JP4027836B2 - Method for producing solid oxide fuel cell - Google Patents
Method for producing solid oxide fuel cell Download PDFInfo
- Publication number
- JP4027836B2 JP4027836B2 JP2003112073A JP2003112073A JP4027836B2 JP 4027836 B2 JP4027836 B2 JP 4027836B2 JP 2003112073 A JP2003112073 A JP 2003112073A JP 2003112073 A JP2003112073 A JP 2003112073A JP 4027836 B2 JP4027836 B2 JP 4027836B2
- Authority
- JP
- Japan
- Prior art keywords
- solid oxide
- fuel cell
- oxide fuel
- producing
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、支持膜式固体酸化物形燃料電池の作製方法に関する。
【0002】
【従来の技術】
固体酸化物形燃料電池〔SOFC(=Solid Oxide Fuel Cell):以下適宜SOFCと略称する〕は、作動温度が800〜1000℃程度、通常1000℃程度と高い。SOFCの単電池すなわち単セルは電解質(固体酸化物電解質)を挟んで燃料極及び空気極(酸化剤として酸素が用いられる場合は酸素極)が配置され、燃料極/電解質/空気極の3層ユニットで構成される。図1はSOFCを原理的に示す図である。
【0003】
空気極に導入される空気中の酸素は空気極で酸化物イオン(O2-)となり、電解質を通って燃料極に至る。ここで、燃料極に導入される燃料(水素、一酸化炭素。なお、メタンは燃料極の成分である金属、例えばニッケルの触媒作用で水蒸気改質されて水素と一酸化炭素となり燃料として利用される。)と反応して電子を放出し、電気と水、二酸化炭素等の反応生成物を生成する。空気極での利用済み空気は空気極オフガスとして排出され、燃料極での利用済み燃料は燃料極オフガスとして排出される。単電池(単セル)1個の電圧は低いため、通常、単電池を複数層直列に積層してSOFCが構成される。
【0004】
電解質材料としては、例えばイットリア安定化ジルコニア(YSZ)等のシート状焼結体が用いられ、燃料極としては、例えばニッケルとイットリア安定化ジルコニアの混合物の焼結体(Ni/YSZサーメット)等の多孔質体が用いられ、空気極としては、例えばSrドープのLaMnO3等の多孔質体が用いられる。これらは、通常、電解質材料の両面に燃料極と空気極を焼き付けることにより単電池が構成される。
【0005】
SOFCには平板方式や円筒方式や一体積層方式などがあるが、これらは原理的には同じである。平板方式のSOFCは、電解質膜自体でその構造を保持するものが一般的であり、自立膜式と称される。電解質膜の厚さは通常100μm程度と厚く構成される。隣接する単電池を電気的に接続するのと同時に燃料極と空気極のそれぞれに燃料と空気を適正に分配、供給し排出する目的で、セパレータと単電池とが交互に積層される。
【0006】
ところで、このようなSOFCでは、流通する燃料、空気、燃料極オフガス、空気極オフガスはすべて気体であり、しかも作動温度が1000℃程度と高いことから、セパレータ相互間やセパレータと電池間でのシールが不十分であるとガス漏れが生じて電池として致命的となる。
【0007】
従来のSOFCはその作動温度が800〜1000℃程度と高いが、最近では800℃程度以下、例えば750℃程度の温度で作動するSOFCも開発されつつある。図2〜4はそのSOFCの態様例を説明する図である。図2は単電池の構成例で、図2(a)は側面図、図2(b)は斜視図である。図3は単電池を組み込んだSOFCスタックの構成例、図4は図3中X−X線断面図である。図2のとおり、単電池は、燃料極の上に電解質膜が配置され、電解質膜の上に空気極が配置されて構成され、この単電池が図3〜4のように組み込まれてSOFCスタックが構成される。
【0008】
電解質膜として例えばイットリア安定化ジルコニア等のジルコニア系やLaGaO3系などの材料を用いて、その膜厚を例えば10μm程度というように薄くし、これを膜厚の厚い燃料極で支持するように構成するのが一般的であり、支持膜式と称される。支持膜式においては電解質膜の膜厚を薄く構成できることなどから、前記自立膜式の場合に比べてより低温で運転できる。このため、そのセパレータ等の構成材料として例えばフェライト系ステンレス鋼などの安価な材料の使用を可能とし、また小型化が可能であるなど各種利点を有する。
【0009】
図3〜4のとおり、支持膜式SOFCスタックは、上部から下部へ順次セパレータA、セパレータB、セパレータC、接合材、単電池、セパレータDが配置される。セパレータAの上部、セパレータDの下部には集電板等が配置される。図4にその一部を示しているが、図3では省略している。またセパレータA〜Dの構成材料としては金属(合金を含む)が用いられ、その例としてステンレス鋼などが挙げられる。
【0010】
【発明が解決しようとする課題】
ところで、上記のような低温作動のSOFCにおいても、流通する燃料、空気、燃料極オフガス、空気極オフガスはすべて気体であり、しかも作動温度が650〜800℃程度と、なお高いことから、セパレータ相互間やセパレータと電池間でのシールが不十分であるとガス漏れが生じて電池として致命的となる。また、SOFCは繰り返し使用されることから、低温作動のSOFCについてもシールの問題が解決されないとSOFCとして体をなさず、実用化は困難である。
【0011】
それらシールのうち、特に単電池とセパレータ(図3〜4中セパレータCに相当するセパレータで、セルサポートフォイルとも呼ばれる。以下セルサポートフォイルと言う。)間でのシールは電解質膜とセルサポートフォイル間でのシールとなり、またセルサポートフォイルを介してガスの流配を行う合金マニホールドに組み込む必要がある。すなわち、電解質膜の周縁上面とセルサポートフォイルとの間をガラス系シール材で接合させることで接合、シールされる。図5は従来におけるその作製工程の一例を示す図である。
【0012】
図5のとおり、▲1▼燃料極上に電解質膜を載置し、焼成して燃料極−電解質膜共焼結体を作る。▲2▼電解質膜上に空気極成分を含むスラリーを用いてスクリーン印刷する。▲3▼空気極を焼き付ける(大気雰囲気中、最高1200℃)。▲4▼金属製のセルサポートフォイルをガラス接合材を介在させて貼付する。▲5▼加熱処理して接合する〔電気炉(大気雰囲気)中、900〜1000℃〕。このうち、▲1▼、▲3▼及び▲5▼の工程では加熱処理が必要であるが、加熱温度は工程順に低くなる。
【0013】
ガラス系シール材は軟化点以下の温度では脆く、電池作動温度から降温する際に、特に単セルとセルサポートフォイル間の接合部にクラックまたは剥離が生じ易い。一度クラックまたは剥離が生じた接合体は、その部分でガスの気密性を失うため、再昇温しても同等の性能は得られない。従って、ガラスシールを行ったSOFCは十分な熱サイクル特性がなく、SOFCを実用化する上で大きな障害となる。
【0014】
本発明者らは、ガラス接合材に代わる接合材料として金属ろう材に着目し、これを用いたセルとセルサポートフォイル間の接合について幾つかの成果を得ている。金属ろう材による接合は、高い接合強度が得られ、熱サイクル特性を改善できる利点を有している。しかし一方、金属ろう材による接合では、強固な接合を得るために燃料極の予備還元などの工程が加わるなど、従来の作製工程の見直しが必要であることが分かった。
【0015】
本発明は、支持膜式SOFCの作製工程にその一部に金属ろう材による接合を適用するに際して、従来の作製工程を改善し、起動→運転→停止→起動というように繰り返し使用しても気密性を失うことなく、十分な熱サイクル特性を有し、長期間にわたり安定して作動できる支持膜式SOFCの作製方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明は、金属を含むセラミック材料で構成された燃料極上に順次電解質膜及び空気極を積層した単セルを作製し、該単セルにセルサポートフォイルを配置して構成する支持膜式固体酸化物形燃料電池の作製方法であって、その作製を、(1)燃料極−電解質膜共焼結体の作製工程、(2)単セルとセルサポートフォイルの金属ろう材によるろう付け工程、(3)電解質上への空気極の焼き付け工程、(4)セルサポートフォイルとマニホールドの接合工程、の順に行うことを特徴とする支持膜式固体酸化物形燃料電池の作製方法である。
【0017】
【発明の実施の形態】
本発明は、金属を含むセラミック材料で構成された燃料極上に順次、電解質膜及び空気極を積層した単セルを作製し、該単セルにセルサポートフォイルを配置して構成する支持膜式固体酸化物形燃料電池の作製方法である。そして、その作製を、(1)燃料極−電解質膜共焼結体の作製工程、(2)単セルとセルサポートフォイルの金属ろう材によるろう付け工程、(3)電解質上への空気極の焼き付け工程、(4)セルサポートフォイルとマニホールドの接合工程、の順に行うことを特徴とする。
【0018】
本発明によれば、上記工程を経ることによりセル部を金属ろう材で十分接合し、起動→運転→停止→起動というように繰り返し使用しても気密性を失うことなく、十分な熱サイクル特性を有する支持膜式固体酸化物形燃料電池を作製することができる。図6〜8は本発明の支持膜式固体酸化物形燃料電池の作製方法を説明する図である。以下、工程順に説明する。各工程▲1▼〜▲8▼は図8中▲1▼〜▲8▼に対応している。
【0019】
〈▲1▼燃料極−電解質膜共焼結体の作製工程〉
燃料極上に電解質を電解質スラリーによるスクリーン印刷等で配置し、焼成して燃料極−電解質膜共焼結体、すなわち燃料極と電解質膜との共焼結体を作製する。ここで、燃料極−電解質膜共焼結体の作製工程における焼結前に、燃料極上面に電解質膜を燃料極の周縁上面が露出するように形成してもよい。その露出面の形成の仕方については、特に限定はないが、例えば以下(1)〜(3)のようにして形成することができる。
【0020】
(1)燃料極の全面に形成された電解質膜のうち、当該周縁上面の電解質膜を除去する。燃料極に対する電解質膜の形成を例えばディッピング処理(すなわち、電解質スラリーによる燃料極の浸漬処理、あるいはウォッシュコート)により行う場合、電解質膜は燃料極の全面に形成される。また、燃料極の上面全面に電解質膜をスクリーン印刷してもよい。こうして形成された電解質膜のうち、当該周縁上面を研磨等により除去する。(2)電解質による燃料極のディッピング処理時に当該周縁上面をマスキングする。(3)燃料極上面への電解質膜のスクリーン印刷時に、燃料極の上面全面のうち、当該周縁上面を残して印刷する。図6〜7はこうして形成された燃料極の周縁上面の露出状態を示している。図6は斜視図、図7は断面図である。
【0021】
本発明における燃料極の構成材料としては、金属を含むセラミック材料が用いられる。このうちセラミック材料としては、例えばイットリア安定化ジルコニア〔YSZ:(Y2O3)X(ZrO2)1-X(式中x=0.05〜0.15)が用いられ、その金属としてはNi、Cu、Fe、Ru及びPdから選ばれた少なくとも1種の金属が用いられる。燃料極の構成材料の好ましい例としては、ニッケルとイットリア安定化ジルコニアの混合物が挙げられる。電解質膜の構成材料としては、例えばイットリア安定化ジルコニア等のジルコニア系材料やLaGaO3系材料などが用いられる。
【0022】
〈▲2▼燃料極の還元工程〉
燃料極を還元する。この還元処理は、これに続く金属ろう材による接合効果を向上させる上で有効である。燃料極とセルサポートフォイルは還元工程を経ないでも接合するが、燃料極を還元することにより、両者をより強固に接合することができる。還元処理は、電気炉等で、還元雰囲気中、800〜1200℃、1〜10時間の範囲で行う。還元雰囲気としては、燃料極−電解質膜共焼結体のうち燃料極の表面を還元し得る雰囲気であればよく、好ましくは水素−窒素(水素を含む窒素ガス)雰囲気、水素−アルゴン(水素を含むアルゴンガス)雰囲気が用いられる。セルサポートフォイルの構成材料としては例えばステンレス鋼等の耐熱性合金が用いられる。
【0023】
〈▲3▼燃料極のセルサポートフォイルとの接合箇所への金属ろう材の配置工程〉
上記燃料極の還元処理で還元された燃料極におけるセルサポートフォイルとの接合箇所に金属ろう材を配置する。この場合、図6〜7に示すように燃料極の周縁上面が露出している態様では、金属ろう材は、燃料極の周縁上面に配置してもよく、燃料極の側周面に配置してもよく、燃料極の周縁上面と燃料極の側周面に配置してもよい。図8には燃料極の周縁上面と燃料極の側周面に配置する場合を示している。また、燃料極の周縁上面が露出せず、電解質膜が燃料極上面全面を覆っている態様では、金属ろう材は燃料極の側周面とセルサポートフォイルの下面間に配置する。
【0024】
金属ろう材の使用形態については、特に制限はなく、粉体、スラリー、ゾル、ペースト、シート、あるいはワイヤー等の形で使用することができる。スラリーやゾルやペーストは、例えば金属ろうの粉をPVA等のバインダーとともに水や有機溶媒等の溶媒に分散させることで作製される。シートやワイヤーは、例えば金属ろうの塊を圧延することなどで作製される。金属ろうをスラリー、ゾルまたはペーストの形で使用すればその作業上も有利である。図8の▲3▼ではゾルまたはペーストの形で使用する場合を示している。
【0025】
金属ろう材としては、Ag、Cu、Ti、Ni、Au、Al及びPdのうち少なくとも1種の金属を含むものであればいずれも使用できるが、特にAgまたはNiを含む金属ろう材であるのが好ましい。その例としては、Ag−Cu系合金(例えばAg71.0〜73.0%、残部Cu:780〜900℃)(%はwt%、温度はろう付け温度、以下同じ。)、Ag−Cu−Zn系合金(例えばAg44.0〜46.0%、Cu29.0〜31.0%、Zn23.0〜27.0%:745〜845℃)、Ag−Cu−Zn−Cd系合金(例えばAg34.0〜36.0%、Cu25.0〜27.0%、Zn19.0〜23.0%、Cd17.0〜19.0%:700〜845℃)、Ag−Cu−Zn−Sn系合金(例えばAg33.0〜35.0%、Cu35.0〜37.0%、Zn25.0〜29.0%、Sn2.5〜3.5%:730〜820℃)、Ag−Cu−Zn−Ni系合金(例えばAg39.0〜41.0%、Cu29.0〜31.0%、Zn26.0〜30.0%、Ni1.5〜2.5%:780〜900℃)などが挙げられる。
【0026】
〈▲4▼ろう付け工程〉
上記のとおり、燃料極の周縁上面、燃料極の側周面、あるいは燃料極の周縁上面と燃料極の側周面に金属ろう材を配置した後、金属ろう材上にセルサポートフォイルを載せてろう付けする。この処理は、電気炉等で、真空または不活性雰囲気中、金属ろう材特有のろう付け温度〔例えば金属ろう材が上記Ag71.0〜73.0wt%、残部Cu(JIS:BAg-8)である場合、ろう付け温度は780〜900℃である〕、5〜10分行う。不活性雰囲気としては、酸化雰囲気とならない雰囲気であればよく、好ましくはアルゴン雰囲気が用いられる。
【0027】
〈▲5▼電解質上への空気極の印刷工程〉
上記のとおり、燃料極の周縁上面等に金属ろう材を配置してろう付けした後、電解質膜上に空気極を印刷する。印刷は空気極材料のスラリーを用いるスクリーン印刷等、適宜の手法で行える。空気極の構成材料としては、例えばSr、FeドープのLaCoO3、SrドープのLaMnO3等の多孔質体が用いられる。
【0028】
〈▲6▼空気極の焼き付け工程〉
上記のとおり、電解質膜上に空気極を印刷した後、空気極を焼き付ける。この処理は、電気炉等で、大気雰囲気中、800〜900℃で、2〜10時間行う。前述のとおり、従来法では、まず電解質膜上に空気極を最高1200℃という温度で焼き付けた後、燃料極とセルサポートフォイルとの接合を900〜1000℃で行っている。これに対して、本発明によれば、実験、検討の結果、空気極焼き付け温度を低下させても、セル性能に影響がないことが分かった。
【0029】
本発明においては、この知見を基に、電解質膜上への空気極の焼き付け工程を、燃料極とセルサポートフォイルとの接合工程後に、しかも800〜900℃という低温度で行うものである。この点は本発明の特徴点の一つであり、次の加熱工程である▲8▼ガラス接合材による接合工程での接合温度と同一とすることができるので、セル作製上非常に有利である。
【0030】
〈▲7▼セルサポートフォイルへのガラス接合材の貼付工程〉
以上のようにして構成した、セルにセルサポートフォイルを金属ろう材を介して接合した構造体のうちのセルサポートフォイル部分の下部周縁を、ガラス接合材を介在させて、マニホールド(枠体:図3〜4で言えばセパレータDに相当する)に貼付する。この工程は従来の方法と同様である。
【0031】
〈▲8▼ガラス接合材での接合工程〉
上記ガラス接合材を貼付した状態でセルサポートフォイルをマニホールドに接合する。この処理は、大気雰囲気中、750〜900℃程度で、1〜2時間行う。本発明によれば、この温度は、前述▲4▼ろう付け工程における、ろう付け温度より高くても、表面が多少酸化される程度で、ろう付け部分の溶融、または剥離には至らないことが分かった。
【0032】
【実施例】
以下、実施例に基づき本発明をさらに詳しく説明するが、本発明がこれら実施例に限定されないことはもちろんである。
【0033】
固体酸化物電解質材料としてY2O3をドープしたZrO2を用い、燃料極としてニッケルとイットリア安定化ジルコニアの混合物の焼結体(=Ni/YSZサーメット。NiとYSZとの重量比=6:4。気孔率=60%)を用い、空気極としてSr及びFeをドープしたLaCoO3〔(La、Sr)(Co、Fe)O3)〕を用いた。まず、燃料極上の全面に電解質をその水性スラリーを用いてスクリーン印刷した後、焼成した。次いで、燃料極上面のうちその周縁上面の電解質膜を研磨機で研削、研磨して燃料極を露出させた。
【0034】
その後、燃料極を還元処理した。還元処理は電気炉中、水素−窒素(H2=4vol%)雰囲気中、1000℃で、5時間行った。次いで、燃料極の上記露出部に銀ろう(組成:Ag72wt%−Cu28wt%、融点:780℃)のペーストを塗布し、その上にセルサポートフォイル(SUS430製)を重ね合わせた。その状態で、真空雰囲気炉内に配置し、接合部に荷重がかかるように重石を載置し、炉内を10-2〜10-3Paの真空度まで減圧した。炉内を850℃まで昇温し、5分間保持してろう付けした後、降温した。
【0035】
こうして半電池とセルサポートフォイルの接合体を複数個作製し、その電解質膜面に空気極〔(La、Sr)(Co、Fe)O3)]を焼き付けた。焼き付けは、電気炉中、大気雰囲気、900℃で2時間行った。次いで、セルサポートフォイルにガラス接合材を介してマニホールド(SUS430製)を貼付した後、電気炉中、大気雰囲気、900℃で2時間熱処理し、電池を作製した。
【0036】
〈発電試験〉
前記電池を用いて発電試験を行った。電池温度は750℃とし、燃料として水素を、酸化剤として空気を用い、開回路電圧(OCV:V0と略称する)及び電流密度0.2A/cm2における電圧(V0.2と略称する)を測定した。これを200℃/hの速度で室温まで降温した後、同じ速度で再び750℃まで昇温する熱サイクルを繰り返し行い、各昇温後のV0及びV0.2の測定を行った。その結果、V0及びV0.2の初期特性がそれぞれ1.12V、0.91Vであったものが、熱サイクル1回後に1.11V、0.87V、5回後に1.08V、0.78Vと低下したが、それ以降は性能が安定した。10回の熱サイクル後において1.10V、0.80Vを示した。
【0037】
【発明の効果】
本発明によれば、ガラス接合材に代わる接合材料として金属ろう材を適用するに際して、ガラス接合材を用いる従来の作製工程を改善し、起動→運転→停止→起動というように繰り返し使用しても気密性を失うことなく、十分な熱サイクル特性を有し、長期間にわたり安定して作動できる支持膜式SOFCを作製することができる。
【図面の簡単な説明】
【図1】固体酸化物形燃料電池の構成を原理的に示す図
【図2】支持膜式固体酸化物形燃料電池の態様例を説明する図
【図3】支持膜式固体酸化物形燃料電池を組み込んだSOFCスタックの構成例を示す図
【図4】図3中X−X線断面図
【図5】従来の支持膜式固体酸化物形燃料電池の作製工程の一例を示す図
【図6】燃料極の周縁上面の露出状態を示す図(斜視図)
【図7】燃料極の周縁上面の露出状態を示す図(断面図)
【図8】本発明の支持膜式固体酸化物形燃料電池の作製工程を示す図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a supported membrane solid oxide fuel cell.
[0002]
[Prior art]
A solid oxide fuel cell (SOFC (= Solid Oxide Fuel Cell): hereinafter abbreviated as SOFC as appropriate) has an operating temperature as high as about 800 to 1000 ° C., usually about 1000 ° C. An SOFC single cell, ie, a single cell, has a fuel electrode and an air electrode (an oxygen electrode when oxygen is used as an oxidant) sandwiching an electrolyte (solid oxide electrolyte), and has three layers: fuel electrode / electrolyte / air electrode. Consists of units. FIG. 1 is a diagram showing the SOFC in principle.
[0003]
Oxygen in the air introduced into the air electrode becomes oxide ions (O 2− ) at the air electrode, and reaches the fuel electrode through the electrolyte. Here, the fuel introduced into the fuel electrode (hydrogen, carbon monoxide. Note that methane is steam reformed by the catalytic action of a metal that is a component of the fuel electrode, such as nickel, to form hydrogen and carbon monoxide and used as fuel. To emit electrons and produce reaction products such as electricity, water, and carbon dioxide. Used air at the air electrode is discharged as an air electrode off gas, and used fuel at the fuel electrode is discharged as a fuel electrode off gas. Since the voltage of one single cell (single cell) is low, the SOFC is usually configured by stacking a plurality of single cells in series.
[0004]
As the electrolyte material, for example, a sheet-like sintered body such as yttria stabilized zirconia (YSZ) is used, and as the fuel electrode, for example, a sintered body of a mixture of nickel and yttria stabilized zirconia (Ni / YSZ cermet) or the like. A porous body is used, and as the air electrode, for example, a porous body such as Sr-doped LaMnO 3 is used. These usually constitute a unit cell by baking a fuel electrode and an air electrode on both surfaces of an electrolyte material.
[0005]
The SOFC includes a flat plate method, a cylindrical method, and an integral lamination method, and these are the same in principle. A flat-plate type SOFC generally retains its structure with the electrolyte membrane itself, and is called a self-supporting membrane type. The thickness of the electrolyte membrane is usually as thick as about 100 μm. At the same time as the adjacent unit cells are electrically connected, separators and unit cells are alternately stacked for the purpose of appropriately distributing, supplying, and discharging fuel and air to the fuel electrode and the air electrode, respectively.
[0006]
By the way, in such a SOFC, the fuel, air, fuel electrode off-gas, and air electrode off-gas that are distributed are all gases, and the operating temperature is as high as about 1000 ° C. If it is insufficient, gas leaks and becomes fatal as a battery.
[0007]
A conventional SOFC has a high operating temperature of about 800 to 1000 ° C., but recently, an SOFC operating at a temperature of about 800 ° C. or lower, for example, about 750 ° C. is being developed. 2 to 4 are diagrams for explaining an example of the SOFC mode. 2A and 2B are configuration examples of the unit cell, FIG. 2A is a side view, and FIG. 2B is a perspective view. FIG. 3 is a configuration example of a SOFC stack incorporating a single battery, and FIG. 4 is a cross-sectional view taken along line XX in FIG. As shown in FIG. 2, the unit cell is configured by disposing an electrolyte membrane on the fuel electrode and an air electrode on the electrolyte membrane. The unit cell is assembled as shown in FIGS. Is configured.
[0008]
The electrolyte membrane is made of, for example, a zirconia-based material such as yttria-stabilized zirconia or LaGaO 3 -based material, and the thickness thereof is reduced to about 10 μm, for example, and this is supported by a thick fuel electrode. It is common to do this and is called a support membrane type. The support membrane type can be operated at a lower temperature than the self-supporting membrane type because the thickness of the electrolyte membrane can be reduced. For this reason, it has various advantages such as enabling the use of an inexpensive material such as ferritic stainless steel as a constituent material of the separator and the like, and miniaturization.
[0009]
As shown in FIGS. 3 to 4, in the support membrane type SOFC stack, the separator A, the separator B, the separator C, the bonding material, the single cell, and the separator D are sequentially arranged from the upper part to the lower part. A current collector plate or the like is disposed above the separator A and below the separator D. FIG. 4 shows a part thereof, but it is omitted in FIG. Moreover, metals (including alloys) are used as the constituent materials of the separators A to D, and examples thereof include stainless steel.
[0010]
[Problems to be solved by the invention]
By the way, even in the low temperature operation SOFC as described above, the circulating fuel, air, fuel electrode off-gas, and air electrode off-gas are all gases, and the operating temperature is about 650 to 800 ° C., which is still high. If the sealing between the separator and the battery is insufficient, gas leakage occurs and the battery becomes fatal. In addition, since the SOFC is repeatedly used, the SOFC cannot be put into practical use as a SOFC unless the problem of sealing is solved for the low-temperature operation SOFC.
[0011]
Among these seals, in particular, the seal between the cell and the separator (the separator corresponding to the separator C in FIGS. 3 to 4 and also referred to as a cell support foil, hereinafter referred to as a cell support foil) is between the electrolyte membrane and the cell support foil. It is necessary to incorporate it in an alloy manifold that performs gas flow through a cell support foil. That is, it joins and seals by joining between the peripheral upper surface of an electrolyte membrane, and a cell support foil with a glass-type sealing material. FIG. 5 is a diagram showing an example of a conventional manufacturing process.
[0012]
As shown in FIG. 5, (1) an electrolyte membrane is placed on the fuel electrode and fired to produce a fuel electrode-electrolyte membrane co-sintered body. (2) Screen printing is performed on the electrolyte membrane using a slurry containing an air electrode component. (3) Bake the air electrode (up to 1200 ° C in air). (4) A metal cell support foil is pasted with a glass bonding material interposed. (5) Join by heat treatment [900 to 1000 ° C. in an electric furnace (atmosphere)]. Among these, heat treatment is required in the steps (1), (3) and (5), but the heating temperature is lowered in the order of the steps.
[0013]
The glass-based sealing material is brittle at a temperature below the softening point, and when the temperature is lowered from the battery operating temperature, cracking or peeling is particularly likely to occur at the joint between the single cell and the cell support foil. Since the bonded body once cracked or peeled loses gas tightness at that portion, even if the temperature is raised again, equivalent performance cannot be obtained. Therefore, SOFCs with glass seals do not have sufficient thermal cycle characteristics, which is a major obstacle to putting SOFCs into practical use.
[0014]
The present inventors have paid attention to a metal brazing material as a bonding material instead of a glass bonding material, and have obtained some results for bonding between a cell and a cell support foil using the metal brazing material. Bonding with a metal brazing material has the advantage that high bonding strength can be obtained and thermal cycle characteristics can be improved. However, on the other hand, it has been found that the conventional manufacturing process needs to be reexamined, for example, in order to obtain a strong joint, the joining with the metal brazing material requires a process such as preliminary reduction of the fuel electrode.
[0015]
The present invention improves the conventional manufacturing process when applying the joining with a metal brazing material to a part of the manufacturing process of the support membrane type SOFC, and it is airtight even if it is used repeatedly such as start-up → run-down → start-up. It is an object of the present invention to provide a method for producing a support membrane type SOFC having sufficient thermal cycle characteristics and capable of operating stably over a long period of time without losing properties.
[0016]
[Means for Solving the Problems]
The present invention provides a support membrane solid oxide in which a single cell is formed by sequentially laminating an electrolyte membrane and an air electrode on a fuel electrode made of a ceramic material containing a metal, and a cell support foil is disposed in the single cell. A fuel cell manufacturing method comprising: (1) a fuel electrode-electrolyte membrane co-sintered body manufacturing process; (2) a brazing process of a single cell and a cell support foil using a metal brazing material; (3 And (4) a cell support foil and manifold joining step in this order, and a support membrane solid oxide fuel cell manufacturing method.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a support membrane type solid oxidation in which a single cell is formed by sequentially laminating an electrolyte membrane and an air electrode on a fuel electrode made of a ceramic material containing metal, and a cell support foil is arranged in the single cell. This is a method of manufacturing a physical fuel cell. Then, the production is performed by (1) a production process of a fuel electrode-electrolyte membrane co-sintered body, (2) a brazing process of a single cell and a cell support foil with a metal brazing material, and (3) an air electrode on the electrolyte. A baking process and (4) a cell support foil and manifold joining process are performed in this order.
[0018]
According to the present invention, the cell part is sufficiently joined with the metal brazing material through the above-described steps, and sufficient heat cycle characteristics are obtained without losing hermeticity even when used repeatedly such as start-up-operation-stop-start-up. A supported membrane solid oxide fuel cell having the following structure can be produced. 6-8 is a figure explaining the preparation methods of the support membrane type solid oxide fuel cell of this invention. Hereinafter, it demonstrates in order of a process. Each step (1) to (8) corresponds to (1) to (8) in FIG.
[0019]
<(1) Manufacturing process of fuel electrode-electrolyte membrane co-sintered body>
An electrolyte is placed on the fuel electrode by screen printing using an electrolyte slurry and fired to produce a fuel electrode-electrolyte membrane co-sintered body, that is, a fuel electrode-electrolyte film co-sintered body. Here, before the sintering in the production process of the fuel electrode-electrolyte membrane co-sintered body, the electrolyte membrane may be formed on the upper surface of the fuel electrode so that the peripheral upper surface of the fuel electrode is exposed. The method of forming the exposed surface is not particularly limited, but for example, it can be formed as follows (1) to (3).
[0020]
(1) From the electrolyte membrane formed on the entire surface of the fuel electrode, the electrolyte membrane on the peripheral upper surface is removed. When the formation of the electrolyte membrane on the fuel electrode is performed by, for example, dipping treatment (that is, immersion treatment of the fuel electrode with electrolyte slurry or wash coating), the electrolyte membrane is formed on the entire surface of the fuel electrode. Further, an electrolyte membrane may be screen-printed on the entire upper surface of the fuel electrode. Of the electrolyte membrane thus formed, the peripheral upper surface is removed by polishing or the like. (2) The peripheral upper surface is masked during the dipping process of the fuel electrode by the electrolyte. (3) During screen printing of the electrolyte membrane on the upper surface of the fuel electrode, printing is performed while leaving the peripheral upper surface of the entire upper surface of the fuel electrode. 6 to 7 show the exposed state of the peripheral upper surface of the fuel electrode formed in this way. 6 is a perspective view, and FIG. 7 is a cross-sectional view.
[0021]
As a constituent material of the fuel electrode in the present invention, a ceramic material containing a metal is used. Among these, as the ceramic material, for example, yttria stabilized zirconia [YSZ: (Y 2 O 3 ) X (ZrO 2 ) 1-X (where x = 0.05 to 0.15) is used, At least one metal selected from Ni, Cu, Fe, Ru and Pd is used. A preferable example of the material constituting the fuel electrode is a mixture of nickel and yttria-stabilized zirconia. As a constituent material of the electrolyte membrane, for example, a zirconia-based material such as yttria-stabilized zirconia, a LaGaO 3 -based material, or the like is used.
[0022]
<▲ 2> Fuel electrode reduction process>
Reduce the anode. This reduction treatment is effective in improving the joining effect by the subsequent metal brazing material. Although the fuel electrode and the cell support foil are joined without going through a reduction process, the fuel electrode and the cell support foil can be joined more firmly by reducing the fuel electrode. The reduction treatment is performed in an electric furnace or the like in a reducing atmosphere at 800 to 1200 ° C. for 1 to 10 hours. The reducing atmosphere may be any atmosphere that can reduce the surface of the fuel electrode in the fuel electrode-electrolyte membrane co-sintered body, and preferably a hydrogen-nitrogen (nitrogen gas containing hydrogen) atmosphere, hydrogen-argon (hydrogen). Containing argon gas) atmosphere. As a constituent material of the cell support foil, for example, a heat resistant alloy such as stainless steel is used.
[0023]
<▲ 3> Placement process of metal brazing material at the joint of fuel electrode with cell support foil>
A metal brazing material is disposed at the joint of the fuel electrode reduced by the reduction treatment of the fuel electrode with the cell support foil. In this case, as shown in FIGS. 6 to 7, in the aspect in which the peripheral upper surface of the fuel electrode is exposed, the metal brazing material may be disposed on the peripheral upper surface of the fuel electrode or on the side peripheral surface of the fuel electrode. Alternatively, they may be disposed on the peripheral upper surface of the fuel electrode and the side peripheral surface of the fuel electrode. FIG. 8 shows a case where the fuel electrode is disposed on the peripheral upper surface of the fuel electrode and the side peripheral surface of the fuel electrode. Further, in a mode in which the peripheral upper surface of the fuel electrode is not exposed and the electrolyte membrane covers the entire upper surface of the fuel electrode, the metal brazing material is disposed between the side peripheral surface of the fuel electrode and the lower surface of the cell support foil.
[0024]
The usage form of the metal brazing material is not particularly limited, and can be used in the form of powder, slurry, sol, paste, sheet, wire or the like. The slurry, sol, or paste is produced, for example, by dispersing metal brazing powder in a solvent such as water or an organic solvent together with a binder such as PVA. A sheet | seat and a wire are produced by rolling the lump of metal brazing, for example. If the metal brazing is used in the form of a slurry, a sol or a paste, it is advantageous for the operation. In FIG. 8, (3) shows the case of using in the form of sol or paste.
[0025]
Any metal brazing material can be used as long as it contains at least one metal among Ag, Cu, Ti, Ni, Au, Al, and Pd. However, the metal brazing material contains Ag or Ni. Is preferred. Examples thereof include an Ag—Cu alloy (eg, Ag 71.0 to 73.0%, remaining Cu: 780 to 900 ° C.) (% is wt%, temperature is brazing temperature, the same shall apply hereinafter), Ag—Cu—. Zn-based alloys (for example, Ag 44.0 to 46.0%, Cu 29.0 to 31.0%, Zn 23.0 to 27.0%: 745 to 845 ° C.), Ag—Cu—Zn—Cd based alloys (for example, Ag 34) 0.0 to 36.0%, Cu 25.0 to 27.0%, Zn 19.0 to 23.0%, Cd 17.0 to 19.0%: 700 to 845 ° C), Ag-Cu-Zn-Sn alloy (For example, Ag 33.0 to 35.0%, Cu 35.0 to 37.0%, Zn 25.0 to 29.0%, Sn 2.5 to 3.5%: 730 to 820 ° C), Ag-Cu-Zn- Ni-based alloys (for example, Ag 39.0 to 41.0%, Cu 29.0 to 31 0%, Zn26.0~30.0%, Ni1.5~2.5%: 780~900 ℃), and the like.
[0026]
<(4) Brazing process>
As described above, after placing the metal brazing material on the peripheral upper surface of the fuel electrode, the side peripheral surface of the fuel electrode, or on the peripheral upper surface of the fuel electrode and the side peripheral surface of the fuel electrode, the cell support foil is placed on the metal brazing material. Braze. This treatment is performed in an electric furnace or the like in a vacuum or an inert atmosphere at a brazing temperature peculiar to a metal brazing material [for example, the metal brazing material is Ag 71.0 to 73.0 wt% and the remainder is Cu (JIS: BAg-8). In some cases, the brazing temperature is 780-900 ° C.] 5-10 minutes. The inert atmosphere may be an atmosphere that does not become an oxidizing atmosphere, and an argon atmosphere is preferably used.
[0027]
<(5) Air electrode printing process on electrolyte>
As described above, a metal brazing material is disposed on the peripheral upper surface of the fuel electrode and brazed, and then the air electrode is printed on the electrolyte membrane. Printing can be performed by an appropriate method such as screen printing using a slurry of an air electrode material. As a constituent material of the air electrode, for example, a porous body such as Sr, Fe-doped LaCoO 3 , Sr-doped LaMnO 3 is used.
[0028]
<(6) Air electrode baking process>
As described above, after the air electrode is printed on the electrolyte membrane, the air electrode is baked. This treatment is carried out in an air atmosphere at 800 to 900 ° C. for 2 to 10 hours with an electric furnace or the like. As described above, in the conventional method, the air electrode is first baked on the electrolyte membrane at a maximum temperature of 1200 ° C., and then the fuel electrode and the cell support foil are joined at 900 to 1000 ° C. On the other hand, according to the present invention, as a result of experiments and studies, it has been found that even if the air electrode baking temperature is lowered, the cell performance is not affected.
[0029]
In the present invention, based on this knowledge, the baking process of the air electrode on the electrolyte membrane is performed at a low temperature of 800 to 900 ° C. after the bonding process of the fuel electrode and the cell support foil. This point is one of the features of the present invention, and can be made the same as the bonding temperature in the next heating step (8) the bonding step with the glass bonding material, which is very advantageous for cell production. .
[0030]
<7> Glass bonding material sticking process to cell support foil>
The lower peripheral edge of the cell support foil portion of the structure in which the cell support foil is joined to the cell via the metal brazing material, with the glass joining material interposed, is arranged as described above. 3-4 corresponds to the separator D). This process is the same as the conventional method.
[0031]
<(8) Bonding process with glass bonding material>
The cell support foil is bonded to the manifold with the glass bonding material adhered. This treatment is performed at about 750 to 900 ° C. for 1 to 2 hours in an air atmosphere. According to the present invention, even if this temperature is higher than the brazing temperature in the above-mentioned (4) brazing step, the surface is somewhat oxidized, and the brazing part may not be melted or peeled off. I understood.
[0032]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, of course, this invention is not limited to these Examples.
[0033]
ZrO 2 doped with Y 2 O 3 was used as a solid oxide electrolyte material, and a sintered body of a mixture of nickel and yttria stabilized zirconia (= Ni / YSZ cermet. Weight ratio of Ni and YSZ = 6: 4. Porosity = 60%), and LaCoO 3 [(La, Sr) (Co, Fe) O 3 )] doped with Sr and Fe was used as the air electrode. First, the electrolyte was screen-printed on the entire surface of the fuel electrode using the aqueous slurry, and then fired. Next, the electrolyte membrane on the peripheral upper surface of the upper surface of the fuel electrode was ground and polished by a polishing machine to expose the fuel electrode.
[0034]
Thereafter, the fuel electrode was reduced. The reduction treatment was performed in an electric furnace in a hydrogen-nitrogen (H 2 = 4 vol%) atmosphere at 1000 ° C. for 5 hours. Next, a paste of silver brazing (composition: Ag 72 wt% -Cu 28 wt%, melting point: 780 ° C.) was applied to the exposed portion of the fuel electrode, and a cell support foil (manufactured by SUS430) was overlaid thereon. In this state, it was placed in a vacuum atmosphere furnace, a weight was placed so that a load was applied to the joint, and the inside of the furnace was depressurized to a degree of vacuum of 10 −2 to 10 −3 Pa. The temperature in the furnace was increased to 850 ° C., brazed for 5 minutes, and then cooled.
[0035]
In this way, a plurality of assemblies of the half battery and the cell support foil were produced, and the air electrode [(La, Sr) (Co, Fe) O 3 )] was baked on the electrolyte membrane surface. Baking was performed in an electric furnace in an air atmosphere at 900 ° C. for 2 hours. Next, a manifold (manufactured by SUS430) was attached to the cell support foil via a glass bonding material, followed by heat treatment at 900 ° C. for 2 hours in an electric furnace to produce a battery.
[0036]
<Power generation test>
A power generation test was performed using the battery. The battery temperature is 750 ° C., hydrogen is used as the fuel, air is used as the oxidant, the open circuit voltage (OCV: abbreviated as V 0 ), and the voltage at the current density of 0.2 A / cm 2 (abbreviated as V 0.2 ). It was measured. After the temperature was lowered to room temperature at a rate of 200 ° C./h, a thermal cycle was repeated to raise the temperature to 750 ° C. at the same rate, and V 0 and V 0.2 after each temperature rise were measured. As a result, the initial characteristics of V 0 and V 0.2 were 1.12 V and 0.91 V, respectively, and 1.11 V, 0.87 V after one thermal cycle and 1.08 V, 0.78 V after 5 cycles. After that, the performance became stable after that. 1.10V and 0.80V were shown after 10 thermal cycles.
[0037]
【The invention's effect】
According to the present invention, when applying a metal brazing material as a bonding material in place of a glass bonding material, the conventional manufacturing process using the glass bonding material is improved, and repeated use such as start-up-operation-stop-start-up Without losing hermeticity, a support membrane SOFC having sufficient thermal cycle characteristics and capable of operating stably over a long period can be manufactured.
[Brief description of the drawings]
FIG. 1 is a diagram showing the configuration of a solid oxide fuel cell in principle. FIG. 2 is a diagram for explaining an example of a supported membrane solid oxide fuel cell. FIG. FIG. 4 is a cross-sectional view taken along the line XX in FIG. 3. FIG. 5 is a diagram showing an example of a manufacturing process of a conventional supported membrane solid oxide fuel cell. 6 is a view (perspective view) showing the exposed state of the upper surface of the periphery of the fuel electrode.
FIG. 7 is a view (cross-sectional view) showing an exposed state of a peripheral upper surface of a fuel electrode.
FIG. 8 is a diagram showing a manufacturing process of a support membrane type solid oxide fuel cell of the present invention.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003112073A JP4027836B2 (en) | 2003-04-16 | 2003-04-16 | Method for producing solid oxide fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003112073A JP4027836B2 (en) | 2003-04-16 | 2003-04-16 | Method for producing solid oxide fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004319286A JP2004319286A (en) | 2004-11-11 |
JP4027836B2 true JP4027836B2 (en) | 2007-12-26 |
Family
ID=33472440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003112073A Expired - Fee Related JP4027836B2 (en) | 2003-04-16 | 2003-04-16 | Method for producing solid oxide fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4027836B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3985764A4 (en) * | 2019-06-13 | 2022-08-10 | Panasonic Intellectual Property Management Co., Ltd. | ELECTROCHEMICAL CELL UNIT, ELECTROCHEMICAL CELL STACK, METHOD OF MAKING AN ELECTROCHEMICAL CELL UNIT, AND METHOD OF MAKING AN ELECTROCHEMICAL CELL STACK |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005122300A2 (en) | 2004-06-10 | 2005-12-22 | Risoe National Laboratory | Solid oxide fuel cell |
AU2005321530B2 (en) | 2004-12-28 | 2009-01-08 | Technical University Of Denmark | Method of producing metal to glass, metal to metal or metal to ceramic connections |
RU2370343C2 (en) | 2005-01-12 | 2009-10-20 | Текникал Юниверсити Оф Денмарк | Method of shrinkage and porosity control at sintering of multy-layer structures |
KR100940160B1 (en) | 2005-01-31 | 2010-02-03 | 테크니칼 유니버시티 오브 덴마크 | Redox stable anode |
JP5208518B2 (en) | 2005-02-02 | 2013-06-12 | テクニカル ユニバーシティ オブ デンマーク | Method for producing a reversible solid oxide fuel cell |
ES2434442T3 (en) | 2005-08-31 | 2013-12-16 | Technical University Of Denmark | Solid reversible stacking of oxide fuel cells and method of preparing it |
US20070141435A1 (en) * | 2005-12-20 | 2007-06-21 | Hasz Wayne C | Fuel cell with a brazed interconnect and method of assembling the same |
JP5422867B2 (en) * | 2006-05-31 | 2014-02-19 | 大日本印刷株式会社 | Solid oxide fuel cell and method for producing the same |
JP2008066296A (en) * | 2006-08-10 | 2008-03-21 | Ngk Insulators Ltd | Electrochemical device |
EP2378599B1 (en) | 2006-11-23 | 2012-10-31 | Technical University of Denmark | Method for the manufacture of reversible solid oxide cells |
JP2008287969A (en) * | 2007-05-16 | 2008-11-27 | Nippon Telegr & Teleph Corp <Ntt> | Flat plate solid oxide fuel cell |
BRPI0822579A2 (en) * | 2008-04-18 | 2015-06-23 | Univ California | Integrated seal for high temperature electrochemical device |
JP5390148B2 (en) * | 2008-09-16 | 2014-01-15 | 一般財団法人ファインセラミックスセンター | Gas seal structure having gas seal portion excellent in thermal cycle durability and method for producing the same |
JP5405200B2 (en) * | 2009-06-11 | 2014-02-05 | 日本電信電話株式会社 | Solid oxide fuel cell and method for producing the same |
JP5890244B2 (en) * | 2012-05-02 | 2016-03-22 | 日本特殊陶業株式会社 | Joined body and solid oxide fuel cell using the same |
JP2014041704A (en) * | 2012-08-21 | 2014-03-06 | Nippon Telegr & Teleph Corp <Ntt> | Solid oxide fuel cell |
JP5727428B2 (en) * | 2012-08-31 | 2015-06-03 | 日本特殊陶業株式会社 | Fuel cell with separator and fuel cell |
JP5727431B2 (en) * | 2012-08-31 | 2015-06-03 | 日本特殊陶業株式会社 | Fuel cell with separator and fuel cell |
JP5727430B2 (en) * | 2012-08-31 | 2015-06-03 | 日本特殊陶業株式会社 | Fuel cell with separator and fuel cell |
JP5727429B2 (en) * | 2012-08-31 | 2015-06-03 | 日本特殊陶業株式会社 | Fuel cell with separator and fuel cell |
JP5727432B2 (en) * | 2012-08-31 | 2015-06-03 | 日本特殊陶業株式会社 | Fuel cell with separator, method for manufacturing the same, and fuel cell stack |
CN104604005B (en) | 2012-08-31 | 2017-03-01 | 日本特殊陶业株式会社 | Cell of fuel cell with dividing plate and its manufacture method and fuel cell pack |
JP5881594B2 (en) * | 2012-12-21 | 2016-03-09 | 本田技研工業株式会社 | Fuel cell stack and manufacturing method thereof |
CN105531863B (en) * | 2013-09-10 | 2017-10-24 | 日本特殊陶业株式会社 | Fuel cell and fuel cell pack |
JP6013304B2 (en) * | 2013-10-29 | 2016-10-25 | 日本特殊陶業株式会社 | Fuel cell single cell with separator and fuel cell stack |
JP6336382B2 (en) * | 2013-12-20 | 2018-06-06 | 日本特殊陶業株式会社 | Single cell with separator, fuel cell stack, and manufacturing method of single cell with separator |
JP2016054146A (en) * | 2014-09-02 | 2016-04-14 | Toto株式会社 | Solid oxide fuel battery system |
JP6741218B2 (en) * | 2016-07-29 | 2020-08-19 | 日産自動車株式会社 | Fuel cell |
JP7135458B2 (en) | 2018-06-06 | 2022-09-13 | 株式会社デンソー | Fuel cell |
-
2003
- 2003-04-16 JP JP2003112073A patent/JP4027836B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3985764A4 (en) * | 2019-06-13 | 2022-08-10 | Panasonic Intellectual Property Management Co., Ltd. | ELECTROCHEMICAL CELL UNIT, ELECTROCHEMICAL CELL STACK, METHOD OF MAKING AN ELECTROCHEMICAL CELL UNIT, AND METHOD OF MAKING AN ELECTROCHEMICAL CELL STACK |
US12074347B2 (en) | 2019-06-13 | 2024-08-27 | Panasonic Intellectual Property Management Co., Ltd. | Electrochemical cell unit, electrochemical cell stack, method for producing electrochemical cell unit, and method for producing electrochemical cell stack |
Also Published As
Publication number | Publication date |
---|---|
JP2004319286A (en) | 2004-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4027836B2 (en) | Method for producing solid oxide fuel cell | |
Tucker | Progress in metal-supported solid oxide fuel cells: A review | |
EP1732157B1 (en) | Method and apparatus for forming electrode interconnect contacts for a solid-oxide fuel cell stack | |
JP5219298B2 (en) | Thin solid oxide battery | |
JP4811622B2 (en) | Solid oxide fuel cell | |
JP5328275B2 (en) | Cell stack, fuel cell module including the same, and fuel cell device | |
JP2009507356A (en) | Ceramic membrane with integral seal and support, and electrochemical cell and electrochemical cell stack structure including the same | |
JP5289190B2 (en) | Fuel cell stack device, fuel cell module and fuel cell device | |
CN113161566A (en) | Preparation method of metal support plate for fuel cell | |
JP4552371B2 (en) | Solid oxide fuel cell | |
JP2004303508A (en) | Unit cell structure for fuel cell, and solid oxide type fuel cell using it | |
JP2005327529A (en) | Cylindrical fuel cell and manufacturing method thereof | |
JP4087216B2 (en) | Seal structure and sealing method for solid oxide fuel cell | |
JP2010199058A (en) | Reaction device and manufacturing method of same | |
JP5294649B2 (en) | Cell stack and fuel cell module | |
JP4512911B2 (en) | Solid oxide fuel cell | |
JPH10172590A (en) | Solid electrolyte type fuel cell | |
JP2004039574A (en) | Sealing material for low-temperature operating solid oxide fuel cells | |
JP2004146129A (en) | Solid oxide fuel cell sealing structure and sealing method | |
JP6982582B2 (en) | Electrochemical reaction cell stack | |
JP4334903B2 (en) | Solid oxide fuel cell and method for producing the same | |
JP2004146131A (en) | Solid oxide fuel cell sealing structure and sealing method | |
JP6917182B2 (en) | Conductive members, electrochemical reaction units, and electrochemical reaction cell stacks | |
JP2004349069A (en) | Seal structure and method for solid oxide fuel cell | |
WO2007117069A1 (en) | Honeycomb-type solid oxide fuel cell and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050622 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070925 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071009 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071010 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101019 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4027836 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111019 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121019 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121019 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131019 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |