Nothing Special   »   [go: up one dir, main page]

JP4038925B2 - Dry distillation type decomposition method and apparatus - Google Patents

Dry distillation type decomposition method and apparatus Download PDF

Info

Publication number
JP4038925B2
JP4038925B2 JP6556499A JP6556499A JP4038925B2 JP 4038925 B2 JP4038925 B2 JP 4038925B2 JP 6556499 A JP6556499 A JP 6556499A JP 6556499 A JP6556499 A JP 6556499A JP 4038925 B2 JP4038925 B2 JP 4038925B2
Authority
JP
Japan
Prior art keywords
heating
temperature
dry distillation
gas
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6556499A
Other languages
Japanese (ja)
Other versions
JP2000265173A (en
Inventor
弘道 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP6556499A priority Critical patent/JP4038925B2/en
Publication of JP2000265173A publication Critical patent/JP2000265173A/en
Application granted granted Critical
Publication of JP4038925B2 publication Critical patent/JP4038925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Coke Industry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、廃プラスチックや塩化ビニル品等の石油系化合物からなる原料を熱分解し固形成分と気体成分とに分離する乾留式分解方法および装置に関する。
【0002】
【従来の技術】
近年、廃タイヤ、廃プラスチックおよび塩化ビニル品等の石油系化合物からなる廃棄物は、そのまま焼却処理するとダイオキシン等の有毒物質を発生させてしまうため、乾留式で廃棄物を熱分解し、石油系資源として再利用可能な固形成分と塩素成分等の有毒ガスを含む気体成分とに分離して処理する手段が研究されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来の熱分解手段では、以下のような課題が残されている。すなわち、廃タイヤ等の石油系化合物からなる原料を熱分解し始めた後に、気体成分を固形成分から完全に分離させるために、高温状態で十分な滞留時間を確保する必要があり、全体の処理時間を短縮するためには、できるだけ初期の熱分解に要する加熱時間を短縮することが要望されている。
【0004】
一方、従来は、単一の熱媒を用いて加熱処理を行っているが、分解加熱後、気体成分の分離に必要な滞留時間にも同一の熱媒で加熱を継続させた場合、温度が安定せず気体成分の分離に必要な温度を大きく越えてしまい暴走反応を起こすおそれもある。この場合、固形成分がさらに分解されて再利用可能な燃料としての価値が下がってしまう不都合があった。
【0005】
本発明は、前述の課題に鑑みてなされたもので、短時間で効率的に処理でき、さらに、安定した状態で気体成分と固形成分との分離ができる乾留式分解方法および装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、前記課題を解決するため、以下の構成を採用した。すなわち、請求項1記載の乾留式分解方法では、石油系化合物からなる原料を略密閉空間で熱分解させて固形成分と気体成分とに分離する乾留式分解方法において、前記略密閉空間の前段に投入された前記原料を前段から後段に向けて粉砕しながら移送する移送工程と、該移送工程中に前記略密閉空間を加熱して前記原料を熱分解させる加熱工程とを備え、該加熱工程は、前記略密閉空間の前段で前記原料を分解可能な温度まで加熱する昇温工程と、前記略密閉空間の後段で前記気体成分が前記固形成分からほぼ完全に分離するまで気体成分の分離可能な温度で保温する分離工程とを備え、該昇温工程は、前記分離工程に比べて単位時間当たりの加熱量を大きく設定している技術が採用される。
また、請求項1記載の乾留式分解方法では、前記昇温工程における前記原料の移送時間は、前記分離工程における前記原料の移送時間に比べて短く設定している。
【0007】
また、請求項8記載の乾留式分解装置では、石油系化合物からなる原料を内部が略密閉な筒状本体内で熱分解させて固形成分と気体成分とに分離する乾留式分解装置において、前記筒状本体内の前段に投入された前記原料を前段から後段に向けて移送する移送機構と、前記筒状本体内を加熱して前記原料を熱分解させる加熱機構とを備え、前記加熱機構は、前記筒状本体内の前段で前記原料を分解可能な温度まで加熱する昇温手段と、前記筒状本体内の後段で前記気体成分が前記固形成分からほぼ完全に分離するまで気体成分の分離可能な温度で保温する分離手段とを備え、前記昇温手段は、前記分離手段に比べて単位時間当たりの加熱量が大きく設定されている技術が採用される。
また、請求項8記載の乾留式分解装置において、前記昇温工程における前記原料の移送距離は、前記分離工程における前記原料の移送距離に比べて短く設定している。
【0008】
これらの乾留式分解方法および装置では、原料を昇温する際に、気体成分の分離を行うときに比べて、単位時間当たりの加熱量が大きく設定されているので、短時間で原料を分解温度に到達させることができる。
【0009】
請求項3記載の乾留式分解方法では、請求項1又は請求項2に記載の乾留式分解方法において、前記昇温工程は、前記略密閉空間の前段の周囲に前記原料を分解可能な温度以上に加熱された高温油を流通させる技術が採用される。
【0010】
また、請求項10記載の乾留式分解装置では、請求項8又は請求項9に記載の乾留式分解装置において、前記昇温手段は、前記筒状本体の前段の周壁に前記原料を分解可能な温度以上に加熱された高温油を流通させる高温油流路を備えている技術が採用される。
【0011】
これらの乾留式分解方法および装置では、原料の分解温度までの昇温を行う部分の周囲に前記分解可能な温度以上に加熱された高温油を流通させるので、該高温油が高い熱伝導度を有していることから短時間で原料を分解温度に到達させることができる。
【0012】
請求項4記載の乾留式分解方法では、請求項1又は請求項2に記載の乾留式分解方法において、前記昇温工程は、前記略密閉空間の前段の周囲に配した電気ヒータにより前記原料の成分および量に応じて加熱量を調整しながら加熱する技術が採用される。
【0013】
また、請求項11記載の乾留式分解装置では、請求項8又は請求項9に記載の乾留式分解装置において、前記昇温手段は、前記筒状本体の前段の周壁に前記原料の成分および量に応じて加熱量が調整可能な電気ヒータを備えている技術が採用される。
【0014】
これらの乾留式分解方法および装置では、原料の分解温度までの昇温を行う部分の周囲に配した電気ヒータにより、原料の成分および量に応じて加熱量を調整しながら加熱を行うので、効率的にかつ細かな温度コントロールを行うことができ、必要十分な加熱量で短時間に原料を分解温度に到達させることができる。
【0015】
請求項5記載の乾留式分解方法では、請求項1から4のいずれかに記載の乾留式分解方法において、前記分離工程は、前記略密閉空間の後段の周囲に前記気体成分の分離可能な温度以上に加熱された加熱ガスを流通させる技術が採用される。
【0016】
また、請求項12記載の乾留式分解装置では、請求項8から11のいずれかに記載の乾留式分解装置において、前記分離手段は、前記筒状本体の後段の周壁に前記気体成分の分離可能な温度以上に加熱された加熱ガスを流通させるガス流路を備えている技術が採用される。
【0017】
これらの乾留式分解方法および装置では、気体成分の分離を行う部分の周囲に気体成分の分離可能な温度以上に加熱された加熱ガスを流通させるので、分解反応を行う部分とは別の熱媒、すなわち熱伝導度の低い加熱ガスによって適度な保温状態(緩やかに温度が上昇する状態も含む)を維持でき、暴走反応が防止される。したがって、気体成分の分離を行う部分は分解温度までの昇温を行う部分に比べて大きな熱量が不要であることから、異なる2種類の熱媒を別々に用いることにより、分離のための滞留時間における無駄な加熱量を低減することができる。
【0018】
請求項6記載の乾留式分解方法では、請求項5記載の乾留式分解方法において、前記分離工程で分離した前記気体成分を再加熱して含まれる塩素成分を分解除去する高温処理工程を備え、前記分離工程は、前記高温処理工程後の前記気体成分を前記加熱ガスにする技術が採用される。
【0019】
また、請求項13記載の乾留式分解装置では、請求項12記載の乾留式分解装置において、前記加熱手段で分離した前記気体成分を再加熱して含まれる塩素成分を分解除去する高温処理手段を備え、前記分離手段は、前記高温処理手段で再加熱された前記気体成分を前記加熱ガスにして前記ガス流路に流通させる技術が採用される。
【0020】
これらの乾留式分解方法および装置では、高温処理後の気体成分を前記加熱ガスにするので、分離され高温となった気体成分を分離用の熱媒として再利用でき、別個に加熱ガスの供給源を設置する必要もなくなり、簡便な構成で加熱ガスを流通させることが可能となる。
【0021】
請求項7記載の乾留式分解方法では、請求項5記載の乾留式分解方法において、前記昇温工程で使用する前記高温油または前記分離工程で分離した前記気体成分を、加熱炉内で燃焼ガスで加熱する工程を備え、前記分離工程は、前記加熱炉の燃焼ガスを前記加熱ガスにする技術が採用される。
【0022】
また、請求項14記載の乾留式分解装置では、請求項12記載の乾留式分解装置において、前記昇温手段で使用する前記高温油または前記分離手段で分離した前記気体成分を燃焼ガスで加熱する加熱炉を備え、前記分離手段は、前記加熱炉の燃焼ガスを前記加熱ガスにして前記ガス流路に流通させる技術が採用される。
【0023】
これらの乾留式分解方法および装置では、加熱炉の燃焼ガスを前記加熱ガスにするので、高温の燃焼ガスを分離用の熱媒として再利用でき、別個に加熱ガスの供給源を設置する必要もなくなり、簡便な構成で加熱ガスを流通させることが可能となる。
【0024】
【発明の実施の形態】
以下、本発明に係る乾留式分解方法および装置の第1実施形態を、図1および図2を参照しながら説明する。
これらの図において、1は乾留式分解装置、2は筒状本体、3は移送機構、4は加熱機構である。
【0025】
本実施形態の乾留式分解装置1は、図1に示すように、廃タイヤ、廃プラスチックおよび塩化ビニル品等の石油系化合物からなる原料Rを略密閉空間内で移送するキルン式を採用したものであり、熱分解によって原料Rを気体成分および固体成分に分離して回収するものである。
【0026】
この乾留式分解装置1は、内部が略密閉な筒状本体2と、該筒状本体2内の前段である昇温領域Aに投入口2aから投入された原料Rを昇温領域Aから後段の分離領域Bに向けて移送する移送機構3と、筒状本体2内を加熱して原料Rを熱分解させる加熱機構4とを備えている。
該加熱機構4は、昇温領域Aで原料Rを分解可能な温度(本実施形態では、約320℃)まで加熱する昇温手段5と、分離領域Bで気体成分が固形成分からほぼ完全に分離するまで気体成分の分離可能な温度(本実施形態では、約320℃近傍)で保温(緩やかに温度が上昇する状態も含む)する分離手段6とを備えている。
【0027】
前記移送機構3は、筒状本体2の軸線に沿って回転可能に軸支されたスクリューコンベア7と、筒状本体2の前段側端部から突出したスクリューコンベア7の一端部に回転軸が接続された駆動モータ8とを備えている。すなわち、この駆動モータ8によりスクリューコンベア7を回転駆動すると、昇温領域Aに投入された原料Rがスクリューコンベア7の回転で分離領域Bへと徐々に移送されるようになっている。
【0028】
前記筒状本体2は、分離領域Bの後端部における上部および下部に、分離した気体成分を回収するための気体成分排出口2bおよび分離した固形成分を回収するための固形成分排出口2cがそれぞれ設けられ、気体成分排出口2bおよび固体成分排出口2cには、それぞれの排出管路である気体成分排出ライン9および固体成分排出ライン10が接続されている。
【0029】
前記昇温手段5は、筒状本体1の昇温領域A周囲に位置する周壁に、原料Rを分解可能な温度以上(本実施形態では、約380℃)に加熱されたホットオイル(高温油)Hを内部に流通可能なオイル用ジャケット(高温油流路)11を備えている。
【0030】
該オイル用ジャケット11には、ホットオイルHの供給管路であるオイル供給ライン12と排出管路であるオイル排出ライン13とが接続され、オイル供給ライン12とオイル排出ライン13とは、ホットオイルHを循環させるポンプ14で接続されている。
また、オイル供給ライン12の途中には、ホットオイルHを加熱するためのオイル用加熱炉15が設置され、オイル供給ライン12内を流通するホットオイルHはオイル用加熱炉15内で燃焼ガス(加熱ガス)Gによって所定温度(約380度)まで加熱される。
【0031】
前記分離手段6は、筒状本体1の分離領域B周囲に位置する周壁に、気体成分の分離可能な温度以上に加熱された燃焼ガス(加熱ガス)Gを内部に流通可能なガス用ジャケット(ガス流路)16を備えている。
該ガス用ジャケット16には、燃焼ガスGの供給管路であるガス供給ライン17と排出管路であるガス排出ライン18とが接続されている。
【0032】
前記気体成分排出ライン9の途中には、気体成分を再加熱するための高温処理用加熱炉19が設置され、気体成分排出ライン9内を流通する気体成分は、高温処理用加熱炉19内で塩素成分が分解可能な温度で燃焼ガスGによって高温処理される。
また、気体成分排出ライン9は、高温処理用加熱炉19の下流側で冷却装置20に接続されている。すなわち、高温処理された高温状態のままで気体成分を大気に放出してしまうとダイオキシン等が発生するおそれがあるため、冷却装置20内で水冷等によって気体成分を300℃以下に急冷処理するものである。
【0033】
前記オイル用加熱炉15および前記高温処理用加熱炉19には、それぞれ使用された燃焼ガスGの排出管路である燃焼ガス排出ライン15a、19aが接続され、これらの燃焼ガス排出ライン15a、19aは、ガス供給ライン17に接続されている。すなわち、オイル用加熱炉15および高温処理用加熱炉19において使用した燃焼ガスGは、それぞれ燃焼ガス排出ライン15a、19aによってガス供給ライン17に送られ、ガス用ジャケット16内に供給させる。
【0034】
次に、本実施形態の乾留式分解装置1において、原料Rを固形成分と気体成分とに分離する方法について、図2を参照して説明する。
【0035】
〔昇温工程〕
まず、原料Rを投入口2aから筒状本体2内の昇温領域Aに投入する。この投入された原料Rは、スクリューコンベア7で徐々に分離領域B側へと移送される。このとき、オイル用ジャケット11内を流通する高温状態のホットオイルHを熱媒として、図2に示すように、原料Rは、昇温領域Aの後端部では、約320℃まで加熱され、投入後約15分から30分程度の短時間で気体成分と固形成分の分解可能な温度に到達する。
【0036】
〔分離工程〕
気体成分と固形成分との分解温度に達した原料Rは、スクリューコンベア7によって昇温領域Aから分離領域Bへと移されると、ガス用ジャケット16内を流通する燃焼ガスGを熱媒として昇温領域Aの最終的な温度である約320℃近傍で保温されながら、後端部へと徐々に移送される。
【0037】
このとき、スクリューコンベア7によって固形成分が撹拌されるとともに、上記の保温効果によって気体成分が固形成分から上方に分離していく。気体成分を完全に固形成分から分離するには、高温で十分な滞留時間を与える必要があるため、固形成分は分離領域Bの後端部まで、滞留時間をかけて移送され、気体成分と完全に分離される。
【0038】
なお、分離領域Bにおいて、昇温領域Aと同様に、ホットオイルHを熱媒とした場合、図2の点線に示すように、温度が急速に上昇して暴走反応を生じてしまうおそれがあるが、本実施形態では、熱伝導性が低い別の熱媒である燃焼ガスGを分離領域Bに使用しているので、図2の実線に示すように、温度上昇が非常に緩やかになり、ほぼ一定の温度で保温することができる。
【0039】
この分離領域Bで熱媒として使用される燃焼ガスGは、オイル用加熱炉15および高温処理用加熱炉19で使用された燃焼ガスGをガス用ジャケット16内に導入させたものであり、オイル用ジャケット11内を流通して筒状本体2内を加熱した後、ガス排出ライン18に排出される。
【0040】
〔回収工程〕
分離領域Bの後端部で完全に気体成分が分離された固形成分は、固形成分排出口2cから固形成分排出ライン10を介して取り出され、再資源として活用される。
一方、分離した気体成分は、気体成分排出口2bから気体成分排出ライン9を介して取り出され、高温処理用加熱炉19で高温処理されて有害な塩素成分が分解除去されるとともに、さらに冷却装置20において急冷された状態で大気に放出される。
【0041】
このように、本実施形態の乾留式分解装置1では、原料Rを昇温する際に、気体成分の分離を行うときに比べて単位時間当たりの加熱量を大きくするため、原料Rを分解温度に到達させる部分の周囲に、原料Rが分解可能な温度以上に加熱されたホットオイルHを流通させるので、該ホットオイルHが高い熱伝導度を有していることから短時間で原料Rを分解温度に到達させることができる。
【0042】
また、気体成分の分離を行う部分(分離領域B)の周囲に、気体成分の分離可能な温度以上に加熱された燃焼ガスGを流通させるので、分解温度までの昇温を行う部分とは別の熱媒、すなわち熱伝導度の低い加熱ガスによって適度な保温状態を維持でき、暴走反応が防止される。
したがって、分離領域Bは昇温領域Aに比べて大きな熱量が不要であることから、異なる2種類の熱媒(ホットオイルHと燃焼ガスG)を別々に用いることにより、分離のための滞留時間における無駄な熱量を低減することができる。
【0043】
さらに、オイル用加熱炉15および高温処理用加熱炉19の燃焼ガスGを分離領域Bの熱媒に用いるので、使用済みの燃焼ガスGを気体成分の分離用として再利用でき、別個に熱媒用加熱ガスの供給源を設置する必要もなくなり、簡便な構成でガス熱媒をガス用ジャケット16内に流通させることが可能となる。
【0044】
次に、本発明に係る乾留式分解方法および装置の第2実施形態を、図3および図4を参照しながら説明する。
【0045】
第2実施形態と第1実施形態との異なる点は、第1実施形態では昇温手段5がホットオイルHを熱媒として流通させるオイル用ジャケット11を備えているのに対し、第2実施形態の乾留式分解装置21では、図3に示すように、昇温手段22が、筒状本体2の昇温領域Aの周壁に原料Rの成分および量に応じて加熱量が調整可能な電気ヒータ23と該電気ヒータ23に電流を供給するとともに制御する電源24とを備えている点で異なる。
【0046】
すなわち、原料Rを分解温度に到達させる部分の周囲に配した電気ヒータ23により、図4に示すように、原料Rの成分および量に応じて加熱量を調整しながら加熱を行うので、投入された原料Rの分解に必要な温度に確実に到達させることができる。したがって、ホットオイルでは細かな温度制御が困難であるのに対し、本実施形態では、電気ヒータ23によって効率的にかつ細かな温度コントロールを行うことができ、必要十分な加熱量で短時間に原料を分解温度に到達させることができる。
【0047】
また、第1実施形態では、分離手段6において燃焼ガスGを熱媒として流通させるガス用ジャケット16を備えているのに対し、第2実施形態では、分離手段25において高温処理用加熱炉19で高温処理された高温の気体成分を熱媒として流通させるガス用ジャケット26を備えている。
【0048】
すなわち、気体成分排出ライン9は、高温処理用加熱炉19の下流側でガス供給ライン17に接続され、ガス用ジャケット26内に導入されるようになっている。さらに、ガス用ジャケット26を流通して分離領域Bを加熱保温した気体成分は、ガス排出ライン18から排出されるとともに冷却装置20へと送られ、300℃以下に急冷された後に大気に放出されるようになっている。
【0049】
したがって、本実施形態では、高温処理後の気体成分を分離領域Bの熱媒用の加熱ガスにするので、分離された気体成分を再利用でき、別個に熱媒用の加熱ガス供給源を設置する必要もなくなり、簡便な構成で分離領域Bの保温が可能となる。
【0050】
なお、本発明は、次のような実施形態をも含むものである。
(1)上記各実施形態では、分離領域Bの熱媒として加熱炉からの燃焼ガスGまたは高温処理後の気体成分を用いたが、別個の供給源からの加熱ガスを採用しても構わない。しかしながら、この場合は上述したように、加熱ガス用の供給源設備を別個に設置する必要が生じるため、上記各実施形態のように、燃焼ガスGおよび気体成分を再利用する方が設備コストおよび稼働コストを低減することができる。
【0051】
(2)第1実施形態では、分離領域B用の熱媒としてオイル用加熱炉15および高温処理用加熱炉19の両方からの燃焼ガスGを採用したが、いずれか一方の燃焼ガスだけを用いても構わない。
【0052】
(3)第1実施形態の昇温手段5と第2実施形態の分離手段25とを組み合わせたものや、第1実施形態の分離手段6と第2実施形態の昇温手段22とを組み合わせたもの(この場合は、ガス用ジャケットに送られる燃焼ガスGは高温処理用加熱炉のもののみ)を分解装置に採用しても構わない。
【0053】
(4)第1実施形態では、オイル用加熱炉15および高温処理用加熱炉19を別々に設置したが、一つの加熱炉をホットオイル加熱用および気体成分高温処理用として兼用して使用しても構わない。この場合、加熱炉の単一化により設備コストを低減することができる。なお、燃焼ガスを分離領域の熱媒として用いない場合には、ホットオイルの加熱および気体成分の高温処理は、加熱炉以外の他の加熱手段(電気ヒータ等)によっても構わない。
【0054】
【発明の効果】
本発明によれば、以下の効果を奏する。
(1)請求項1,2記載の乾留式分解方法および請求項8,9記載の乾留式分解装置では、原料を昇温する際に、気体成分の分離を行うときに比べて、単位時間当たりの加熱量が大きく設定されているので、短時間で原料を分解温度に到達させることができ、全体の処理時間を短縮することができる。
【0055】
(2)請求項3記載の乾留式分解方法および請求項10記載の乾留式分解装置では、原料の分解温度までの昇温を行う部分の周囲に前記分解可能な温度以上に加熱された高温油を流通させるので、該高温油が高い熱伝導度を有していることから短時間で原料を分解温度に到達させることができ、処理時間全体および装置全長を短縮することができる。
【0056】
(3)請求項4記載の乾留式分解方法および請求項11記載の乾留式分解装置では、原料の分解温度までの昇温を行う部分の周囲に配した電気ヒータにより、原料の成分および量に応じて加熱量を調整しながら加熱を行うので、効率的にかつ細かな温度コントロールを行うことができ、投入原料に対して必要十分な加熱量で短時間に原料を分解温度に到達させることができる。したがって、処理時間全体および装置全長を短縮できるだけでなく、稼働コストの低減を図ることもできる。
【0057】
(4)請求項5記載の乾留式分解方法および請求項12記載の乾留式分解装置では、気体成分の分離を行う部分の周囲に気体成分の分離可能な温度以上に加熱された加熱ガスを流通させるので、熱伝導性の異なる2種類の熱媒により安定かつ適度な保温状態を維持でき、暴走反応を防止することができるとともに、固形成分からのガス分離率を高めることができる。したがって、分離処理において無駄な加熱量を低減して効率的な稼働が可能となる。
【0058】
(5)請求項6記載の乾留式分解方法および請求項13記載の乾留式分解装置では、高温処理後の気体成分を前記加熱ガスにするので、気体成分をガス分離用の熱媒として再利用できるとともに、別個の加熱ガスの供給源を不要にでき、設備コストおよび稼働コストの低減を図ることができる。
【0059】
(6)請求項7記載の乾留式分解方法および請求項14記載の乾留式分解装置では、加熱炉の燃焼ガスを前記加熱ガスにするので、使用済みの燃焼ガスをガス分離用の熱媒として再利用できるとともに、別個の加熱ガスの供給源を不要にでき、設備コストおよび稼働コストの低減を図ることができる。
【図面の簡単な説明】
【図1】 本発明に係る乾留式分解方法および装置の第1実施形態を示す乾留式分解装置の全体構成図である。
【図2】 本発明に係る乾留式分解方法および装置の第1実施形態における筒状本体内の温度分布を示すグラフ図である。
【図3】 本発明に係る乾留式分解方法および装置の第2実施形態を示す乾留式分解装置の全体構成図である。
【図4】 本発明に係る乾留式分解方法および装置の第2実施形態において、電気ヒータによる加熱量を変えた場合の筒状本体内の温度分布を示すグラフ図である。
【符号の説明】
1、21 乾留式分解装置
2 筒状本体
3 移送機構
4 加熱機構
5、22 昇温手段
6、25 分離手段
7 スクリューコンベア
8 駆動モータ
11 オイル用ジャケット(高温油流路)
15 オイル用加熱炉
16、26 ガス用ジャケット(ガス流路)
19 高温処理用加熱炉(高温処理手段)
23 電気ヒータ
A 昇温領域(略密閉空間の前段)
B 分離領域(略密閉空間の後段)
G 燃焼ガス(加熱ガス)
H ホットオイル(高温油)
R 原料
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dry distillation decomposition method and apparatus for thermally decomposing a raw material composed of petroleum compounds such as waste plastics and vinyl chloride products into a solid component and a gas component.
[0002]
[Prior art]
In recent years, waste consisting of petroleum compounds such as waste tires, waste plastics, and vinyl chloride products can generate toxic substances such as dioxins when incinerated as they are. Means for separating and processing solid components that can be reused as resources and gaseous components containing toxic gases such as chlorine components have been studied.
[0003]
[Problems to be solved by the invention]
However, the following problems remain in the conventional thermal decomposition means. That is, after starting to thermally decompose raw materials made of petroleum compounds such as waste tires, it is necessary to ensure a sufficient residence time at high temperatures in order to completely separate the gas components from the solid components, In order to shorten the time, it is desired to shorten the heating time required for the initial pyrolysis as much as possible.
[0004]
On the other hand, conventionally, heat treatment is performed using a single heating medium. However, if heating is continued with the same heating medium during the residence time required for separation of gas components after decomposition heating, the temperature is There is a possibility that the temperature necessary for the separation of the gas component may not be stabilized and a runaway reaction may be caused. In this case, the solid component is further decomposed and the value as a reusable fuel is lowered.
[0005]
The present invention has been made in view of the above-mentioned problems, and provides a dry distillation type decomposition method and apparatus that can be efficiently processed in a short time and that can separate a gas component and a solid component in a stable state. With the goal.
[0006]
[Means for Solving the Problems]
The present invention employs the following configuration in order to solve the above problems. That is, in the dry distillation cracking method according to claim 1, in the dry distillation cracking method in which a raw material composed of a petroleum compound is thermally decomposed in a substantially sealed space to be separated into a solid component and a gas component, A transfer step of transferring the charged raw material while pulverizing from the preceding stage toward the subsequent stage; and a heating step of thermally decomposing the raw material by heating the substantially sealed space during the transfer step, A temperature raising step for heating the raw material to a temperature at which the raw material can be decomposed in the front stage of the substantially sealed space; and a gas component can be separated until the gas component is almost completely separated from the solid component in the subsequent stage of the substantially sealed space. A separation step of keeping temperature at a temperature, and the heating step employs a technique in which the heating amount per unit time is set larger than that in the separation step.
In the dry distillation cracking method according to claim 1, the transfer time of the raw material in the temperature raising step is set shorter than the transfer time of the raw material in the separation step.
[0007]
Moreover, in the dry distillation type cracking apparatus according to claim 8, in the dry distillation type cracking apparatus, the raw material composed of a petroleum compound is thermally decomposed in a cylindrical body whose inside is substantially sealed to separate into a solid component and a gas component. A transport mechanism for transporting the raw material charged to the front stage in the cylindrical main body from the front stage toward the rear stage, and a heating mechanism for heating the inside of the cylindrical main body to thermally decompose the raw material, A temperature raising means for heating the raw material to a temperature at which the raw material can be decomposed in the former stage in the cylindrical main body, and separation of the gas component in the latter stage in the cylindrical main body until the gas component is almost completely separated from the solid component. And a separation unit that keeps the temperature at a possible temperature, and the heating unit employs a technique in which a heating amount per unit time is set larger than that of the separation unit.
9. The dry distillation type cracking apparatus according to claim 8, wherein a transfer distance of the raw material in the temperature raising step is set shorter than a transfer distance of the raw material in the separation step.
[0008]
In these dry distillation type decomposition methods and apparatuses, when the temperature of the raw material is increased, the heating amount per unit time is set larger than when the gas components are separated, so that the decomposition temperature of the raw material can be reduced in a short time. Can be reached.
[0009]
In the claims 3 carbonization formula decomposition method described in carbonization type decomposition method according to claim 1 or claim 2, wherein the heating step is decomposable temperature than the material around front of the approximately closed space A technology for circulating heated high-temperature oil is employed.
[0010]
Further, in the dry distillation type cracking apparatus according to claim 10, in the dry distillation type cracking apparatus according to claim 8 or 9, the temperature raising means is capable of decomposing the raw material on the peripheral wall of the front stage of the cylindrical body. A technique including a high-temperature oil flow path for circulating a high-temperature oil heated to a temperature or higher is employed.
[0011]
In these dry distillation type cracking methods and apparatuses, high temperature oil heated above the decomposable temperature is circulated around the portion where the temperature is raised to the decomposition temperature of the raw material, so that the high temperature oil has high thermal conductivity. Therefore, the raw material can reach the decomposition temperature in a short time.
[0012]
The dry distillation cracking method according to claim 4, wherein in the dry distillation cracking method according to claim 1 or 2, the temperature raising step is performed by using an electric heater disposed around the front stage of the substantially sealed space. A technique of heating while adjusting the heating amount according to the component and the amount is adopted.
[0013]
Further, in the dry distillation type cracking apparatus according to claim 11, in the dry distillation type cracking apparatus according to claim 8 or 9, the temperature raising means is provided with a component and an amount of the raw material on a peripheral wall of the front stage of the cylindrical main body. A technique including an electric heater whose heating amount can be adjusted according to the above is adopted.
[0014]
In these dry distillation type cracking methods and apparatuses, the heating is performed while adjusting the heating amount according to the component and amount of the raw material by the electric heater arranged around the portion where the temperature is raised to the decomposition temperature of the raw material. The temperature can be controlled precisely and finely, and the raw material can reach the decomposition temperature in a short time with a necessary and sufficient heating amount.
[0015]
The dry distillation type decomposition method according to claim 5, wherein, in the dry distillation type decomposition method according to any one of claims 1 to 4, wherein the separation step, separable temperature of the gaseous components around the rear stage of the approximately closed space A technique for circulating the heated gas heated as described above is employed.
[0016]
Further, in the dry distillation type cracking apparatus according to claim 12, in the dry distillation type cracking apparatus according to any one of claims 8 to 11 , the separation means is capable of separating the gas component on the peripheral wall of the rear stage of the cylindrical main body. A technique including a gas flow path for circulating a heated gas heated to a temperature above a certain temperature is employed.
[0017]
In these dry distillation type decomposition methods and apparatuses, a heating gas heated to a temperature higher than the temperature at which the gas component can be separated is circulated around the part where the gas component is separated. In other words, an appropriate heat-retaining state (including a state in which the temperature gradually rises) can be maintained by the heated gas having a low thermal conductivity, and a runaway reaction is prevented. Therefore, since the part for separating the gas components does not require a large amount of heat compared to the part for raising the temperature to the decomposition temperature, the residence time for separation can be obtained by using two different types of heating media separately. The useless heating amount in can be reduced.
[0018]
The dry distillation cracking method according to claim 6 , further comprising a high temperature treatment step in which the gaseous component separated in the separation step is reheated to decompose and remove the chlorine component contained in the dry distillation cracking method according to claim 5 , The separation step employs a technique in which the gas component after the high temperature treatment step is used as the heating gas.
[0019]
Further, in the dry distillation type cracking apparatus according to claim 13, in the dry distillation type cracking apparatus according to claim 12, high temperature treatment means for cracking and removing the chlorine component contained by reheating the gas component separated by the heating means. The separation means employs a technique in which the gas component reheated by the high-temperature treatment means is used as the heated gas and circulated through the gas flow path.
[0020]
In these dry distillation type decomposition methods and apparatuses, the gas component after the high temperature treatment is used as the heating gas, so that the separated gas component having a high temperature can be reused as a heating medium for separation, and a heating gas supply source is separately provided. It becomes unnecessary to install the gas, and the heating gas can be circulated with a simple configuration.
[0021]
The dry distillation type decomposition method according to claim 7, wherein, in the carbonization type decomposition method according to claim 5, wherein the gaseous components separated in the hot oil or the separation step used in the heating step, the combustion gas in a heating furnace And the separation step employs a technique in which the combustion gas of the heating furnace is used as the heating gas.
[0022]
Further, in the dry distillation type cracking apparatus according to claim 14, in the dry distillation type cracking apparatus according to claim 12 , the high temperature oil used in the temperature raising means or the gas component separated by the separation means is heated with a combustion gas. The heating furnace is provided, and the separation means employs a technique in which a combustion gas of the heating furnace is used as the heating gas and is circulated through the gas flow path.
[0023]
In these dry distillation type decomposition methods and apparatuses, the combustion gas of the heating furnace is used as the heating gas, so that the high-temperature combustion gas can be reused as a heating medium for separation, and it is also necessary to install a heating gas supply source separately. The heating gas can be circulated with a simple configuration.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of a dry distillation decomposition method and apparatus according to the present invention will be described with reference to FIGS. 1 and 2.
In these drawings, 1 is a dry distillation type decomposition apparatus, 2 is a cylindrical body, 3 is a transfer mechanism, and 4 is a heating mechanism.
[0025]
As shown in FIG. 1, the dry distillation type cracking apparatus 1 of the present embodiment employs a kiln type that transports a raw material R composed of petroleum compounds such as waste tires, plastics, and vinyl chloride products in a substantially sealed space. The raw material R is separated into a gas component and a solid component and recovered by thermal decomposition.
[0026]
This dry distillation type cracking apparatus 1 includes a cylindrical main body 2 that is substantially sealed inside, and a raw material R that is input from a charging port 2a into a temperature rising area A that is a front stage in the cylindrical main body 2 from a temperature rising area A to a subsequent stage. A transfer mechanism 3 that transfers the gas toward the separation region B, and a heating mechanism 4 that heats the inside of the cylindrical body 2 to thermally decompose the raw material R.
The heating mechanism 4 includes a temperature raising means 5 for heating the raw material R to a temperature at which the raw material R can be decomposed in the temperature raising area A (about 320 ° C. in the present embodiment), and a gas component almost completely from the solid component in the separation area B. Separation means 6 that keeps the temperature (including a state in which the temperature gradually rises) at a temperature at which the gas component can be separated until separation (in the present embodiment, about 320 ° C.) is provided.
[0027]
The transfer mechanism 3 has a rotating shaft connected to a screw conveyor 7 rotatably supported along the axis of the cylindrical main body 2 and one end of the screw conveyor 7 protruding from the front end of the cylindrical main body 2. The drive motor 8 is provided. That is, when the screw conveyor 7 is rotationally driven by the drive motor 8, the raw material R put into the temperature rising region A is gradually transferred to the separation region B by the rotation of the screw conveyor 7.
[0028]
The cylindrical main body 2 has a gas component discharge port 2b for recovering the separated gas component and a solid component discharge port 2c for recovering the separated solid component at the upper and lower portions at the rear end of the separation region B. A gas component discharge line 9 and a solid component discharge line 10 which are respective discharge pipes are connected to the gas component discharge port 2b and the solid component discharge port 2c, respectively.
[0029]
The temperature raising means 5 is a hot oil (high temperature oil) heated on a peripheral wall located around the temperature raising region A of the cylindrical main body 1 to a temperature higher than the temperature at which the raw material R can be decomposed (in this embodiment, about 380 ° C.). ) An oil jacket (high temperature oil flow path) 11 capable of circulating H inside is provided.
[0030]
The oil jacket 11 is connected to an oil supply line 12 that is a supply line for hot oil H and an oil discharge line 13 that is a discharge line. The oil supply line 12 and the oil discharge line 13 are connected to hot oil H It is connected by a pump 14 for circulating H.
Further, an oil heating furnace 15 for heating the hot oil H is installed in the middle of the oil supply line 12, and the hot oil H circulating in the oil supply line 12 is burned in the oil heating furnace 15 with a combustion gas ( It is heated to a predetermined temperature (about 380 degrees) by the heating gas G).
[0031]
The separation means 6 is a gas jacket (circulation gas (heated gas) G) heated to a temperature above a temperature at which a gas component can be separated on a peripheral wall located around the separation region B of the cylindrical main body 1. Gas flow path) 16 is provided.
The gas jacket 16 is connected to a gas supply line 17 that is a supply pipe for the combustion gas G and a gas discharge line 18 that is a discharge pipe.
[0032]
In the middle of the gas component discharge line 9, a high-temperature treatment heating furnace 19 for reheating the gas component is installed, and the gas component flowing through the gas component discharge line 9 is disposed in the high-temperature treatment heating furnace 19. High temperature treatment is performed with the combustion gas G at a temperature at which the chlorine component can be decomposed.
The gas component discharge line 9 is connected to the cooling device 20 on the downstream side of the high-temperature processing heating furnace 19. That is, if the gas component is released to the atmosphere in a high temperature state that has been subjected to a high temperature treatment, dioxins or the like may be generated. Therefore, the gas component is rapidly cooled to 300 ° C. or less by water cooling or the like in the cooling device 20. It is.
[0033]
The oil heating furnace 15 and the high temperature processing heating furnace 19 are connected to combustion gas discharge lines 15a and 19a, which are exhaust pipes for the used combustion gas G, and these combustion gas discharge lines 15a and 19a. Is connected to the gas supply line 17. That is, the combustion gas G used in the oil heating furnace 15 and the high-temperature processing heating furnace 19 is sent to the gas supply line 17 through the combustion gas discharge lines 15 a and 19 a, and is supplied into the gas jacket 16.
[0034]
Next, a method for separating the raw material R into a solid component and a gas component in the dry distillation type decomposition apparatus 1 of the present embodiment will be described with reference to FIG.
[0035]
[Temperature raising process]
First, the raw material R is thrown into the temperature rising area A in the cylindrical main body 2 from the charging port 2a. The introduced raw material R is gradually transferred to the separation region B side by the screw conveyor 7. At this time, as shown in FIG. 2, the raw material R is heated to about 320 ° C. at the rear end of the temperature rising region A, using the hot oil H in a high temperature state flowing through the oil jacket 11 as a heating medium. The temperature at which gas components and solid components can be decomposed is reached in a short time of about 15 to 30 minutes after the addition.
[0036]
[Separation process]
When the raw material R that has reached the decomposition temperature of the gas component and the solid component is transferred from the temperature raising region A to the separation region B by the screw conveyor 7, the raw material R rises using the combustion gas G flowing in the gas jacket 16 as a heat medium. While being kept at around 320 ° C., which is the final temperature of the temperature region A, it is gradually transferred to the rear end.
[0037]
At this time, the solid component is stirred by the screw conveyor 7, and the gas component is separated upward from the solid component by the above-described heat retention effect. In order to completely separate the gas component from the solid component, it is necessary to provide a sufficient residence time at a high temperature. Therefore, the solid component is transferred to the rear end of the separation region B over the residence time, and completely separated from the gas component. Separated.
[0038]
In the separation region B, as in the temperature rising region A, when hot oil H is used as a heating medium, as shown by the dotted line in FIG. However, in this embodiment, since the combustion gas G, which is another heat medium having low thermal conductivity, is used in the separation region B, the temperature rise becomes very gradual as shown by the solid line in FIG. The temperature can be kept at a substantially constant temperature.
[0039]
The combustion gas G used as a heating medium in the separation region B is obtained by introducing the combustion gas G used in the oil heating furnace 15 and the high temperature processing heating furnace 19 into the gas jacket 16. After flowing through the jacket 11 and heating the inside of the cylindrical main body 2, it is discharged to the gas discharge line 18.
[0040]
[Recovery process]
The solid component from which the gas component has been completely separated at the rear end of the separation region B is taken out from the solid component discharge port 2c through the solid component discharge line 10 and is used as a resource.
On the other hand, the separated gas component is taken out from the gas component discharge port 2b through the gas component discharge line 9, is subjected to high-temperature treatment in the high-temperature treatment heating furnace 19 to decompose and remove harmful chlorine components, and is further cooled. 20 is released into the atmosphere in a rapidly cooled state.
[0041]
As described above, in the dry distillation type cracking apparatus 1 of the present embodiment, when the temperature of the raw material R is increased, the heating amount per unit time is increased as compared with the case where the gas component is separated. Since the hot oil H heated to a temperature higher than the temperature at which the raw material R can be decomposed is circulated around the portion to reach the temperature, the hot oil H has a high thermal conductivity. The decomposition temperature can be reached.
[0042]
In addition, since the combustion gas G heated above the temperature at which the gas component can be separated is circulated around the part where the gas component is separated (separation region B), it is different from the part where the temperature is raised to the decomposition temperature. An appropriate heat-retaining state can be maintained by this heating medium, that is, a heating gas having a low thermal conductivity, and a runaway reaction is prevented.
Therefore, since the separation region B does not require a large amount of heat compared to the temperature rising region A, the residence time for separation can be obtained by using two different types of heating media (hot oil H and combustion gas G) separately. It is possible to reduce a useless amount of heat.
[0043]
Further, since the combustion gas G of the oil heating furnace 15 and the high-temperature treatment heating furnace 19 is used as the heat medium in the separation region B, the used combustion gas G can be reused for separation of the gas components, and the heat medium separately. It is no longer necessary to provide a heating gas supply source, and the gas heating medium can be circulated in the gas jacket 16 with a simple configuration.
[0044]
Next, a second embodiment of the dry distillation decomposition method and apparatus according to the present invention will be described with reference to FIGS.
[0045]
The difference between the second embodiment and the first embodiment is that, in the first embodiment, the temperature raising means 5 is provided with an oil jacket 11 for circulating hot oil H as a heat medium, whereas the second embodiment. In the dry distillation type decomposition apparatus 21, as shown in FIG. 3, the temperature raising means 22 is an electric heater whose heating amount can be adjusted on the peripheral wall of the temperature raising region A of the cylindrical body 2 according to the component and amount of the raw material R. 23 and a power source 24 that supplies and controls current to the electric heater 23 is different.
[0046]
That is, as shown in FIG. 4, the heating is performed while adjusting the heating amount according to the component and amount of the raw material R by the electric heater 23 arranged around the portion where the raw material R reaches the decomposition temperature. In addition, the temperature necessary for the decomposition of the raw material R can be reliably reached. Therefore, fine temperature control is difficult with hot oil, but in the present embodiment, the electric heater 23 can efficiently and finely control the temperature, and the raw material can be quickly produced with a necessary and sufficient heating amount. Can reach the decomposition temperature.
[0047]
In the first embodiment, the separation means 6 includes a gas jacket 16 for circulating the combustion gas G as a heat medium. In the second embodiment, the separation means 25 uses a high-temperature processing furnace 19. A gas jacket 26 is provided for circulating a high-temperature gas component subjected to a high-temperature treatment as a heat medium.
[0048]
That is, the gas component discharge line 9 is connected to the gas supply line 17 on the downstream side of the high-temperature processing heating furnace 19 and is introduced into the gas jacket 26. Further, the gas component that has been circulated through the gas jacket 26 and heated in the separation region B is discharged from the gas discharge line 18 and sent to the cooling device 20, and is rapidly cooled to 300 ° C. or less and then released to the atmosphere. It has become so.
[0049]
Therefore, in this embodiment, since the gas component after the high temperature treatment is used as the heating gas for the heating medium in the separation region B, the separated gas component can be reused, and a heating gas supply source for the heating medium is separately installed. Therefore, it is possible to keep the separation region B warm with a simple configuration.
[0050]
The present invention includes the following embodiments.
(1) In each of the above embodiments, the combustion gas G from the heating furnace or the gas component after the high temperature treatment is used as the heat medium in the separation region B, but a heating gas from a separate supply source may be adopted. . However, in this case, as described above, it is necessary to separately install a heating gas supply source facility, and therefore, it is necessary to recycle the combustion gas G and the gas component as in each of the above embodiments. The operating cost can be reduced.
[0051]
(2) In the first embodiment, the combustion gas G from both the oil heating furnace 15 and the high temperature processing heating furnace 19 is employed as the heat medium for the separation region B, but only one of the combustion gases is used. It doesn't matter.
[0052]
(3) A combination of the temperature raising means 5 of the first embodiment and the separation means 25 of the second embodiment, or a combination of the separation means 6 of the first embodiment and the temperature raising means 22 of the second embodiment. A thing (in this case, only the combustion gas G sent to the gas jacket is that of a high-temperature treatment heating furnace) may be adopted in the decomposition apparatus.
[0053]
(4) In the first embodiment, the oil heating furnace 15 and the high temperature treatment heating furnace 19 are installed separately, but one heating furnace is used for both hot oil heating and gas component high temperature treatment. It doesn't matter. In this case, the equipment cost can be reduced by unifying the heating furnace. When the combustion gas is not used as a heat medium for the separation region, the heating of the hot oil and the high temperature treatment of the gas component may be performed by other heating means (such as an electric heater) other than the heating furnace.
[0054]
【The invention's effect】
The present invention has the following effects.
(1) In the dry distillation cracking method according to claims 1 and 2 and the dry distillation cracking apparatus according to claims 8 and 9 , when the temperature of the raw material is raised, the per unit time is compared with the case of separating the gas components. Since the heating amount is set large, the raw material can reach the decomposition temperature in a short time, and the entire processing time can be shortened.
[0055]
(2) according to claim 3 in dry distillation type decomposition method and claim 10 dry distillation type decomposition apparatus according the described partial hot oil heated the above degradable temperature around performing Atsushi Nobori up to the decomposition temperature of the material Since the high-temperature oil has a high thermal conductivity, the raw material can reach the decomposition temperature in a short time, and the entire processing time and the entire length of the apparatus can be shortened.
[0056]
(3) In the dry distillation cracking method according to claim 4 and the dry distillation cracking apparatus according to claim 11 , the components and amount of the raw material are adjusted by an electric heater disposed around the portion where the temperature is raised to the decomposition temperature of the raw material. Since the heating is performed while adjusting the heating amount accordingly, it is possible to efficiently and finely control the temperature, and the raw material can reach the decomposition temperature in a short time with the necessary and sufficient heating amount for the input raw material. it can. Therefore, not only the entire processing time and the entire length of the apparatus can be shortened, but also the operating cost can be reduced.
[0057]
(4) In the dry distillation cracking method according to claim 5 and the dry distillation cracking apparatus according to claim 12, a heated gas heated to a temperature at which the gas component is separated or higher is circulated around a portion where the gas component is separated. Therefore, a stable and appropriate heat retaining state can be maintained by using two types of heat media having different thermal conductivities, a runaway reaction can be prevented, and a gas separation rate from a solid component can be increased. Therefore, it is possible to reduce the wasteful heating amount in the separation process and to efficiently operate.
[0058]
(5) In the dry distillation cracking method according to claim 6 and the dry distillation cracking apparatus according to claim 13 , since the gas component after the high temperature treatment is used as the heating gas, the gas component is reused as a heat medium for gas separation. In addition, it is possible to eliminate the need for a separate heating gas supply source, thereby reducing the equipment cost and the operating cost.
[0059]
(6) In dry distillation type decomposition apparatus for dry distillation type decomposition method and claim 14 according to claim 7, wherein the combustion gas of the furnace so that the heating gas, the spent combustion gas as a heat medium for gas separation In addition to being reusable, it is possible to eliminate the need for a separate heating gas supply source, and to reduce equipment costs and operating costs.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a dry distillation cracking apparatus showing a first embodiment of a dry distillation cracking method and apparatus according to the present invention.
FIG. 2 is a graph showing a temperature distribution in a cylindrical main body in the first embodiment of the dry distillation decomposition method and apparatus according to the present invention.
FIG. 3 is an overall configuration diagram of a dry distillation cracking apparatus showing a second embodiment of the dry distillation cracking method and apparatus according to the present invention.
FIG. 4 is a graph showing the temperature distribution in the cylindrical body when the heating amount by the electric heater is changed in the second embodiment of the dry distillation type decomposition method and apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,21 Dry distillation type | formula decomposition | disassembly apparatus 2 Cylindrical main body 3 Transfer mechanism 4 Heating mechanism 5, 22 Temperature raising means 6, 25 Separation means 7 Screw conveyor 8 Drive motor 11 Oil jacket (high temperature oil flow path)
15 Heating furnace for oil 16, 26 Gas jacket (gas flow path)
19 High temperature processing furnace (high temperature processing means)
23 Electric heater A Temperature rise area (front stage of a substantially sealed space)
B Separation area (subsequent stage of sealed space)
G Combustion gas (heating gas)
H Hot oil (high temperature oil)
R Raw material

Claims (14)

石油系化合物からなる原料(R)を略密閉空間で熱分解させて固形成分と気体成分とに分離する乾留式分解方法において、前記略密閉空間の前段(A)に投入された前記原料を前段から後段(B)に向けて粉砕しながら移送する移送工程と、該移送工程中に前記略密閉空間を加熱して前記原料を熱分解させる加熱工程とを備え、該加熱工程は、前記略密閉空間の前段で前記原料を分解可能な温度まで加熱する昇温工程と、前記略密閉空間の後段で前記気体成分が前記固形成分からほぼ完全に分離するまで気体成分の分離可能な温度で保温する分離工程とを備え、該昇温工程は、前記分離工程に比べて単位時間当たりの加熱量を大きく設定していることを特徴とする乾留式分解方法。  In a dry distillation type decomposition method in which a raw material (R) made of a petroleum compound is thermally decomposed in a substantially sealed space to be separated into a solid component and a gas component, the raw material charged in the preceding stage (A) of the substantially sealed space is And then transferring to the subsequent stage (B) while pulverizing, and a heating step of heating the substantially sealed space to thermally decompose the raw material during the transferring step, the heating step being substantially sealed A temperature raising step for heating the raw material to a temperature at which the raw material can be decomposed at the front stage of the space and a temperature at which the gas component can be separated at the rear stage of the substantially sealed space until the gas component is almost completely separated from the solid component. And a separation step, wherein the heating step sets a heating amount per unit time larger than that in the separation step. 請求項1記載の乾留式分解方法において、前記昇温工程における前記原料の移送時間は、前記分離工程における前記原料の移送時間に比べて短く設定していることを特徴とする乾留式分解方法。2. The dry distillation cracking method according to claim 1, wherein a transfer time of the raw material in the temperature raising step is set shorter than a transfer time of the raw material in the separation step. 請求項1または2記載の乾留式分解方法において、前記昇温工程は、前記略密閉空間の前段の周囲に前記原料を分解可能な温度以上に加熱された高温油(H)を流通させることを特徴とする乾留式分解方法。 3. The dry distillation type cracking method according to claim 1 , wherein in the temperature raising step, high temperature oil (H) heated to a temperature at which the raw material can be decomposed or higher is circulated around the front stage of the substantially sealed space. A dry distillation type decomposition method. 請求項1または2記載の乾留式分解方法において、前記昇温工程は、前記略密閉空間の前段の周囲に配した電気ヒータ(23)により前記原料の成分および量に応じて加熱量を調整しながら加熱することを特徴とする乾留式分解方法。 3. The dry distillation type decomposition method according to claim 1 , wherein in the temperature raising step, an amount of heating is adjusted according to a component and an amount of the raw material by an electric heater (23) disposed around a front stage of the substantially sealed space. Dry distillation method characterized by heating while heating. 請求項1から4のいずれかに記載の乾留式分解方法において、前記分離工程は、前記略密閉空間の後段(B)の周囲に前記気体成分の分離可能な温度以上に加熱された加熱ガス(G)を流通させることを特徴とする乾留式分解方法。5. The dry distillation type decomposition method according to claim 1 , wherein the separation step includes a heated gas heated above a temperature at which the gaseous component can be separated around the rear stage (B) of the substantially sealed space (5). G) is circulated. A dry distillation method for decomposition. 請求項5記載の乾留式分解方法において、前記分離工程で分離した前記気体成分を再加熱して含まれる塩素成分を分解除去する高温処理工程を備え、前記分離工程は、前記高温処理工程後の前記気体成分を前記加熱ガスにすることを特徴とする乾留式分解方法。6. The dry distillation type decomposition method according to claim 5 , further comprising a high-temperature treatment step for decomposing and removing chlorine components contained by reheating the gas component separated in the separation step, wherein the separation step is performed after the high-temperature treatment step. A dry distillation decomposition method, wherein the gas component is the heated gas. 請求項5記載の乾留式分解方法において、前記昇温工程で使用する前記高温油(H)または前記分離工程で分離した前記気体成分を、加熱炉内で燃焼ガス(G)で加熱する工程を備え、前記分離工程は、前記加熱炉の燃焼ガスを前記加熱ガスにすることを特徴とする乾留式分解方法。The dry distillation type cracking method according to claim 5, wherein the high temperature oil (H) used in the temperature raising step or the gas component separated in the separation step is heated with a combustion gas (G) in a heating furnace. And the separation step uses the combustion gas of the heating furnace as the heating gas. 石油系化合物からなる原料(R)を内部が略密閉な筒状本体(2)内で熱分解させて固形成分と気体成分とに分離する乾留式分解装置(1)において、前記筒状本体内の前段(A)に投入された前記原料を前段から後段(B)に向けて移送する移送機構(3)と、前記筒状本体内を加熱して前記原料を熱分解させる加熱機構(4)とを備え、前記加熱機構は、前記筒状本体内の前段で前記原料を分解可能な温度まで加熱する昇温手段(5)と、前記筒状本体内の後段で前記気体成分が前記固形成分からほぼ完全に分離するまで気体成分の分離可能な温度で保温する分離手段(6)とを備え、前記昇温手段は、前記分離手段に比べて単位時間当たりの加熱量が大きく設定されていることを特徴とする乾留式分解装置。  In the dry distillation type cracking apparatus (1), in which a raw material (R) made of a petroleum compound is thermally decomposed in a cylindrical body (2) whose inside is substantially sealed and separated into a solid component and a gas component, A transfer mechanism (3) for transferring the raw material charged to the front stage (A) from the front stage to the rear stage (B), and a heating mechanism (4) for heating the inside of the cylindrical body to thermally decompose the raw material. The heating mechanism includes a temperature raising means (5) for heating the raw material to a temperature at which the raw material can be decomposed in the front stage in the cylindrical body, and the gas component is the solid component in the rear stage in the cylindrical body. Separating means (6) that keeps the temperature at a temperature at which the gas component can be separated until it is almost completely separated, and the heating means has a heating amount per unit time larger than that of the separating means. A dry distillation type decomposition apparatus. 請求項8記載の乾留式分解装置において、前記昇温工程における前記原料の移送距離は、前記分離工程における前記原料の移送距離に比べて短く設定していることを特徴とする乾留式分解装置。The dry distillation type cracking apparatus according to claim 8, wherein a transfer distance of the raw material in the temperature raising step is set shorter than a transfer distance of the raw material in the separation step. 請求項8または9記載の乾留式分解装置において、前記昇温手段は、前記筒状本体の前段の周壁に前記原料を分解可能な温度以上に加熱された高温油(H)を流通させる高温油流路(11)を備えていることを特徴とする乾留式分解装置。10. The dry distillation type cracking apparatus according to claim 8 , wherein the temperature raising means circulates a high temperature oil (H) heated to a temperature higher than a temperature at which the raw material can be decomposed on a peripheral wall of a front stage of the cylindrical body. A dry distillation type decomposition apparatus comprising a flow path (11). 請求項8または9記載の乾留式分解装置において、前記昇温手段は、前記筒状本体の前段の周壁に前記原料の成分および量に応じて加熱量が調整可能な電気ヒータ(23)を備えていることを特徴とする乾留式分解装置。10. The dry distillation type cracking apparatus according to claim 8 , wherein the temperature raising means includes an electric heater (23) capable of adjusting a heating amount according to a component and an amount of the raw material on a peripheral wall of a front stage of the cylindrical main body. A dry distillation type decomposition apparatus characterized by that. 請求項8から11のいずれかに記載の乾留式分解装置において、前記分離手段は、前記筒状本体の後段(B)の周壁に前記気体成分の分離可能な温度以上に加熱された加熱ガス(G)を流通させるガス流路(16、26)を備えていることを特徴とする乾留式分解装置。The dry distillation type cracking apparatus according to any one of claims 8 to 11 , wherein the separation means is a heated gas heated above a temperature at which the gaseous component can be separated on the peripheral wall of the rear stage (B) of the cylindrical main body ( A dry distillation type decomposition apparatus comprising a gas flow path (16, 26) for circulating G). 請求項12記載の乾留式分解装置において、前記加熱手段で分離した前記気体成分を再加熱して含まれる塩素成分を分解除去する高温処理手段(19)を備え、前記分離手段は、前記高温処理手段で再加熱された前記気体成分を前記加熱ガスにして前記ガス流路(26)に流通させることを特徴とする乾留式分解装置。 13. The dry distillation type cracking apparatus according to claim 12 , further comprising a high-temperature treatment means (19) for re-heating the gaseous component separated by the heating means to decompose and remove the chlorine component contained therein, wherein the separation means comprises the high-temperature treatment. The dry distillation type decomposition apparatus characterized in that the gas component reheated by the means is used as the heated gas and circulated through the gas flow path (26). 請求項12記載の乾留式分解装置において、前記昇温手段(5)で使用する前記高温油(H)または前記分離手段(6)で分離した前記気体成分を燃焼ガス(G)で加熱する加熱炉(15、19)を備え、前記分離手段は、前記加熱炉の燃焼ガスを前記加熱ガスにして前記ガス流路(16)に流通させることを特徴とする乾留式分解装置。The dry distillation type cracking apparatus according to claim 12, wherein the high temperature oil (H) used in the temperature raising means (5) or the gas component separated by the separation means (6) is heated by combustion gas (G). A dry distillation type decomposition apparatus comprising a furnace (15, 19), wherein the separation means causes the combustion gas of the heating furnace to flow as the heating gas into the gas flow path (16).
JP6556499A 1999-03-11 1999-03-11 Dry distillation type decomposition method and apparatus Expired - Fee Related JP4038925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6556499A JP4038925B2 (en) 1999-03-11 1999-03-11 Dry distillation type decomposition method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6556499A JP4038925B2 (en) 1999-03-11 1999-03-11 Dry distillation type decomposition method and apparatus

Publications (2)

Publication Number Publication Date
JP2000265173A JP2000265173A (en) 2000-09-26
JP4038925B2 true JP4038925B2 (en) 2008-01-30

Family

ID=13290646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6556499A Expired - Fee Related JP4038925B2 (en) 1999-03-11 1999-03-11 Dry distillation type decomposition method and apparatus

Country Status (1)

Country Link
JP (1) JP4038925B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840879A (en) * 1971-09-27 1973-06-15
JPS4875680A (en) * 1972-01-12 1973-10-12
GB1501729A (en) * 1974-05-06 1978-02-22 Redker Young Processes Inc Conversion of organic waste material
JP2648412B2 (en) * 1991-10-18 1997-08-27 工業技術院長 Method and apparatus for treating mixed plastic waste
JP3277335B2 (en) * 1992-10-08 2002-04-22 新明和工業株式会社 Carbonization method and carbonization device
JPH08104880A (en) * 1994-09-12 1996-04-23 Seisei Kogyo Kk Treating method for dry distillation for reaped lawn grass and treating device therefor

Also Published As

Publication number Publication date
JP2000265173A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
JP2001300497A (en) Apparatus and method for treating waste
JP4038925B2 (en) Dry distillation type decomposition method and apparatus
US20080241018A1 (en) Nanocarbon generating equipment
JP3096448B2 (en) Waste plastic decomposition equipment
JP2005037042A (en) Heat processing device
KR100305113B1 (en) Vacuum pyrolysis method and equipment of waste tire using both direct and indirect heating
JP2005103437A (en) Processing method of organic material containing water and its facility
JP4321223B2 (en) Operation control method and system for heat processing facility
JP2003262315A (en) Heat treatment method and facility for water containing organic matter
KR101517521B1 (en) Aluminum dross recovering apparatus
JP4352596B2 (en) Indirect heat treatment method for workpieces
JP2001201026A (en) Thermal cracking furnace device
JP2002001285A (en) Method, apparatus and equipment for heat-treating matter to be treated containing combustible component
JP2004256329A (en) Method and apparatus for refining carbonized material and production facility
JP2005274018A (en) Indirect heating working system and indirect heating working method
JP3064175U (en) Rotary carbonization equipment
JP3738504B2 (en) Waste pyrolysis gasifier
JP3604295B2 (en) Waste plastic processing equipment
JP2704123B2 (en) Recycling and recovery equipment for inorganic fillers from resin compositions
JP3519622B2 (en) Multi-stage treatment of charge
JP2002061814A (en) Method of heat treatment of substance to be treated containing combustibles, treating equipment and treating facility
JP2524665B2 (en) Decontamination equipment for metal scrap
JP3110018B2 (en) Continuous waste treatment equipment
JP2003262314A (en) Heat treatment method and facility for water containing organic matter
JP3744401B2 (en) Heat treatment method and heat treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees