Nothing Special   »   [go: up one dir, main page]

JP4038985B2 - Tape carrier for semiconductor devices - Google Patents

Tape carrier for semiconductor devices Download PDF

Info

Publication number
JP4038985B2
JP4038985B2 JP2000404666A JP2000404666A JP4038985B2 JP 4038985 B2 JP4038985 B2 JP 4038985B2 JP 2000404666 A JP2000404666 A JP 2000404666A JP 2000404666 A JP2000404666 A JP 2000404666A JP 4038985 B2 JP4038985 B2 JP 4038985B2
Authority
JP
Japan
Prior art keywords
layer
plating layer
copper
tape carrier
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000404666A
Other languages
Japanese (ja)
Other versions
JP2002203875A (en
Inventor
久則 秋野
聡 珍田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2000404666A priority Critical patent/JP4038985B2/en
Publication of JP2002203875A publication Critical patent/JP2002203875A/en
Application granted granted Critical
Publication of JP4038985B2 publication Critical patent/JP4038985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Wire Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、精密電子部品であるテープキャリア、特に半導体素子搭載用配線テープを作成するのに適した半導体装置用テープキャリアの構造に関するものである。
【0002】
【従来の技術】
従来の半導体装置用テープキャリアの構造は、図3に示すように、ポリイミド樹脂フィルム1に接着剤層8を介して貼り合わせた銅箔3から成る導体パターン上に、その銅リードに安定した接合性を与えるべく無電解錫めっき層5を形成するか、下地層として銅めっき層4を施した上に無電解錫めっき層5を形成する構造である。
【0003】
このテープキャリアの半導体素子(ICチップ)への実装作業は、例えば、テープキャリアに設けたデバイスホール内に位置するように半導体素子を配置し、その半導体素子の電極と、上記導体パターンの一部としてデバイスホールに突出したインナーリード先端とを上下に位置合わせした後、両者をボンディングツールにより圧着する。
【0004】
半導体素子の電極には金バンプが形成されており、加熱された状態で銅リードに圧着されると、錫めっきが溶融し、金−錫合金が形成されて電極とインナーリードが接合される。
【0005】
【発明が解決しようとする課題】
ところで、最近、実装技術の高密度化、微細ピッチ化、軽量化の観点から、図4に示すように、ポリイミド樹脂フィルム1上にニッケルスパッタ層2を施した後、電解法により銅箔3を形成した材料が開発され、テープ材の薄型化が達成されるようになってきた。具体的には、密着性向上のため、フィルムと銅層との間にNi層をスパッタリングした2層TABテープである。
【0006】
この2層TABテープに銅箔の導体パターンを形成する場合、該銅箔の上にレジストマスクを形成した後、銅箔及びニッケルスパッタ層を同時にエッチングするのが一般である。このエッチングは銅箔から溶解していくため、銅箔の下に位置するニッケルスパッタ層のエッチングが必然的に遅れることになる。このエッチングの遅れを原因として、図に示すように、ニッケルスパッタ層は、銅箔からなる導体パターンの側面からはみ出した状態となる。
【0007】
さらに、該導体パターンの上に無電解錫めっきを施すと、リードの側面のニッケルスパッタ層2と銅箔3の界面において、錫の異常析出が出現し、隣接するリードに接触し短絡を生じる場合があることが判った。
【0008】
その理由として、一般に無電解錫めっきは銅との置換で析出するが、この場合ニッケルスパッタ層2があるため、銅とニッケルの界面で析出時に電位差が生じ、異常な反応を引き起こすためと思われる。またこの部分に発生した錫めっきは、インナーリードボンディング時に錫が溶融せず、金−錫接合が不十分となり、接合不良を引き起こす場合もあった。
【0009】
そこで、本発明の目的は、上記課題を解決し、リード側面における錫の過剰析出を防止するとともに、高い信頼性を有する無電解錫めっきを施した半導体装置用テープキャリアを提供することにある。
【0010】
【課題を解決するための手段】
本発明の半導体装置用テープキャリアは、ポリイミド樹脂フィルム上にニッケルスパッタ層を介して施された銅箔の導体パターン上に下地層として銅めっき層を形成し、これにより前記導体パターンのリード側面に残存しているニッケルスパッタ層および前記導体パターンを前記銅めっき層で被覆し、前記銅めっき層の上層に無電解錫めっき層を形成したことを特徴とする(請求項1)。
【0011】
本発明は、リード側面のニッケルスパッタ層と銅の界面で発生する過剰な無電解錫めっきを防止する方法として、図1の如く、ポリイミド樹脂フィルム1上にニッケルスパッタ層2を介して施された銅箔3の導体パターン上に、下地層として銅めっき層4を形成し、その銅下地層の上層に無電解錫めっき層5を形成するものである。このように、下地に銅めっき層を設けることで、リード側面に残存しているニッケルスパッタ層を被覆し、錫の異常反応を抑制することが可能である。
【0012】
なお、前記銅めっき層4は電解法または無電解法により設けることができる(請求項2)。
【0013】
本発明において、前記銅めっき層の厚さは0.1μm以上であれば、リード側面における錫の異常析出を防止するのに十分である(請求項3)。
【0014】
【発明の実施の形態】
以下、本発明を図示の実施形態に基づいて説明する。
【0015】
図1に示すように、ポリイミド樹脂フィルム1上にニッケルスパッタ層2を介して施された銅箔3の導体パターン上に、下地層として電解法または無電解法により銅めっき層4を形成し、その銅めっき層4の上層に無電解錫めっき層5を形成して、半導体装置用テープキャリアを構成する。
【0016】
このテープキャリアを半導体素子搭載用配線テープとして用いる実装形態の一例を、図2に示す。図中、3a、3bはインナーリードであり、本半導体装置用テープキャリアにおける銅箔3の導体パターンの一部として形成される。そのインナーリード3a、3bの先端上方には、半導体素子(ICチップ)6が配置される。半導体素子6の下面には素子電極が形成されており、インナーリード3a、3bの先端と上下に位置合わせされた後、両者をボンディングツールにより圧着する。半導体素子の電極には金バンプ7が形成されており、加熱された状態で銅リードに圧着されると、錫めっきが溶融し、金−錫合金が形成されて素子電極とインナーリードが接合される。
【0017】
既に述べたように、ポリイミド樹脂フィルム1上にニッケルスパッタ層2を介して施された銅箔3の導体パターン(図4の構造)上に、無電解錫めっき層5を形成しただけでは、ニッケルスパッタ層2と無電解錫めっき層5との電位差が大きいことから、リード側面のニッケルスパッタ層2と銅箔3の界面に、錫の異常析出(過剰な錫めっき)が発生する。
【0018】
しかし、上記のように、ポリイミド樹脂フィルム1上にニッケルスパッタ層2を介して施された銅箔3の導体パターン上に、下地層として銅めっき層4を形成し、その銅めっき層4の上層に無電解錫めっき層5を形成すると、リード側面に残存しているニッケルスパッタ層2が下地の銅めっき層4で被覆されるため、錫の異常反応を抑制することができる。
【0019】
【実施例】
<実施例1>
まず、ポリイミド樹脂フィルム1上にニッケルスパッタ層2を介して電解銅めっきにより銅箔3を形成したテープキャリアに、所定のレジストを塗布して乾燥させた後に、所定の配線リードパターンを有するフォトマスクを通して露光、現像させた後、エッチングを行うことにより、リードパターンを作製した。その後、銅表面を脱脂、酸洗により清浄化させ、電気めっき法により銅めっき層4を約0μm(未処理)、0.1μm、0.2μm、0.5μm、1μm、2μmと施したものを用意した。その後、これらのものの銅めっき層4上に、無電解錫めっき層5を0.5μm施し、水洗、湯洗、乾燥後、130℃×90分の加熱処理を行った。
【0020】
ここで銅めっき液にはCuCN60g/l、KCN100g/l、ロッセル塩20g/lの組成のものを用い、電流密度2A/dm2 、液温40℃、処理時間0s、7s、14s、35s、70s、140sで処理した。また、無電解錫めっきには石原薬品製580Mを用い、液温70℃、処理時間3分40秒で処理した。
【0021】
このようにして作製した半導体装置用テープキャリアを、走査型電子顕微鏡(SEM)によりリード側面の観察を行い、異常析出の有無を確認すると共に、析出部の長さを測定した。
【0022】
これらの結果(シアン化銅めっき条件と錫めっき異常析出性)を表1に示す。異常析出有無の判定は、リード全面に異常析出無し:○、リード一部有り:△、リード全面異常析出有り:×とした。
【0023】
【表1】

Figure 0004038985
【0024】
表1の結果より、銅めっき層4の厚さが少なくとも0.1μm以上であれば、リード側面に錫の異常析出は発生しない。
【0025】
これは、無電解錫めっき層5を形成する場合、下地層として銅めっき層4を施すことで、ニッケルスパッタ層2が銅めっき層4により被覆され、無電解錫めっき層5の形成時にリード側面に発生する異常析出を防止するためである。これにより錫めっきの溶融不良によるインナリードボンディング時の接合不良を低減させることが可能である。
【0026】
<実施例2>
銅めっき液に硫酸銅めっき液を用いて銅めっき層4を形成し、実施例1と同様に、その上に無電解錫めっき層5を形成した場合について、異常析出性を評価した。銅めっき層4の銅めっき液組成には硫酸銅240g/l、硫酸50ml/l、を用い、電流密度2A/dm2 、液温25℃、処理時間0s、14s、28s、70s、140s、280sで処理した。このように作製したTABテープ材の異常析出性評価結果(硫酸銅めっき条件と異常析出性)を表2に示す。
【0027】
【表2】
Figure 0004038985
【0028】
表2の結果より、実施例1と同様に、銅めっき層4の銅めっき厚さが少なくとも0.1μm以上であれば、リード側面に錫の異常析出は発生しない。
【0029】
【発明の効果】
以上説明したように本発明によれば、ポリイミド樹脂フィルム1上にニッケルスパッタ層を介して施された銅箔の導体パターン上に、下地層として銅めっき層を形成し、その銅めっき層の上層に無電解錫めっき層を形成するため、リード側面に残存しているニッケルスパッタ層が下地の銅めっき層で被覆され、錫の異常反応が抑制される。これにより錫めっきの溶融不良によるインナリードボンディング時の接合不良を低減させることが可能である。
【図面の簡単な説明】
【図1】本発明の半導体装置用テープキャリアの構造を示す断面図である。
【図2】本発明の半導体装置用テープキャリアにICチップを搭載して半導体装置を構成した組立図である。
【図3】従来の半導体装置用テープキャリアの構成を示す断面図である。
【図4】従来の半導体装置用テープキャリアの他の構成を示す断面図である。
【符号の説明】
1 ポリイミド樹脂フィルム
2 ニッケルスパッタ層
3 銅箔
3a、3b インナーリード
4 銅めっき層
5 無電解錫めっき層
6 半導体素子
7 金バンプ
8 接着剤層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tape carrier that is a precision electronic component, and more particularly to a structure of a tape carrier for a semiconductor device suitable for producing a wiring tape for mounting a semiconductor element.
[0002]
[Prior art]
As shown in FIG. 3, the conventional tape carrier for a semiconductor device has a structure in which a copper lead 3 is bonded to a polyimide resin film 1 with an adhesive layer 8 and a copper lead 3 is stably bonded to the copper lead. In this structure, the electroless tin plating layer 5 is formed so as to give the properties, or the electroless tin plating layer 5 is formed on the copper plating layer 4 as an underlayer.
[0003]
The tape carrier is mounted on a semiconductor element (IC chip) by, for example, arranging the semiconductor element so as to be located in a device hole provided in the tape carrier, and an electrode of the semiconductor element and a part of the conductor pattern. After aligning the tip of the inner lead protruding into the device hole in the vertical direction, both are crimped by a bonding tool.
[0004]
Gold bumps are formed on the electrodes of the semiconductor element. When heated and pressed against the copper leads, the tin plating is melted, a gold-tin alloy is formed, and the electrodes and the inner leads are joined.
[0005]
[Problems to be solved by the invention]
By the way, recently, from the viewpoint of high density, fine pitch, and light weight of the mounting technology, as shown in FIG. 4, after applying the nickel sputter layer 2 on the polyimide resin film 1, the copper foil 3 is formed by electrolytic method. The formed material has been developed, and thinning of the tape material has been achieved. Specifically, it is a two-layer TAB tape in which a Ni layer is sputtered between a film and a copper layer in order to improve adhesion.
[0006]
When a copper foil conductor pattern is formed on the two-layer TAB tape, it is common to form a resist mask on the copper foil and then simultaneously etch the copper foil and the nickel sputter layer. Since this etching is dissolved from the copper foil, the etching of the nickel sputter layer located under the copper foil is necessarily delayed. Causes a delay in this etching, as shown in FIG. 4, the nickel sputtering layer is in a state of protruding from the side surface of the conductive pattern made of copper foil.
[0007]
Furthermore, when electroless tin plating is performed on the conductor pattern, abnormal precipitation of tin appears at the interface between the nickel sputtered layer 2 and the copper foil 3 on the side surface of the lead, causing a short circuit due to contact with the adjacent lead It turns out that there is.
[0008]
The reason is that electroless tin plating is generally deposited by substitution with copper. In this case, since there is a nickel sputter layer 2, a potential difference occurs at the interface between copper and nickel, which seems to cause an abnormal reaction. . Further, the tin plating generated in this portion sometimes does not melt tin during inner lead bonding, resulting in insufficient gold-tin bonding, which may cause bonding failure.
[0009]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a tape carrier for a semiconductor device that solves the above-described problems, prevents excessive precipitation of tin on the side surface of a lead, and performs electroless tin plating with high reliability.
[0010]
[Means for Solving the Problems]
The tape carrier for a semiconductor device of the present invention forms a copper plating layer as a base layer on a copper foil conductor pattern applied on a polyimide resin film via a nickel sputter layer, thereby forming a lead side surface of the conductor pattern on the side surface of the lead. The remaining nickel sputter layer and the conductor pattern are covered with the copper plating layer, and an electroless tin plating layer is formed on the copper plating layer (Claim 1).
[0011]
The present invention was applied to a polyimide resin film 1 through a nickel sputter layer 2 as shown in FIG. 1 as a method for preventing excessive electroless tin plating generated at the interface between the nickel sputter layer on the side of the lead and the copper. On the conductor pattern of the copper foil 3, a copper plating layer 4 is formed as a base layer, and an electroless tin plating layer 5 is formed on the copper base layer. Thus, by providing the copper plating layer on the base, it is possible to cover the nickel sputter layer remaining on the side surface of the lead and to suppress the abnormal reaction of tin.
[0012]
The copper plating layer 4 can be provided by an electrolytic method or an electroless method (Claim 2).
[0013]
In the present invention, if the thickness of the copper plating layer is 0.1 μm or more, it is sufficient to prevent abnormal precipitation of tin on the side surface of the lead.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on illustrated embodiments.
[0015]
As shown in FIG. 1, a copper plating layer 4 is formed by electrolysis or electroless as an underlayer on a conductor pattern of a copper foil 3 applied on a polyimide resin film 1 via a nickel sputter layer 2, An electroless tin plating layer 5 is formed on the copper plating layer 4 to constitute a tape carrier for a semiconductor device.
[0016]
An example of a mounting form using this tape carrier as a semiconductor element mounting wiring tape is shown in FIG. In the figure, reference numerals 3a and 3b denote inner leads, which are formed as part of the conductor pattern of the copper foil 3 in the tape carrier for the semiconductor device. A semiconductor element (IC chip) 6 is disposed above the tips of the inner leads 3a and 3b. Element electrodes are formed on the lower surface of the semiconductor element 6, and are aligned with the tips of the inner leads 3 a and 3 b in the vertical direction, and then both are crimped by a bonding tool. Gold bumps 7 are formed on the electrodes of the semiconductor element. When the bumps are pressed onto the copper leads in a heated state, the tin plating is melted, a gold-tin alloy is formed, and the element electrodes and the inner leads are joined. The
[0017]
As already described, nickel is simply formed by forming the electroless tin plating layer 5 on the conductor pattern (structure shown in FIG. 4) of the copper foil 3 applied on the polyimide resin film 1 via the nickel sputter layer 2. Since the potential difference between the sputter layer 2 and the electroless tin plating layer 5 is large, abnormal tin precipitation (excessive tin plating) occurs at the interface between the nickel sputter layer 2 and the copper foil 3 on the side surface of the lead.
[0018]
However, as described above, the copper plating layer 4 is formed as a base layer on the conductor pattern of the copper foil 3 applied on the polyimide resin film 1 through the nickel sputter layer 2, and the upper layer of the copper plating layer 4. When the electroless tin plating layer 5 is formed on the surface, the nickel sputtered layer 2 remaining on the side surface of the lead is covered with the underlying copper plating layer 4, so that an abnormal reaction of tin can be suppressed.
[0019]
【Example】
<Example 1>
First, a photomask having a predetermined wiring lead pattern is applied to a tape carrier in which a copper foil 3 is formed by electrolytic copper plating on a polyimide resin film 1 through a nickel sputter layer 2 and then dried. After being exposed and developed through, etching was performed to produce a lead pattern. Thereafter, the copper surface is cleaned by degreasing and pickling, and the copper plating layer 4 is applied with an electroplating method of about 0 μm (untreated), 0.1 μm, 0.2 μm, 0.5 μm, 1 μm, 2 μm. Prepared. Thereafter, an electroless tin plating layer 5 of 0.5 μm was applied on the copper plating layer 4 of these, and after washing with water, washing with hot water and drying, a heat treatment was performed at 130 ° C. for 90 minutes.
[0020]
Here, a copper plating solution having a composition of CuCN 60 g / l, KCN 100 g / l, Rossell salt 20 g / l, current density 2 A / dm 2 , liquid temperature 40 ° C., treatment time 0 s, 7 s, 14 s, 35 s, 70 s. , 140 s. For electroless tin plating, 580M manufactured by Ishihara Yakuhin Co., Ltd. was used, and the treatment was performed at a liquid temperature of 70 ° C. for a treatment time of 3 minutes and 40 seconds.
[0021]
The thus prepared tape carrier for a semiconductor device was observed on the side surface of the lead with a scanning electron microscope (SEM) to confirm the presence or absence of abnormal precipitation and to measure the length of the precipitation portion.
[0022]
Table 1 shows these results (copper cyanide plating conditions and tin plating abnormal precipitation). The presence / absence of abnormal precipitation was determined as follows: no abnormal precipitation on the entire surface of the lead: ○, partial lead: Δ, abnormal precipitation on the entire lead: x.
[0023]
[Table 1]
Figure 0004038985
[0024]
From the results of Table 1, if the thickness of the copper plating layer 4 is at least 0.1 μm or more, abnormal precipitation of tin does not occur on the side surface of the lead.
[0025]
This is because when the electroless tin plating layer 5 is formed, the nickel plating layer 2 is covered with the copper plating layer 4 by applying the copper plating layer 4 as an underlayer, and the side surface of the lead is formed when the electroless tin plating layer 5 is formed. This is to prevent abnormal precipitation that occurs in the film. As a result, it is possible to reduce bonding failure during inner lead bonding due to poor melting of tin plating.
[0026]
<Example 2>
When the copper plating layer 4 was formed using a copper sulfate plating solution as the copper plating solution, and the electroless tin plating layer 5 was formed thereon as in Example 1, the abnormal precipitation was evaluated. The copper plating solution of the copper plating layer 4 uses copper sulfate 240 g / l, sulfuric acid 50 ml / l, current density 2 A / dm 2 , liquid temperature 25 ° C., treatment time 0 s, 14 s, 28 s, 70 s, 140 s, 280 s. Was processed. Table 2 shows the results of the evaluation of abnormal precipitation of the TAB tape material thus produced (copper sulfate plating conditions and abnormal precipitation).
[0027]
[Table 2]
Figure 0004038985
[0028]
From the results of Table 2, as in Example 1, when the copper plating thickness of the copper plating layer 4 is at least 0.1 μm or more, abnormal precipitation of tin does not occur on the side surface of the lead.
[0029]
【The invention's effect】
As described above, according to the present invention, a copper plating layer is formed as an underlayer on a copper foil conductor pattern applied on a polyimide resin film 1 via a nickel sputter layer, and the upper layer of the copper plating layer. In order to form the electroless tin plating layer, the nickel sputter layer remaining on the side surface of the lead is covered with the underlying copper plating layer, and abnormal tin reaction is suppressed. As a result, it is possible to reduce bonding failure during inner lead bonding due to poor melting of tin plating.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the structure of a tape carrier for a semiconductor device according to the present invention.
FIG. 2 is an assembly diagram in which an IC chip is mounted on a semiconductor device tape carrier of the present invention to constitute a semiconductor device.
FIG. 3 is a cross-sectional view showing a configuration of a conventional tape carrier for a semiconductor device.
FIG. 4 is a cross-sectional view showing another configuration of a conventional tape carrier for a semiconductor device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Polyimide resin film 2 Nickel sputter layer 3 Copper foil 3a, 3b Inner lead 4 Copper plating layer 5 Electroless tin plating layer 6 Semiconductor element 7 Gold bump 8 Adhesive layer

Claims (3)

ポリイミド樹脂フィルム上にニッケルスパッタ層を介して施された銅箔の導体パターン上に下地層として銅めっき層を形成し、これにより前記導体パターンのリード側面に残存しているニッケルスパッタ層および前記導体パターンを前記銅めっき層で被覆し、前記銅めっき層の上層に無電解錫めっき層を形成したことを特徴とする半導体装置用テープキャリア。A copper plating layer is formed as a base layer on a conductor pattern of a copper foil applied via a nickel sputter layer on a polyimide resin film, whereby the nickel sputter layer and the conductor remaining on the lead side surface of the conductor pattern A tape carrier for a semiconductor device , wherein a pattern is covered with the copper plating layer, and an electroless tin plating layer is formed on the copper plating layer. 前記銅めっき層は電解法または無電解法により設けたことを特徴とする請求項1記載の半導体装置用テープキャリア。2. The tape carrier for a semiconductor device according to claim 1, wherein the copper plating layer is provided by an electrolytic method or an electroless method. 前記銅めっき層の厚さが0.1μm以上であることを特徴とする請求項1又は2記載の半導体装置用テープキャリア。The tape carrier for a semiconductor device according to claim 1 or 2, wherein the copper plating layer has a thickness of 0.1 µm or more.
JP2000404666A 2000-12-28 2000-12-28 Tape carrier for semiconductor devices Expired - Fee Related JP4038985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000404666A JP4038985B2 (en) 2000-12-28 2000-12-28 Tape carrier for semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000404666A JP4038985B2 (en) 2000-12-28 2000-12-28 Tape carrier for semiconductor devices

Publications (2)

Publication Number Publication Date
JP2002203875A JP2002203875A (en) 2002-07-19
JP4038985B2 true JP4038985B2 (en) 2008-01-30

Family

ID=18868589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000404666A Expired - Fee Related JP4038985B2 (en) 2000-12-28 2000-12-28 Tape carrier for semiconductor devices

Country Status (1)

Country Link
JP (1) JP4038985B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894537A (en) * 2015-07-01 2015-09-09 常德鑫鸿金属材料有限公司 Single-conductive-side polyimide composite material and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101341159B1 (en) 2011-09-16 2013-12-13 서울시립대학교 산학협력단 Method for plating light emitting diode lead frame having high reflectivity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894537A (en) * 2015-07-01 2015-09-09 常德鑫鸿金属材料有限公司 Single-conductive-side polyimide composite material and preparation method thereof

Also Published As

Publication number Publication date
JP2002203875A (en) 2002-07-19

Similar Documents

Publication Publication Date Title
US7098126B2 (en) Formation of electroplate solder on an organic circuit board for flip chip joints and board to board solder joints
JP5808402B2 (en) Method for forming a solder alloy deposit on a substrate
US8871631B2 (en) Method to form solder deposits on substrates
TW201121376A (en) Circuit wiring board incorporating heat resistant substrate
US6686660B2 (en) Semiconductor device
US20100139963A1 (en) Interconnect substrate, method of manufacturing interconnect substrate and semiconductor device
US20080185711A1 (en) Semiconductor package substrate
KR100705637B1 (en) Flexible wiring base material and process for producing the same
EP2180770A1 (en) Method to form solder deposits on substrates
JP4038985B2 (en) Tape carrier for semiconductor devices
JP3860028B2 (en) Semiconductor device
JP2005057264A (en) Packaged electric structure and its manufacturing method
JP3813497B2 (en) Bump forming method and semiconductor device mounting structure
JP7382170B2 (en) semiconductor equipment
EP2244285A1 (en) Method to form solder deposits on substrates
KR100374075B1 (en) Film carrier tape for mounting electronic parts and method for manufacturing the same
EP1322146A1 (en) Method of electroplating solder bumps on an organic circuit board
JPH0574778A (en) Bump and forming method of thereof
TWI858929B (en) Light emitting diode package structure and method for manufacturing the same
KR100726059B1 (en) formation of electroplate solder on an organic circuit board for flip chip joints and board to board solder joints
JP2001352005A (en) Wiring board and semiconductor device
JPH11135533A (en) Electrode structure, silicon semiconductor element provided with the electrode, its manufacture, circuit board mounting the element and its manufacture
JP2004289052A (en) Wiring board and its manufacturing method
JP2002280422A (en) Tape carrier for semiconductor devices
JP5013183B2 (en) Manufacturing method of tape carrier for semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060120

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060120

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20060120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees