JP4147787B2 - Ionic conductor - Google Patents
Ionic conductor Download PDFInfo
- Publication number
- JP4147787B2 JP4147787B2 JP2002053463A JP2002053463A JP4147787B2 JP 4147787 B2 JP4147787 B2 JP 4147787B2 JP 2002053463 A JP2002053463 A JP 2002053463A JP 2002053463 A JP2002053463 A JP 2002053463A JP 4147787 B2 JP4147787 B2 JP 4147787B2
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- conductivity
- metal
- represented
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
- Silicon Polymers (AREA)
- Conductive Materials (AREA)
- Secondary Cells (AREA)
Description
【0001】
【発明の属する技術分野】
本発明はイオン伝導体に関するものであり、詳しくは、電気化学的デバイスである固体電解質、センサーなどに利用できるイオン伝導体に関するものである。
【0002】
【従来の技術】
従来、リチウム一次電池およびリチウム二次電池の電解質としては、エチレンカーボネート、プロピレンカーボネート等の有機溶媒にLiBF4、LiPF6、LiCF3SO3等のイオン性のリチウム塩を溶解させた電解液が使用されていた。
しかしながら、この電解液は液漏れ、発火の危険性がある上、揮発しやすく長期間の信頼性に欠けるという欠点を有している。これに対し、固体電解質はこのような欠点を有しておらず、また上記のデバイスの電解質として用いた場合、電解液を用いた場合と違いセパレータが不要になる。このように固体電解質を用いると、デバイスを使用する上での安全性の向上、またデバイス自身の小型軽量化が図れる。固体電解質として有望な材料の候補としてはポリマー電解質、無機固体電解質などが知られている。ポリマー電解質は、柔軟性、加工性、薄膜成型性、軽量性、弾性等に優れており、電気自動車用大型二次電池や、ICカードなどの薄型製品の内蔵電池等への応用が期待されている。無機固体電解質は電解液やポリマー電解質と違い、不燃性であること、またリチウムイオン輸率が1という特徴を持っている。
【0003】
上記のポリマー電解質としては、ポリエチレンオキサイド、ポリプロピレンオキサイド等のポリエーテル系高分子化合物にLiClO4、LiCF3SO3、リチウムスルホンイミド等のアルカリ金属塩を混合させたものが研究されてきた。このポリマー電解質のイオン伝導性は高分子鎖の熱運動によることが明らかにされており、高分子の結晶化による導電性の低下を抑制するなど、様々な導電性向上のための試みがなされてきている。また、ポリマー電解質の大きな問題点として、その機械的強度が低いことがあげられる。このため、ポリマーの架橋、無機化合物とのハイブリッド化など様々な対策法が研究されている。
【0004】
無機固体電解質としては、溶融急冷法により作製されたLi2S−SiS2系をベースとする硫化物系ガラス(近藤ら、Solid State Ionics53−56巻、1183頁、1992年)、固相反応法により作製されたLi4SiO4−Li3PO4酸化物系セラミックス(U.V.Alpenら、”Fast Ion Transport in Solid" 463頁、1979年)等、様々な研究が行われている。しかしながら、これらの物質は可とう性に乏しく、薄膜化が困難であり、薄型電池、大型電池への応用が難しい。このような理由から、真空蒸着(Y.Itoら、ibid.、57巻、389頁、1983年)や高周波スパッター等(K.Miyauchiら、Solid StateIonics9−10巻、1469頁、1983年)の物理蒸着によるイオン伝導性薄膜の合成が行われた。しかし、このような物理蒸着は多成分系の場合原料組成と薄膜組成が組成ずれをおこしやすく、特に、リチウムを多く含む場合はこの現象が顕著にみられる。このため、組成ずれのない均質なLi2O−SiO2系無機固体薄膜をゾル・ゲル法により作製したという報告があるが(辰巳砂ら、日本化学会誌、11巻、1958頁、1987年)、その伝導性が若干低く、リチウム二次電池の電解質に用いるのは困難であった。
【0005】
【発明が解決しようとする課題】
本発明の目的は、無機骨格の機械的強度、有機骨格の可撓性、さらには優れたイオン伝導性を有する有機無機複合化合物からなるリチウムイオン伝導体を提供することにある。
【0006】
【課題を解決するための手段】
請求項1の発明は、少なくとも下記の一般式(1)で表示される金属アルコキシド(A)と下記の一般式(2)で表示される有機金属化合物(B)を加水分解及び重縮合反応させて得られる化合物からなるイオン伝導体において、
前記有機金属化合物(B)に含まれる金属又は非金属M2が珪素であることを特徴とするイオン伝導体。
M1OR (1)
(M1:アルカリ金属、R:化学式CaH2a+1(aは1〜20の間の整数)で表示されるアルキル基)
R1 bM2(OR2)4−b (2)
(M2:金属又は非金属、R1:有機官能基、R2:化学式ChH2h+1(hは1〜20の間の整数)で表示されるアルキル基、b:1)
請求項2の発明は、前記金属アルコキシド(A)に含まれるアルカリ金属M1がリチウムであることを特徴とする請求項1に記載のイオン伝導体である。
【0013】
【発明の実施の形態】
本発明の実施の形態について詳細に説明する。
本発明における有機無機複合化合物からなるイオン伝導体は、少なくとも電解質塩源としての金属アルコキシド化合物(A)と、骨格形成化合物としての有機官能基を少なくとも一つ有する有機金属化合物(B)を出発原料とし、加水分解及び重縮合反応させて得られる非晶質な化合物からなるものである。また、得られた化合物は、Li2O−SiO2系等のアルカリ金属酸化物−金属または非金属酸化物系無機固体電解質の骨格の一部が有機官能基R1で置換された構造含む非晶質な化合物となる。以下、出発原料として使用される各成分について以下に詳述する。
【0014】
電解質塩源として用いられ、下記一般式(1)で表わされる金属アルコキシド(A)は、特に制限するものではないが、エネルギー密度などの点からリチウム化合物であることが好ましい。
M1OR (1)
(M1:アルカリ金属、R:化学式CaH2a+1(aは1〜20の間の整数)で表示されるアルキル基)
リチウム化合物としては、水酸化リチウム、酢酸リチウム、硝酸リチウム、硫酸リチウム、炭酸リチウム、リチウムアルコキシド、塩化リチウム、臭化リチウム、沃化リチウム、フッ化リチウム等が挙げられるが、この中でリチウムアルコキシドはアルコール溶媒中で安定であり、かつ反応性が高いため好適である。
【0015】
リチウムアルコキシドは一般式LiOR(Rは化学式CaH2a+1(aは1〜20の間の整数)で表示されるアルキル基)で表示でき、LiOCH3、LiOC2H5、LiOC3H7等が例示できるが、この中で好ましいものはアルコール溶媒に対する溶解度の高いLiOCH3である。
【0016】
骨格を形成する有機金属化合物(B)は、下記一般式(2)で表わされ、有機官能基を少なくとも一つ含んだ金属および非金属化合物のアルコキシド、硝酸塩、酢酸塩、硫酸塩、炭酸塩等が用いられるが、中でも反応性の高いアルコキシドを使用するのが好ましい。
R1 bM2(OR2)4-b (2)
(M2:金属又は非金属、R1:有機官能基、R2:化学式ChH2h+1(hは1〜20の間の整数)で表示されるアルキル基、b:1、2又は3)
【0017】
また、上記一般式(2)中のbは好ましくは1である。bの値が大きいと重合度、膜強度が低下してしまうからである。
【0018】
骨格を形成する物質として、有機官能基を含む有機金属化合物を用いることにより、上記一般式(2)のR1由来の可撓性を有するイオン導電体とすることができる。
また、有機官能基R1が骨格中に含まれることで、導電性が向上するという効果が期待できる。
【0019】
金属および非金属元素としては、ホウ素、珪素、リン、アルミニウム、ゲルマニウム、ガリウム、チタン、バナジウム、ジルコニウム、ニオブ、アンチモン、インジウム、スズ、タングステン等が挙げられるが、この中でも、珪素のアルコキシドは他の金属アルコキシドよりもアルコール溶媒中で安定であるため、好適である。
有機官能基としては、アルキル基、ビニル基、カルボキシル基、フェニル基、ベンジル基、フルオロアルキル基、アミノ基、ニトリル基、エチレンオキシド鎖を含む官能基などを例示することができるが、この中で好ましいものはアルキル基、フルオロアルキル基、エチレンオキシド鎖を含む官能基である。
【0020】
このようなものとして、CH3Si(OCH3)3、C2H5Si(OCH3)3、C3H7Si(OCH3)3、C4H9Si(OCH3)3、C5H11Si(OCH3)3、CF3(CF2)5(CH2)2Si(OCH3)3、CF3(CF2)6(CH2)2Si(OCH3)3、CF3(CF2)7(CH2)2Si(OCH3)3、CH3O−(CH2CH2O)6−(CH2)3−Si(OCH3)3、CH3O−(CH2CH2O)7−(CH2)3−Si(OCH3)3、CH3O−(CH2CH2O)8−(CH2)3−Si(OCH3)3、CH3O−(CH2CH2O)9−(CH2)3−Si(OCH3)3等が挙げられる。
【0021】
金属アルコキシド(A)と有機金属化合物(B)の配合比は、ゲル化が起こらない範囲、また製膜した際にM1OHの析出が起こらない範囲内であれば何れの混合比であってもよいが、好ましくは金属アルコキシド(A)は、モル比で有機金属化合物(B)100に対して100〜900の範囲において使用される。さらに好ましくはモル比で有機金属化合物(B)100に対して300〜500である。
【0022】
下記一般式(3)で表わされる金属アルコキシド(C)は、材料の骨格を形成するために重合させる骨格形成化合物として用いることができる。
M3(OR3)n (3)
(M3はAl、B、P、Siのうちの少なくとも一つ、R3は化学式ChH2h+1(hは1〜20の間の整数)で表示されるアルキル基)
【0023】
金属アルコキシド(C)は、特に限定されるものではない。また、上記一般式(3)に含まれるとM3して、M2とは異なる元素を用いれば、溶融急冷ガラスの場合においてみられる混合フォーマー効果(南ら、化学、43巻、344頁、1988年)が期待できる。
【0024】
金属アルコキシド(C)を加える場合、有機金属化合物(B)との配合比は、特に限定するものではないが、可撓性、導電性を考慮すると、金属アルコキシド(C)は、モル比で有機金属化合物(B)100に対して10〜200の範囲において使用される。さらに好ましくはモル比で有機金属化合物(B)100に対して50〜100の範囲である。
【0025】
また、本発明ではさらに電解質塩や樹脂を加えることによりさらに導電性を向上させるなどの効果を持たせても良い。電解質塩としてはアルカリ金属塩が好ましく、LiClO4、LiPF6、LiSO3CF3、LiN(SO2CF3)2などが挙げられる。
【0026】
本発明のイオン導電体の形態は、特に限定するものではなく、薄膜、バルク、微粒子、ファイバー等が挙げられるが、中でも薄膜はアルコキシドの加水分解反応が進行しやすく、薄型のデバイスへの応用も期待できるため、好適である。
【0027】
薄膜の作製方法は、出発原料を有機溶媒中で混合、撹拌することで加水分解反応および重縮合反応を起こさせ、得られたゾルを基盤上にコーティングし、その後室温下で乾燥させるというものである。ここで、用いる有機溶媒としてはエタノール、メタノール、テトラヒドロフラン、アセトニトリル、ジメチルホルムアミド、プロピレンカーボネートなどを例示することができるが、中でも好ましいものはメタノールである。コーティングの方法としてはスピンコーティング、ディップコーティング等が挙げられるが、材料の出発原料の種類や用途によって適宜選択可能である。薄膜の乾燥雰囲気としては、大気中、窒素雰囲気などが例示できるが、上記の例示によって限定されることはなく、材料の出発原料の種類や用途によって適宜選択可能である。
【0028】
【実施例】
以下に、本発明の有機無機複合化合物からなるイオン伝導体について、具体的な実施例を挙げて説明する。
【0029】
<実施例1>
窒素雰囲気下のグローブボックス中で、金属リチウムをメタノールに溶解させ、リチウムメトキシドのメタノール溶液を作製した。この溶液にメチルトリメトキシシラン(MTMS)を混合した。そして、この混合比がリチウムメトキシド:MTMSが2:1,3:1、4:1,5:1の試料をそれぞれ作製した。それぞれの溶液に2−n−ブトキシメタノールを加え、約1時間撹拌させることでゾルを調製した。
【0030】
上記のゾル溶液をガラス基盤上にスピンコーターを用いてコーティングを行った。得られた薄膜を乾燥、熱処理することでゲル薄膜を得た。得られた薄膜は、無色透明で均質なものであった。また、膜厚は、約600nmで、従来のリチウムメトキシドとTEOSを出発原料に用いたLi2O−SiO2系薄膜よりも厚いことが分かった。この薄膜について、導電性測定を行った。測定セルは予め白金電極をスパッタしたガラス基盤にゲル薄膜をコーティングしたものを用いた。そして、インピーダンスアナライザーおよびヒーターを利用して、周波数範囲100Hz〜40MHz、印加電圧0.5V、測定温度範囲25℃〜300℃でセルのインピーダンスを測定した。図1に示すように、500Kにおける伝導度はリチウム濃度の増加に伴い上昇し、リチウムメトキシド:MTMSが4:1の時に極大となり、その後はリチウム濃度の増加に伴い伝導度は低下するという現象が確認された。また、500Kにおける伝導度の極大値は2.2×10-4S・cm-1であり、有機官能基を導入していないTEOSを用いた材料に比べて高い伝導性を示すことがわかった。
【0031】
<実施例2>
出発原料にリチウムメトキシドのメタノール溶液、化学式CF3(CF2)7(CH2)2Si(OCH3)3で表示されるフルオロアルキルシラン(FAS)を用いて実施例1と同様の作製方法、混合比でイオン伝導体薄膜を作製し、導電性を測定した。膜厚は、約900nmで、従来のリチウムメトキシドとTEOSを出発原料に用いたLi2O−SiO2系薄膜よりも厚いことが分かった。図2に示すように、500Kにおける伝導度はリチウム濃度の増加に伴い上昇し、リチウムメトキシド:FASが4:1の時に極大となり、その後はリチウム濃度の増加に伴い伝導度は低下するという現象が確認された。また、500Kにおける伝導度の極大値は1.9×10-4S・cm-1であり、有機官能基を導入していないTEOSを用いた材料に比べて高い伝導性を示すことがわかった。
【0032】
<実施例3>
出発原料にリチウムメトキシドのメタノール溶液、2−[メトキシ(ポリエチレンオキシ)プロピル]トリメトキシシラン(PEOTMS)を用いて実施例1と同様の作製方法、混合比でイオン伝導体薄膜を作製し、導電性を測定した。膜厚は、約700nmで、従来のリチウムメトキシドとTEOSを出発原料に用いたLi2O−SiO2系薄膜よりも厚いことが分かった。図3に示すように、500Kにおける伝導度はリチウム濃度の増加に伴い上昇し、リチウムメトキシド:PEOTMSが4:1の時に極大となり、その後はリチウム濃度の増加に伴い伝導度は低下するという現象が確認された。また、500Kにおける伝導度の極大値は4.3×10-4S・cm-1であり、有機官能基を導入していないTEOSを用いた材料に比べて高い伝導性を示すことがわかった。
【0033】
<実施例4>
出発原料にリチウムメトキシドのメタノール溶液、テトラエトキシシラン(TEOS)、2−[メトキシ(ポリエチレンオキシ)プロピル]トリメトキシシラン(PEOTMS)を用いて実施例1と同様の作製方法イオン伝導体薄膜を作製し、導電性を測定した。なお、リチウムメトキシドとTEOS+PEOTMSの比を4:1にし、TEOS:PEOTMSは1:1にした。膜厚は、約700nmで、従来のリチウムメトキシドとTEOSを出発原料に用いたLi2O−SiO2系薄膜よりも厚いことが分かった。500Kにおける伝導度は、TEOSの一部をPEOTMSで置き換えることにより上昇した。この値はLiOCH3−TEOS系、LiOCH3−PEOTMS系における伝導度の極大値よりも高く、その値は7.2×10-4S・cm-1であった。
【0034】
<比較例>
出発原料にリチウムメトキシドのメタノール溶液、テトラエトキシシラン(TEOS)を用いて上記と同様の作製方法、イオン伝導体薄膜を作製し、導電性を測定した。膜厚は、約300nmであった。なお、混合比は、リチウムメトキシド:TEOSが2:1,3:1、4:1とした。図4に示すように、500Kにおける伝導度の極大値は1.1×10-4S・cm-1であり、実施例のものと比べ低いものとなった。
【0035】
【発明の効果】
本発明の無機有機複合化合物からなるイオン導電体によれば、従来までのリチウムメトキシドとTEOSを出発原料に用いたLi2O−SiO2系薄膜よりも高い伝導性を示すことがわかる。また、薄膜として用いたとき、この薄膜は無機系の薄膜よりも緻密であり、電池のセパレータとしての性能も向上することが期待できる。また、得られた薄膜は無機有機複合膜であるため、機械的強度と可撓性を併せ持つ材料である。以上のことより、本発明における無機有機複合型のイオン伝導体は、リチウム二次電池をはじめとする電気化学的デバイス用の固体電解質として好適である。
【0036】
【図面の簡単な説明】
【図1】LiOCH3−MTMS系無機有機複合型リチウムイオン伝導体の500Kにおける伝導度の組成依存を示すグラフである。
【図2】LiOCH3−FAS系無機有機複合型リチウムイオン伝導体の500Kにおける伝導度の組成依存を示すグラフである。
【図3】LiOCH3−PEOTMS系無機有機複合型リチウムイオン伝導体の500Kにおける伝導度の組成依存を示すグラフである。
【図4】LiOCH3−TEOS系無機型リチウムイオン伝導体の500Kにおける伝導度の組成依存を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ionic conductor, and more particularly to an ionic conductor that can be used in a solid electrolyte, a sensor, or the like, which is an electrochemical device.
[0002]
[Prior art]
Conventionally, as an electrolyte of a lithium primary battery and a lithium secondary battery, an electrolytic solution in which an ionic lithium salt such as LiBF 4 , LiPF 6 , or LiCF 3 SO 3 is dissolved in an organic solvent such as ethylene carbonate or propylene carbonate has been used. It had been.
However, this electrolytic solution has the drawbacks that it has a risk of liquid leakage and ignition, and is liable to volatilize and lacks long-term reliability. On the other hand, the solid electrolyte does not have such a defect, and when used as the electrolyte of the above device, a separator is not required unlike the case of using an electrolytic solution. When the solid electrolyte is used in this way, the safety in using the device can be improved, and the device itself can be reduced in size and weight. Polymer electrolytes, inorganic solid electrolytes, and the like are known as candidates for promising materials as solid electrolytes. Polymer electrolytes are excellent in flexibility, processability, thin film moldability, light weight, elasticity, etc., and are expected to be applied to large secondary batteries for electric vehicles and built-in batteries for thin products such as IC cards. Yes. Unlike the electrolyte and polymer electrolyte, the inorganic solid electrolyte is nonflammable and has a lithium ion transport number of 1.
[0003]
The polymer electrolyte of the above, LiClO 4 in polyethylene oxide, polyether polymer compounds such as polypropylene oxide, LiCF 3 SO 3, those obtained by mixing an alkali metal salt such as lithium sulfonimide have been studied. It has been clarified that the ionic conductivity of this polymer electrolyte is due to the thermal motion of the polymer chain, and various attempts have been made to improve the conductivity, such as suppressing the decrease in conductivity due to crystallization of the polymer. ing. Another major problem with polymer electrolytes is their low mechanical strength. For this reason, various countermeasures such as cross-linking of polymers and hybridization with inorganic compounds have been studied.
[0004]
As an inorganic solid electrolyte, a sulfide glass based on Li 2 S—SiS 2 system produced by a melt quenching method (Kondo et al., Solid State Ionics 53-56, 1183, 1992), solid phase reaction method Various studies such as Li 4 SiO 4 —Li 3 PO 4 oxide ceramics (UV Alpen et al., “Fast Ion Transport in Solid”, page 463, 1979) produced by the above-mentioned method are being conducted. However, these materials have poor flexibility and are difficult to be thinned, and are difficult to apply to thin batteries and large batteries. For this reason, the physics of vacuum deposition (Y. Ito et al., Ibid., 57, 389, 1983), high-frequency sputtering, etc. (K. Miyauchi et al., Solid State Ionics 9-10, 1469, 1983). Synthesis of ion-conductive thin films by vapor deposition was performed. However, in the case of such physical vapor deposition, in the case of a multi-component system, the composition of the raw material and the thin film composition are liable to cause a composition shift. For this reason, there is a report that a homogeneous Li 2 O—SiO 2 inorganic solid thin film having no compositional deviation was produced by a sol-gel method (Nagisa et al., Journal of Chemical Society of Japan, 11, 1958, 1987). The conductivity was slightly low, and it was difficult to use as an electrolyte for lithium secondary batteries.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a lithium ion conductor comprising an organic-inorganic composite compound having a mechanical strength of an inorganic skeleton, flexibility of an organic skeleton, and excellent ionic conductivity.
[0006]
[Means for Solving the Problems]
In the invention of
An ionic conductor, wherein the metal or nonmetal M2 contained in the organometallic compound (B) is silicon.
M 1 OR (1)
(M 1 : alkali metal, R: alkyl group represented by the chemical formula CaH 2a + 1 (a is an integer between 1 and 20))
R 1 b M 2 (OR 2 ) 4-b (2)
(M 2: metal or nonmetal, R1: organic functional group, R 2: Chemical formula C h H 2h + 1 (alkyl group h is represented by an integer) between 1 to 20, b: 1)
The invention of
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail.
The ionic conductor composed of the organic-inorganic composite compound in the present invention includes at least a metal alkoxide compound (A) as an electrolyte salt source and an organometallic compound (B) having at least one organic functional group as a skeleton-forming compound. And an amorphous compound obtained by hydrolysis and polycondensation reaction. Further, the obtained compound has a structure in which a part of the skeleton of an alkali metal oxide-metal or nonmetal oxide inorganic solid electrolyte such as Li 2 O—SiO 2 is substituted with an organic functional group R 1. It becomes a crystalline compound. Hereinafter, each component used as a starting material is explained in full detail below.
[0014]
The metal alkoxide (A) used as an electrolyte salt source and represented by the following general formula (1) is not particularly limited, but is preferably a lithium compound from the viewpoint of energy density.
M 1 OR (1)
(M 1 : alkali metal, R: alkyl group represented by the chemical formula C a H 2a + 1 (a is an integer between 1 and 20))
Examples of the lithium compound include lithium hydroxide, lithium acetate, lithium nitrate, lithium sulfate, lithium carbonate, lithium alkoxide, lithium chloride, lithium bromide, lithium iodide, lithium fluoride, etc. Among them, lithium alkoxide is It is suitable because it is stable in an alcohol solvent and has high reactivity.
[0015]
Lithium alkoxide can be represented by the general formula LiOR (R is an alkyl group represented by the chemical formula C a H 2a + 1 (a is an integer between 1 and 20)), and LiOCH 3 , LiOC 2 H 5 , LiOC 3 H 7. Among them, LiOCH 3 having high solubility in an alcohol solvent is preferable.
[0016]
The organometallic compound (B) forming the skeleton is represented by the following general formula (2), and is an alkoxide, nitrate, acetate, sulfate, carbonate of a metal and a nonmetal compound containing at least one organic functional group Of these, alkoxides having high reactivity are preferably used.
R 1 b M 2 (OR 2 ) 4-b (2)
(M 2 : metal or nonmetal, R 1 : organic functional group, R 2 : alkyl group represented by the chemical formula C h H 2h + 1 (h is an integer between 1 and 20), b: 1, 2 or 3)
[0017]
Further, b in the general formula (2) is preferably 1. This is because if the value of b is large, the degree of polymerization and the film strength decrease.
[0018]
By using an organometallic compound containing an organic functional group as a substance that forms a skeleton, a flexible ion conductor derived from R 1 of the above general formula (2) can be obtained.
In addition, since the organic functional group R 1 is contained in the skeleton, an effect of improving conductivity can be expected.
[0019]
Examples of the metal and non-metal elements include boron, silicon, phosphorus, aluminum, germanium, gallium, titanium, vanadium, zirconium, niobium, antimony, indium, tin, and tungsten. Among these, silicon alkoxides are other It is preferable because it is more stable in an alcohol solvent than a metal alkoxide.
Examples of the organic functional group include an alkyl group, a vinyl group, a carboxyl group, a phenyl group, a benzyl group, a fluoroalkyl group, an amino group, a nitrile group, and a functional group including an ethylene oxide chain. Those are functional groups containing alkyl groups, fluoroalkyl groups, ethylene oxide chains.
[0020]
As such, CH 3 Si (OCH 3 ) 3 , C 2 H 5 Si (OCH 3 ) 3 , C 3 H 7 Si (OCH 3 ) 3 , C 4 H 9 Si (OCH 3 ) 3 , C 5 H 11 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 6 (CH 2 ) 2 Si (OCH 3 ) 3 , CF 3 ( CF 2) 7 (CH 2) 2 Si (OCH 3) 3, CH 3 O- (
[0021]
The compounding ratio of the metal alkoxide (A) and the organometallic compound (B) is any mixing ratio as long as it does not cause gelation and does not cause precipitation of M 1 OH during film formation. However, the metal alkoxide (A) is preferably used in a range of 100 to 900 with respect to the organometallic compound (B) 100 in a molar ratio. More preferably, the molar ratio is 300 to 500 with respect to 100 of the organometallic compound (B).
[0022]
The metal alkoxide (C) represented by the following general formula (3) can be used as a skeleton-forming compound that is polymerized to form a skeleton of the material.
M 3 (OR 3 ) n (3)
(M 3 is at least one of Al, B, P, and Si, R 3 is an alkyl group represented by the chemical formula C h H 2h + 1 (h is an integer between 1 and 20))
[0023]
The metal alkoxide (C) is not particularly limited. Further, if M 3 is included in the general formula (3) and an element different from M 2 is used, a mixed former effect (Minami et al., Chem., 43, 344, 1988).
[0024]
When the metal alkoxide (C) is added, the compounding ratio with the organometallic compound (B) is not particularly limited, but considering flexibility and conductivity, the metal alkoxide (C) is organic in a molar ratio. It is used in the range of 10 to 200 with respect to 100 of the metal compound (B). More preferably, it is the range of 50-100 with respect to organometallic compound (B) 100 by molar ratio.
[0025]
Moreover, in this invention, you may give effects, such as improving electroconductivity further, by adding electrolyte salt and resin further. The electrolyte salt is preferably an alkali metal salt, such as LiClO 4 , LiPF 6 , LiSO 3 CF 3 , LiN (SO 2 CF 3 ) 2, and the like.
[0026]
The form of the ionic conductor of the present invention is not particularly limited, and examples thereof include thin films, bulks, fine particles, fibers, etc. Among them, thin films are prone to alkoxide hydrolysis and can be applied to thin devices. It is preferable because it can be expected.
[0027]
The thin film is prepared by mixing and stirring the starting materials in an organic solvent to cause hydrolysis and polycondensation reactions, coating the resulting sol on the substrate, and then drying at room temperature. is there. Here, examples of the organic solvent to be used include ethanol, methanol, tetrahydrofuran, acetonitrile, dimethylformamide, propylene carbonate, and the like. Among these, methanol is preferable. Examples of the coating method include spin coating, dip coating, and the like, which can be appropriately selected depending on the type and use of the starting material of the material. Examples of the dry atmosphere of the thin film include air, nitrogen atmosphere, and the like, but are not limited to the above examples, and can be appropriately selected depending on the type and use of the starting material of the material.
[0028]
【Example】
Hereinafter, the ion conductor made of the organic-inorganic composite compound of the present invention will be described with specific examples.
[0029]
<Example 1>
In a glove box under a nitrogen atmosphere, metallic lithium was dissolved in methanol to prepare a methanol solution of lithium methoxide. Methyltrimethoxysilane (MTMS) was mixed with this solution. Samples with this mixing ratio of lithium methoxide: MTMS of 2: 1, 3: 1, 4: 1, 5: 1 were prepared. 2-n-butoxymethanol was added to each solution, and the sol was prepared by stirring for about 1 hour.
[0030]
The above sol solution was coated on a glass substrate using a spin coater. The obtained thin film was dried and heat-treated to obtain a gel thin film. The obtained thin film was colorless and transparent and homogeneous. The film thickness was about 600 nm, which was found to be thicker than the conventional Li 2 O—SiO 2 thin film using lithium methoxide and TEOS as starting materials. Conductivity measurement was performed on this thin film. As the measurement cell, a glass substrate on which a platinum electrode was previously sputtered and a gel thin film was coated was used. Then, using an impedance analyzer and a heater, the impedance of the cell was measured in a frequency range of 100 Hz to 40 MHz, an applied voltage of 0.5 V, and a measurement temperature range of 25 ° C to 300 ° C. As shown in FIG. 1, the conductivity at 500 K increases with an increase in lithium concentration, reaches a maximum when the lithium methoxide: MTMS is 4: 1, and thereafter the conductivity decreases with an increase in lithium concentration. Was confirmed. Moreover, the maximum value of the conductivity at 500 K is 2.2 × 10 −4 S · cm −1 , which indicates that the conductivity is higher than that of a material using TEOS into which no organic functional group is introduced. .
[0031]
<Example 2>
The same production method as in Example 1 using a methanol solution of lithium methoxide as a starting material and a fluoroalkylsilane (FAS) represented by the chemical formula CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) 3 The ionic conductor thin film was prepared at a mixing ratio, and the conductivity was measured. The film thickness was about 900 nm, which was found to be thicker than the conventional Li 2 O—SiO 2 thin film using lithium methoxide and TEOS as starting materials. As shown in FIG. 2, the conductivity at 500 K increases with an increase in lithium concentration, reaches a maximum when the lithium methoxide: FAS is 4: 1, and thereafter the conductivity decreases with an increase in lithium concentration. Was confirmed. In addition, the maximum value of conductivity at 500 K is 1.9 × 10 −4 S · cm −1 , which indicates that the conductivity is higher than that of a material using TEOS into which no organic functional group is introduced. .
[0032]
<Example 3>
Using a methanol solution of lithium methoxide as a starting material and 2- [methoxy (polyethyleneoxy) propyl] trimethoxysilane (PEOTMS), an ionic conductor thin film was produced by the same production method and mixing ratio as in Example 1, and conductive. Sex was measured. The film thickness was about 700 nm, which was found to be thicker than the conventional Li 2 O—SiO 2 thin film using lithium methoxide and TEOS as starting materials. As shown in FIG. 3, the conductivity at 500 K increases as the lithium concentration increases, reaches a maximum when the lithium methoxide: PEOTMS is 4: 1, and thereafter the conductivity decreases as the lithium concentration increases. Was confirmed. Moreover, the maximum value of the conductivity at 500K is 4.3 × 10 −4 S · cm −1 , which indicates that the conductivity is higher than that of a material using TEOS into which no organic functional group is introduced. .
[0033]
<Example 4>
Preparation method similar to Example 1 using a methanol solution of lithium methoxide, tetraethoxysilane (TEOS), 2- [methoxy (polyethyleneoxy) propyl] trimethoxysilane (PEOTMS) as a starting material. The conductivity was measured. The ratio of lithium methoxide to TEOS + PEOTMS was 4: 1, and TEOS: PEOTMS was 1: 1. The film thickness was about 700 nm, which was found to be thicker than the conventional Li 2 O—SiO 2 thin film using lithium methoxide and TEOS as starting materials. The conductivity at 500K was increased by replacing part of TEOS with PEOTMS. This value was higher than the maximum value of conductivity in the LiOCH 3 -TEOS system and LiOCH 3 -PEOTMS system, and the value was 7.2 × 10 −4 S · cm −1 .
[0034]
<Comparative example>
Using a methanol solution of lithium methoxide as a starting material and tetraethoxysilane (TEOS), a production method similar to the above and an ion conductor thin film were produced, and conductivity was measured. The film thickness was about 300 nm. The mixing ratio of lithium methoxide: TEOS was 2: 1, 3: 1, 4: 1. As shown in FIG. 4, the maximum value of conductivity at 500K was 1.1 × 10 −4 S · cm −1 , which was lower than that of the example.
[0035]
【The invention's effect】
It can be seen that the ionic conductor composed of the inorganic-organic composite compound of the present invention exhibits higher conductivity than conventional Li 2 O—SiO 2 thin films using lithium methoxide and TEOS as starting materials. Further, when used as a thin film, this thin film is denser than an inorganic thin film, and it can be expected that the performance as a battery separator is improved. Moreover, since the obtained thin film is an inorganic organic composite film, it is a material having both mechanical strength and flexibility. From the above, the inorganic-organic composite type ion conductor in the present invention is suitable as a solid electrolyte for electrochemical devices such as lithium secondary batteries.
[0036]
[Brief description of the drawings]
FIG. 1 is a graph showing the composition dependence of conductivity at 500 K of a LiOCH 3 -MTMS inorganic-organic composite type lithium ion conductor.
FIG. 2 is a graph showing the composition dependence of conductivity at 500 K of a LiOCH 3 -FAS inorganic-organic composite lithium ion conductor.
FIG. 3 is a graph showing the composition dependency of conductivity at 500 K of a LiOCH 3 -PEOTMS-based inorganic / organic composite type lithium ion conductor.
FIG. 4 is a graph showing the composition dependence of conductivity at 500 K of a LiOCH 3 -TEOS inorganic lithium ion conductor.
Claims (2)
前記有機金属化合物(B)に含まれる金属又は非金属M2が珪素であることを特徴とするイオン伝導体。
M1OR (1)
(M1:アルカリ金属、R:化学式CaH2a+1(aは1〜20の間の整数)で表示されるアルキル基)
R1 bM2(OR2)4−b (2)
(M2:金属又は非金属、R1:有機官能基、R2:化学式ChH2h+1(hは1〜20の間の整数)で表示されるアルキル基、b:1)Ion comprising a compound obtained by subjecting at least the metal alkoxide (A) represented by the following general formula (1) and the organometallic compound (B) represented by the following general formula (2) to hydrolysis and polycondensation reaction in the conductor,
An ionic conductor, wherein the metal or nonmetal M2 contained in the organometallic compound (B) is silicon.
M 1 OR (1)
(M 1 : Alkali metal, R: Alkyl group represented by the chemical formula CaH 2a + 1 (a is an integer between 1 and 20))
R 1 b M 2 (OR 2 ) 4-b (2)
(M 2: metal or nonmetal, R1: organic functional group, R 2: Chemical formula C h H 2h + 1 (alkyl group h is represented by an integer) between 1 to 20, b: 1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002053463A JP4147787B2 (en) | 2002-02-28 | 2002-02-28 | Ionic conductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002053463A JP4147787B2 (en) | 2002-02-28 | 2002-02-28 | Ionic conductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003257237A JP2003257237A (en) | 2003-09-12 |
JP4147787B2 true JP4147787B2 (en) | 2008-09-10 |
Family
ID=28664888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002053463A Expired - Fee Related JP4147787B2 (en) | 2002-02-28 | 2002-02-28 | Ionic conductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4147787B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3960144B2 (en) * | 2002-06-26 | 2007-08-15 | 凸版印刷株式会社 | Radical polymerizable composition and ionic conductor |
JP4586496B2 (en) * | 2003-10-28 | 2010-11-24 | 凸版印刷株式会社 | Laminate with conductive layer |
JP4716009B2 (en) * | 2005-08-25 | 2011-07-06 | 信越化学工業株式会社 | Non-aqueous electrolyte and secondary battery and capacitor using the same |
FR2916577B1 (en) * | 2007-05-25 | 2009-11-27 | Commissariat Energie Atomique | ELECTROLYTIC ORGANIC GLASS, METHOD FOR MANUFACTURING THE SAME, AND DEVICE COMPRISING SAME. |
KR102370256B1 (en) * | 2016-04-28 | 2022-03-04 | 스미또모 가가꾸 가부시키가이샤 | composition |
-
2002
- 2002-02-28 JP JP2002053463A patent/JP4147787B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003257237A (en) | 2003-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11342582B2 (en) | Lithium-ion-conducting composite material, comprising at least one polymer and lithium-ion-conducting particles | |
Zhou et al. | Ionic conductivity of composite electrolytes based on oligo (ethylene oxide) and fumed oxides | |
JP7233359B2 (en) | Non-aqueous electrolyte composition containing silyl oxalate | |
CA2854596C (en) | Solid electrolyte comprising lithium, phosphorus, sulfur, and bromine | |
Vélez et al. | Covalent silica-PEO-LiTFSI hybrid solid electrolytes via sol-gel for Li-ion battery applications | |
EP3140876B1 (en) | Composite electrodes | |
KR20160134563A (en) | Lithium metal battery | |
Ji et al. | A Si-doped flexible self-supporting comb-like polyethylene glycol copolymer (Si-PEG) film as a polymer electrolyte for an all solid-state lithium-ion battery | |
WO2014059709A1 (en) | Organohalogen silane containing polyether chain and use thereof in non-aqueous lithium ion battery electrolyte | |
WO2006129991A1 (en) | Anion receptor and electrolyte using the same | |
TWI453972B (en) | Solid polymer electrolyte composition | |
US20150270574A1 (en) | Halogenosilane functionalized carbonate electrolyte material, preparation method thereof and use in electrolyte for lithium ion battery | |
KR20090019892A (en) | Process for modifying the interfacial resistance of a metallic lithium electrode | |
WO2016199723A1 (en) | Solid electrolyte composition, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery | |
WO1997016862A9 (en) | Wide electrochemical window solvents for use in electrochemical devices and electrolyte solutions incorporating such solvents | |
JP4147787B2 (en) | Ionic conductor | |
JPH02223160A (en) | All-solid lithium secondary battery | |
WO2006129992A1 (en) | Anion receptor and electrolyte using the same | |
Chagnes | Lithium battery technologies: electrolytes | |
ES2379926T3 (en) | Crosslinkable composition for battery electrolyte | |
Barbosa et al. | Application of di-ureasil ormolytes based on lithium tetrafluoroborate in solid-state electrochromic displays | |
WO2007091817A1 (en) | Anion receptor, and electrolyte using the same | |
JP4461665B2 (en) | Ionic conductor | |
Wang et al. | Synthesis of aminoalkylsilanes with oligo (ethylene oxide) unit as multifunctional electrolyte additives for lithium-ion batteries | |
Avellaneda et al. | Characterization of an all Sol-Gel Electrochromic Device WO 3/Ormolyte/CeO 2-TiO 2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060928 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070508 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070530 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070618 |
|
A072 | Dismissal of procedure [no reply to invitation to correct request for examination] |
Free format text: JAPANESE INTERMEDIATE CODE: A073 Effective date: 20071002 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071211 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080226 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080421 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080603 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080616 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110704 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110704 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120704 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120704 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130704 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140704 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |