JP4143807B2 - Dermal regeneration base material - Google Patents
Dermal regeneration base material Download PDFInfo
- Publication number
- JP4143807B2 JP4143807B2 JP2002110647A JP2002110647A JP4143807B2 JP 4143807 B2 JP4143807 B2 JP 4143807B2 JP 2002110647 A JP2002110647 A JP 2002110647A JP 2002110647 A JP2002110647 A JP 2002110647A JP 4143807 B2 JP4143807 B2 JP 4143807B2
- Authority
- JP
- Japan
- Prior art keywords
- base material
- dermal regeneration
- synthetic
- dermis
- porous body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、真皮再生用基材(人工真皮)に関し、詳しくは皮膚科形成外科分野において真皮層まで喪失した三度の皮膚欠損創の治療を行うのに適した真皮再生用基材に関する。
【0002】
【従来の技術】
コラーゲンとグリコサミノグリカンからなるスポンジにシリコーン層を貼りあわせた二層性の人工皮膚がヤナス等によって考案された(J.Biomed.Mater.Res,14,65(1980))。その後鈴木等によってグリコサミノグリカンを加えない人工皮膚が開発され(Biomaterials,11,356(1990))、その臨床効果が確認された(Jpn.).Plast.Reconstr.Surg.36,479(1993))後、現在医療用具として形成外科、あるいは皮膚外科を中心とした医療現場で広く使用されている。
【0003】
コラーゲンからなるスポンジ層を全層皮膚欠損創に貼付すると、創面あるいは辺縁から繊維芽細胞および毛細血管が侵入増殖し、繊維芽細胞の造るマトリックスコラーゲンによって空孔が埋められ、約3週で良好な肉芽組織が再生する。上面に貼付したシリコーン層は再生が完了するまでに外部からの細菌感染を防ぐとともに体液の蒸散をコントロールする役目を持ち、真皮の再生が完了したのちに剥がれる。真皮再生が完了したのち、薄めの表皮を他の部位から採皮し、再生した真皮層上に移植する。表皮は全層皮膚欠損創に直接移植した場合には生着が悪いが、真皮が再生しているため1000分の5インチ程度の薄い表皮でも良好な生着が得られる。
【0004】
【発明が解決しようとする課題】
現在、一般的に人工真皮用の基材のマトリックスとして用いられるのは生体由来のコラーゲンである。コラーゲンはウシあるいはブタ等の動物から抽出精製される。近年狂牛病(BSE)の発生以来動物、特に、ウシ由来の材料を用いた医療用具についてはウイルス及びプリオンの汚染について、かなり慎重な管理が必要とされるようになっている。特に内臓、脊髄等については使用できなくなるとともに低リスクの部位由来の材料に関しても、トレーサビリティーが要求される。かかる人工真皮に用いられるコラーゲンは皮膚あるいはアキレス健などのプリオン汚染のない部位とされるが、生体に使用するという性質上、原料管理に付いては万全の体制が必要であり、100%の安全性が要求される。
【0005】
本発明は、かかる実情に鑑み、合成高分子のみを原材料とする真皮再生用基材(人工真皮)を提供することを目的とする。
【0006】
【課題を解決するための手段】
近年、合成高分子で生体吸収性の材料を用いた種々の材料が開発され、再生医療用の足場として広く用いられるようになってきた。これらの材料から人工真皮用基材が作製できればウイルスあるいはプリオン汚染に対する管理が必要とされなくなる。
【0007】
しかしながら人工真皮については皮膚に貼付するため、創面に十分に接着するのに必要な柔軟'性、あるいは繊維芽細胞が良好に侵入増殖するための多孔構造、および適当な分解吸収期間生体に使用できる安全性等の条件を満たす合成材料の開発は難しかった。
【0008】
今回、本発明者らは適度な分解吸収期間と柔軟性および生体材料としての安全性を兼ね備えた合成高分子からなる真皮再生用基材を発明した。
【0009】
また、併せて、創面に貼付した際に滲出液が良好に侵入する必要があると考えられるため、材料を親水化することを発明し、その効果を確認した。
【0010】
かかる点において、本発明は、以下の真皮再生用基材を提供するものである。
【0011】
項1.合成生体吸収性高分子の多孔体からなる真皮再生用基材。
【0012】
項2.合成生体吸収性高分子からなる多孔体層と合成非吸収性高分子からなるフィルムの2層構造を有する真皮再生用基材。
【0013】
項3.多孔体がスポンジからなる項1または項2に記載の真皮再生用基材。
【0014】
項4.生体吸収性高分子がラクチドとカプロラクトンの共重合体であることを特徴とする項1または項2に記載の真皮再生用基材。
【0015】
項5.合成非吸収性高分子がシリコーンであることを特徴とする項1または項2に記載の真皮再生用基材。
【0016】
項6.多孔体層を親水化処理したことを特徴とする項1または項2に記載の真皮再生用基材。
【0017】
項7.親水化処理がプラズマ放電処理であることを特徴とする項6に記載の真皮再生用基材。
【0018】
【発明の実施の形態】
本発明において、合成生体吸収性高分子は特に限定されないが、ポリグリコール酸、ポリ乳酸(D体、L体、DL体)、ポリε−カプロラクトン、ポリ(p−ジオキサノン)(PDS)、ポリ(β−ヒドロキシ酪酸)(PHB)、吸収性ポリアミド、吸収性ポリカーボネートあるいはそれらの共重合体(例えば、乳酸−カプロラクトン共重合体、乳酸−グリコール酸共重合体、グリコール酸−カプロラクトン共重合体などが選択できる。
【0019】
特に、分解速度、柔軟性等において、当該用途に適するラクチドとカプロラクトンの共重合体、特に、L−ラクタイドとε−カプロラクトンの共重合体が好ましいものとして例示できる。
【0020】
合成生体吸収性高分子の分子量は、2〜100万程度、好ましくは10〜50万程度である。
【0021】
多孔体層の厚みとしては、1〜10mm、好ましくは2〜5mmである。また、分解吸収期間は真皮層が形成される約3週間以上が望ましく、特に好ましくは5週間程度である。
【0022】
多孔体層の孔径は、細胞が侵入できるよう平均孔径10μm以上、望ましくは100〜300μmのものが良い。この多孔体層の製造方法は、特に制限されないが、一態様として例示すると、高分子材料の溶液を所望の型枠に入れ、凍結後、真空乾燥させることによって所望の形態の多孔体層成型物を得ることができる。あるいは作製した多孔体を適当な形にカットすることにより成型することも可能である。
【0023】
合成非吸収性高分子としては、シリコーンを用いることができる。
【0024】
かかる合成非吸収性高分子のフィルムの厚さは、50〜500μm、好ましくは100〜300μm程度である。合成非吸収性高分子のフィルムは、接着剤を用いて、或いは、用いることなく多孔体層に接着することができる。
【0025】
多孔体層の創傷部位に適用される表面の親水化処理としては、プラズマ放電処理、コロナ放電処理、電子線処理、放射線処理、紫外線照射処理などの物理的処理、ポリエチレングリコールなどの親水性高分子を用いた化学的処理が挙げられ、好ましくはプラズマ放電処理が例示される。
【0026】
本発明の好ましい真皮再生用基材の引張破断試験による伸度は、200%以上、より好ましくは、500%以上である。
【0027】
本発明の好ましい真皮再生用基材の圧縮特性試験による圧縮回復性は、50%以上、より好ましくは、80%以上である。
【0028】
【実施例】
以下、本発明について実施例を挙げて説明する。
【0029】
【実施例1】
L−ラクチド−カプロラクトン共重合体(重合モル比50:50;分子量39万)の5%ジオキサン溶液を作製した。これをテフロン(R)製型枠に流しこみ、‐10℃で1時間凍結したのち30℃で24時間凍結乾燥した。その結果、厚さ3mmの多孔構造を有したスボンジシートが得られた。
【0030】
このスポンジをオートグラフによる引張破断試験および圧縮特性試験を行ったところ、柔軟で強度のあるスポンジであることが確認された。
【0031】
テフロン(R)シート上で製膜機(0.025mmドクターブレード)にてシリコーン(信越化学製1液型RTVゴム、脱酢酸タイプ)を製膜し、直ちに上記スポンジを貼付した。約60℃で3時間シリコーンを硬化させた後、テフロン(R)シートから剥がしたところ、スポンジとシリコーンシートからなる二層製構造を有する本発明真皮再生用基材が得られた。これの走査電子顕微鏡像の表面(図1)及び断面(図2)を写真で示した。
【0032】
【実施例2】
親水性処理
L−ラクチド−カプロラクトン共重合体(重合モル比50:50;分子量39万)からなるスポンジ(厚さ約3mm、5cm×5cm)をプラズマ放電処理(使用機器:ヤマト科学製プラズマリアクター(型番:PC101A)、処理条件(出力300ワット、ガス:空気、ガス圧:1Torr,処理時間:3分、1.5分、30秒))した。
【0033】
作製したサンプルに蒸留水500μlを滴下し、サンプルに完全に染み込むまでの時間を計測した。
【0034】
・無処理区:24時間後もしみこまなかった
・30秒処理:3時間
・1.5分処理:1時間
・3分処理:20分
全層皮膚欠損創における真皮用組織の再生には3週間程度必要であることから、30秒の処理で十分機能すると考えられる。
試験例1
以下のサンプルについて引張破断試験および圧縮特性試験を行った。
(1)サンプル
ポリマー:L−ラクチド−カプロラクトン共重合体(重合モル比50:50;分子量39万)の5%ジオキサン溶液
凍結温度:−10℃
凍結乾燥:30℃,24時間
(2)引張破断試験
以下の条件で、引張破断試験を5回繰り返し、その平均値を算出した。結果を表1に示す。
使用機器:島津オートグラフAG-500B
Test speed:50mm/min
Load cell:5.0 kgf
サンプルサイズ:10mm×30mm×3mm
チャック間距離:10mm
【0035】
【表1】
【0036】
(3)圧縮特性試験
以下の条件で、圧縮特性試験を3回繰り返し、その平均値を算出した。結果を表2に示す。
使用機器:KES-FB3(KATO TECH.Co.Ltd.)
Speed:50mm/mim
Zone:2cm2
サンブルサイズ:10mm×10mm×3mm
【0037】
【表2】
【0038】
上記の結果から、人工真皮用として発明したP(LA/CL)(50:50)の本願スポンジは優れた伸縮性を有するとともに、優れた圧縮弾性を有し、人工真皮用基材として優れた物性を有することが明らかになった。
【0039】
【発明の効果】
生物由来の材料を使用しない合成生体吸収性高分子のみからなる真皮再生用基材を発明した。かかる真皮再生用基材は、当該用途に必要とされる柔軟性、分解吸収特性、安全性を有しており、製造の際にウイルスあるいはプリオン汚染に対する管理を必要としない。
【図面の簡単な説明】
【図1】実施例1で得られた真皮再生用基材の表面の走査電子顕微鏡像を示す写真である。
【図2】実施例1で得られた真皮再生用基材の断面の走査電子顕微鏡像を示す写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a base material for dermis regeneration (artificial dermis), and more particularly, to a base material for dermis regeneration suitable for treating three skin defect wounds lost to the dermis layer in the field of dermatological plastic surgery.
[0002]
[Prior art]
A bilayer artificial skin was devised by Yanas et al. (J. Biomed. Mater. Res, 14, 65 (1980)) in which a silicone layer was bonded to a sponge composed of collagen and glycosaminoglycan. Later, Suzuki et al. Developed an artificial skin to which no glycosaminoglycan was added (Biomaterials, 11,356 (1990)), and its clinical effect was confirmed (Jpn.) Plast. Reconstr. After Surg. 36,479 (1993)), it is now widely used as a medical tool in the medical field, especially plastic surgery or dermatological surgery.
[0003]
When a sponge layer made of collagen is applied to a full-thickness skin defect wound, fibroblasts and capillaries invade and grow from the wound surface or edge, and the pores are filled with matrix collagen produced by fibroblasts, which is good in about 3 weeks Granulation tissue is regenerated. The silicone layer affixed to the upper surface serves to prevent external bacterial infection and control the transpiration of body fluids until regeneration is complete, and is peeled off after regeneration of the dermis is completed. After the dermis regeneration is completed, a thin epidermis is taken from other sites and transplanted onto the regenerated dermis layer. When the epidermis is transplanted directly into a full-thickness skin defect wound, the engraftment is poor, but since the dermis is regenerated, a good engraftment can be obtained even with a thin epidermis of about 5 thousandths of an inch.
[0004]
[Problems to be solved by the invention]
Currently, collagen derived from a living body is generally used as a matrix of a base material for artificial dermis. Collagen is extracted and purified from animals such as cows and pigs. Since the outbreak of mad cow disease (BSE) in recent years, it has become necessary to carefully manage contamination of viruses and prions for medical devices using materials derived from animals, particularly bovine. In particular, internal organs, spinal cords and the like cannot be used, and traceability is required for materials derived from low-risk sites. Collagen used in such artificial dermis is considered to be a site free of prion contamination such as skin or Achilles, but due to the nature of being used in living organisms, a thorough system is necessary for raw material management and 100% safety Sex is required.
[0005]
In view of such circumstances, an object of the present invention is to provide a base material for dermis regeneration (artificial dermis) using only a synthetic polymer as a raw material.
[0006]
[Means for Solving the Problems]
In recent years, various materials using synthetic polymers and bioabsorbable materials have been developed and widely used as scaffolds for regenerative medicine. If a base material for artificial dermis can be produced from these materials, it will not be necessary to manage virus or prion contamination.
[0007]
However, since artificial dermis is affixed to the skin, it can be used for living bodies with a flexible structure necessary for sufficient adhesion to the wound surface, a porous structure for allowing fibroblasts to invade and proliferate, and an appropriate period of degradation and absorption It was difficult to develop a synthetic material that satisfies the safety requirements.
[0008]
This time, the present inventors have invented a substrate for dermal regeneration made of a synthetic polymer having an appropriate period of degradation and absorption, flexibility and safety as a biomaterial.
[0009]
In addition, since it is considered that the exudate needs to penetrate well when it is applied to the wound surface, it was invented to make the material hydrophilic, and the effect was confirmed.
[0010]
In this respect, the present invention provides the following base material for dermal regeneration.
[0011]
Item 1. A base material for dermal regeneration comprising a porous body of a synthetic bioabsorbable polymer.
[0012]
Item 2. A dermal regeneration substrate having a two-layer structure of a porous layer made of a synthetic bioabsorbable polymer and a film made of a synthetic non-absorbable polymer.
[0013]
Item 3. Item 3. The dermal regeneration substrate according to Item 1 or 2, wherein the porous material is a sponge.
[0014]
Item 4. Item 3. The dermal regeneration substrate according to Item 1 or 2, wherein the bioabsorbable polymer is a copolymer of lactide and caprolactone.
[0015]
Item 5. Item 3. The dermal regeneration substrate according to Item 1 or 2, wherein the synthetic non-absorbable polymer is silicone.
[0016]
Item 6. Item 3. The dermal regeneration substrate according to Item 1 or 2, wherein the porous layer is subjected to a hydrophilic treatment.
[0017]
Item 7. Item 7. The dermal regeneration substrate according to Item 6, wherein the hydrophilization treatment is a plasma discharge treatment.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the synthetic bioabsorbable polymer is not particularly limited, but polyglycolic acid, polylactic acid (D-form, L-form, DL-form), polyε-caprolactone, poly (p-dioxanone) (PDS), poly ( β-hydroxybutyric acid) (PHB), absorbent polyamide, absorbent polycarbonate or copolymers thereof (for example, lactic acid-caprolactone copolymer, lactic acid-glycolic acid copolymer, glycolic acid-caprolactone copolymer, etc.) it can.
[0019]
In particular, a copolymer of lactide and caprolactone, particularly a copolymer of L-lactide and ε-caprolactone suitable for the application can be exemplified in terms of decomposition rate, flexibility, and the like.
[0020]
The molecular weight of the synthetic bioabsorbable polymer is about 2 to 1 million, preferably about 100 to 500,000.
[0021]
The thickness of the porous body layer is 1 to 10 mm, preferably 2 to 5 mm. The decomposition and absorption period is desirably about 3 weeks or more, particularly preferably about 5 weeks, during which the dermis layer is formed.
[0022]
The pore diameter of the porous layer is preferably 10 μm or more, preferably 100 to 300 μm, so that cells can enter. The method for producing this porous body layer is not particularly limited, but as an example, a porous material layer molded product having a desired form is obtained by placing a solution of a polymer material in a desired mold, freezing and then vacuum drying. Can be obtained. Or it is also possible to shape | mold by cutting the produced porous body into a suitable shape.
[0023]
Silicone can be used as the synthetic non-absorbable polymer.
[0024]
The thickness of the synthetic non-absorbable polymer film is about 50 to 500 μm, preferably about 100 to 300 μm. The film of a synthetic non-absorbable polymer can be adhered to the porous layer with or without using an adhesive.
[0025]
The hydrophilic treatment of the surface applied to the wound site of the porous layer includes plasma discharge treatment, corona discharge treatment, electron beam treatment, radiation treatment, ultraviolet treatment, and other physical treatments, and hydrophilic polymers such as polyethylene glycol. A chemical treatment using the above is mentioned, and a plasma discharge treatment is preferably exemplified.
[0026]
The elongation of the preferred dermal regeneration substrate of the present invention by a tensile fracture test is 200% or more, more preferably 500% or more.
[0027]
The compression recovery property according to the compression property test of the preferable dermis-regenerating substrate of the present invention is 50% or more, more preferably 80% or more.
[0028]
【Example】
Hereinafter, the present invention will be described with reference to examples.
[0029]
[Example 1]
A 5% dioxane solution of L-lactide-caprolactone copolymer (polymerization molar ratio 50:50; molecular weight 390,000) was prepared. This was poured into a Teflon (R) mold, frozen at −10 ° C. for 1 hour, and then freeze-dried at 30 ° C. for 24 hours. As a result, a swung sheet having a porous structure with a thickness of 3 mm was obtained.
[0030]
When this sponge was subjected to a tensile fracture test and a compression characteristic test using an autograph, it was confirmed to be a soft and strong sponge.
[0031]
Silicone (Shin-Etsu Chemical 1-component RTV rubber, deacetic acid type) was formed on a Teflon (R) sheet with a film forming machine (0.025 mm doctor blade), and the sponge was immediately applied. After the silicone was cured at about 60 ° C. for 3 hours and then peeled off from the Teflon (R) sheet, a substrate for regenerating the dermis of the present invention having a two-layer structure composed of a sponge and a silicone sheet was obtained. The surface (FIG. 1) and cross section (FIG. 2) of the scanning electron microscope image of this are shown in the photograph.
[0032]
[Example 2]
Sponge (thickness of about 3 mm, 5 cm × 5 cm) made of a hydrophilic treatment L-lactide-caprolactone copolymer (polymerization molar ratio 50:50; molecular weight 390,000) was subjected to plasma discharge treatment (device used: plasma reactor manufactured by Yamato Scientific) Model No .: PC101A) and processing conditions (output 300 watts, gas: air, gas pressure: 1 Torr, processing time: 3 minutes, 1.5 minutes, 30 seconds)).
[0033]
Distilled water (500 μl) was dropped into the prepared sample, and the time until the sample was completely infiltrated was measured.
[0034]
・ Non-treated area: not infiltrated after 24 hours ・ 30 seconds treatment: 3 hours ・ 1.5 minutes treatment: 1 hour ・ 3 minutes treatment: 20 minutes 3 weeks for regeneration of dermal tissue in full-thickness skin defect wounds Since it is necessary to the extent, it can be considered that the processing for 30 seconds is sufficient.
Test example 1
The following samples were subjected to a tensile fracture test and a compression property test.
(1) Sample polymer: L-lactide-caprolactone copolymer (polymerization molar ratio 50:50; molecular weight 390,000) 5% dioxane solution freezing temperature: −10 ° C.
Freeze drying: 30 ° C., 24 hours (2) Tensile rupture test The tensile rupture test was repeated 5 times under the following conditions, and the average value was calculated. The results are shown in Table 1.
Equipment used: Shimadzu Autograph AG-500B
Test speed: 50mm / min
Load cell: 5.0 kgf
Sample size: 10mm x 30mm x 3mm
Distance between chucks: 10mm
[0035]
[Table 1]
[0036]
(3) Compression characteristic test The compression characteristic test was repeated three times under the following conditions, and the average value was calculated. The results are shown in Table 2.
Equipment used: KES-FB3 (KATO TECH. Co. Ltd.)
Speed: 50mm / mim
Zone: 2cm 2
Sample size: 10mm x 10mm x 3mm
[0037]
[Table 2]
[0038]
From the above results, the present sponge of P (LA / CL) (50:50) invented for artificial dermis has excellent stretchability and excellent compression elasticity, and is excellent as a base material for artificial dermis. It became clear that it had physical properties.
[0039]
【The invention's effect】
Invented a base material for dermal regeneration consisting only of a synthetic bioabsorbable polymer that does not use biological materials. Such a dermal regeneration base material has the flexibility, decomposition and absorption characteristics, and safety required for the application, and does not require management of virus or prion contamination during production.
[Brief description of the drawings]
1 is a photograph showing a scanning electron microscope image of the surface of a substrate for dermis reproduction obtained in Example 1. FIG.
2 is a photograph showing a scanning electron microscope image of a cross section of the dermis-reproducing substrate obtained in Example 1. FIG.
Claims (6)
該合成生体吸収性高分子がラクチドとカプロラクトンの共重合体であり、
該多孔体の平均孔径が100〜300μmであり、
引張破断試験による伸度が200%以上、且つ圧縮特性試験による圧縮回復性が50%以上である、真皮再生用基材。 Ri Do from the porous body of synthetic bioabsorbable polymer,
The synthetic bioabsorbable polymer is a copolymer of lactide and caprolactone;
The average pore diameter of the porous body is 100 to 300 μm,
A base material for regenerating dermis having an elongation of 200% or more by a tensile fracture test and a compression recovery by a compression property test of 50% or more .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002110647A JP4143807B2 (en) | 2002-04-12 | 2002-04-12 | Dermal regeneration base material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002110647A JP4143807B2 (en) | 2002-04-12 | 2002-04-12 | Dermal regeneration base material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003305067A JP2003305067A (en) | 2003-10-28 |
JP4143807B2 true JP4143807B2 (en) | 2008-09-03 |
Family
ID=29393719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002110647A Expired - Fee Related JP4143807B2 (en) | 2002-04-12 | 2002-04-12 | Dermal regeneration base material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4143807B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2983292A1 (en) * | 2015-04-23 | 2017-01-19 | Sharklet Technologies, Inc. | Bilayered devices for enhanced healing |
-
2002
- 2002-04-12 JP JP2002110647A patent/JP4143807B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003305067A (en) | 2003-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3542170B2 (en) | Medical material and method for producing the same | |
KR100871188B1 (en) | Bioabsorbable Wound Dressing | |
US6712850B2 (en) | Porous tissue scaffolds for the repair and regeneration of dermal tissue | |
US7084082B1 (en) | Collagen material and its production process | |
JP4251665B2 (en) | Collagen material and production method thereof | |
JPH09122227A (en) | Medical material and manufacture thereof | |
JPS62144663A (en) | Transplanting accessory comprising living body re-absorbable polymer | |
HU215534B (en) | Biocompatible perforated membranes, process for their preparation, their use as a support in the in vitro growth of epithelial cells and the artificial skin obtained in this manner | |
EP0781564A2 (en) | Material for medical use comprising human-derived natural collagen membrane | |
JPH082370B2 (en) | Porous absorbent sheet with adhesive surface | |
JP5394600B2 (en) | Absorbable medical synthetic coating material, its preparation and its medical use | |
CN108409938A (en) | A kind of novel degradable polyurethane biomaterial and its preparation method and application | |
JP3726280B2 (en) | Medical collagen membrane | |
EP3305339B1 (en) | Method for manufacturing collagen film using ultraviolet light, collagen film manufactured by using same, and biomaterial prepared using collagen film | |
JP6476288B2 (en) | Artificial biological membrane using scissors and method for producing the same | |
JP2000060956A (en) | Collagen material and manufacture thereof | |
JP3410195B2 (en) | Composite material of bioabsorbable plastic and collagen | |
Wiśniewska et al. | Bioresorbable polymeric materials–current state of knowledge | |
JP4143807B2 (en) | Dermal regeneration base material | |
EP0937469A2 (en) | A coated vascular prosthesis and a method for its production | |
JP2001212224A (en) | Wound coating material | |
JP2003245341A (en) | Anti-synechia membrane | |
TWI472350B (en) | Medical equipment and manufacturing methods thereof | |
JPH08196618A (en) | Cell invasive collagen formulation, artificial skin and their manufacture | |
JP2001212222A (en) | Wound coating material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071219 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080218 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080514 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080603 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4143807 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |