JP4152397B2 - Method and apparatus for heating cylindrical mold - Google Patents
Method and apparatus for heating cylindrical mold Download PDFInfo
- Publication number
- JP4152397B2 JP4152397B2 JP2005136978A JP2005136978A JP4152397B2 JP 4152397 B2 JP4152397 B2 JP 4152397B2 JP 2005136978 A JP2005136978 A JP 2005136978A JP 2005136978 A JP2005136978 A JP 2005136978A JP 4152397 B2 JP4152397 B2 JP 4152397B2
- Authority
- JP
- Japan
- Prior art keywords
- cylindrical mold
- heating
- mold
- heat capacity
- portions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010438 heat treatment Methods 0.000 title claims description 50
- 238000000034 method Methods 0.000 title claims description 21
- 230000006698 induction Effects 0.000 claims description 34
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 230000004907 flux Effects 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229920001971 elastomer Polymers 0.000 description 20
- 238000009826 distribution Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000035515 penetration Effects 0.000 description 6
- 230000020169 heat generation Effects 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000004944 Liquid Silicone Rubber Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
Description
本発明は、例えば、高精度の寸法安定性が要求されるローラあるいはベルト等の定着部材の成型に使用され、かつ、熱容量の大きい部分を有する円筒金型の加熱に適する円筒金型の加熱方法およびその装置に関する。 The present invention is, for example, a method for heating a cylindrical mold that is used for molding a fixing member such as a roller or a belt that requires high-precision dimensional stability and that is suitable for heating a cylindrical mold having a large heat capacity. And to the device.
例えば定着ローラを製造する際には図2に示すような円筒金型12を備えた製造装置を使用する。最初に、円筒金型12の内周壁に沿ってフッ素樹脂チューブを配置し、円筒金型12内の軸心に芯軸14を配置した後、円筒金型12の両端を上栓体15Aと下栓体15Bで蓋をする。下栓体15Bに設けたゴム注入孔20から液状ゴムを注入し、上栓体15Aの空気逃がし孔22から液状ゴムが出てくるまで注入し、フッ素樹脂チューブと液状ゴムとを加熱して硬化成型を行う。
For example, when manufacturing the fixing roller, a manufacturing apparatus having a
芯軸14の周上のゴム層16、フッ素樹脂層18を一体成型するために、これらの構成部材を円筒金型12内に同軸に配置した後、図示しないが、熱風炉に収納して加熱硬化することを行っている。しかし、従来はゴム層16の肉厚が1mm以上の場合が多く、円筒金型12に要求される寸法精度も厳しくなかったため、円筒金型12の肉厚等も薄く同金型の熱容量も小さかった。このため、熱風炉を使用しても十分な昇温を行うことができた。
In order to integrally mold the
近年、省エネを考慮したコピー機やプリンタの開発が進み、ローラを加熱するのに必要なエネルギーを削減することが求められている。このためローラ等の定着部材に積層するゴム層16の肉厚は熱容量を低減するためにも、より薄くすることが望ましいとされ、その要求値はゴム層の肉厚として0.1〜0.3mm程度となっている。
ところで、従来の技術には、次のような解決すべき課題があった。
芯軸上に薄いゴム層を成型し、その上にフッ素樹脂層を形成する定着部材において、ゴム層とフッ素樹脂層を一体成型で得るためには芯軸と円筒金型を精度よく同軸上に配置しなければならない。この時、円筒金型の精度を良するために、同金型の肉厚が大きくなり全体の熱容量が増大してしまう。また、円筒金型12の蓋となる上栓体15Aと下栓体15B等による熱容量分布の偏りも従来に比べ大きくなる。これを通常の熱風炉により加熱しようとすると、加熱時間が膨大になる。また時間を短縮しようとすると雰囲気温度を高くしなければならず、エネルギーを大量に消費することになり、また設備も大掛かりになってしまう。
By the way, the conventional technique has the following problems to be solved.
In a fixing member in which a thin rubber layer is molded on the core shaft and the fluororesin layer is formed thereon, in order to obtain the rubber layer and the fluororesin layer by integral molding, the core shaft and the cylindrical mold are accurately coaxial. Must be placed. At this time, in order to improve the accuracy of the cylindrical mold, the thickness of the mold increases and the overall heat capacity increases. Further, the bias of the heat capacity distribution due to the
また、ゴム層16の肉厚を要求値にするためには、従来レベルの金型精度では実質上成型不能であり、より寸法精度の高い円筒金型が必要となる。また、円筒金型の寸法精度を高めるためには加工後の歪みを抑える必要があり、円筒金型の肉厚をより大きくしなければならない。具体的には、円筒金型の肉厚を、従来では3〜4mmで十分なところを、7〜10mm程度まで大きくする必要がある。このため金型全体の熱容量が2〜3倍大きくなってしまい、ゴム層を硬化させるために必要な温度まで金型を加熱するためには、大量のエネルギーと時間が必要となってしまう。 Moreover, in order to make the thickness of the rubber layer 16 a required value, it is substantially impossible to mold with the conventional mold accuracy, and a cylindrical mold with higher dimensional accuracy is required. Moreover, in order to increase the dimensional accuracy of the cylindrical mold, it is necessary to suppress distortion after processing, and the thickness of the cylindrical mold must be increased. Specifically, it is necessary to increase the thickness of the cylindrical mold up to about 7 to 10 mm, where 3 to 4 mm is conventionally sufficient. For this reason, the heat capacity of the entire mold is increased by 2 to 3 times, and a large amount of energy and time are required to heat the mold to a temperature necessary for curing the rubber layer.
肉厚を大きくした円筒金型を、熱風炉だけで加熱した場合には、多くの時間が必要となる。生産効率を向上させるためには熱風炉中に大量の金型を投入しなければならなかった。すなわち、加熱時間÷金型数は、金型1個当たりの加熱時間であるから、金型1個当たりの加熱時間を小さくしてやれば生産効率が向上する。しかし、金型を大量に準備するには相応の資金が必要で経済効率が悪いという問題があった。 When a cylindrical mold having a large wall thickness is heated only by a hot stove, a lot of time is required. In order to improve production efficiency, a lot of molds had to be put into the hot stove. That is, since the heating time divided by the number of molds is the heating time per mold, if the heating time per mold is reduced, the production efficiency is improved. However, in order to prepare a large number of molds, there was a problem that the corresponding funds were required and the economic efficiency was poor.
一方、円筒金型の両端に、比透磁率の大きい磁性体からなるスペーサを配置し、円筒金型の周囲に誘導コイルを配置して誘導加熱を行う方法が知られている(例えば、特許文献1参照)。しかしながら、スペーサによって磁場の分布を均一にした場合、発熱量も均一となるため金型の軸方向に熱容量の偏りがあると金型全体の温度上昇が均一にならないという問題があった。 On the other hand, a method is known in which spacers made of a magnetic material having a high relative permeability are arranged at both ends of a cylindrical mold, and an induction coil is arranged around the cylindrical mold to perform induction heating (for example, Patent Documents). 1). However, when the distribution of the magnetic field is made uniform by the spacer, the amount of heat generation becomes uniform, so that there is a problem that the temperature rise of the entire mold does not become uniform if there is a deviation of the heat capacity in the axial direction of the mold.
誘導加熱を行う場合、均一な巻線からなる単体誘導コイルを使用した場合、磁場の最大値はコイルの軸方向中心部となり、磁場の最大値位置に最大の誘導電流が流れる。誘導電流の大きさに発熱量が比例するため、磁場の最大発生位置が最大の発熱量となる。このまま金型を加熱すると、金型の軸方向中心の温度が高く、両端末で温度が低い状態となり成形品の寸法制度に悪影響を及ぼしてしまう。つまり、温度が高いほど成型後のゴム層の肉厚が小さく、温度が低いほどゴム層の肉厚が大きくなる。巻線間隔を疎密化することで磁場の発生分布を調整し発熱量をコントロールする方法も考えられるが、巻線の保持方法などが複雑化し調整が難しい。 When induction heating is performed, when a single induction coil having a uniform winding is used, the maximum value of the magnetic field is the central portion in the axial direction of the coil, and the maximum induced current flows at the position of the maximum value of the magnetic field. Since the amount of heat generation is proportional to the magnitude of the induced current, the maximum generation position of the magnetic field is the maximum amount of heat generation. If the mold is heated as it is, the temperature at the center of the mold in the axial direction is high and the temperature is low at both ends, which adversely affects the dimensional system of the molded product. That is, the higher the temperature, the smaller the thickness of the rubber layer after molding, and the lower the temperature, the greater the thickness of the rubber layer. Although a method of adjusting the generation distribution of the magnetic field and controlling the amount of heat generation by reducing the winding interval can be considered, the method of holding the winding becomes complicated and adjustment is difficult.
また、図2に示すように、円筒金型12内に配置したフッ素樹脂チューブや液状ゴムを加熱して硬化成型を行う場合、円筒金型12の上、下端部に蓋の役割をする上栓体15Aと下栓体15Bが必要となる。これらの上栓体15Aと下栓体15Bを取り付けた円筒金型12は、両端部の熱容量が栓体分だけ大きくなるために、栓体を含めた金型全体を均一に加熱することが難しいという問題があった。
Further, as shown in FIG. 2, in the case where the fluororesin tube or the liquid rubber disposed in the
本発明は以上の課題を解決するためになされたもので、エネルギーの効率が良く短時間で加熱することができる円筒金型の加熱方法およびその装置を提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a cylindrical mold heating method and apparatus capable of heating in a short time with high energy efficiency.
本発明は、それぞれ次のような構成により上記の課題を解決する。
〈構成1〉
円筒金型の、他の部分よりも熱容量の大きい部分の周囲に、誘導コイルを配置し、上記誘導コイルに交流を通電することにより、上記円筒金型の他の部分よりも熱容量が大きい部分に、軸方向に誘導される磁束を集中的に発生させて上記円筒金型を誘導加熱し、円筒金型全体の温度上昇を均一化させることを特徴とする円筒金型の加熱方法。
The present invention solves the above problems by the following configurations.
<Configuration 1>
The cylindrical mold, around a large portion of heat capacity than the other portions, the induction coil is arranged, by energizing the alternating current to the induction coil, the portion having a large thermal capacity than other portions of the cylindrical mold A method for heating a cylindrical mold, characterized in that a magnetic flux induced in an axial direction is intensively generated to inductively heat the cylindrical mold to make the temperature rise of the entire cylindrical mold uniform .
円筒金型の熱容量分布に応じた磁場分布を発生させ、他の部分よりも熱容量の大きい部分に対して優先的に誘導電流を発生させてジュール熱を起こし円筒金型を直接加熱し、円筒金型全体の温度上昇を均一化させることにより、エネルギー効率が良く短時間で加熱処理を行うことができる。加熱時間で約1/20に短縮が可能である。 A magnetic field distribution corresponding to the heat capacity distribution of the cylindrical mold is generated, an induced current is preferentially generated in a part having a larger heat capacity than other parts , causing Joule heat to directly heat the cylindrical mold, and the cylindrical mold By making the temperature rise of the entire mold uniform , heat treatment can be performed in a short time with good energy efficiency. The heating time can be reduced to about 1/20.
〈構成2〉
構成1に記載の円筒金型の加熱方法において、上記他の部分よりも熱容量の大きい部分が軸方向の複数箇所に分散している円筒金型に対して、複数個の誘導コイルを、上記他の部分よりも熱容量の大きい部分の各周囲にそれぞれ分散配置して上記円筒金型を誘導加熱することを特徴とする円筒金型の加熱方法。
<Configuration 2>
In the heating method of the cylindrical mold according to Structure 1, the cylindrical mold a large portion of the heat capacity than the other portions are dispersed in plural positions in the axial direction, a plurality of induction coils, the other A method for heating a cylindrical mold, comprising the steps of: inductively heating the cylindrical mold in a distributed manner around each of the portions having a larger heat capacity than the portion.
複数の誘導コイルを軸方向に分散配置し、また、コイルの間隔を調整すること(軸方向に自由位置で固定すること)で磁場の発生分布を調整することが可能となる。このため、円筒金型の軸方向に熱容量の偏りがある場合にも、他の部分よりも熱容量の大きい部分に磁場が集中するようにコイルを配置することで金型全体を均等に加熱できるようになる。但し、エネルギー効率は均一巻き線単体誘導コイルより悪化するので、加熱時間と温度分布の均一性を考慮したコイル設計が必要になる。 It is possible to adjust the generation distribution of the magnetic field by distributing a plurality of induction coils in the axial direction and adjusting the coil interval (fixing at a free position in the axial direction). For this reason, even when there is a deviation of the heat capacity in the axial direction of the cylindrical mold, the entire mold can be heated evenly by arranging the coils so that the magnetic field is concentrated on the portion having a larger heat capacity than the other portions. become. However, since the energy efficiency is worse than that of the uniform winding single induction coil, it is necessary to design the coil in consideration of the heating time and the uniformity of the temperature distribution.
〈構成3〉
構成1又は2に記載の円筒金型の加熱方法において、上記誘導コイルに、50〜800Hzの低周波領域の交流を通電することを特徴とする円筒金型の加熱方法。
<Configuration 3>
The method for heating a cylindrical mold according to Configuration 1 or 2, wherein the induction coil is energized with an alternating current in a low frequency region of 50 to 800 Hz.
50〜800Hzの交流を使用することにより、円筒金型への磁束の浸透深さを大きくすることができる。このため、円筒金型の表面だけではなく、金型内部までが加熱され、熱容量の大きな金型であっても急速に加熱することができるようになる。また、急速に加熱を行うことが可能になるため、同一の本数を製造するに当たり、金型数を加熱時間の短縮分だけ削減することが可能となる。従って初期投資を大幅に削減することが可能となるため経済的効果も大きい。 By using an alternating current of 50 to 800 Hz, the penetration depth of the magnetic flux into the cylindrical mold can be increased. For this reason, not only the surface of the cylindrical mold but also the inside of the mold is heated, and even a mold having a large heat capacity can be heated rapidly. Moreover, since it becomes possible to heat rapidly, when manufacturing the same number, it becomes possible to reduce the number of metal mold | die by the part for shortening of heating time. Therefore, the initial investment can be greatly reduced, and the economic effect is great.
〈構成4〉
構成1〜3のいずれかに記載の円筒金型の加熱方法において、上記円筒金型の、他の部分よりも熱容量の大きい部分に近接させて鉄よりも誘導電流により発熱を生じ易い金属部材を配置して誘導加熱を行うことを特徴とする円筒金型の加熱方法。
<Configuration 4>
In the heating method of the cylindrical mold according to any one of the first to third aspects, a metal member that is likely to generate heat by an induced current rather than iron in the vicinity of a portion having a larger heat capacity than the other portion of the cylindrical mold. A heating method for a cylindrical mold, wherein the heating is performed by induction.
円筒金型の、他の部分よりも熱容量が大きい部分に近接して、アルミニウム、銅等の鉄よりも誘導電流により発熱し易い金属部材を配置することにより、近接させた金属部材に発生した熱を熱伝導によって熱容量の大きい部分に供給し、円筒金型に対する加熱温度の均一化を図ることができる。 The heat generated in the adjacent metal member is arranged by placing a metal member that is more likely to generate heat due to the induced current than iron such as aluminum or copper in the vicinity of the portion of the cylindrical mold having a larger heat capacity than other portions. Can be supplied to the portion having a large heat capacity by heat conduction, and the heating temperature for the cylindrical mold can be made uniform.
〈構成5〉
上記他の部分よりも熱容量の大きい部分が軸方向の複数箇所に分散している円筒金型を誘導加熱し、円筒金型全体の温度上昇を均一化させるものであって、複数個の誘導コイルを、上記他の部分よりも熱容量の大きい部分の各周囲にそれぞれ分散配置してなることを特徴とする円筒金型の加熱装置。
<Configuration 5>
Inductive heating of a cylindrical mold in which a portion having a larger heat capacity than the above-mentioned other portions is dispersed in a plurality of locations in the axial direction to equalize the temperature rise of the entire cylindrical mold , and a plurality of induction coils The cylindrical mold heating device is characterized by being dispersedly arranged around each of the portions having a larger heat capacity than the other portions .
他の部分よりも熱容量の大きい部分が軸方向の複数箇所にある円筒金型に対応して、予め所定の誘導コイルを配設しておくことにより、効率の良い加熱を行うことができる。 Efficient heating can be performed by disposing a predetermined induction coil in advance corresponding to the cylindrical mold having a plurality of portions having a larger heat capacity than the other portions in the axial direction.
本発明では、円筒金型にほぼ同軸に配置した複数の誘導コイルにより、円筒金型の熱容量分布に応じた磁場分布を発生させ、熱容量の大きい部分、例えば、上栓体と下栓体で蓋をした円筒金型の両端部分に対して優先的に誘導電流を発生させ、ジュール熱を起こし直接円筒金型を加熱するようにしている。 In the present invention, a magnetic field distribution corresponding to the heat capacity distribution of the cylindrical mold is generated by a plurality of induction coils arranged substantially coaxially with the cylindrical mold, and the cap is covered with a portion having a large heat capacity, for example, an upper plug body and a lower plug body. An induced current is preferentially generated at both end portions of the cylindrical mold, and Joule heat is generated to directly heat the cylindrical mold.
本発明において、誘導コイルに通電する交流は、50〜800Hzの低周波領域であることが好ましい。通常の高周波誘導加熱は、1kHz以上の周波数の交流を通電することにより金属の表面のみを加熱していた。これは、以下の磁界の浸透深さの一般式で表される磁界の浸透深さが、周波数が高くなることにより、より小さくなることを利用している。
磁界の浸透深さの式;δ=5.03(ρ/μf)1/2
但し、δ:磁界の浸透深さ(cm)
ρ:被加熱物体の固有抵抗率(μΩ・cm)
μ:被加熱物体の比透磁率
f:周波数
In this invention, it is preferable that the alternating current supplied to an induction coil is a low frequency area | region of 50-800 Hz. In normal high frequency induction heating, only the surface of the metal is heated by energizing an alternating current having a frequency of 1 kHz or more. This utilizes the fact that the penetration depth of the magnetic field represented by the following general expression of the penetration depth of the magnetic field becomes smaller as the frequency becomes higher.
Formula for penetration depth of magnetic field; δ = 5.03 (ρ / μf) 1/2
Where δ: penetration depth of magnetic field (cm)
ρ: Specific resistivity of heated object (μΩ · cm)
μ: Relative permeability of heated object
f: Frequency
しかるに、本発明では50〜800Hzの交流を使用することにより、円筒金型への磁束の浸透深さを大きくすることができる。このため、円筒金型の表面だけではなく、金型内部までが加熱され、熱容量の大きな金型であっても急速に加熱することができるようになる。また、急速に加熱を行うことが可能になるため、同一の本数を製造するに当たり、従来方式では金型を大量に熱風炉に投入する必要があったが、本発明では金型数を加熱時間の短縮分だけ削減することが可能となり、初期投資を大幅に削減することが可能となるため経済的効果も大きい。
以下、本発明の実施の形態を説明する。
However, in the present invention, the penetration depth of the magnetic flux into the cylindrical mold can be increased by using an alternating current of 50 to 800 Hz. For this reason, not only the surface of the cylindrical mold but also the inside of the mold is heated, and even a mold having a large heat capacity can be heated rapidly. In addition, since it becomes possible to perform heating rapidly, in the conventional method, it was necessary to put a large number of molds into a hot stove in the conventional method. Therefore, the initial investment can be greatly reduced, and the economic effect is great.
Embodiments of the present invention will be described below.
図1は実施例1の円筒金型の加熱方法を示す説明図であり、図2と同一部分には同一符号を付している。
内径60.7mm、外径74mm、肉厚7mmの円筒金型12内に、肉厚30μmの、内面エッチング済みのPFAチューブを同軸上にセットし、円筒金型12とPFAチューブの空間を真空引きして当該PFAチューブを円筒金型の内面に密着させ、エッチング処理面にプライマーを塗布、乾燥させた。
FIG. 1 is an explanatory view showing a method of heating a cylindrical mold according to the first embodiment, and the same parts as those in FIG.
Inside the
次に、外径60mmのアルミ芯軸14の表面をベルターにより粗面化し、切削分を除去した後、プライマーを塗布、乾燥させた。芯軸14とPFAチューブをセットした円筒金型12を同軸上に配置して両端を上栓体15Aと下栓体15Bでそれぞれ蓋をした。この時、金型の総重量は8kgであった。
Next, the surface of the
円筒金型12の下栓体15Bに設けたゴム注入孔22から液状シリコーンゴムを注入し、上栓体15Aの空気逃がし孔22から液状シリコーンゴムが出てくるまで注入を行った。
Liquid silicone rubber was injected from the
次に、円筒金型12の軸方向に熱容量の大きい部分、すなわち、上栓体15Aと下栓体15Bの各周囲に、内径150mm、高さ200mm、巻数70ターンの2個の誘導コイル24をそれぞれ同軸に配置した。この時、各誘導コイル24は、上栓体15Aと下栓体15Bの近傍が発熱の中心位置となるように、円筒金型12の軸心から50mmの間隔となるように配置した。
Next, two
そして、容量40kVAのインバーターと誘導コイル24とを電気的に接続し、誘導コイル24に周波数100Hz、電流280Aの交流電流を通電して誘導加熱を行った。円筒金型12の表面温度は20℃から120℃まで到達するのに120秒の時間を要した。誘導加熱を実施後、室温空間に10分間放置し、冷却水槽に投入して冷却した。
Then, an inverter having a capacity of 40 kVA and the
冷却後、円筒金型12から各栓体15A、15Bを外し、芯軸14を円筒金型12から取り出して、ゴム層肉厚が0.3mmのローラを得ることができた。投入した電力量は566whであった。
After cooling, the
<比較例1>
実施例1と同一構成の円筒金型を雰囲気温度180℃の熱風炉に投入したところ、金型表面温度が120℃まで到達するのに40分の時間を要した。これを直ぐに水で冷却し、実施例1と同様に分解してゴム層肉厚0.3mmのローラを得た。このときの投入電力量は2.4kwhであった。
<Comparative Example 1>
When a cylindrical mold having the same configuration as that of Example 1 was put into a hot air furnace having an atmospheric temperature of 180 ° C., it took 40 minutes for the mold surface temperature to reach 120 ° C. This was immediately cooled with water and decomposed in the same manner as in Example 1 to obtain a roller having a rubber layer thickness of 0.3 mm. The input power amount at this time was 2.4 kwh.
上記から明らかなように、実施例1は、従来方式の比較例1に比べ約1/4の電力量で同一のローラを得ることができており、本発明を使用することで大幅なエネルギー効率の改善を行うことができる。また、実施例1は比較例1に比べ加熱から冷却までに1/4の時間で処理を行うことができた。 As is apparent from the above, Example 1 can obtain the same roller with about 1/4 of the electric energy compared to Comparative Example 1 of the conventional system, and the use of the present invention greatly improves energy efficiency. Can be improved. Further, in Example 1, compared to Comparative Example 1, the treatment could be performed in 1/4 time from heating to cooling.
本発明においては、熱容量の大きい部分が軸方向の複数箇所に分散している円筒金型を誘導加熱するものであって、複数個の誘導コイルを、熱容量の大きい部分の各周囲にそれぞれ分散配置してなる円筒金型の加熱装置を含むものである。予め所定の誘導コイルを配設した加熱装置を用意しておくことにより、即座に効率の良い金型加熱処理ができる。 In the present invention, a cylindrical mold in which a portion having a large heat capacity is dispersed in a plurality of locations in the axial direction is induction-heated, and a plurality of induction coils are dispersedly arranged around each of the portions having a large heat capacity. A cylindrical mold heating device is included. By preparing a heating device provided with a predetermined induction coil in advance, an efficient mold heat treatment can be performed immediately.
また、本発明においては、複数個の各誘導コイルを直列に接続しその両端に1つの電源を接続する方式と、複数個の各誘導コイルに対してそれぞれ1つずつの電源を接続する方式を採用できる。前者は高価な電源を1つだけ使用するので設備費を抑えることができる。後者は円筒金型の軸方向に、熱容量の異なる部分が数箇所にある場合に、それぞれに周波数の異なる交流を通電できるので、熱容量に応じた適切な加熱操作が可能である。 In the present invention, there are a system in which a plurality of induction coils are connected in series and one power source is connected to both ends thereof, and a system in which one power source is connected to each of the plurality of induction coils. Can be adopted. Since the former uses only one expensive power source, the equipment cost can be reduced. In the latter case, when there are several portions having different heat capacities in the axial direction of the cylindrical mold, alternating currents having different frequencies can be applied to the respective portions, so that an appropriate heating operation according to the heat capacity is possible.
12 円筒金型
14 芯軸
15A 上栓体
15B 下栓体
16 ゴム層
18 フッ素樹脂層
20 ゴム注入孔
22 空気逃がし孔
24 誘導コイル
12
Claims (5)
前記誘導コイルに交流を通電することにより、前記円筒金型の他の部分よりも熱容量が大きい部分に、軸方向に誘導される磁束を集中的に発生させて前記円筒金型を誘導加熱し、円筒金型全体の温度上昇を均一化させることを特徴とする円筒金型の加熱方法。 Place an induction coil around the part of the cylindrical mold that has a larger heat capacity than the other parts ,
Wherein by energizing the alternating current to the induction coil, the other part the heat capacity is larger than the portion of the cylindrical mold, and induction heating the cylindrical mold by the magnetic flux induced in the axial direction centrally generate, A method for heating a cylindrical mold, characterized in that the temperature rise of the entire cylindrical mold is made uniform .
前記他の部分よりも熱容量の大きい部分が軸方向の複数箇所に分散している円筒金型に対して、複数個の誘導コイルを、前記他の部分よりも熱容量の大きい部分の各周囲にそれぞれ分散配置して前記円筒金型を誘導加熱することを特徴とする円筒金型の加熱方法。 In the heating method of the cylindrical metal mold according to claim 1,
For a cylindrical mold in which portions having a larger heat capacity than the other portions are dispersed in a plurality of locations in the axial direction, a plurality of induction coils are provided around each of the portions having a larger heat capacity than the other portions. A method for heating a cylindrical mold, comprising the step of inductively heating the cylindrical mold in a distributed manner.
前記誘導コイルに、50〜800Hzの低周波領域の交流を通電することを特徴とする円筒金型の加熱方法。 In the heating method of the cylindrical metal mold according to claim 1 or 2,
A method for heating a cylindrical mold, wherein the induction coil is energized with an alternating current in a low frequency region of 50 to 800 Hz.
前記円筒金型の、他の部分よりも熱容量の大きい部分に近接させて鉄よりも誘導電流により発熱を生じ易い金属部材を配置して誘導加熱を行うことを特徴とする円筒金型の加熱方法。 In the heating method of the cylindrical metal mold according to any one of claims 1 to 3,
A method for heating a cylindrical mold, characterized in that a metal member that is more likely to generate heat due to an induced current than iron is placed near a portion having a larger heat capacity than the other portion of the cylindrical mold and induction heating is performed. .
複数個の誘導コイルを、前記他の部分よりも熱容量の大きい部分の各周囲にそれぞれ分散配置してなることを特徴とする円筒金型の加熱装置。 Inductively heating a cylindrical mold in which portions having a larger heat capacity than the other parts are dispersed in a plurality of axial directions, and uniformizing the temperature rise of the entire cylindrical mold ,
A cylindrical mold heating apparatus, wherein a plurality of induction coils are dispersedly arranged around each of the portions having a larger heat capacity than the other portions .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005136978A JP4152397B2 (en) | 2005-05-10 | 2005-05-10 | Method and apparatus for heating cylindrical mold |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005136978A JP4152397B2 (en) | 2005-05-10 | 2005-05-10 | Method and apparatus for heating cylindrical mold |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006315186A JP2006315186A (en) | 2006-11-24 |
JP4152397B2 true JP4152397B2 (en) | 2008-09-17 |
Family
ID=37536286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005136978A Active JP4152397B2 (en) | 2005-05-10 | 2005-05-10 | Method and apparatus for heating cylindrical mold |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4152397B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5237071B2 (en) * | 2008-12-12 | 2013-07-17 | 日東電工株式会社 | Seamless belt manufacturing method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59114042A (en) * | 1982-12-22 | 1984-06-30 | Yokohama Rubber Co Ltd:The | Tire vulcanizing device |
JPH0479183A (en) * | 1990-07-23 | 1992-03-12 | Honda Motor Co Ltd | Induction heating method for resin hardening formation metal mold and its device |
JP4014232B2 (en) * | 1994-08-03 | 2007-11-28 | 旭化成ケミカルズ株式会社 | Electromagnetic induction heating mold for resin molding |
JP3326406B2 (en) * | 1999-05-21 | 2002-09-24 | バンドー化学株式会社 | Electromagnetic induction heating method for cylindrical mold and electromagnetic induction heating apparatus |
-
2005
- 2005-05-10 JP JP2005136978A patent/JP4152397B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2006315186A (en) | 2006-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101044166B1 (en) | Heating method and heating device of the stator | |
JP5450584B2 (en) | Material processing apparatus using induction heating and deformable compression means | |
JP5823179B2 (en) | Stator heating method and apparatus using induction heating | |
US20200053841A1 (en) | Coaxial Smart Susceptor | |
JP5444134B2 (en) | Stator heating method and apparatus using induction heating | |
JP4877579B2 (en) | Rotor manufacturing method, rotor manufactured by this method, and motor using this rotor | |
JPS59114042A (en) | Tire vulcanizing device | |
JP4152397B2 (en) | Method and apparatus for heating cylindrical mold | |
JP5795058B2 (en) | Equipment for heating workpieces, especially rolling bearings | |
JP6157471B2 (en) | Mold induction heating device | |
JP2001013805A (en) | Fixing device | |
JP6691649B2 (en) | Electromagnetic induction heating type resin molding die and method of manufacturing resin molding using the die | |
JP2015089667A (en) | Electromagnetic induction heating type metal mold | |
JPH0237690A (en) | Induction heater of die | |
EP4054063B1 (en) | Method of preheating motor stator | |
JP5726630B2 (en) | Electromagnetic induction heating method and electromagnetic induction heating apparatus for core of rotating electric machine | |
JP2013135057A (en) | Method and apparatus for producing resin burying metal component | |
JPH11309723A (en) | Method and apparatus for electromagnetic induction heating of laminate | |
CN214960188U (en) | Movable bearing heater | |
JP2007015157A (en) | Apparatus for producing rubber covered roll, method for producing rubber covered roll, and rubber covered roll | |
JPH1195584A (en) | Fixing device with induction heating | |
KR100538080B1 (en) | Pole plate drying method of negative and positive electrode for battery and its drying device | |
JP2010129422A (en) | Electromagnetic induction heating device | |
JP3025354B2 (en) | Method and apparatus for levitation heating of metal lump | |
JP5840263B2 (en) | Fuel tank thermal welding equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080414 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080603 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080627 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080701 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4152397 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120711 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120711 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130711 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |