JP4140930B2 - Intragranular dispersion strengthened WC-containing cemented carbide and process for producing the same - Google Patents
Intragranular dispersion strengthened WC-containing cemented carbide and process for producing the same Download PDFInfo
- Publication number
- JP4140930B2 JP4140930B2 JP24614897A JP24614897A JP4140930B2 JP 4140930 B2 JP4140930 B2 JP 4140930B2 JP 24614897 A JP24614897 A JP 24614897A JP 24614897 A JP24614897 A JP 24614897A JP 4140930 B2 JP4140930 B2 JP 4140930B2
- Authority
- JP
- Japan
- Prior art keywords
- cemented carbide
- strengthened
- tungsten carbide
- intragranular
- dispersion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Powder Metallurgy (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、炭化タングステンの結晶粒内に異質の無機物質でなる微粒子を分散させた粒内分散強化炭化タングステンを含有した粒内分散強化WC超硬合金およびその製法に関し、具体的には、炭化タングステンの結晶粒内に炭化タングステンより微細で、かつ異質の無機物質を均一に分散させることにより、炭化タングステン結晶粒内に残留応力を付加させて、得られる超硬合金の硬さ、靱性、耐摩耗性、耐欠損性、耐塑性変形性、耐熱亀裂性などをさらに改善させて、フライスや旋削用のチップ,ドリル,エンドミルに代表される切削工具、ダイス,パンチなどの型工具,スリッターなどの裁断工具,切断工具,ノズル,メカニカルシールに代表される耐摩耗工具・部品、または穿孔,破砕などに用いる各種ビットに代表される土木建設用工具として最適な粒内分散強化WC含有超硬合金およびその製法に関するものである。
【0002】
【従来の技術】
一般に、超硬合金の硬さと靱性に代表される材料特性は、一方を向上させると他方が低下するという二律背反的傾向にある。硬さと靭性の両特性を同時に改善するものとして板状晶WCを含有させた超硬合金およびその製造方法が多数提案されている。この板状晶WCを含有させた超硬合金に関する代表的な先行技術として、本願発明者らによる特開平7−258785号公報,特開平7−292426号公報および特開平7−316688号公報がある。また、液相焼結である超硬合金とは異なるが、材料特性を同時に改善することにより性能を向上させるものとして、マトリックス粒子内に他成分の超微粒子を分散させたナノコンポジット材料と呼ばれるセラミックス焼結体が多数提案されている。このセラミックス焼結体に関するナノコンポジット材料の代表的な先行技術として、特開平2−229756号公報,特開平2−229757号公報,特開平6−116038号公報および特開平6−116072号公報がある。
【0003】
【発明が解決しようとする課題】
硬さと靭性の両方を同時に改善した代表的な超硬合金に関する先行技術のうち、特開平7−258785号公報には、超硬合金中に含有する六方晶炭化タングステンのX線回折における(101)結晶面に対する(001)結晶面の比が0.50以上からなる板状晶WC含有超硬合金について開示されている。また、特開平7−292426号公報には、Co,Ni粉末と、炭素源と、W,またはWとWCとの混合粉末を加熱・焼結する際、Co,Ni−W−C系の複合炭化物が生成する第一過程と、該複合炭化物と残留炭素との反応により板状晶WCが生成する第二過程とを含む板状晶WC含有超硬合金の製法が記載されている。さらに、特開平7−316638号公報には、Co,Ni粉末と、炭素源と、WCと、4a,5a,6a族金属の酸素含有化合物との混合粉末を加熱・焼結する際、Co,Ni−W−C系の複合炭化物が生成する第一過程と、該複合炭化物と残留炭素との反応により板状晶WCが生成する第二過程とを含む板状晶WC含有超硬合金の製法が記載されている。これら3件の公報に開示されている板状晶WC含有超硬合金は、従来の超硬合金に対比して硬さおよび靭性が向上したものである。しかし、本発明者らは、これらの板状晶WC含有超硬合金に満足できなく、さらなる超硬合金の特性の向上を課題としていたものである。
【0004】
材料特性を改善した代表的な先行技術のうち、特開平2−229756号公報および特開平2−229757号公報には、アルミナの結晶粒内に窒化チタンや炭化チタンのナノ粒子を分散させてアルミナ系セラミックス焼結体の特性を向上させることが開示されている。また、特開平6−116038号公報および特開平6−116072号公報には、窒化珪素の結晶粒内に炭化珪素のナノ粒子を分散させて窒化珪素−炭化珪素系セラミックス焼結体の特性を向上させることが開示されている。これらの公報に開示のセラミックス焼結体は、従来のセラミックス焼結体と対比すると特性が向上しているが、超硬合金と対比すると靭性が劣り、超硬合金の使用領域では実用できないという課題がある。
【0005】
本発明は、上記のような課題を解決したもので、具体的には、上記先行技術として詳述した本発明者らの板状晶WC含有超硬合金およびその製法により得られる超硬合金を、さらなる改良を加えること、主として出発原料物質の選定および焼結工程における加熱途中での炭化タングステンの析出時に、炭化タングステン結晶中に微細な異質の無機物質を分散させることにより、硬さ,靱性,耐摩耗性,耐欠損性、耐衝撃性などの特性を向上させた粒内分散強化超硬合金およびその製法の提供を目的とするものである。
【0006】
【課題を解決するための手段】
WCとCoの混合粉末を焼結して得られる超硬合金では、WC結晶内に他成分の微粒子を分散させることが困難であること、特に、TiCなどはWC結晶中に固溶せず、焼結過程を経てもWC結晶に取込まれないために、WC粒子内にTiCが分散した炭化タングステン含有の超硬合金を製造することは、非常に困難なことであった。このような状況に対し、本発明者らは、超硬合金の硬さと靱性を同時に向上させる方法について、長年に亘り検討していたことから、さらにWと炭素とCoの混合粉末に微細なTiC粉末を添加して焼結すると、焼結過程で生成・成長するWC結晶内に微細なTiC粒子が取込まれて分散すること、あるいはTi−W系合金もしくはTi−W−Co系の合金,化合物などWとTiが均一に固溶した原料粉末にCoと炭素粉末を添加して加熱焼結すると、焼結過程で生成・成長するWC結晶内に、同時に生成する微細なTiC粒子が取込まれて分散すること、このTiC粒子分散WCは結晶自身の硬さと靱性が高いこと、そしてTiC分散強化WCを含有する超硬合金は、硬さ,靱性,耐摩耗性,耐欠損性、耐衝撃性などに優れるという知見を得て、本発明を完成するに至ったものである。
【0007】
本発明の粒内分散強化WC含有超硬合金は、鉄族金属を主成分とする結合相を3〜30体積%と、周期律表の4a,5a,6a族金属の炭化物,炭窒化物,炭酸化物,炭窒酸化物およびこれらの相互固溶体の中の1種以上からなる立方晶系化合物相を60体積%以下と、残りが炭化タングステンと不可避不純物からなる超硬合金であって、該炭化タングステンは、該炭化タングステンの粒内に周期律表の4a,5a族金属の炭化物,炭窒化物,炭酸化物,炭窒酸化物およびこれらの相互固溶体の中から選ばれた1種以上の立方晶系化合物からなる粒内分散物、もしくは、周期律表の4a,5a族金属の炭化物,炭窒化物,炭酸化物,炭窒酸化物およびこれらの相互固溶体の中から選ばれた1種以上の立方晶系化合物と、鉄族金属の中から選ばれた1種以上の金属とからなる粒内分散物が分散されていることを特徴とするものである。
【0008】
【発明の実施の態様】
本発明の超硬合金における結合相は、具体的には、Co,Ni,Co−Ni合金,Fe−Ni合金および20重量%以下のW,Cr,Moを固溶したCo−W合金,Co−Cr合金,Co−Cr−W合金,Ni−Cr合金,Co−Ni−W−Cr合金,Fe−Ni−Co−W−Cr−Mo合金などを代表例とし、これらから選ばれた少なくとも1種からなるものである。この結合相は、超硬合金全体に対する含有量が5体積%未満では、超硬合金内に巣孔が残留して強度,靱性,耐欠損性の低下が顕著となり、逆に30体積%を超えて多くなると、硬さ,耐摩耗性の低下が顕著となるために、結合相量を5〜30体積%と定めた。
【0009】
本発明の超硬合金における立方晶系化合物相は、具体的には、TiC,TiN,ZrC,HfC,TaC,NbC,VC,HfN,Ti(CN),Zr(CN),(WTi)C,(WZr)C,(WTiTa)C,(WTiNbTa)C,(WTiTa)(CN),(WZr)(C0),(WHf)Cなどを代表例とし、これらから選ばれた少なくとも1種からなるものである。この立方晶系化合物相は、超硬合金全体に対する含有量が60体積%を超えて多くなると、残部の炭化タングステンの含有量も相対的に減少し、かつ超硬合金全体に占める粒内分散強化炭化タングステンの含有率も相対的に少なくなるために、硬さと靱性の改善効果が発現され難くなる。
【0010】
本発明の超硬合金は、実質的には、上述の結合相と粒内分散強化炭化タングステンと従来の炭化タングステンからなる場合、またはこれらに、さらに上述の立方晶系化合物相が均一分散されている場合がある。これらのうち、粒内分散強化炭化タングステンは、従来の炭化タングステンの粒内に炭化タングステンとは異質な無機物質からなる粒内分散物が均一に分散されているものである。
【0011】
この粒内分散物は、具体的には、Co,Ni,Fe,Ti,Zr,V,Hf,Nb,Ta,V,Cr,Mo,W,B,Si,Re,Os,Ir,Pt,Pd,Rh,Ruに代表される金属、これらの合金、TiAl,Ti3Al,TiAl3,NiAl,Ni3Al,NiAl3,(TiNi)Al,(TiNi)3Al,(TiNi)Al3に代表される金属間化合物、周期律表の4a,5a,6a族金属,Al,Si,Bの炭化物,窒化物,酸化物およびこれらの相互固溶体に代表される金属化合物などを挙げることができ、これらの金属,合金,金属間化合物,金属化合物の中から選ばれた少なくとも1種からなるものである。
【0012】
これらの粒内分散物のうち、周期律表の4a,5a,6a族金属の炭化物,炭窒化物,炭酸化物,炭窒酸化物およびこれらの相互固溶体の中から選ばれた1種以上の立方晶系化合物でなる場合、上述の立方晶系化合物相とほぼ同一組成でなる場合には、粒内分散強化炭化タングステンの製造が割合に簡易であること、およびその調整も容易であることから好ましいことである。また、周期律表の4a,5a,6a族金属の炭化物,炭窒化物,炭酸化物,炭窒酸化物およびこれらの相互固溶体の中から選ばれた1種以上の立方晶系化合物と、鉄族金属の中から選ばれた1種以上の金属とからなる粒内分散物の場合には、上述の効果と、さらに靭性を高める効果が顕著となることから好ましいことである。
【0013】
この粒内分散物は、当然粒内分散強化炭化タングステンの粒径よりも小さい粒子からなっており、その平均粒径が1.0μmを超えて大きくなると、WC結晶中に取込まれ難くなることから1.0μm以下の平均粒径が好ましく、分散強化による硬さと靱性の向上効果を一層高めるために0.2μm以下の平均粒径であることが好ましいことである。この粒内分散物の粒径と粒内分散強化炭化タングステンの粒径との関係は、粒内分散強化炭化タングステンの平均粒径が粒内分散物の平均径の3倍以上でなることが好ましく、特に3〜300倍からなるとより一層その効果を高めることがことができることから好ましいことである。また、粒内分散物の含有量は、粒内分散物の効果を発現させるために炭化タングステン全体に対して0.01体積%以上含有させることが好ましく、より一層その効果を高めるために0.05体積%以上含有していることが好ましいことである。
【0014】
本発明の超硬合金における炭化タングステンは、六方晶系のWC結晶であり、その中でも粒内分散強化炭化タングステンの形状が板状結晶でなることが好ましいことである。板状結晶でなる粒内分散強化炭化タングステンは、通常は三角柱状の外観を呈するが、(001)面の発達した三角あるいは六角板状の結晶にすると、さらに硬さと靱性が同時に向上するので好ましいことである。この粒内分散強化炭化タングステンは、粒内分散物の効果を高めるために超硬合金全体に対して20体積%以上含有していることが好ましいことである。
【0015】
以上に詳述してきた本発明の超硬合金は、従来からの被覆超硬合金と同様に、その一部または全部の表面に、従来からの被膜を被覆して被覆超硬合金として使用することができる。具体的には、被膜は、周期律表の4a,5a,6a族金属,Al,Siの炭化物,窒化物,酸化物,およびこれらの相互固溶体、ダイヤモンド,ダイヤモンド状カーボン,立方晶窒化硼素,硬質窒化硼素,炭素と窒素との化合物,炭素と窒素と硼素との化合物の中の1種の単層または2種以上の積層でなる場合を代表例として挙げることができる。
【0016】
本発明の超硬合金は、出発原料物質であるタングステンまたは炭化タングステンに、粒内分散物となる無機物質をドープまたはイオン注入し、ドープまたはイオン注入された出発原料物質を用いて従来の粉末冶金の製造方法を応用して作製するなども考えられる。しかし、このような方法では、粒内分散物の選定が制限されること、製造工程が付加されることなどから以下の本発明の製造方法が好ましいことである。
【0017】
本発明の超硬合金の製法は、超硬合金を作製するための出発原料物質を混合・粉砕して混合粉末とする第1工程、該混合粉末を成形して粉末成形体とする第2工程、該粉末成形体を非酸化性雰囲気または真空中で1200〜1600℃に加熱焼結する第3工程を含む超硬合金の製造方法であって、該出発原料物質は、
(a)Wと周期律表の4a,5a族金属とからなりW中に周期律表の4a,5a族金属が均一に固溶しているW含有物質の粉末、または、Wと周期律表の4a,5a族金属と鉄族金属とからなりW中に周期律表の4a,5a族金属が均一に固溶しているW含有物質の粉末と、
(b)鉄族金属粉末と、
(c)カーボンおよび/または黒鉛の炭素源粉末と、
(d)周期律表の4a,5a,6a族金属の炭化物,窒化物,酸化物,炭窒化物,炭酸化物,窒酸化物,炭窒酸化物およびこれらの相互固溶体の中の1種以上でなる金属化合物粉末と
を含有することを特徴とする方法である。
この出発原料物質におけるW含有物質の粉末は、具体的には、W−Ti,W−Zr,W−Hf,W−Nb,W−Ta,W−Ti−Co,W−Zr−Ni,W−Ta−Feなどの合金またはZrW 2 ,HfW 2 などの化合物の1種以上からなる場合を代表例として挙げることができる。これらのW含有物質の粉末は、W中に4a,5a族金属が均一に固溶していることが好ましい。また、出発原料物質は、4a,5a族の金属または水素化物として用いると活性化にすぐれており、反応性を高める効果があることから好ましいことである。
【0018】
この本発明の製法における第1工程,第2工程および第3工程は、従来の超硬合金の製造方法および従来の粉末冶金の製造方法による各工程を応用することにより行うことができる。この製法における出発原料物質のうち、結合相形成粉末は、前述した結合相でなる粉末または焼結後に結合相となる結合相前駆体物質、例えば酸化コバルト,酸化ニッケルなどを用いることができる。また、無機物質の粉末は、前述した粒内分散物からなる粉末を用いることができる。これらのうち、無機物質の粉末が周期律表の4a,5a,6a族金属の炭化物,窒化物,酸化物,炭窒化物,炭酸化物,窒酸化物,炭窒酸化物およびこれらの相互固溶体の中の1種以上の金属化合物粉末からなる場合には、焼結後に粒内分散物が形成されると共に、立方晶系化合物相も形成することもできることから好ましいことである。
【0019】
本発明の製法における無機物質の粉末として立方晶系化合物相の形成粉末を用いる場合には、具体的には、TiC,ZrC,HfC,TiN,ZrN,HfN,VC,NbN,TaC,TiO2,Zr02,Hf(CN),Zr(CO),(WTi)C,(WZr)(CO),(WTiTa)C,(WTiTa)CNなどを代表例として挙げることができる。これらのうち、TiN,ZrN,HfNなどの窒化物は、焼結時の侵炭作用によりTi(CN),Zr(CN),Hf(CN)などの炭窒化物を形成し、また、TiO2,Zr02などの酸化物は、還元・炭化とWC固溶により、(WTi)C,(WZr)(CO)などを形成する。これらの立方晶系化合物相の形成粉末は微粒子になるほどWC結晶中に取込まれ易くなるため、平均粒径で0.5μm以下でなる粉末を用いることが好ましい。
【0020】
【作用】
本発明の粒内分散強化WC含有超硬合金は、無機物質からなる粒内分散物が炭化タングステンの粒内に均一に分散されることにより炭化タングステン粒内に残留応力を付与する作用をし、かつ焼結時に再結晶化される炭化タングステンの欠陥を減少させる作用および炭化タングステンの粒内の強化作用をしており、この粒内分散強化炭化タングステンが超硬合金内で均一に分散されることにより超硬合金の硬さ,強度および靭性を高める作用をしているものである。また、本発明の粒内分散強化WC含有超硬合金の製法は、Wと炭素とCoの混合粉末に添加された微細な粒内分散物の粒子が焼結過程で生成・成長するWC結晶内に取込まれて分散すること、またはW−Ti系,W−Ti−Co系の合金,化合物などと炭素との加熱反応により生成・成長するWC結晶内に、同時に生成する微細な粒内分散物、例えばTiCの粒子が取込まれて分散する作用をし、分散した粒内分散物粒子がWC結晶の硬さと靱性を同時に改善する作用をし、TiC分散強化WCが超硬合金の硬さ,靱性,耐摩耗性,耐欠損性、耐衝撃性などを向上させる作用をしているものである。
【0021】
【実施試験1】
まず、市販されている平均粒子径が1.5μmのW,2.5μmのTiH2,ZrH2,HfH2,1.2μmのCo,1.7μmのNi,0.5μmのFeの各粉末を用い、表1に示した配合組成に秤量し、ステンレス製ポットにアセトン溶媒と超硬合金製ボールと共に挿入して48時間混合粉砕後、乾燥して得た混合粉末を黒鉛製ルツボに挿入し、雰囲気圧力0.1Paの真空中で1400℃×1時間の加熱処理を施して、出発原料物質としての合金粉末を得た。得られた合金粉末A1〜A6のX線回折結果と平均粒径を表1に併記した。
【0022】
さらに、市販されている平均粒子径が2.5μmのZrN,1.5μmの(WTiTa)Cの複合炭化物(重量比でWC/TiC/TaC=50/20/30)の各粉末を用い、ステンレス製ポットにアセトン溶媒と超硬合金製ボールと共に挿入して72時間粉砕し、0.2重量%のパラフィンワックスを添加した後、乾燥して出発原料物質としての予備粉砕粉末を得た。得られた予備粉砕粉末の平均粒径は、ZrNが0.32μm、(WTiTa)Cが0.28μmであった。
【0023】
次に、上述のCo,Ni,Fe,ZrH2,HfH2,合金粉末A1〜A6,予備粉砕したZrNと(WTiTa)C、および市販されている平均粒径が2.0μmのW,2.3μmのWC,0.02μmのカーボン(表中では「C」と記す),4.5μmの黒鉛(表中では「G」と記す),0.06μmのTiO2,1.0μmのTaC,1.7μmのCr3C2,1.0μmのTiC,1.0μmの(WTi)Cの複合炭化物(重量比でWC/TiC=70/30),1.7μmのNbCの各出発原料物質の粉末を用いて、表2に示す配合組成に秤量し、ステンレス製ポットにアセトン溶媒と超硬合金製ボールと共に挿入し、48時間混合粉砕後、乾燥して混合粉末を得た。これらの混合粉末を金型に充填し、2ton/cm2の圧力でもって約5.5×9.5×29mmの粉末成形体を作製し、アルミナとカーボン繊維からなるシート上に設置し、雰囲気圧力10Paの真空中で、表2に併記した温度でもって1時間加熱保持して、本発明品1〜7および比較品1〜10を得た。
【0024】
こうして得た本発明品1〜7および比較品1〜10の超硬合金を#230のダイヤモンド砥石で湿式研削加工し、4.0×8.0×25.0mmの形状に作製し、JIS法による抗折力を測定して、その結果を表3に示した。また、同試料の1面を0.3μmのダイヤモンドペーストでラップ加工した後、ビッカース圧子を用いた荷重:196Nでの硬さおよび破壊靱性値K1c(IM法)を測定し、その結果を表3に併記した。
【0025】
さらに、各試料のラップ面について電子顕微鏡にて組織写真を撮り、画像処理装置にて、結合相,立方晶系化合物相,全WCの体積割合およびWCの平均粒径を求め、その結果を表3に併記した。また、WC結晶内に分散している粒内分散物である炭化物粒子と金属粒子の大きさ、全WCに対する各粒内分散物の体積割合、および全WCに対する粒内分散強化炭化タングステンである板状WC結晶(最長径/最短径が3以上)の体積割合を測定し、それらの結果を表4に示した。
【0026】
【表1】
【0027】
【表2】
【0028】
【表3】
【0029】
【表4】
【0030】
【実施試験2】
実施試験1で得た本発明品3および比較品3,6について、それぞれの混合粉末を用いて、JIS−B4210に記載のSPGN120302形状用の金型でもって2ton/cm 2 の圧力プレス成形した後、実施試験1と同様の方法および条件で焼結した。得られた超硬合金製チップ素材を230#のダイヤモンド砥石を用いて研削加工し、SPGN120308の切削用チップを製作した。
【0031】
このチップ3個を用いて、被削材:SCM440,切削速度:100m/min,切込み:2.0mm,送り:0.40mm/刃,切削距離:2mの条件で乾式フライス切削試験を行い、刃先が欠損,チッピングの発生または逃げ面摩耗量が0.25に達するまでの平均切削距離を求めた。その結果、本発明品3の平均切削距離が9.6mであったのに対し、比較品3,6の平均切削距離はそれぞれ5.9mと7.4mであった。
【0032】
【発明の効果】
本発明の粒内分散強化WC超硬合金は、同一組成成分でなる従来の超硬合金からなる比較品に対比して、抗折力,硬さおよび破壊靭性値が全て顕著にすぐれているという効果、硬質ロールの切削およびフライス用切削に代表される切削工具として実用した場合に、工具寿命が顕著に向上するという効果を発揮するものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an intragranular dispersion-strengthened WC cemented carbide containing intragranular dispersion-strengthened tungsten carbide in which fine particles made of a different inorganic substance are dispersed in tungsten carbide crystal grains, and specifically to a method for producing the same. By uniformly dispersing an inorganic substance that is finer and different than tungsten carbide in the tungsten crystal grains, residual stress is added in the tungsten carbide crystal grains, and the hardness, toughness, and resistance of the resulting cemented carbide is improved. Abrasion, fracture resistance, plastic deformation resistance, thermal crack resistance, etc. are further improved, such as milling and turning inserts, drills, cutting tools represented by end mills, dies, punches and other mold tools, slitters, etc. Wear-resistant tools and parts represented by cutting tools, cutting tools, nozzles, mechanical seals, or civil engineering construction represented by various bits used for drilling, crushing, etc. It relates optimal intragranular dispersion strengthened WC-containing hard metal and their preparation as ingredients.
[0002]
[Prior art]
In general, the material properties represented by the hardness and toughness of cemented carbide have a trade-off tendency that when one is improved, the other is reduced. A number of cemented carbide alloys containing plate-like crystals WC and methods for producing the same have been proposed to improve both the properties of hardness and toughness. As typical prior art regarding the cemented carbide containing the plate-like crystal WC, there are JP-A-7-258785, JP-A-7-292426 and JP-A-7-316688 by the present inventors. . Ceramics called nanocomposite materials, in which ultrafine particles of other components are dispersed in matrix particles, are different from cemented carbide, which is liquid phase sintering, but improve the performance by simultaneously improving the material properties. Many sintered bodies have been proposed. As representative prior arts of nanocomposite materials relating to this ceramic sintered body, there are JP-A-2-229756, JP-A-2-229757, JP-A-6-116038 and JP-A-6-116072. .
[0003]
[Problems to be solved by the invention]
Among the prior arts related to typical cemented carbides in which both hardness and toughness are improved at the same time, Japanese Patent Laid-Open No. 7-258785 discloses (101) in X-ray diffraction of hexagonal tungsten carbide contained in cemented carbide. A plate-like WC-containing cemented carbide having a ratio of (001) crystal plane to crystal plane of 0.50 or more is disclosed. Japanese Patent Laid-Open No. 7-292426 discloses a Co, Ni-WC composite when heating and sintering a mixed powder of Co, Ni powder, a carbon source, W, or W and WC. A method for producing a plate-like WC-containing cemented carbide including a first step in which carbides are produced and a second step in which plate-like crystals WC are produced by the reaction between the composite carbide and residual carbon is described. Furthermore, in JP-A-7-316638, when a mixed powder of Co, Ni powder, a carbon source, WC, and an oxygen-containing compound of 4a, 5a, 6a metal is heated and sintered, Co, Process for producing a plate-like WC-containing cemented carbide comprising a first process in which a Ni-WC-based composite carbide is produced and a second process in which a plate-like WC is produced by a reaction between the composite carbide and residual carbon Is described. The plate-like WC-containing cemented carbide disclosed in these three publications has improved hardness and toughness compared to conventional cemented carbide. However, the present inventors are not satisfied with these plate-like WC-containing cemented carbides, and have made it a problem to further improve the properties of the cemented carbides.
[0004]
Among representative prior arts that have improved material properties, JP-A-2-229756 and JP-A-2-229757 disclose alumina by dispersing titanium nitride or titanium carbide nanoparticles in alumina crystal grains. It is disclosed to improve the characteristics of a ceramic sintered body. Japanese Patent Laid-Open Nos. 6-1116038 and 6-116072 improve the characteristics of a silicon nitride-silicon carbide based ceramic sintered body by dispersing silicon carbide nanoparticles in crystal grains of silicon nitride. Is disclosed. The ceramic sintered bodies disclosed in these publications have improved characteristics when compared with conventional ceramic sintered bodies, but have poor toughness when compared with cemented carbide, and cannot be used in the area where cemented carbide is used. There is.
[0005]
The present invention solves the above-described problems. Specifically, the present inventors have described in detail the plate-like WC-containing cemented carbide of the present inventors and the cemented carbide obtained by the production method thereof. , By adding further improvements, mainly by selecting fine starting materials and by dispersing fine foreign inorganic materials in the tungsten carbide crystal during precipitation of tungsten carbide during heating in the sintering process, The object is to provide an intragranular dispersion-strengthened cemented carbide with improved properties such as wear resistance, fracture resistance and impact resistance, and a method for producing the same.
[0006]
[Means for Solving the Problems]
In a cemented carbide obtained by sintering a mixed powder of WC and Co, it is difficult to disperse fine particles of other components in the WC crystal. In particular, TiC or the like does not dissolve in the WC crystal. Since it was not taken into the WC crystal even after the sintering process, it was very difficult to produce a tungsten carbide-containing cemented carbide in which TiC was dispersed in the WC particles. In view of such a situation, the present inventors have studied for many years on a method for simultaneously improving the hardness and toughness of the cemented carbide, and further, fine TiC in the mixed powder of W, carbon and Co. When powder is added and sintered, fine TiC particles are taken in and dispersed in the WC crystal generated and grown in the sintering process, or Ti-W alloy or Ti-W-Co alloy, When Co and carbon powder are added to a raw material powder in which W and Ti are uniformly solid-solved, such as a compound, and then heated and sintered, fine TiC particles that are simultaneously generated are taken into WC crystals that are generated and grown during the sintering process. Rarely disperse, this TiC particle dispersion WC has high hardness and toughness of the crystal itself, and cemented carbide containing TiC dispersion strengthened WC has hardness, toughness, wear resistance, fracture resistance, impact resistance The knowledge of superiority Te, which has led to the completion of the present invention.
[0007]
The intragranular dispersion-strengthened WC-containing cemented carbide of the present invention comprises 3 to 30% by volume of a binder phase mainly composed of an iron group metal, carbides, carbonitrides of 4a, 5a, and 6a metals of the periodic table. A cemented carbide comprising 60% by volume or less of a cubic compound phase composed of one or more of carbonate oxide, carbonitride oxide and their mutual solid solution, and the balance being tungsten carbide and inevitable impurities, Tungsten is one or more cubic crystals selected from carbides, carbonitrides, carbonates, carbonitrides and their solid solutions in the periodic table, within the tungsten carbide grains. An intragranular dispersion made of a compound, or one or more types of cubics selected from carbides, carbonitrides, carbonates, carbonitrides and their mutual solid solutions of group 4a and 5a metals of the periodic table Choose from crystal compounds and iron group metals Intragranular dispersion consisting of one or more metals is characterized in that it is dispersed.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Specifically, the cemented phase in the cemented carbide of the present invention includes Co, Ni, Co—Ni alloy, Fe—Ni alloy, and Co—W alloy in which 20 wt% or less of W, Cr, Mo is dissolved, Co -Cr alloy, Co-Cr-W alloy, Ni-Cr alloy, Co-Ni-W-Cr alloy, Fe-Ni-Co-W-Cr-Mo alloy, etc. as representative examples, at least one selected from these It consists of seeds. If the content of this binder phase is less than 5% by volume with respect to the entire cemented carbide, the voids remain in the cemented carbide and the strength, toughness, and fracture resistance deteriorate significantly, and conversely exceed 30% by volume. When the amount is too large, the hardness and wear resistance decrease significantly, so the amount of the binder phase is set to 5 to 30% by volume.
[0009]
Specifically, the cubic compound phase in the cemented carbide of the present invention includes TiC, TiN, ZrC, HfC, TaC, NbC, VC, HfN, Ti (CN), Zr (CN), (WTi) C, (WZr) C, (WTiTa) C, (WTiNbTa) C, (WTiTa) (CN), (WZr) (C0), (WHf) C, etc., as representative examples, and consisting of at least one selected from these It is. When the content of the cubic compound phase exceeds 60% by volume with respect to the entire cemented carbide, the content of the remaining tungsten carbide is relatively reduced, and the intragranular dispersion strengthening occupies the entire cemented carbide. Since the content of tungsten carbide is also relatively small, the effect of improving hardness and toughness is hardly exhibited.
[0010]
The cemented carbide of the present invention is substantially composed of the above-mentioned binder phase, intragranular dispersion strengthened tungsten carbide and conventional tungsten carbide, or the above-mentioned cubic compound phase is further uniformly dispersed therein. There may be. Among these, intragranular dispersion-strengthened tungsten carbide is one in which an intragranular dispersion made of an inorganic substance different from tungsten carbide is uniformly dispersed in conventional tungsten carbide grains.
[0011]
Specifically, this intragranular dispersion includes Co, Ni, Fe, Ti, Zr, V, Hf, Nb, Ta, V, Cr, Mo, W, B, Si, Re, Os, Ir, Pt, Metals typified by Pd, Rh, Ru, alloys thereof, TiAl, Ti 3 Al, TiAl 3 , NiAl, Ni 3 Al, NiAl 3 , (TiNi) Al, (TiNi) 3 Al, (TiNi) Al 3 Examples include intermetallic compounds represented by 4a, 5a, and 6a group metals in the periodic table, carbides, nitrides, oxides of Al, Si, and B, and metal compounds represented by their mutual solid solutions. It consists of at least one selected from these metals, alloys, intermetallic compounds, and metal compounds.
[0012]
Among these intragranular dispersions, one or more cubics selected from carbides, carbonitrides, carbonates, carbonitrides, and their mutual solid solutions of the 4a, 5a, and 6a metals of the periodic table In the case of being composed of a crystalline compound, it is preferable that the composition is substantially the same as the above-described cubic compound phase because the production of intragranular dispersion strengthened tungsten carbide is relatively simple and its adjustment is easy. That is. In addition, one or more types of cubic compounds selected from carbides, carbonitrides, carbonic oxides, carbonitrous oxides and their mutual solid solutions of group 4a, 5a, and 6a metals in the periodic table, and iron group In the case of an intragranular dispersion composed of one or more metals selected from metals, it is preferable because the above-described effects and the effect of further increasing toughness become remarkable.
[0013]
This intragranular dispersion is naturally composed of particles smaller than the grain size of the intragranular dispersion strengthened tungsten carbide. When the average grain size exceeds 1.0 μm, it becomes difficult to be incorporated into the WC crystal. The average particle size of 1.0 μm or less is preferable, and the average particle size of 0.2 μm or less is preferable in order to further improve the effect of improving hardness and toughness by dispersion strengthening. The relationship between the particle size of the intragranular dispersion and the particle size of the intragranular dispersion strengthened tungsten carbide is preferably such that the average particle size of the intragranular dispersion strengthened tungsten carbide is at least three times the average diameter of the intragranular dispersion. In particular, when it is 3 to 300 times, it is preferable because the effect can be further enhanced. Further, the content of the intragranular dispersion is preferably 0.01% by volume or more based on the whole tungsten carbide in order to express the effect of the intragranular dispersion, and in order to further enhance the effect, the content of It is preferable to contain 05 volume% or more.
[0014]
The tungsten carbide in the cemented carbide of the present invention is a hexagonal WC crystal, and among them, the intragranular dispersion strengthened tungsten carbide is preferably a plate crystal. Intragranular dispersion-strengthened tungsten carbide made of plate-like crystals usually has a triangular prism-like appearance. However, it is preferable to use a triangular or hexagonal plate-like crystal with a developed (001) plane because the hardness and toughness are simultaneously improved. That is. This intragranular dispersion strengthened tungsten carbide is preferably contained in an amount of 20% by volume or more based on the entire cemented carbide in order to enhance the effect of the intragranular dispersion.
[0015]
The cemented carbide of the present invention described in detail above is used as a coated cemented carbide by coating a conventional coating on a part or all of the surface thereof, like the conventional coated cemented carbide. Can do. Specifically, the coating is composed of 4a, 5a, 6a group metals, Al, Si carbides, nitrides, oxides, and their mutual solid solutions, diamond, diamond-like carbon, cubic boron nitride, hard Typical examples include boron nitride, a compound of carbon and nitrogen, and a single layer or a stack of two or more of carbon, nitrogen, and boron.
[0016]
The cemented carbide of the present invention is a conventional powder metallurgy using tungsten or tungsten carbide as a starting material, doped or ion-implanted with an inorganic material that becomes an intragranular dispersion, and using the starting material that has been doped or ion-implanted. It is also conceivable that the manufacturing method is applied. However, in such a method, the selection of the intragranular dispersion is limited, and a manufacturing process is added, so that the following manufacturing method of the present invention is preferable.
[0017]
The manufacturing method of the cemented carbide according to the present invention includes the first step of mixing and pulverizing the starting raw materials for preparing the cemented carbide to form a mixed powder, and the second step of forming the mixed powder into a powder compact. , A method for producing a cemented carbide comprising a third step of heating and sintering the powder compact in a non-oxidizing atmosphere or vacuum at 1200 to 1600 ° C., wherein the starting material is
(A) Powder of W-containing material consisting of W and Group 4a, 5a metal of Periodic Table, and Group 4a, 5a metal of Periodic Table uniformly dissolved in W, or W and Periodic Table A powder of a W-containing substance consisting of a group 4a, 5a metal and an iron group metal in which the group 4a, 5a metal of the periodic table is uniformly dissolved in W;
(B) an iron group metal powder;
(C) carbon and / or graphite carbon source powder;
(D) one or more of the carbides, nitrides, oxides, carbonitrides, carbonates, nitrides, carbonitrides and their mutual solid solutions of group 4a, 5a, 6a metals of the periodic table And a metal compound powder comprising:
Specifically, the powder of the W-containing material in the starting material is specifically W-Ti, W-Zr, W-Hf, W-Nb, W-Ta, W-Ti-Co, W-Zr-Ni, W A typical example is a case where the alloy is made of one or more of an alloy such as —Ta—Fe or a compound such as ZrW 2 and HfW 2 . In these W-containing substance powders, it is preferable that the 4a and 5a group metals are uniformly dissolved in W. The starting material is preferably used as a group 4a or 5a metal or hydride because it is excellent in activation and has an effect of increasing the reactivity.
[0018]
The first step, the second step, and the third step in the production method of the present invention can be performed by applying each step by a conventional cemented carbide manufacturing method and a conventional powder metallurgy manufacturing method. Of the starting material in this production method, the binder phase-forming powder can be the aforementioned binder phase powder or the binder phase precursor material that becomes the binder phase after sintering, such as cobalt oxide and nickel oxide. Moreover, the powder which consists of an intragranular dispersion mentioned above can be used for the powder of an inorganic substance. Of these, the inorganic powder is composed of carbides, nitrides, oxides, carbonitrides, carbonates, oxynitrides, oxycarbonitrides and their mutual solid solutions of the 4a, 5a, and 6a metals in the periodic table. When it consists of one or more kinds of metal compound powder, it is preferable because an intragranular dispersion is formed after sintering and a cubic compound phase can also be formed.
[0019]
In the case where a cubic compound phase forming powder is used as the inorganic substance powder in the production method of the present invention, specifically, TiC, ZrC, HfC, TiN, ZrN, HfN, VC, NbN, TaC, TiO 2 , Representative examples include ZrO 2 , Hf (CN), Zr (CO), (WTi) C, (WZr) (CO), (WTiTa) C, (WTiTa) CN, and the like. Among these, nitrides such as TiN, ZrN, and HfN form carbonitrides such as Ti (CN), Zr (CN), and Hf (CN) due to the carburizing action during sintering, and TiO 2. , ZrO 2 and the like form (WTi) C, (WZr) (CO), etc. by reduction / carbonization and WC solid solution. Since these powders forming the cubic compound phase are more easily taken into the WC crystal as they become finer particles, it is preferable to use a powder having an average particle size of 0.5 μm or less.
[0020]
[Action]
The intragranular dispersion strengthened WC-containing cemented carbide of the present invention acts to impart residual stress in the tungsten carbide grains by uniformly dispersing the intragranular dispersion made of an inorganic substance in the tungsten carbide grains, In addition, it has the effect of reducing defects in tungsten carbide that is recrystallized during sintering and the strengthening action within the grains of tungsten carbide, and this intragranular dispersion strengthened tungsten carbide must be uniformly dispersed within the cemented carbide. This increases the hardness, strength and toughness of the cemented carbide. In addition, the method for producing an intragranular dispersion-strengthened WC-containing cemented carbide according to the present invention is based on a WC crystal in which fine intragranular dispersion particles added to a mixed powder of W, carbon, and Co are generated and grown during the sintering process. Fine intergranular dispersion simultaneously generated in a WC crystal formed and grown by heating reaction of W-Ti, W-Ti-Co alloy, compound, etc. with carbon. For example, TiC particles are taken in and dispersed, and the dispersed intragranular dispersion particles simultaneously improve the hardness and toughness of the WC crystal, and TiC dispersion strengthened WC is the hardness of the cemented carbide. , Toughness, wear resistance, fracture resistance, impact resistance, and the like.
[0021]
[Test 1]
First, commercially available powders of W having an average particle diameter of 1.5 μm, 2.5 μm of TiH 2 , ZrH 2 , HfH 2 , 1.2 μm of Co, 1.7 μm of Ni, and 0.5 μm of Fe are used. Use, weigh the compounding composition shown in Table 1, insert it into a stainless steel pot with acetone solvent and cemented carbide balls and mix and grind for 48 hours, then insert the mixed powder obtained by drying into a graphite crucible, Heat treatment was performed at 1400 ° C. for 1 hour in a vacuum with an atmospheric pressure of 0.1 Pa to obtain an alloy powder as a starting material. The X-ray diffraction results and average particle diameters of the obtained alloy powders A 1 to A 6 are shown in Table 1.
[0022]
Further, commercially available powders of ZrN having an average particle diameter of 2.5 μm and (WTiTa) C having a mean particle diameter of 1.5 μm (WC / TiC / TaC = 50/20/30 in weight ratio) are used, and stainless steel is used. The mixture was inserted into a pot with an acetone solvent and a cemented carbide ball and pulverized for 72 hours. After 0.2% by weight of paraffin wax was added, it was dried to obtain a pre-ground powder as a starting material. The average particle diameter of the obtained pre-ground powder was 0.32 μm for ZrN and 0.28 μm for (WTiTa) C.
[0023]
Next, Co, Ni, Fe, ZrH 2 , HfH 2 , alloy powders A 1 to A 6 , pre-ground ZrN and (WTiTa) C, and a commercially available W having an average particle diameter of 2.0 μm, 2.3 μm WC, 0.02 μm carbon (referred to as “C” in the table), 4.5 μm graphite (referred to as “G” in the table), 0.06 μm TiO 2 , 1.0 μm TaC , 1.7 μm Cr 3 C 2 , 1.0 μm TiC, 1.0 μm (WTi) C composite carbide (WC / TiC = 70/30 by weight), 1.7 μm NbC starting material The powder composition was weighed to the composition shown in Table 2, inserted into a stainless steel pot together with an acetone solvent and a cemented carbide ball, mixed and ground for 48 hours, and dried to obtain a mixed powder. These mixed powders are filled in a mold, a powder compact of about 5.5 × 9.5 × 29 mm is produced with a pressure of 2 ton / cm 2 , and placed on a sheet made of alumina and carbon fiber, and the atmosphere The present invention products 1 to 7 and comparative products 1 to 10 were obtained by heating and holding at a temperature shown in Table 2 in a vacuum of 10 Pa for 1 hour.
[0024]
The cemented carbides of the present invention products 1 to 7 and comparative products 1 to 10 thus obtained were wet-grinded with a # 230 diamond grindstone to produce a 4.0 × 8.0 × 25.0 mm shape, and the JIS method. The bending strength was measured and the results are shown in Table 3. In addition, after lapping one surface of the same sample with a 0.3 μm diamond paste, the load using a Vickers indenter: the hardness at 196 N and the fracture toughness value K 1c (IM method) were measured, and the results are shown in Table 1. This is also shown in 3.
[0025]
Further, a structure photograph was taken with an electron microscope on the lap surface of each sample, and a binder phase, a cubic compound phase, a volume ratio of all WCs, and an average particle diameter of WC were obtained with an image processing apparatus. This is also shown in 3. Further, the size of carbide particles and metal particles, which are intragranular dispersions dispersed in the WC crystal, the volume ratio of each intragranular dispersion to the total WC, and the plate that is intragranular dispersion strengthened tungsten carbide relative to the total WC The volume ratio of the WC crystals (longest diameter / shortest diameter is 3 or more) was measured, and the results are shown in Table 4.
[0026]
[Table 1]
[0027]
[Table 2]
[0028]
[Table 3]
[0029]
[Table 4]
[0030]
[Test 2]
After the present invention product 3 and the comparative products 3 and 6 obtained in the implementation test 1 are subjected to pressure press molding of 2 ton / cm 2 using the respective mixed powders with the SPGN120302 shape mold described in JIS-B4210. Sintering was carried out under the same method and conditions as in Experiment 1. The obtained cemented carbide tip material was ground using a 230 # diamond grindstone to produce a cutting tip for SPGN120308.
[0031]
Using these three chips, a dry milling cutting test was performed under the conditions of a work material: SCM440, a cutting speed: 100 m / min, a cutting depth: 2.0 mm, a feed rate: 0.40 mm / blade, and a cutting distance: 2 m. The average cutting distance until chipping, chipping or flank wear reached 0.25 was determined. As a result, the average cutting distance of the product 3 of the present invention was 9.6 m, while the average cutting distances of the comparative products 3 and 6 were 5.9 m and 7.4 m, respectively.
[0032]
【The invention's effect】
The intragranular dispersion-strengthened WC cemented carbide according to the present invention is all superior in terms of bending strength, hardness and fracture toughness as compared with a comparative product made of a conventional cemented carbide of the same composition. When it is put to practical use as a cutting tool represented by the effect, cutting of hard rolls and cutting for milling, the effect that the tool life is remarkably improved is exhibited.
Claims (8)
該出発原料物質は、
(a)Wと周期律表の4a,5a族金属とからなりW中に周期律表の4a,5a族金属が均一に固溶しているW含有物質の粉末、または、Wと周期律表の4a,5a族金属と鉄族金属とからなりW中に周期律表の4a,5a族金属が均一に固溶しているW含有物質の粉末と、
(b)鉄族金属粉末と、
(c)カーボンおよび/または黒鉛の炭素源粉末と、
(d)周期律表の4a,5a,6a族金属の炭化物,窒化物,酸化物,炭窒化物,炭酸化物,窒酸化物,炭窒酸化物およびこれらの相互固溶体の中の1種以上でなる金属化合物粉末と
を含有することを特徴とする粒内分散強化WC含有超硬合金の製法。A first step of mixing and pulverizing starting raw materials for preparing a cemented carbide to form a mixed powder, a second step of forming the mixed powder to form a powder compact, and forming the powder compact into a non-oxidizing atmosphere Or a method of manufacturing a cemented carbide comprising a third step of heating and sintering at 1200 to 1600 ° C. in a vacuum,
The starting material is
(A) Powder of W-containing material consisting of W and Group 4a, 5a metal of Periodic Table, and Group 4a, 5a metal of Periodic Table uniformly dissolved in W, or W and Periodic Table A powder of a W-containing substance consisting of a group 4a, 5a metal and an iron group metal in which the group 4a, 5a metal of the periodic table is uniformly dissolved in W;
(B) an iron group metal powder;
(C) carbon and / or graphite carbon source powder;
(D) one or more of the carbides, nitrides, oxides, carbonitrides, carbonates, nitrides, carbonitrides and their mutual solid solutions of group 4a, 5a, 6a metals of the periodic table A method for producing an intragranular dispersion-strengthened WC-containing cemented carbide, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24614897A JP4140930B2 (en) | 1997-08-26 | 1997-08-26 | Intragranular dispersion strengthened WC-containing cemented carbide and process for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24614897A JP4140930B2 (en) | 1997-08-26 | 1997-08-26 | Intragranular dispersion strengthened WC-containing cemented carbide and process for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1161315A JPH1161315A (en) | 1999-03-05 |
JP4140930B2 true JP4140930B2 (en) | 2008-08-27 |
Family
ID=17144209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24614897A Expired - Fee Related JP4140930B2 (en) | 1997-08-26 | 1997-08-26 | Intragranular dispersion strengthened WC-containing cemented carbide and process for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4140930B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE527348C2 (en) * | 2003-10-23 | 2006-02-14 | Sandvik Intellectual Property | Ways to make a cemented carbide |
SE529302C2 (en) | 2005-04-20 | 2007-06-26 | Sandvik Intellectual Property | Ways to manufacture a coated submicron cemented carbide with binder phase oriented surface zone |
CN115893485B (en) * | 2022-12-02 | 2024-05-24 | 长沙华希新材料有限公司 | Titanium dioxide for hard alloy and preparation method and application thereof |
CN118241069B (en) * | 2024-05-30 | 2024-08-16 | 崇义章源钨业股份有限公司 | Hard alloy for mining tool with tantalum carbide dispersed and distributed and preparation method thereof |
-
1997
- 1997-08-26 JP JP24614897A patent/JP4140930B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1161315A (en) | 1999-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5441693A (en) | Method of making cemented carbide articles and the resulting articles | |
EP0759480B1 (en) | Plate-crystalline tungsten carbide-containing hard alloy, composition for forming plate-crystalline tungsten carbide and process for preparing said hard alloy | |
JP5100927B2 (en) | Method for producing cubic boron nitride sintered body | |
US20110020163A1 (en) | Super-Hard Enhanced Hard Metals | |
JPH08109431A (en) | Diamond sintered compact containing hard alloy as binding material and its production | |
JPH11302767A (en) | Cemented carbide excellent in mechanical characteristic and its production | |
JP4140930B2 (en) | Intragranular dispersion strengthened WC-containing cemented carbide and process for producing the same | |
JP4351453B2 (en) | Cemented carbide and drill using the same | |
JPH0816028B2 (en) | Highly tough ceramic sintered body, ceramic tool and method for manufacturing sintered body | |
JP4111469B2 (en) | WC-containing cemented carbide reinforced by intragranular dispersion with oxide and method for producing the same | |
JPH07278719A (en) | Particulate plate crystal cemented carbide containing wc and its production | |
JP3612966B2 (en) | Cemented carbide, method for producing the same and cemented carbide tool | |
JP5008789B2 (en) | Super hard sintered body | |
JP2006111947A (en) | Ultra-fine particle of cermet | |
JP2802596B2 (en) | Method for producing plate-shaped WC-containing cemented carbide | |
JP3474254B2 (en) | High-strength tough cemented carbide and its coated cemented carbide | |
JPH1192852A (en) | Intergranular metal dispersion strengthened wc-containing cemented carbide and its production | |
JPH1136022A (en) | Production of cemented carbide containing plate crystal wc | |
JP2514088B2 (en) | High hardness and high toughness sintered alloy | |
JPH11335769A (en) | Cemented carbide, its production and cemented carbide tool | |
JP3107701B2 (en) | High hardness cemented carbide | |
JP3092887B2 (en) | Surface-finished sintered alloy and method for producing the same | |
JP2004292865A (en) | Hard metal superior in fracture resistance and manufacturing method therefor | |
JP4413022B2 (en) | Composite oxide dispersion sintered alloy | |
JP3481702B2 (en) | Cubic boron nitride sintered body using hard alloy as binder and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040624 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070730 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070928 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080609 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080609 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |