Nothing Special   »   [go: up one dir, main page]

JP4154743B2 - Method for purifying interleukin-6 receptor - Google Patents

Method for purifying interleukin-6 receptor Download PDF

Info

Publication number
JP4154743B2
JP4154743B2 JP32319597A JP32319597A JP4154743B2 JP 4154743 B2 JP4154743 B2 JP 4154743B2 JP 32319597 A JP32319597 A JP 32319597A JP 32319597 A JP32319597 A JP 32319597A JP 4154743 B2 JP4154743 B2 JP 4154743B2
Authority
JP
Japan
Prior art keywords
solution
culture
exchanger
group
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32319597A
Other languages
Japanese (ja)
Other versions
JPH11158198A (en
Inventor
輝彦 井出
敬一 村山
誠 中村
公男 勝浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP32319597A priority Critical patent/JP4154743B2/en
Publication of JPH11158198A publication Critical patent/JPH11158198A/en
Application granted granted Critical
Publication of JP4154743B2 publication Critical patent/JP4154743B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えばインターロイキン6レセプター(以下、本明細書においてはIL−6Rと記載する)を発現する遺伝子組み換え微生物や遺伝子組み換え動物細胞の培養液等のIL−6R及び種々の夾雑物質を含む溶液からIL−6Rを効率よく精製(製造)する方法に関するものである。
【0002】
【従来の技術】
IL−6Rは、インターロイキン6(IL−6又は、B細胞分化因子)の受容体蛋白質であり、IL−6と結合すると細胞膜上の糖蛋白質であるgp130と結合し、細胞機構に刺激を伝達することが知られている(Biochem.J.、300巻、281頁、1994年参照)。IL−6Rは、IL−6の各種生理作用の発現に必須の蛋白質である。
【0003】
近年、IL−6が関与する系の生理作用として、造血幹細胞の増殖や血小板増多作用等が報告され、その臨床応用が期待されている(Proc.Natl.Acad.Sci.USA、92巻、2859頁、1995年、及び、Blood、74巻、1241頁、1989年参照)。
【0004】
ところで、IL−6Rに限らず生体成分として極微量にしか存在しない蛋白質を生産し、例えば臨床的応用に供するためには、遺伝子工学的手法により目的蛋白質の遺伝子を微生物や動物細胞に導入し、大量に発現させ、これらの細胞破砕液や培養液を原料として主にカラムクロマトグラフィーにより精製するという工程がとられている。
【0005】
通常、精製工程においては、カラムクロマトグラフィーによる分画を行う前に硫酸アンモニウムによる塩析、有機溶媒による分別沈殿、固形物を除くための濾過等が粗精製工程として行われている。そして、カラムクロマトグラフィーによる精製は、カラムに充填される担体による分画原理に基づき、イオン交換クロマトグラフィー、疎水性相互作用クロマトグラフィー、アフィニティクロマトグラフィー、逆相クロマトグラフィー、ゲル濾過等の異なる手法が知られている。一般的に、目的とする蛋白質を均一に精製する(例えば電気泳動的に均一に精製する)ためには、異なる原理のカラムクロマトグラフィーを複数組み合わせて精製を実施する場合が多い。
【0006】
このカラムクロマトグラフィーの組み合わせや各クロマトグラフィーの順序、吸着溶出条件等は、目的とする蛋白質のpH安定性、熱安定性、無機塩に対する安定性、有機溶媒に対する安定性、プロテアーゼ等に対する安定性を考慮したうえで、目的蛋白質と夾雑蛋白質との分離効率等を踏まえて決定される。
【0007】
このように蛋白質の精製は、煩雑な複数の工程から構成されるため、精製工程を短くし得る効率のよい方法、例えば夾雑蛋白質の除去率の高い粗精製法、カラムクロマトグラフィーを選択することが蛋白質精製(製造)の適否を決定付けることがある。
【0008】
【発明が解決しようとする課題】
アフィニティークロマトグラフィーを用いるIL−6Rの精製(J.Immunol.Meth.、199巻、47〜54頁、1996年及び、J.Biochem.、108巻、673〜676頁、1990年等参照)が知られているが、これらはの方法ではいずれも蛋白質を吸着基から分離する際の条件が過酷で、クロマトグラフィー担体の劣化、アフィニテイリガンドの溶出による分離効率の低下、目的蛋白質の変性による収率の低下があり、IL−6Rの精製(製造)、特に工業生産規模での精製(製造)方法としては適していないという課題がある。 他のインターロイキンについては、粗精製工程として硫酸アンモニウムによる塩析を行い、その後にカラムクロマトグラフィーによる工程を行う方法(J.Chromatography、296巻、171〜179頁、1984年参照)が知られているが、複雑な工程が組み合わされており、カラムクロマトグラフィーによる精製の前に前処理として微生物や動物細胞、更には固形物の除去や濃縮といった操作をも必要とする等、操作性に課題がある。
【0009】
従って本発明の目的は、カラムクロマトグラフィーの手法を用いてIL−6Rの精製(製造)を行うにあたり、煩雑な前処理工程を必要とせず、高収量でIL−6Rを得るための精製方法であって、特に、工業的生産規模での製造(精製)にも適用可能なIL−6Rの精製方法を提供することにある。
【0010】
【課題を解決するための手段】
本願発明者らは、上記目的を達成するために各種クロマトグラフィーの手法について検討した結果、本願発明を完成するに至った。即ち本発明は、IL−6R及び夾雑物質を含有する溶液からIL−6Rを精製する方法であって、前記溶液をイオン交換体より形成される流動床内においてイオン交換体と接触させてIL−6Rを吸着させた後、IL−6Rをイオン交換体より分離することを特徴とするIL−6Rの精製方法である。以下、本願発明を詳細に説明する。
【0011】
本願発明において、IL−6Rを精製する原料となる溶液に特に制限はなく、IL−6R及び夾雑物質を含有するものが該当する。夾雑物質は、原料となる溶液により異なるが、IL−6R及び夾雑物質を含有する溶液が遺伝子組み換え微生物又は遺伝子組み換え動物細胞の培養液である場合には当該微生物や動物細胞が生産し分泌する蛋白質等のほか、これら微生物や動物細胞等の細胞断片等が含まれる。また、例えばヒトの尿等の生体に由来する溶液が原料である場合には、夾雑物質にはこれら溶液に含まれるIL−6R以外の蛋白質等が含まれる。
【0012】
IL−6Rを精製する原料となる溶液としては、前記の通りヒトの尿等の生体に由来する溶液を用いることもできるが、かかる溶液中にはIL−6Rが極微量にしか存在しないという事実に鑑みて、遺伝子工学的手法によりIL−6R遺伝子(例えば特開平2−288898号公報参照)を微生物や動物細胞に導入して大量に発現させ、これらの細胞破砕液や培養液を原料として用いることが好ましい。中でも、ピキア属に属する酵母を宿主細胞としてこれにIL−6R遺伝子を導入して得られる細胞破砕液を原料として用いることが特に好ましい。本願発明者らの知見によれば、ピキア属に属する酵母によればIL−6Rの大量発現が容易であり、また、本願発明の精製を実施する場合の原料として好適だからである。 本願発明における流動床は、イオン交換体(例えばクロマトグラフィーで使用されるイオン交換体)を充填したカラムであって、該カラムの下部から原料及び緩衝液を送液することでイオン交換体粒子の沈降が打ち消され、イオン交換体がカラム内で互いに凝集、会合することなく安定な浮遊平衡状態を形成し、原料に含まれる夾雑蛋白質、微粒子や細胞破砕物などの他の夾雑物質を素通りさせるとともにIL−6Rを吸着するものである。
【0013】
原料を流動床内でイオン交換体と接触させてIL−6Rを選択的にイオン交換体に吸着させた後、カラム内を適当な緩衝液で洗浄し、送液を方向を下降方向に切り替え、イオン交換体からIL−6Rを解離させるための溶出緩衝液を送液してIL−6Rを回収する。この一連の操作により、通常の蛋白質精製において行われている硫安アンモニウムによる塩析、有機溶媒による分別沈殿、濾過等の粗精製工程を行うことなく、カラムクロマトグラフィーによる直接的なIL−6Rの精製が可能となり、精製工程に要する時間を大幅に短縮することができる。原料が微生物や動物細胞を含む培養液等の場合にも、同様になんら粗精製工程を行うことなく本願発明を実施することは可能であるが、予め遠心分離操作により菌体等を除いた遠心上清を使用することもできる。
【0014】
イオン交換体へのIL−6Rの吸着率を高めるために、原料の塩濃度を一定以下に低減するが特に好ましい。かかる塩濃度の指標としては、例えば電気伝導度計で原料の電気伝導度をモニターし、NaCl濃度として50mM以下になるように調整することが好ましく例示できる。塩濃度の低減には、純水や緩衝液による原料の希釈、緩衝液を外液とする透析等を実施することが例示できる。
【0015】
イオン交換体には陰イオン交換体と陽イオン交換体があるが、本願発明においてはいずれのイオン交換体であっても使用することができる。本願発明で使用される陽イオン交換体の一例を示せば、イオン交換基がカルボキシメチル基(CM)基、リン酸基(P)基、スルホエチル基(SE)基、スルホプロピル基(SP)基が例示できる。中でも入手が容易でIL−6Rの吸着が良好であり、しかも再生操作が単純なSP基が特に好ましい。一方、本願発明で使用される陰イオン交換体の一例を示せば、イオン交換基がジメチルアミノエチル基(DE基)、ジエチルアミノエチル基(DEAE基)、第4級アンモニウム(トリメチルアミノメチル)基(QA基)、第4級アミノエチル(ジエチル、モノ・2−ヒドロキシブチルアミノエチル)基(QAE基)等を例示することができる。中でも入手が容易でIL−6Rの吸着が良好であり、しかも再生操作が単純なDEAE基が特に好ましい。陽イオン交換体又は陰イオン交換体のいずれを使用する場合であっても基材自体は特に制限されず、例えばアガロース等を用いることができる。
【0016】
イオン交換体へのIL−6Rの吸着は静電結合によるが、この吸着力は使用するイオン交換基、IL−6Rが吸着する際のpH環境(例えばイオン交換基を平衡化する際の緩衝液のpH、原料溶液のpH)によって変化する。従ってイオン交換体の選択又はpH条件の設定にはIL−6Rの等電点を考慮することが重要であるが、アルカリ性環境下で陰イオン交換体を使用して、又は、酸性環境下で陽イオン交換体を使用してIL−6Rを吸着させ、回収試験を行うことで適当なイオン交換体の選択及びpH条件を設定することができる。より具体的には、IL−6R及び夾雑物質を含有する溶液を種々のイオン交換体と接触して吸着させ、洗浄後溶出させ、IL−6Rの各イオン交換体に対する吸着割合を検討すれば良い。なお、本願発明の実施に先立ち精製に用いる原料溶液pHをイオン交換体のpH環境と概ね同一にしておくことが好ましい。
【0017】
本願発明において、SP基を有する陽イオン交換体を使用する場合についての一例を具体的に説明する。陽イオン交換体をIL−6Rを吸着するときのpHで平衡化し、一方で原料を透析してそのpHを概ね平衡化されたイオン交換体のpHと同一にしておく。イオン交換体の平衡化pHは、交換基が陰イオン性を帯びている範囲であれば良い。一般的に蛋白質は、その等電点より低いpH条件であれば陽イオン交換体と静電結合するため、平衡化するpHは、IL−6Rの等電点及び夾雑蛋白質の等電点等を総合的に考慮して設定する。特に分離されるべき夾雑蛋白質の諸性質及び等電点が明らかでありかつ該夾雑蛋白質の等電点がIL−6Rの等電点と異なる」場合は、該夾雑蛋白質の等電点とIL−6Rの等電点の間のpHになるように原料のpH及び陽イオン交換体を平衡化するpHを調整することでIL−6Rと夾雑蛋白質との効率的な分離を実現することができる。IL−6Rを、イオン交換体に吸着させた後回収し、夾雑物質と分離・精製する。原料として好ましくIL−6R発現ピキア属酵母培養液を使用する場合は、酸性条件下でIL−6RのSP基への吸着を行うことにより、IL−6Rと夾雑蛋白質を良好に分離できる。即ち、本願発明によりピキア属に属する組換え酵母の培養液からIL−6Rを精製する場合、酸性条件下でIL−6RとSP基を有する陽イオン交換体を接触させることが好ましく、中でもpH4.0〜pH6.5の範囲が特に好ましい。以上のようにして陽イオン交換体に吸着したIL−6Rを溶出させるには、pH4.0〜pH9.0程度、好ましくはpH6.5〜pH8.0程度で、塩濃度が0.1M〜1.0M程度、好ましくは0.1M〜0.3M程度の溶出溶液を用いれば良い。
【0018】
次に、DEAE基を有する陰イオン交換体を使用する場合についての一例を具体的に説明する。陰イオン交換体をIL−6Rを吸着するときに用いるpHで平衡化し、一方で原料を透析してそのpHを概ね平衡化されたイオン交換体のpHと同一にしておく。イオン交換体の平衡化pHは、交換基が陽イオン性を帯びている範囲であればよい。一般的に蛋白質は、その等電点より高いpH条件であれば陰イオン交換体と静電結合するため、平衡化するpHは、IL−6Rの等電点及び夾雑蛋白質の等電点等を総合的に考慮し設定する。特に分離されるべき夾雑蛋白質の諸性質及び等電点が明らかである場合は、該夾雑蛋白質の等電点とIL−6Rの等電点の間のpHになるように原料のpH及び陰イオン交換体を平衡化するpHを調整することでIL−6Rと夾雑蛋白質との効率的な分離を実現することができる。IL−6Rを、イオン交換体に吸着させた後回収し、夾雑物質と分離・精製する。原料として好ましくIL−6R発現ピキア属酵母培養液を使用する場合は、アルカリ性条件下でIL−6RのDEAE基への吸着を行うことにより、IL−6Rと夾雑蛋白質を良好に分離できる。即ち、本願発明によりピキア属に属する組換え酵母の培養液からIL−6Rを精製する場合、アルカリ性条件下でIL−6RとDEAE基を有する陰イオン交換体を接触させることが好ましく、中でもpH7.0〜pH8.5の範囲が特に好ましい。以上のようにして陰イオン交換体に吸着されたIL−6Rを溶出させるには、pH4.0〜pH9.0程度、好ましくはpH7.0〜pH8.0程度で、塩濃度が0.1M〜1.0M程度、好ましくは0.1M〜0.3M程度の溶出溶液を用いれば良い。
【0019】
【発明の実施の形態】
以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれら実施例に限定されるものではない。
【0020】
実施例1 陰イオン交換体への吸着試験
前処理として、IL−6R発現ピキア属酵母培養液(特開平7−330106号参照)の遠心上清を20mM Tris−HCl緩衝液(pH8.0)に対して透析し、塩濃度を下げると共に該培養遠心上清のpHを8.0とした。この培養遠心上清を20mM Tris−HCl緩衝液(pH8.0)で平衡化したDEAE基を交換基とする陰イオン交換体を充填したカラム(1.0×2.5cm)に吸着させ、同緩衝液で洗浄後、500mM NaClを含む20mM Tris−HCl緩衝液(pH8.0)で溶出させた。
【0021】
培養遠心上清、陰イオン交換体素通り画分、洗浄操作による溶出画分及び溶出液による溶出画分中のIL−6R量及び総蛋白質量を求めた。IL−6Rの定量は、文献に記載されたエンザイムイムノアッセイ法(J.Immunol.Meth.、199巻、47−54頁、1996年参照)に従った。蛋白質の定量は市販の定量キット(日本バイオ・ラッド ラボラトリー(株)製のプロテインアッセイキット、カタログ番号 500−0001)を使用して行った。結果を表1に示す。
【0022】
【表1】

Figure 0004154743
【0023】
実施例2 陽イオン交換体への吸着試験
前処理として、実施例1において記載したIL−6R発現ピキア属酵母培養液の遠心上清を20mM酢酸緩衝液(pH5.0)に対して透析し、塩濃度を下げると共に該培養遠心上清のpHを5.0とした。この培養遠心上清を20mM酢酸緩衝液(pH5.0)で平衡化したSP基を交換基とする陽イオン交換体を充填したカラム(1.0×2.5cm)に吸着させ、同緩衝液で洗浄後、500mM NaCl含む20mM酢酸緩衝液(pH5.0)で溶出させた。
【0024】
培養遠心上清、陽イオン交換体素通り画分、洗浄操作による溶出画分及び溶出液による溶出画分中のIL−6R量及び総蛋白質量を求めた。定量は、実施例1と同様にして行った。結果を表2に示す。
【0025】
【表2】
Figure 0004154743
【0026】
比較のため、前処理として、IL−6R発現ピキア属酵母培養液の遠心上清を20mMリン酸緩衝液(pH6.5)に対して透析し、塩濃度を下げると共にそのpHを6.5としたものを、20mMリン酸緩衝液(pH6.5)で平衡化したSP基を交換基するイオン交換体を充填したカラム(1.0×2.5cm)に吸着させ、同緩衝液で洗浄し、500mM NaClを含む20mMリン酸緩衝液(pH6.5)で溶出させた結果について表3に示す。
【0027】
【表3】
Figure 0004154743
【0028】
表2及び3の結果から、IL−6R発現ピキア属酵母由来のIL−6Rの等電点は6.5より低いと考えられる。比較のための実験ではIL−6Rのイオン交換体への吸着率が低いことから、IL−6Rを陽イオン交換体に吸着させる場合は、イオン交換基の平衡化pH及び原料のpHを酸性条件、特にpH6.5以下とすることが好適であることが分かる。
【0029】
実施例3
IL−6R発現ピキア属酵母培養液(9.0リットル)を20mM酢酸緩衝液( pH5.0)で希釈して塩濃度を下げた。塩濃度は電気伝導度計で該培養液の電気伝導度をモニターし、NaCl濃度として50mM程度とした。希釈した培養液(54リットル)に更に50%酢酸水溶液を滴下し、pHメーターでモニターしながらpHを5.0に調整した。調整した培養液(IL−6R量が278mg、総蛋白質量が21.4g)を、予め20mM酢酸緩衝液( pH5.0) で平衡化したSP基を交換基とする陽イオン交換体を充填した市販のカラム、ファルマシア バイオテク(株)製、STREAMLINE C−50、ベット高16cm、5×100cm)に上方送液することにより添加した。添加後、20mM酢酸緩衝液( pH5.0) を上方送液して洗浄し、続いて送液方向を逆転させて500mM NaClを含む20mMリン酸緩衝液( pH7.0) を添加して溶出させ、960mlのの溶出液(IL−6R量が158mg、総蛋白質量が662mg)を回収した。
【0030】
以上の通り、溶出液の総蛋白質にしめるIL−6Rの割合は23.8%であり、吸着流動床による精製操作を行うことによる培養液からのIL−6Rの回収率は56.8%であり、18倍精製された。
【0031】
実施例4
IL−6R発現ピキア属酵母培養液(9.4リットル)を遠心操作により菌体と上清に分けた。その上清(8.5リットル)を20mM酢酸緩衝液で希釈して塩濃度をさげた。塩濃度は電気伝導度計で該培養液の電気伝導度をモニターし、NaCl濃度として50mM程度とした。希釈した培養液遠心上清(IL−6R量が263mg、総蛋白質量26.5g、51リットル)に更に50%酢酸水溶液を滴下し、pHメーターでモニターしながらpHを5.0とした。調整した培養遠心上清を、予め20mM酢酸緩衝液( pH5.0)で平衡化したSP基を交換基とする陽イオン交換体を充填した市販のカラム(ファルマシア バイオテク(株)製、STREAMLINE C−50、ベット高16cm、5×100cm)に上方送液により添加した。添加後、20mM酢酸緩衝液( pH5.0) を上方送液して洗浄し、続いて送液方向を逆転して500mM NaClを含む20mMリン酸緩衝液( pH7.0) を添加して溶出させ、720mlの溶出液(IL−6R量が169mgで、総蛋白質量が750mg)を得た。
【0032】
以上の通り、溶出液の総蛋白質量にしめるIL−6Rの割合は22.5%であり、吸着流動床による精製操作を行うことによる培養遠心上清からのIL−6Rの回収率は64.3%となり、22.5倍精製された。
【0033】
実施例 5
IL−6R発現ピキア属酵母培養液(5.8リットル)を遠心操作により菌体と上清に分けた。その上清(4.3リットル)を20mM酢酸緩衝液で希釈して塩濃度をさげた。塩濃度は電気伝導度計で該培養液の電気伝導度をモニターし、NaCl濃度として50mM程度とした。希釈した培養液遠心上清(IL−6R量が108mg、総蛋白量が6.02g、38リットル)に更に50%酢酸水溶液を滴下し、pHメーターでモニターしながらpHを5.0とした。調整した培養遠心上清を、予め20mM酢酸緩衝液(pH5.0)で平衡化したSP基を交換基とする陽イオン交換体を充填した市販のカラム(ファルマシア バイオテク(株)製、STREAMLINE C−50、ベット高16cm、5×100cm)に上方送液により添加した。添加後、20mM酢酸緩衝液(pH5.0)を上方送液して洗浄し、続いて送液方向を逆転して20mMリン酸緩衝液( pH7.4) を添加して溶出させ、720mlの溶出液(IL−6Rが49.4mgで、総蛋白質量が126mg)を回収した。
【0034】
以上の通り、溶出液の総蛋白質量にしめるIL−6Rの割合は39.4%であり、吸着流動床による精製操作を行うことで培養遠心上清からのIL−6Rの回収率は45.7%となり、21.7倍精製された。
【0035】
実施例6
実施例で得られた溶出液を市販のゲル濾過カラム(TSK−gel G3000SW、東ソー(株)製)に供し、IL−6Rのピークの有無を検討した。なお送液緩衝液としては100mMのNaClを含む20mMリン酸緩衝液(pH6.5)を用いた。
【0036】
用いたシステムは、紫外吸光度検出器(UV−8020、東ソー(株)製)、送液ポンプ(CCPS、東ソー(株)製)、カラムオーブン(CO−8020、東ソー(株)製)である。測定条件は、検出波長が280nm、ポンプの送液流速が1.0ml/分、カラム温度が25℃である。
【0037】
実施例で得られた溶出液の他に、培養遠心上清及び蛋白質的に均一に精製されたIL−6Rについて同様の測定を行った。結果を図1〜図3に示す。これらから明らかなように、培養遠心上清(図1)では精製IL−6R(図3)の保持時間にはピークを確認することはできなかったが、吸着流動床操作による精製後の溶出液(図2)では精製IL−6Rの保持時間にピークを確認することができた。
比較例
本発明の効果を他の精製法と比較するために、一般的な精製法である硫安塩析法と比較した。
【0038】
IL−6R発現ピキア属酵母培養液(1リットル)を限外ろ過膜(UF3000PS、ポリスルホン膜、東ソー(株)製、分画分子量300万)で処理して清澄な透過液を得た後、限外ろ過膜(UF10PS、ポリスルホン膜、東ソー(株)製、分画分子量1万)で200mlまで濃縮した。
【0039】
濃縮された溶液に35.2gの硫酸アンモニウムを加え、30%飽和硫安濃度になるよう調製した後、4℃で5時間放置した。該溶液を遠心分離し、上清に更に硫酸アンモニウムを加えて最終的に飽和硫安濃度(65%)になるように調整した。4℃で一晩放置後、遠心分離を行い沈殿を回収した。
【0040】
沈殿物を50mlの20mMリン酸緩衝液( pH7.0)に溶解し、同緩衝液に対して4℃で一晩透析した。
【0041】
硫安塩析及び透析後の水溶液中の総蛋白質にしめるIL−6Rの割合は2.4%であり、培養上清中の総蛋白質にしめるIL−6Rの割合は1.2%であった。 以上の通り、限外ろ過膜による清澄化・濃縮処理及び硫安塩析による分画操作を行うことによる培養上清からのIL−6Rの回収率は45%であったが、IL−6Rは2倍程度精製されたのみであった。
【0042】
【発明の効果】
本発明により、イオン交換体を流動床として使用することで、夾雑物質を多量に含む溶液からIL-6R を効率よく回収精製することができる。特に、精製原料の濾過、濃縮等の前処理が不要であり、精製操作を容易にすることができる。
【図面の簡単な説明】
【図1】図1は、実施例4中、培養遠心上清のゲル濾過TSK-gel G3000SW のクロマトグラフである。
【図2】図2は、実施例4中、吸着流動床溶出液のゲル濾過TSK-gel G3000SW のクロマトグラフである。
【図3】図3は、実施例4中、精製IL-6R のゲル濾過TSK-gel G3000SW のクロマトグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention includes IL-6R and various contaminants such as a culture fluid of a genetically modified microorganism or a genetically modified animal cell that expresses interleukin-6 receptor (hereinafter referred to as IL-6R in the present specification), for example. The present invention relates to a method for efficiently purifying (manufacturing) IL-6R from a solution.
[0002]
[Prior art]
IL-6R is a receptor protein for interleukin 6 (IL-6 or B cell differentiation factor). When IL-6R binds to IL-6, it binds to gp130, a glycoprotein on the cell membrane, and transmits a stimulus to the cell mechanism. (See Biochem. J., 300, 281, 1994). IL-6R is a protein essential for the expression of various physiological functions of IL-6.
[0003]
In recent years, proliferation of hematopoietic stem cells, platelet increase, and the like have been reported as physiological actions of a system involving IL-6, and their clinical application is expected (Proc. Natl. Acad. Sci. USA, Vol. 92, 2859, 1995, and Blood, 74, 1241, 1989).
[0004]
By the way, not only IL-6R but also producing a protein that exists only in a trace amount as a biological component, for example, for clinical application, the gene of the target protein is introduced into a microorganism or animal cell by a genetic engineering technique, A process of expressing them in large quantities and purifying them mainly by column chromatography using these cell disruption solutions and culture solutions as raw materials is taken.
[0005]
Usually, in the purification step, salting out with ammonium sulfate, fractional precipitation with an organic solvent, filtration for removing solids, and the like are carried out as a crude purification step before fractionation by column chromatography. Purification by column chromatography is based on the principle of fractionation by the carrier packed in the column, and different methods such as ion exchange chromatography, hydrophobic interaction chromatography, affinity chromatography, reverse phase chromatography, and gel filtration are used. Are known. In general, in order to purify the target protein uniformly (for example, to purify it uniformly by electrophoresis), purification is often performed by combining a plurality of column chromatography of different principles.
[0006]
The combination of column chromatography, the order of each chromatography, the adsorption elution conditions, etc., determine the pH stability, thermal stability, stability to inorganic salts, stability to organic solvents, stability to proteases, etc. of the target protein. It is determined in consideration of the separation efficiency between the target protein and the contaminating protein after consideration.
[0007]
In this way, protein purification is composed of complicated steps, so an efficient method that can shorten the purification step, for example, a crude purification method or column chromatography with a high removal rate of contaminating proteins can be selected. The suitability of protein purification (manufacturing) may be determined.
[0008]
[Problems to be solved by the invention]
Purification of IL-6R using affinity chromatography (see J. Immunol. Meth., 199, 47-54, 1996 and J. Biochem., 108, 673-676, 1990, etc.) is known However, in these methods, the conditions for separating the protein from the adsorbing group are severe, degradation of the chromatographic support, reduction of separation efficiency due to elution of affinity ligand, yield due to denaturation of the target protein. There is a problem that it is not suitable as a purification (manufacturing) method for IL-6R, particularly a purification (manufacturing) method on an industrial production scale. As for other interleukins, a method is known in which salting out with ammonium sulfate is carried out as a crude purification step, followed by column chromatography (see J. Chromatography, 296, 171-179, 1984). However, complicated processes are combined, and there are problems in operability, such as the need for operations such as removal and concentration of microorganisms, animal cells, and solids as pretreatment before purification by column chromatography. .
[0009]
Therefore, an object of the present invention is a purification method for obtaining IL-6R in a high yield without requiring a complicated pretreatment step in purifying (manufacturing) IL-6R using a column chromatography technique. In particular, an object of the present invention is to provide a method for purifying IL-6R that can be applied to production (purification) on an industrial production scale.
[0010]
[Means for Solving the Problems]
As a result of studying various chromatographic techniques to achieve the above object, the present inventors have completed the present invention. That is, the present invention is a method for purifying IL-6R from a solution containing IL-6R and contaminants, wherein the solution is brought into contact with an ion exchanger in a fluidized bed formed from the ion exchanger, and IL- After the 6R is adsorbed, the IL-6R is separated from the ion exchanger, and the IL-6R is purified. Hereinafter, the present invention will be described in detail.
[0011]
In this invention, there is no restriction | limiting in particular in the solution used as the raw material which refine | purifies IL-6R, What contains IL-6R and a contaminant is applicable. Contaminants vary depending on the solution used as a raw material, but when the solution containing IL-6R and contaminants is a culture solution of genetically modified microorganisms or genetically modified animal cells, proteins produced and secreted by the microorganisms or animal cells In addition to these, cell fragments such as these microorganisms and animal cells are included. For example, when a solution derived from a living body such as human urine is a raw material, the contaminants include proteins other than IL-6R contained in these solutions.
[0012]
As a solution used as a raw material for purifying IL-6R, a solution derived from a living body such as human urine can be used as described above, but the fact that only a very small amount of IL-6R is present in such a solution. In view of the above, the IL-6R gene (see, for example, JP-A-2-288898) is introduced into microorganisms and animal cells by genetic engineering techniques and expressed in large quantities, and these cell disruptions and culture solutions are used as raw materials. It is preferable. Among them, it is particularly preferable to use as a raw material a cell disruption solution obtained by introducing a IL-6R gene into yeast belonging to the genus Pichia as a host cell. According to the knowledge of the inventors of the present application, a large amount of IL-6R is easily expressed by yeast belonging to the genus Pichia, and is suitable as a raw material for carrying out the purification of the present invention. The fluidized bed in the present invention is a column packed with an ion exchanger (for example, an ion exchanger used in chromatography), and the raw material and the buffer solution are fed from the lower part of the column to thereby transfer the ion exchanger particles. Sedimentation is canceled, ion exchangers form a stable floating equilibrium state without aggregating and associating with each other in the column, and other contaminants such as contaminating proteins, fine particles and cell debris contained in the raw material are passed through. It adsorbs IL-6R.
[0013]
After the raw material is brought into contact with the ion exchanger in the fluidized bed and IL-6R is selectively adsorbed on the ion exchanger, the inside of the column is washed with an appropriate buffer, and the liquid feeding direction is changed to the downward direction. An elution buffer for dissociating IL-6R from the ion exchanger is fed to recover IL-6R. By this series of operations, IL-6R can be directly purified by column chromatography without carrying out roughing steps such as salting out with ammonium sulfate, fractional precipitation with an organic solvent, filtration, etc., which are generally performed in protein purification. And the time required for the purification process can be greatly shortened. Even when the raw material is a culture solution containing microorganisms or animal cells, it is possible to carry out the present invention without performing any rough purification process. The supernatant can also be used.
[0014]
In order to increase the adsorption rate of IL-6R to the ion exchanger, it is particularly preferable to reduce the salt concentration of the raw material to a certain level or less. As an index of such a salt concentration, for example, it is preferable to monitor the electrical conductivity of the raw material with an electrical conductivity meter and adjust the NaCl concentration to 50 mM or less. Examples of reducing the salt concentration include dilution of the raw material with pure water or a buffer solution, or dialysis using the buffer solution as an external solution.
[0015]
The ion exchanger includes an anion exchanger and a cation exchanger. In the present invention, any ion exchanger can be used. An example of the cation exchanger used in the present invention is that the ion exchange groups are carboxymethyl group (CM) group, phosphate group (P) group, sulfoethyl group (SE) group, sulfopropyl group (SP) group. Can be illustrated. Of these, SP groups are particularly preferred because they are readily available, have good IL-6R adsorption, and have a simple regeneration operation. On the other hand, if an example of the anion exchanger used by this invention is shown, an ion exchange group will be a dimethylaminoethyl group (DE group), a diethylaminoethyl group (DEAE group), a quaternary ammonium (trimethylaminomethyl) group ( QA group), quaternary aminoethyl (diethyl, mono-2-hydroxybutylaminoethyl) group (QAE group) and the like. Among these, a DEAE group that is easily available, has good IL-6R adsorption, and has a simple regeneration operation is particularly preferred. Even when either a cation exchanger or an anion exchanger is used, the substrate itself is not particularly limited, and for example, agarose or the like can be used.
[0016]
Although the adsorption of IL-6R to the ion exchanger is due to electrostatic bonding, this adsorption force depends on the ion exchange group to be used and the pH environment when IL-6R is adsorbed (for example, a buffer solution for equilibrating the ion exchange group). Depending on the pH of the raw material solution). Therefore, it is important to consider the isoelectric point of IL-6R when selecting an ion exchanger or setting pH conditions, but using an anion exchanger in an alkaline environment or positively in an acidic environment. An appropriate ion exchanger can be selected and pH conditions can be set by adsorbing IL-6R using an ion exchanger and performing a recovery test. More specifically, a solution containing IL-6R and contaminants may be adsorbed by contacting with various ion exchangers, eluted after washing, and the adsorption ratio of IL-6R to each ion exchanger may be examined. . Prior to the practice of the present invention, it is preferable that the raw material solution pH used for purification is substantially the same as the pH environment of the ion exchanger.
[0017]
In the present invention, an example of using a cation exchanger having an SP group will be specifically described. The cation exchanger is equilibrated at the pH at which IL-6R is adsorbed, while the raw material is dialyzed to keep the pH approximately the same as the pH of the ion exchanger that has been equilibrated. The equilibration pH of the ion exchanger may be in a range where the exchange group is anionic. In general, proteins are electrostatically bound to cation exchangers at pH conditions lower than their isoelectric point, so the equilibrated pH depends on the isoelectric point of IL-6R and the isoelectric point of contaminating proteins. Set with comprehensive consideration. In particular, when the properties and isoelectric point of the contaminating protein to be separated are clear and the isoelectric point of the contaminating protein is different from the isoelectric point of IL-6R, the isoelectric point of the contaminating protein and the IL- By adjusting the pH of the raw material and the pH at which the cation exchanger is equilibrated so that the pH is between the isoelectric points of 6R, efficient separation of IL-6R and contaminating proteins can be realized. IL-6R is recovered after adsorbing to an ion exchanger, and separated and purified from contaminants. When an IL-6R-expressing Pichia yeast culture solution is preferably used as a raw material, IL-6R and contaminating proteins can be satisfactorily separated by adsorbing IL-6R to SP groups under acidic conditions. That is, when IL-6R is purified from a culture solution of recombinant yeast belonging to the genus Pichia according to the present invention, it is preferable to contact IL-6R with a cation exchanger having an SP group under acidic conditions, and in particular, pH 4. A range of 0 to pH 6.5 is particularly preferred. In order to elute the IL-6R adsorbed on the cation exchanger as described above, the pH is about 4.0 to pH 9.0, preferably about pH 6.5 to pH 8.0, and the salt concentration is 0.1 M to 1. An elution solution of about 0.0M, preferably about 0.1M to 0.3M may be used.
[0018]
Next, an example of using an anion exchanger having a DEAE group will be specifically described. The anion exchanger is equilibrated at the pH used when adsorbing IL-6R, while the raw material is dialyzed to keep the pH approximately the same as that of the equilibrated ion exchanger. The equilibration pH of the ion exchanger may be in a range in which the exchange group is cationic. In general, proteins are electrostatically bound to an anion exchanger under pH conditions higher than their isoelectric point. Therefore, the equilibrated pH depends on the isoelectric point of IL-6R and the isoelectric point of contaminating proteins. Set with comprehensive consideration. In particular, when the properties and isoelectric point of the contaminating protein to be separated are clear, the pH and anion of the raw material are adjusted so that the pH is between the isoelectric point of the contaminating protein and the isoelectric point of IL-6R. By adjusting the pH at which the exchanger is equilibrated, it is possible to achieve efficient separation between IL-6R and contaminating proteins. IL-6R is recovered after adsorbing to an ion exchanger, and separated and purified from contaminants. When an IL-6R-expressing Pichia yeast culture solution is preferably used as a raw material, IL-6R and contaminating proteins can be well separated by adsorbing IL-6R to the DEAE group under alkaline conditions. That is, when IL-6R is purified from a culture solution of a recombinant yeast belonging to the genus Pichia according to the present invention, it is preferable to contact IL-6R with an anion exchanger having a DEAE group under alkaline conditions. A range of 0 to pH 8.5 is particularly preferred. In order to elute the IL-6R adsorbed on the anion exchanger as described above, the pH is about 4.0 to pH 9.0, preferably about pH 7.0 to pH 8.0, and the salt concentration is 0.1M to An elution solution of about 1.0M, preferably about 0.1M to 0.3M may be used.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, examples will be shown to describe the present invention in more detail, but the present invention is not limited to these examples.
[0020]
Example 1 As a pretreatment for an adsorption test on an anion exchanger, the supernatant of an IL-6R-expressing Pichia yeast culture solution (see JP-A-7-330106) was added to a 20 mM Tris-HCl buffer (pH 8.0). In contrast, the salt concentration was lowered and the pH of the culture supernatant was adjusted to 8.0. The culture supernatant was adsorbed onto a column (1.0 × 2.5 cm) packed with an anion exchanger having DEAE groups as exchange groups equilibrated with 20 mM Tris-HCl buffer (pH 8.0). After washing with buffer, elution was performed with 20 mM Tris-HCl buffer (pH 8.0) containing 500 mM NaCl.
[0021]
The amount of IL-6R and the total amount of protein in the culture supernatant, the anion exchanger flow-through fraction, the elution fraction by the washing operation and the elution fraction by the eluate were determined. IL-6R was quantified according to the enzyme immunoassay method described in the literature (J. Immunol. Meth. 199, 47-54, 1996). The protein was quantified using a commercially available quantification kit (Protein Assay Kit, Catalog No. 500-0001, manufactured by Nippon Bio-Rad Laboratories). The results are shown in Table 1.
[0022]
[Table 1]
Figure 0004154743
[0023]
Example 2 As a pretreatment for the adsorption test on the cation exchanger, the centrifuged supernatant of the IL-6R-expressing Pichia yeast culture solution described in Example 1 was dialyzed against 20 mM acetate buffer (pH 5.0). While decreasing the salt concentration, the pH of the culture supernatant was adjusted to 5.0. The culture centrifugal supernatant was adsorbed on a column (1.0 × 2.5 cm) packed with a cation exchanger having SP groups as exchange groups equilibrated with 20 mM acetate buffer (pH 5.0). And then eluted with 20 mM acetate buffer (pH 5.0) containing 500 mM NaCl.
[0024]
The amount of IL-6R and the total protein amount were determined in the culture supernatant, the cation exchanger flow-through fraction, the elution fraction by the washing operation, and the elution fraction by the eluate. Quantification was performed in the same manner as in Example 1. The results are shown in Table 2.
[0025]
[Table 2]
Figure 0004154743
[0026]
For comparison, as a pretreatment, the centrifugal supernatant of IL-6R-expressing Pichia yeast culture solution was dialyzed against 20 mM phosphate buffer (pH 6.5) to lower the salt concentration and to reduce the pH to 6.5. The adsorbed product is adsorbed to a column (1.0 × 2.5 cm) packed with an ion exchanger that exchange groups SP groups equilibrated with 20 mM phosphate buffer (pH 6.5), and washed with the same buffer. The results of elution with 20 mM phosphate buffer (pH 6.5) containing 500 mM NaCl are shown in Table 3.
[0027]
[Table 3]
Figure 0004154743
[0028]
From the results in Tables 2 and 3, it is considered that the isoelectric point of IL-6R derived from IL-6R-expressing Pichia yeast is lower than 6.5. In the experiment for comparison, since the adsorption rate of IL-6R to the ion exchanger is low, when the IL-6R is adsorbed to the cation exchanger, the equilibration pH of the ion exchange group and the pH of the raw material are set under acidic conditions. In particular, it can be seen that the pH is preferably 6.5 or less.
[0029]
Example 3
The IL-6R-expressing Pichia yeast culture solution (9.0 liters) was diluted with 20 mM acetate buffer (pH 5.0) to lower the salt concentration. The salt concentration was about 50 mM as the NaCl concentration by monitoring the electric conductivity of the culture with an electric conductivity meter. A 50% aqueous acetic acid solution was further added dropwise to the diluted culture solution (54 liters), and the pH was adjusted to 5.0 while monitoring with a pH meter. The prepared culture solution (IL-6R amount: 278 mg, total protein mass: 21.4 g) was filled with a cation exchanger having SP groups as exchange groups equilibrated in advance with 20 mM acetate buffer (pH 5.0). The solution was added by feeding upward to a commercially available column, Pharmacia Biotech Co., Ltd., STREAMLINE C-50, bed height 16 cm, 5 × 100 cm. After the addition, 20 mM acetate buffer (pH 5.0) is fed upward and washed, and then the feeding direction is reversed and 20 mM phosphate buffer (pH 7.0) containing 500 mM NaCl is added and eluted. 960 ml of eluate (IL-6R amount 158 mg, total protein mass 662 mg) was recovered.
[0030]
As described above, the ratio of IL-6R to be the total protein in the eluate is 23.8%, and the recovery rate of IL-6R from the culture broth by performing the purification operation using the adsorption fluidized bed is 56.8%. , 18 times purified.
[0031]
Example 4
The IL-6R-expressing Pichia yeast culture solution (9.4 liters) was separated into cells and supernatant by centrifugation. The supernatant (8.5 liters) was diluted with 20 mM acetate buffer to reduce the salt concentration. The salt concentration was about 50 mM as the NaCl concentration by monitoring the electric conductivity of the culture with an electric conductivity meter. A 50% aqueous acetic acid solution was further added dropwise to the diluted culture supernatant (IL-6R amount: 263 mg, total protein mass: 26.5 g, 51 liters), and the pH was adjusted to 5.0 while monitoring with a pH meter. A commercial column (manufactured by Pharmacia Biotech Co., Ltd., STREAMLINE C-) in which the prepared culture supernatant was preliminarily equilibrated with 20 mM acetate buffer (pH 5.0) and packed with a cation exchanger having SP groups as exchange groups. 50, bed height 16 cm, 5 × 100 cm). After the addition, 20 mM acetate buffer (pH 5.0) is fed upward and washed, and then the feeding direction is reversed and 20 mM phosphate buffer (pH 7.0) containing 500 mM NaCl is added and eluted. 720 ml of eluate (IL-6R amount of 169 mg, total protein mass of 750 mg) was obtained.
[0032]
As described above, the ratio of IL-6R to the total protein mass of the eluate is 22.5%, and the recovery rate of IL-6R from the culture centrifuge supernatant by performing the purification operation using the adsorption fluidized bed is 64.3. % And purified 22.5 times.
[0033]
Example 5
IL-6R-expressing Pichia yeast culture solution (5.8 liters) was separated into cells and supernatant by centrifugation. The supernatant (4.3 liters) was diluted with 20 mM acetate buffer to reduce the salt concentration. The salt concentration was about 50 mM as the NaCl concentration by monitoring the electric conductivity of the culture with an electric conductivity meter. A 50% aqueous acetic acid solution was further added dropwise to the diluted culture broth supernatant (IL-6R amount was 108 mg, total protein amount was 6.02 g, 38 liters), and the pH was adjusted to 5.0 while monitoring with a pH meter. A commercial column (manufactured by Pharmacia Biotech Co., Ltd., STREAMLINE C-) in which the prepared culture supernatant was preliminarily equilibrated with 20 mM acetate buffer (pH 5.0) and packed with a cation exchanger having SP groups as exchange groups. 50, bed height 16 cm, 5 × 100 cm). After the addition, 20 mM acetate buffer (pH 5.0) was sent upward and washed, and then the feeding direction was reversed and 20 mM phosphate buffer (pH 7.4) was added to elute, and 720 ml was eluted. The liquid (IL-6R was 49.4 mg and the total protein mass was 126 mg) was recovered.
[0034]
As described above, the ratio of IL-6R to the total protein mass of the eluate is 39.4%, and the recovery rate of IL-6R from the culture centrifugal supernatant is 45.7 by performing the purification operation using the adsorption fluidized bed. % And was 21.7 times purified.
[0035]
Example 6
The eluate obtained in the examples was applied to a commercially available gel filtration column (TSK-gel G3000SW, manufactured by Tosoh Corporation), and the presence or absence of IL-6R peak was examined. Note that a 20 mM phosphate buffer (pH 6.5) containing 100 mM NaCl was used as the liquid sending buffer.
[0036]
The system used was an ultraviolet absorbance detector (UV-8020, manufactured by Tosoh Corporation), a liquid feed pump (CCPS, manufactured by Tosoh Corporation), and a column oven (CO-8020, manufactured by Tosoh Corporation). The measurement conditions are a detection wavelength of 280 nm, a pump liquid flow rate of 1.0 ml / min, and a column temperature of 25 ° C.
[0037]
In addition to the eluate obtained in the examples, the same measurement was performed on the culture centrifugal supernatant and IL-6R purified in a protein-like manner. The results are shown in FIGS. As is clear from these results, no peak was observed in the retention time of purified IL-6R (FIG. 3) in the culture centrifugal supernatant (FIG. 1), but the eluate after purification by adsorption fluidized bed operation. In FIG. 2, a peak was confirmed in the retention time of purified IL-6R.
Comparative Example In order to compare the effect of the present invention with other purification methods, it was compared with an ammonium sulfate salting out method which is a general purification method.
[0038]
After the IL-6R-expressing Pichia yeast culture solution (1 liter) was treated with an ultrafiltration membrane (UF3000PS, polysulfone membrane, manufactured by Tosoh Corporation, molecular weight cut off 3 million), a clear permeate was obtained. The solution was concentrated to 200 ml with an outer filtration membrane (UF10PS, polysulfone membrane, manufactured by Tosoh Corporation, molecular weight cut off 10,000).
[0039]
35.2 g of ammonium sulfate was added to the concentrated solution to prepare a 30% saturated ammonium sulfate concentration, and the mixture was allowed to stand at 4 ° C. for 5 hours. The solution was centrifuged, and ammonium sulfate was further added to the supernatant to finally adjust to a saturated ammonium sulfate concentration (65%). After standing overnight at 4 ° C., the precipitate was collected by centrifugation.
[0040]
The precipitate was dissolved in 50 ml of 20 mM phosphate buffer (pH 7.0) and dialyzed against the same buffer at 4 ° C. overnight.
[0041]
The ratio of IL-6R converted to total protein in the aqueous solution after ammonium sulfate salting-out and dialysis was 2.4%, and the ratio of IL-6R converted to total protein in the culture supernatant was 1.2%. As described above, the recovery rate of IL-6R from the culture supernatant by performing clarification / concentration treatment with an ultrafiltration membrane and fractionation operation by ammonium sulfate salting out was 45%, but IL-6R was 2 It was only purified about twice.
[0042]
【The invention's effect】
According to the present invention, IL-6R can be efficiently recovered and purified from a solution containing a large amount of contaminants by using an ion exchanger as a fluidized bed. In particular, pretreatment such as filtration and concentration of the purified raw material is unnecessary, and the purification operation can be facilitated.
[Brief description of the drawings]
1 is a chromatograph of gel filtration TSK-gel G3000SW of culture centrifugal supernatant in Example 4. FIG.
FIG. 2 is a chromatograph of gel filtration TSK-gel G3000SW of an adsorbed fluidized bed eluate in Example 4.
3 is a chromatograph of gel filtration TSK-gel G3000SW of purified IL-6R in Example 4. FIG.

Claims (2)

インターロイキン6レセプター(IL−6R)及び夾雑物質を含有するピキア属に属する遺伝子組み換え酵母の培養液からIL−6Rを精製する方法であって、前記培養液を陽イオン交換体より形成される流動床内において陽イオン交換体とpH5で接触させてIL−6Rを吸着させた後、IL−6Rを陽イオン交換体より分離することからなるIL−6Rの精製方法。A method for purifying IL-6R from a culture solution of genetically modified yeast belonging to the genus Pichia containing an interleukin-6 receptor (IL-6R) and a contaminant, wherein the culture solution is formed from a cation exchanger. A method for purifying IL-6R, comprising: contacting IL-6R with a cation exchanger at pH 5 in a bed to adsorb IL-6R, and then separating IL-6R from the cation exchanger. 陽イオン交換体のイオン交換基がスルホプロピル基であることを特徴とする請求項1に記載のIL−6Rの精製方法。The method for purifying IL-6R according to claim 1, wherein the ion exchange group of the cation exchanger is a sulfopropyl group.
JP32319597A 1997-11-25 1997-11-25 Method for purifying interleukin-6 receptor Expired - Lifetime JP4154743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32319597A JP4154743B2 (en) 1997-11-25 1997-11-25 Method for purifying interleukin-6 receptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32319597A JP4154743B2 (en) 1997-11-25 1997-11-25 Method for purifying interleukin-6 receptor

Publications (2)

Publication Number Publication Date
JPH11158198A JPH11158198A (en) 1999-06-15
JP4154743B2 true JP4154743B2 (en) 2008-09-24

Family

ID=18152121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32319597A Expired - Lifetime JP4154743B2 (en) 1997-11-25 1997-11-25 Method for purifying interleukin-6 receptor

Country Status (1)

Country Link
JP (1) JP4154743B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5322736B2 (en) * 2009-03-31 2013-10-23 積水メディカル株式会社 Methods for analyzing hemoglobins and proteins

Also Published As

Publication number Publication date
JPH11158198A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
US5169936A (en) Protein purification on immobilized metal affinity resins effected by elution using a weak ligand
Janson Large-scale affinity purification—state of the art and future prospects
JP2562192B2 (en) Purification method of serum albumin
JP3676817B2 (en) Novel factor IX purification method
US10792654B2 (en) Solid phase for mixed-mode chromatographic purification of proteins
Nachman et al. Membrane-based receptor affinity chromatography
JP2006513978A (en) Purification method of preproinsulin
WO2019184368A1 (en) Method for preparing highly pure rhngf
EP0313343B2 (en) Method of purifying protein
CN101260145B (en) A separation and purification process of recombinant human serum albumin and its fusion protein
EP3240798B1 (en) Novel method for efficient purification of human serum albumin
CN103505908B (en) A kind of method utilizing mixed mode chromatography media to be continuously separated antibody purification
US4485038A (en) Method for the production and purification of human leukocyte interferon
US4743551A (en) Purification of microbial rennet from Mucor miehei
SU1600633A3 (en) Method of purifying protein toxin of bordetella petrusis bacteria
JP4154743B2 (en) Method for purifying interleukin-6 receptor
JPS6261040B2 (en)
RU2346002C2 (en) Method of purifying human interferon beta
JPS59231097A (en) Manufacture of homogeneous human immunological interferon subtype 26k and 21k
US6555661B1 (en) Simple, environmentally benign, method for purifying protein A
JP5830945B2 (en) Purification method of Fc receptor
JP2007238479A (en) Method for elution of organic substance adsorbed on hydroxyapatite and method for purification of organic substance using said elution method
Shimazaki et al. Interacting properties of bovine lactoferrin with immobilized Cibacron blue F3GA in column chromatography
JP2001139600A (en) Purification method of IL-6R / IL-6 fusion protein
RU2346003C2 (en) Method of purifying human interferon beta

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

EXPY Cancellation because of completion of term