of 2 . 暖房運転時の室外熱交換器の温度である室外熱交温度が予め定めた第1の除霜領域に到達し、暖房起動もしくは除霜復帰後所定時間における室外熱交温度の最低値と上記室外熱交温度との差である低下値が所定値以上になったときに、除霜運転を開始させる制御手段を有する空気調和機において、上記制御手段に、上記室外熱交換器の最低値が予め定めた第2の除霜領域内に到達したときに、除霜運転を、上記暖房起動時もしくは除霜復帰時から所定時間経過毎に開始させる除霜運転制御手段を設けたことを特徴とする空気調和機。The outdoor heat exchanger temperature, which is the temperature of the outdoor heat exchanger during heating operation, reaches the predetermined first defrosting region, and the minimum value of the outdoor heat exchanger temperature in the predetermined time after heating activation or defrosting recovery is In an air conditioner having a control means for starting a defrosting operation when a drop value, which is a difference from the heat exchange temperature, exceeds a predetermined value, the minimum value of the outdoor heat exchanger is previously set in the control means. Defrosting operation control means is provided for starting the defrosting operation every predetermined time from the time of starting the heating or defrosting when reaching the defined second defrosting region. Air conditioner. 暖房運転時の室外熱交換器の温度である室外熱交温度が予め定めた第1の除霜領域に到達し、暖房起動もしくは除霜復帰後所定時間における室外熱交温度の最低値と上記室外熱交温度との差である低下値が所定値以上になったときに、除霜運転を開始させる制御手段を有する空気調和機において、上記制御手段に、外気温度が予め定めた第2の除霜領域内に到達したときに、除霜運転を、上記暖房起動時もしくは除霜復帰時から所定時間経過毎に開始させる除霜運転制御手段を設けたことを特徴とする空気調和機。The outdoor heat exchanger temperature, which is the temperature of the outdoor heat exchanger during heating operation, reaches the predetermined first defrosting region, and the minimum value of the outdoor heat exchanger temperature in a predetermined time after heating activation or defrosting recovery and the above-mentioned outdoor In an air conditioner having a control means for starting a defrosting operation when a decrease value, which is a difference from the heat exchange temperature, is equal to or greater than a predetermined value, the control means is provided with a second removal temperature determined in advance. An air conditioner provided with a defrosting operation control means for starting a defrosting operation every predetermined time from the time of starting the heating or defrosting when reaching the frost region. 除霜運転制御手段は、外気温度に応じて、除霜運転を所定時間経過毎に開始させる当該所定時間を制御する機能を有することを特徴とする請求項1ないし請求項3のいずれかに記載の空気調和機。The defrosting operation control means has a function of controlling the predetermined time for starting the defrosting operation every predetermined time according to the outside air temperature. Air conditioner. 外気温度が低くなるに従って前記所定時間を長くすることを特徴とする請求項4記載の空気調和機。The air conditioner according to claim 4, wherein the predetermined time is lengthened as the outside air temperature decreases. 除霜運転制御手段は、室外熱交温度に応じて、除霜運転を所定時間経過毎に開始させる当該所定時間を制御する機能を有することを特徴とする請求項1記載の空気調和機。The air conditioner according to claim 1, wherein the defrosting operation control means has a function of controlling the predetermined time for starting the defrosting operation every elapse of a predetermined time according to the outdoor heat exchange temperature. 室外熱交温度が低くなるに従って前記所定時間を長くすることを特徴とする請求項6記載の空気調和機。The air conditioner according to claim 6, wherein the predetermined time is lengthened as the outdoor heat exchange temperature decreases. 除霜運転制御手段は、室外熱交温度の最低値が低くなるに従って、除霜運転を所定時間経過毎に開始させる当該所定時間を長くなるよう制御する機能を有することを特徴とする請求項1記載の空気調和機。The defrosting operation control means has a function of controlling the defrosting operation to start longer every elapse of a predetermined time as the minimum value of the outdoor heat exchange temperature becomes lower. The air conditioner described.
JP27606398A 1998-09-29 1998-09-29 Air conditioner Expired - Fee Related JP4156097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27606398A JP4156097B2 (en) 1998-09-29 1998-09-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27606398A JP4156097B2 (en) 1998-09-29 1998-09-29 Air conditioner

Publications (2)

Publication Number Publication Date
JP2000104975A JP2000104975A (en) 2000-04-11
JP4156097B2 true JP4156097B2 (en) 2008-09-24

Family

ID=17564292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27606398A Expired - Fee Related JP4156097B2 (en) 1998-09-29 1998-09-29 Air conditioner

Country Status (1)

Country Link
JP (1) JP4156097B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4403300B2 (en) * 2004-03-30 2010-01-27 日立アプライアンス株式会社 Refrigeration equipment
CN1320326C (en) * 2005-06-24 2007-06-06 珠海格力电器股份有限公司 Regional defrosting control method for air conditioner
JP4553886B2 (en) * 2006-11-24 2010-09-29 三菱電機株式会社 Air conditioner
JP4265653B2 (en) * 2006-12-27 2009-05-20 ダイキン工業株式会社 Heat pump system

Also Published As

Publication number Publication date
JP2000104975A (en) 2000-04-11

Similar Documents

Publication Publication Date Title
USRE29966E (en) Heat pump with frost-free outdoor coil
CN106461253B (en) Air conditioner and defrosting operation method thereof
JP3893676B2 (en) Air conditioner
US5515689A (en) Defrosting heat pumps
JP6071648B2 (en) Air conditioner
WO2010023975A1 (en) Heat pump device
JPH07198236A (en) Air flow interruption detecting method in heat pump system
CN115095955B (en) Air conditioner and defrosting control method thereof
US6263686B1 (en) Defrost control method and apparatus
JPH11287538A (en) Air-conditioner
JP3445861B2 (en) Air conditioner
CN111322784A (en) Air conditioning unit capable of continuously heating and control method thereof
JPH10185284A (en) Air conditioner
JP4156097B2 (en) Air conditioner
JP5227661B2 (en) Air conditioner
JP3843331B2 (en) Heat pump type air conditioner and outdoor unit
KR101390989B1 (en) Hybrid cooling system
JP2007155299A (en) Air conditioner
JP2020200958A (en) Air conditioner
JP2003050066A (en) Controller for air conditioner
JPS6333623B2 (en)
JPH11132605A (en) Air conditioner
JP2001141323A (en) Air conditioner
KR100432723B1 (en) Control method for air conditioner
JP4936006B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050421

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050421

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees