JP4024341B2 - Method for manufacturing semiconductor device - Google Patents
Method for manufacturing semiconductor device Download PDFInfo
- Publication number
- JP4024341B2 JP4024341B2 JP12328397A JP12328397A JP4024341B2 JP 4024341 B2 JP4024341 B2 JP 4024341B2 JP 12328397 A JP12328397 A JP 12328397A JP 12328397 A JP12328397 A JP 12328397A JP 4024341 B2 JP4024341 B2 JP 4024341B2
- Authority
- JP
- Japan
- Prior art keywords
- region
- lower electrode
- insulating film
- forming
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Liquid Crystal (AREA)
- Thin Film Transistor (AREA)
- Semiconductor Integrated Circuits (AREA)
Description
【0001】
【発明が属する技術分野】
本発明は半導体薄膜を利用した半導体装置およびその作製方法に関する技術であり、特に珪素を含む結晶性膜を利用した薄膜トランジスタ(Thin Film Transistor:TFT)に関する。
【0002】
なお、本明細書において、半導体装置とは半導体を利用して機能する装置全般を指すものであり、TFT、MOSFET(IGFET)の如き半導体素子のみならず、電気光学装置(液晶表示装置等)やそれを搭載した応用製品(電子デバイス等)も半導体装置の範疇に含まれるものとする。本明細書中では区別を明確にするため、適宜半導体素子、表示装置等と記載する。
【0003】
【従来の技術】
近年、基板上に形成した薄膜トランジスタ(TFT)で半導体回路を形成する技術の進歩が著しい。特に、薄膜半導体として結晶性珪素膜(ポリシリコン膜等)を用い、同一基板上に周辺回路と画素マトリクス回路とを搭載したアクティブマトリクス型表示装置が実用化レベルに達している。
【0004】
中でもアクティブマトリクス型液晶表示装置(以下、AM−LCDと呼ぶ)はノートパソコン、プロジェクター、携帯機器等のディスプレイ用として活発に開発が進められている。AM−LCDはその動作モードによって透過型LCDと反射型LCDとに大別される。
【0005】
また現在、高精細かつ明るい液晶表示装置の開発が急がれ、XGA(1024×768 画素)やSXGA(1280×1024画素)の様に各画素が30μm角以下の極めて微細なものとなる構造が開発されている。
【0006】
上述の様なAM−LCDは液晶層に印加した電圧によって液晶層の光学応答特性を変化させ、光のオン/オフ制御を行う。また、通常は液晶層に保持した電荷の漏れを補うため、補助容量を各画素に設ける構成となる。
【0007】
ところで、本発明者らは珪素を含む結晶性膜の形成方法として、結晶化を助長する触媒元素(代表的にはニッケル)を利用して結晶性膜を得る方法を開示している(特開平7-130652号公報参照)。
【0008】
同公報では触媒元素を直接添加して結晶化させた領域(以下、縦成長領域と呼ぶ)と、触媒元素を添加した領域の周囲に形成される結晶化領域(以下、横成長領域と呼ぶ)とを形成する技術が開示されている。
【0009】
しかしながら、触媒元素は殆どが金属元素であるため、結晶化後に残存するとTFTの信頼性を損ねる恐れがあり好ましくない。
【0010】
【発明が解決しようとする課題】
本願発明は、上記触媒元素を効果的に除去または低減する工程を有する半導体装置の作製方法において、製造工程を簡略化するための技術を提供することを課題とする。
【0011】
【課題を解決するための手段】
本明細書で開示する発明の構成は、
珪素を含む非晶質膜の全部または一部に対して該珪素の結晶化を助長する触媒元素を保持または添加する工程と、
加熱処理により前記珪素を含む非晶質膜の素子形成部を結晶化させる工程と、
前記素子形成部に隣接する領域および補助容量の下部電極となる領域に対して15族から選ばれた元素を同時に添加する工程と、
加熱処理により前記15族から選ばれた元素を添加した領域に前記触媒元素をゲッタリングさせる工程と、
を有することを特徴とする。
【0012】
本発明の基本的な目的は、珪素を含む非晶質膜の結晶化に使用した触媒元素を形成後の結晶性膜中からゲッタリングする作製方法において、その工程を簡略化することにある。
【0013】
ここで上記触媒元素のゲッタリング方法について簡単に説明する。本頑発明の構成の一つに、15族から選ばれた元素によるゲッタリング効果を利用する特徴がある。
【0014】
上記触媒元素としてはNi(ニッケル)、Co(コバルト)、Fe(鉄)、Pd(パラジウム)、Pt(白金)、Cu(銅)、Au(金)が代表的である。本発明者らの実験では、ニッケルが最も適した元素であることが判明している。
【0015】
また、上記触媒元素をゲッタリングする15族元素としては、N(窒素)、P(リン)、As(砒素)、Sb(アンチモン)、Bi(ビスマス)が挙げられるが、特に顕著な作用効果を示すのはリンである。
【0016】
典型的な例としては、触媒元素としてニッケル、ゲッタリング元素(15族元素)としてリンを使用した場合、600℃前後の加熱処理によってリンとニッケルが安定な結合状態を示す。この時、Ni3 P、Ni5 P2 、Ni2 P、Ni3 P2 、Ni2 P3 、NiP2 、NiP3 という結合状態をとりうる。
【0017】
以上の様に、珪素を含む非晶質膜の結晶化を助長する触媒元素としてニッケルを使用した場合、15族から選ばれた元素のゲッタリング作用により結晶性膜中から除去または低減することができる。
【0018】
【実施例】
〔実施例1〕
本発明を利用して反射型液晶表示装置を作製する例について図1を用いて説明する。本実施例では周辺回路を構成する基本回路であるCMOS回路と画素マトリクス回路とを同一基板上に形成する工程について説明する。
【0019】
なお、図面作成の都合上、周辺回路と画素マトリクス回路の縮尺比は対応しておらず、画素マトリクス回路部を大きめに記載している。
【0020】
また、周辺回路はシフトレジスト等に代表されるドライバー回路だけでなく、その他の信号処理を行うロジック回路も含まれる。例えば、メモリ、D/Aコンバータ、オペアンプ、パルスジェネレータなどがロジック回路に含まれる。
【0021】
まず、絶縁表面を有する基板101として下地膜として酸化珪素膜等を堆積したガラス基板を用意する。また、ガラス基板の代わりに石英基板、シリコン基板、セラミックス基板等を用いても良い。
【0022】
次に、非晶質珪素膜102をプラズマCVD法または減圧CVD法を用いて10〜75nm(好ましくは15〜45nm)の厚さに形成する。なお、非晶質珪素膜以外にも珪素を含む非晶質半導体膜、例えばSiX Ge1-X (0<X<1)を用いることもできる。
【0023】
次に、非晶質珪素膜102を特開平8-78329 号公報記載の技術を適用して結晶化する。同公報の特徴は、非晶質珪素膜に対して触媒元素を選択的に添加し、基板と概略平行に結晶成長した領域(横成長領域)を得ることにある。
【0024】
まず、非晶質珪素膜102上に酸化珪素膜でなるマスク絶縁膜103を50〜150 nmの厚さに形成する。そして、マスク絶縁膜103をパターニングしてニッケルを添加する領域に第1の開口部104、105を設ける。
【0025】
この第1の開口部104、105は後に半導体素子(本実施例ではTFT)を形成する領域(素子形成部)の近傍が露出する様に形成する。即ち、横成長領域がちょうど素子形成部に形成される様に設計しておく。
【0026】
次に、薄い酸化膜(図示せず)を露出した非晶質珪素膜の表面に形成する。この工程は酸素雰囲気中でのUV光照射などで良い。この酸化膜は次の溶液塗布工程で濡れ性を改善する効果を有する。
【0027】
次に、珪素の結晶化を助長する触媒元素(本明細書ではニッケルを例にする)を重量換算で100ppm含んだ溶液(例えば酢酸ニッケル塩溶液、硝酸ニッケル塩溶液等)を非晶質珪素膜102およびマスク絶縁膜103上に塗布し、スピンコート法によりニッケル含有層106を形成する。(図1(A))
【0028】
同公報記載の技術を用いると、マスク絶縁膜に形成された第1の開口部104、105で露出した非晶質珪素膜の表面には、約 2×1014atoms/cm2 のニッケルが保持される。
【0029】
この状態で結晶化のための加熱処理を行う。この加熱処理は 500〜700 ℃(代表的には 550〜650 ℃)の温度で行い、処理時間は 4〜24時間(代表的には 8〜15時間)とする。この処理によりニッケルが膜内部へと拡散して結晶化し、結晶性珪素膜107〜110が形成される。(図1(B))
【0030】
ここで107、108はニッケルを添加した領域であり、非常に高濃度にニッケルを含有している。また、109、110は横方向に結晶化が進行した横成長領域であり、 5×1018〜 1×1019atoms/cm3 程度のニッケルを含む。また、結晶化に至らなかった領域は非晶質のまま残存する。
【0031】
この横成長領域は特定の方向に規則性をもって並んだ針状または柱状結晶が集合した結晶構造となっている。また、各針状結晶は互いに概略平行に、巨視的には同一の方向に向かって成長しているという特徴がある。
【0032】
次に、上記マスク絶縁膜103を再びパターニングして後に補助容量となる電極部(下部電極部)を形成するための第2の開口部111を形成する。なお、マスク絶縁膜103を完全に除去した後に、開口部を有するレジストマスクを新たに設ける構成とすることも可能である。
【0033】
そして、その状態でイオンプランテーション法またはプラズマドーピング法によりP(リン)イオンを添加する。Pイオンの代わりにAs(砒素)イオンを用いても有効である。(図1(C))
【0034】
本実施例のイオン注入工程は加速電圧を 5〜25kVとし、ドーズ量を 1×1013〜 8×1015atoms/cm2 (好ましくは 5×1013〜 1×1015atoms/cm2 )とする。この様な設定とすることで、露出した非晶質珪素膜中には 5×1019〜 2×1021atoms/cm3 の濃度でPイオンが添加される。
【0035】
本実施例の特徴は、まずニッケル添加領域として機能した第1の開口部104、105がリンを添加する領域としても機能する点である。第1の開口部104、105の下に形成されたリン添加領域112、113はニッケルを集めるゲッタリング領域として機能する。
【0036】
また、第2の開口部111の下に形成されたリン添加領域114は、N型導電性を有する補助容量の下部電極となる。そして、同時にニッケルを集めるゲッタリング領域としても機能する。
【0037】
この様に、ゲッタリング領域を形成する目的でPイオンを添加する工程が、補助容量の下部電極を形成する工程を兼ねている点が本願発明の最も重要な構成の一つである。
【0038】
Pイオンの添加工程が終了したら、マスク絶縁膜103を除去した後、窒素雰囲気中で 400〜700 ℃(代表的には 550〜600 ℃)、 2〜24時間(代表的には 8〜12時間)の加熱処理を行い、横成長領域109、110に存在するニッケルをリン添加領域112〜114の方へと移動させる。(図2(A))
【0039】
なお、この工程はマスク絶縁膜103を除去する前に行っても構わない。また、加熱処理の前にレーザーアニール等の処理を行い、珪素膜中のリンを分散させておくことも有効である。このレーザーアニールを行う場合、マスク絶縁膜103を除去した後にレーザーアニールを施した方が効果的である。なお、レーザー光としてはKrF、ArF、XeCl等を励起ガスとするエキシマレーザー、CO2 レーザーおよびYAGレーザー等を利用することができる。
【0040】
こうして横成長領域109、110に残留していたニッケルはリン添加領域112〜114にゲッタリングされ、ニッケルが低減された横成長領域115、116が得られる。なお、リン元素によるゲッタリング工程については本発明者らが特願平9-94607 号で開示している。(図2(A))
【0041】
また、リン添加領域112〜114はPイオンを添加する工程で非晶質化するが、この加熱処理工程で再び結晶化する。
【0042】
なお、本発明者らがSIMS(質量二次イオン分析)で確認した結果、図2(A)に示す工程の後に横成長領域115、116に含まれるニッケル濃度は、少なくとも 5×1017atoms/cm3 以下(これ以下は検出下限となって測定不能)にまで低減されていることが判明した。
【0043】
そして、この時、リン添加領域112〜114はニッケルがゲッタリングされて集まるため高濃度にニッケルを含有する領域となる。SIMSによる分析では
1×1018〜 1×1020atoms/cm2 の濃度でニッケルの存在が確認されている。
【0044】
ただし、後に補助容量の下部電極として機能するリン添加領域114はニッケルが残存していたとしても電極として機能すれば問題はない。また、リン添加領域112、113は少なくともチャネル形成領域には使用しない(ソース/ドレイン領域としては使用できる)。従って、基本的には活性層を形成する時点で除去するのでニッケルの有無は問題ではない。
【0045】
こうして図2(A)の状態が得られたら、珪素膜をパターニングして活性層117〜119を形成する。なお、活性層117、118はそれぞれ主に周辺回路を構成するCMOS回路のN型TFT、P型TFTとなる。また、活性層119は画素マトリクス回路を構成する画素TFT(本実施例ではN型TFTとする)となる。
【0046】
次に、珪素膜表面に形成された酸化物(図示せず)を除去する。この様な表面酸化物は珪素膜中の汚染物等を取り込んでいるため、除去することで清浄な珪素膜表面を得ることができる。
【0047】
そして、ただちにゲイト絶縁膜となる酸化珪素膜120をプラズマCVD法を用いて10〜150 nmの厚さに形成する。勿論、減圧熱CVD法、スパッタ法を用いることもできる。ECRプラズマCVD法や高密度プラズマCVD法でも効果的である。(図2(B))
【0048】
次に、アルミニウムまたはアルミニウムを主成分とする材料でなる電極パターン121〜124を形成する。電極パターン121〜123はそれぞれCMOS回路または画素TFTを構成するゲイト電極の原型である。また、電極パターン124は補助容量の上部電極の原型である。
【0049】
なお、本実施例では画素TFTとしてトリプルゲイト型TFTを採用するため、電極パターン123を三つに分けて記載するが実際には全て繋がった同一電極である。
【0050】
こうして図3(A)の状態が得られたら、次に2回の陽極酸化工程を行う。なお、以下に記載する陽極酸化工程からイオン注入(リン(P)またはボロン(B))に至るまでの工程は、本発明者らによる特開平7-135318号公報記載の技術によるものである。従って、詳細な条件等は同公報を参考にすると良い。
【0051】
電極パターン121〜124を形成した後、まず、3%シュウ酸水溶液中で陽極酸化を行い、多孔質状の陽極酸化膜125〜128を形成する。次に、3%酒石酸を混合したエチレングリコール溶液中で陽極酸化を行い、無孔質状の陽極酸化膜129〜132を形成する。また、これら2回の陽極酸化工程の後、ゲイト電極133〜135、補助容量の上部電極136が画定する。
【0052】
こうして図3(B)に示す状態が得られたら、ゲイト電極および多孔質状の陽極酸化膜をマスクとしてゲイト絶縁膜120のドライエッチングを行う。この工程より137〜140で示される様なゲイト絶縁膜が形成される。なお、ゲイト絶縁膜140は補助容量のキャパシタ絶縁膜として機能する。(図3(C))
【0053】
次に、図3(D)に示す様に多孔質状の陽極酸化膜125〜128を除去し、高加速Pイオン注入及び低加速Pイオン注入を行う。この工程によってN型TFTのソース領域141、ドレイン領域142、一対の低濃度不純物領域(LDD領域とも呼ばれる)143、チャネル形成領域144が形成される。
【0054】
また、本実施例では画素TFTをN型TFTで構成するため、画素TFTのソース領域145、ドレイン領域146、一対の低濃度不純物領域147〜149、チャネル形成領域150〜152が形成される。
【0055】
なお、この時P型TFTの活性層にもPイオンが添加されて前述のソース/ドレイン領域と同濃度のPイオンを含んだ領域153、154及び前述の低濃度不純物領域と同濃度のPイオンを含んだ領域155が形成される。また、156で示される領域にはPイオンは全く添加されず、予め添加したPイオン濃度が保たれるが、実質的に画素TFTとドレイン領域146と一体化してしまう。
【0056】
次に、P型TFTのみが露出する様にレジストマスク157を設け、高加速Bイオン注入及び低加速Bイオン注入を行う。この工程によって図3(D)におけるPイオンを含んだ領域153〜155は全てP型に反転してP型TFTのソース領域158、ドレイン領域159、一対の低濃度不純物領域160、チャネル形成領域161が形成される。(図4(A))
【0057】
以上の様なイオン注入工程を利用すると、1回のパターニング工程のみでN型TFTとP型TFTのソース/ドレイン領域を形成することができる。
【0058】
次に、レジストマスク157を除去した状態でファーネスアニール、レーザーアニール、ランプアニールのいずれかの手段またはそれらを併用した手段によって注入したPイオンおよびBイオンの活性化を行う。また、これと同時にイオン注入により崩れた活性層の結晶性を修復する。
【0059】
次に、第1の層間絶縁膜162として酸化珪素膜及び窒化珪素膜でなる積層膜を形成する。そして、コンタクトホールを形成した後、ソース電極163〜165及びドレイン電極166、167を形成する。(図4(B))
【0060】
次に、第2の層間絶縁膜168として有機性樹脂膜(ポリイミド、ポリアミド、ポリイミドアミド、アクリル等)を 0.5〜3 μm(好ましくは 1.5〜2.5 μm)の厚さに形成する。有機性樹脂膜の最も大きな特徴は比誘電率が低い(2.0 〜3.4 程度)ことであり、これにより配線間の寄生容量を大幅に低減することができる。即ち、ロジック回路など高周波駆動を必要とする回路を構成する際に動作速度の低下を効果的に抑制することができる。
【0061】
次に、第2の層間絶縁膜168にコンタクトホールを形成して、画素電極169を形成する。なお、本実施例では画素電極169をアルミニウムまたはアルミニウムを主成分とする材料で構成する。
【0062】
最後に、得られたTFT全体を水素雰囲気において加熱処理して水素化を行い、活性層中のダングリングボンドの低減を図る。こうして、図4(C)に示す様な、CMOS回路および画素TFTが同一基板上に一体形成されたアクティブマトリクス基板が完成する。
【0063】
この後は、公知のセル組み工程によって上記アクティブマトリクス基板と対向基板との間に液晶層を挟持すれば反射型液晶表示装置が完成する。
【0064】
液晶材料の種類、セルギャップ等の設計事項は実施者が適宜決定すれば良い。また、本実施例ではブラックマスクを対向側に設ける構成としているが、アクティブマトリクス基板側の必要箇所に設ける構成としても良い。
【0065】
〔実施例2〕
本実施例では実施例1とは異なる手段で結晶性珪素膜を形成する例について説明する。なお、基本的に異なる工程は実施例1の図1(A)、(B)、(C)に対応する工程(リン元素によるゲッタリング工程の手前の工程)だけなので、これらの工程についてのみ説明することとする。
【0066】
本実施例では、非晶質珪素膜を結晶化する手段として特開平7-130625号公報記載の技術の縦成長領域の形成方法を利用する。
【0067】
図5(A)において、501は基板、502は非晶質珪素膜である。縦成長領域を形成する場合、実施例1の様なマスク絶縁膜は必要なく、非晶質珪素膜502の全面に対してニッケル含有層503を形成すれば良い。
【0068】
この時、ニッケルを含有した溶液内のニッケル濃度は重量換算で10ppm (非晶質珪素膜の表面で約 3×1013atoms/cm2 )で良い。
【0069】
この状態で結晶化のための加熱処理を行う。本実施例では600 ℃4 時間とする。この加熱処理により非晶質珪素膜502は全面が結晶化し、縦成長領域と呼ばれる結晶性珪素膜504が得られる。(図5(B))
【0070】
次に、レジストマスク505を形成する。レジストマスク505にはPイオンを添加するための開口部506〜508が形成される。そして、開口部506〜508を形成したら、Pイオンの注入工程を行い、リン添加領域509〜511を形成する。(図5(C))
【0071】
この時、開口部506、507からPイオンが添加された領域509、510はニッケルを集めるゲッタリング領域として機能する。このゲッタリング領域の形成箇所は、素子形成部から離れすぎるとゲッタリング効果が小さくなるので素子形成部に隣接する領域が好ましい。
【0072】
また、開口部508からPイオンが添加された領域511は補助容量の下部電極として機能する。勿論、下部電極としての機能に加えてゲッタリング領域としての機能も兼ねている。
【0073】
以上の様な工程で図5(C)に示す状態が得られる。この後は実施例1と同様の工程に従って半導体装置を作製すれば良い。
【0074】
〔実施例3〕
本実施例では同一基板上で縦成長領域と横成長領域とを使い分けて半導体装置を作製する例について説明する。なお、基本的にはリン元素によるゲッタリング工程までが異なるのみで、実施例1や実施例2と類似の工程であるので必要な部分のみを説明することにする。
【0075】
図6(A)において、601は基板、602は非晶質珪素膜である。本実施例では周辺回路を横成長領域で形成し、画素マトリクス回路を縦成長領域で形成する構成とする。そのため、マスク絶縁膜603は画素マトリクス回路となる領域には形成しない様にし、周辺回路となる領域では必要箇所に開口部604を設ける。
【0076】
そして、ニッケルを含有した溶液を塗布し、スピンコートすることによりニッケル含有層605を形成する。この時、溶液内のニッケル濃度は実施例1と同様に重量換算で100ppmとすれば良い。これ以下の濃度では横成長領域の成長距離が所望の長さにまで達しない恐れがある。(図6(A))
【0077】
この状態で結晶化のための加熱処理を行う。本実施例では横成長を十分に行わすために600 ℃8 時間とする。この加熱処理により周辺回路となる領域ではニッケル添加領域(縦成長領域とも言える)606、横成長領域607が形成される。また、画素マトリクス回路となる領域では非晶質珪素膜602の全面が結晶化し、縦成長領域608が形成される。(図6(B))
【0078】
そして、マスク絶縁膜603を除去した後、開口部610〜612を設けたレジストマスク609を形成し、Pイオンの注入工程を行ってリン添加領域613〜615を形成する。(図6(C))
【0079】
本実施例でも実施例1、実施例2と同様に、リン添加領域613、614はニッケルを集めるゲッタリング領域として機能し、リン添加領域615は補助容量の下部電極として機能する。勿論、下部電極としての機能に加えてゲッタリング領域としての機能も兼ねている。
【0080】
以上の様な工程で図6(C)に示す状態が得られる。この後は実施例1と同様の工程に従って半導体装置を作製すれば良い。
【0081】
〔実施例4〕
本実施例では実施例3とは異なる構成で縦成長領域と横成長領域とを使い分ける例について説明する。なお、本実施例もリン元素によるゲッタリング工程までを説明するにとどめる。
【0082】
図7(A)において、701は基板、702は非晶質珪素膜である。本実施例では周辺回路を縦成長領域で形成し、画素マトリクス回路を横成長領域で形成する構成とする。そのため、マスク絶縁膜703は周辺回路となる領域には形成しない様にし、画素マトリクス回路となる領域では必要箇所に開口部704を設ける。
【0083】
そして、ニッケルを含有した溶液を塗布し、スピンコートすることによりニッケル含有層705を形成する。この時、溶液内のニッケル濃度は実施例3と同様に重量換算で100ppmとすれば良い。(図7(A))
【0084】
この状態で結晶化のための加熱処理を行う。本実施例では横成長を十分に行わすために600 ℃8 時間とする。この加熱処理により画素マトリクス回路となる領域ではニッケル添加による縦成長領域706、横成長領域707が形成される。また、周辺回路となる領域では非晶質珪素膜702の全面が結晶化し、縦成長領域708が形成される。(図7(B))
【0085】
そして、マスク絶縁膜703を除去した後、開口部710〜712を設けたレジストマスク709を形成し、Pイオンの注入工程を行ってリン添加領域713〜715を形成する。(図7(C))
【0086】
本実施例でも実施例1乃至実施例3と同様に、リン添加領域713、714はニッケルを集めるゲッタリング領域として機能し、リン添加領域715は補助容量の下部電極として機能する。勿論、下部電極としての機能に加えてゲッタリング領域としての機能も兼ねている。
【0087】
以上の様な工程で図7(C)に示す状態が得られる。この後は実施例1と同様の工程に従って半導体装置を作製すれば良い。
【0088】
〔実施例5〕
本実施例では、補助容量の下部電極を構成する領域をニッケル添加領域として活用する場合の例について説明する。なお、本実施例もリン元素によるゲッタリング工程までを説明するにとどめる。
【0089】
図8(A)において、801は基板、802は非晶質珪素膜である。その上にマスク絶縁膜803を形成し、マスク絶縁膜803には開口部804、805を形成する。この時、開口部805は後に補助容量の下部電極となる領域に形成する点に本実施例の特徴がある。
【0090】
そして、ニッケルを含有した溶液を塗布し、スピンコートすることによりニッケル含有層806を形成する。この時、溶液内のニッケル濃度は実施例3および実施例4と同様に重量換算で100ppmとすれば良い。(図8(A))
【0091】
この状態で結晶化のための加熱処理を行う。本実施例ではこの加熱処理を570 ℃ 14 時間とする。この様に結晶化温度を560 ℃まで下げることで自然核発生による結晶化を十分に防ぐことができる。自然核発生が生じるとそこで横方向への結晶成長が止まってしまうことが起こりうるので好ましくない。
【0092】
この加熱処理により周辺回路となる領域ではニッケル添加による縦成長領域807、横成長領域808が形成される。また、画素マトリクス回路となる領域ではニッケル添加による縦成長領域809、横成長領域810が形成される。(図8(B))
【0093】
そして、図8(C)に示す様にマスク絶縁膜803をそのままマスクとしてPイオンの注入工程を行い、リン添加領域811、812を形成する。この後は実施例1と同様の工程に従って半導体装置を作製すれば良い。
【0094】
本実施例の場合、ニッケルの添加工程に用いたマスク絶縁膜803をそのままリン添加工程のマスクとして用いることができるため、製造工程が簡略化されるという利点がある。
【0095】
〔実施例6〕
本実施例では画素マトリクス回路に全くニッケルを添加しない構成とする例について説明する。なお、この構成では周辺回路を縦成長領域で構成しても横成長領域で構成しても良いが、本実施例では周辺回路を横成長領域で形成する例について説明する。
【0096】
図9(A)において、901は基板、902は非晶質珪素膜、903はマスク絶縁膜である。本実施例の場合、周辺回路となる領域においてマスク絶縁膜603に開口部904を形成する。画素マトリクス回路となる領域には開口部は形成しない。
【0097】
そして、ニッケルを含有した溶液を塗布し、スピンコートすることによりニッケル含有層905を形成する。この時、溶液内のニッケル濃度は重量換算で100ppmとすれば良い。(図9(A))
【0098】
この状態で結晶化のための加熱処理を行う。本実施例では560 ℃20時間で結晶化工程を行う。この加熱処理により周辺回路となる領域ではニッケル添加による縦成長領域906、横成長領域907が形成される。また、画素マトリクス回路となる領域ではニッケルが全く添加されないので非晶質領域908が残存する。(図9(B))
【0099】
そして、マスク絶縁膜903を除去した後、開口部910、911を設けたレジストマスク909を形成し、Pイオンの注入工程を行ってリン添加領域912、913を形成する。なお、この時点でリン添加領域912、913は一旦非晶質化する。(図9(C))
【0100】
次に、600 ℃24時間程度の加熱処理を行い、リン元素によるゲッタリング工程を行う。この工程により横成長領域914に含まれるニッケルは、リン添加領域915へとゲッタリングされる。(図10(A))
【0101】
また、ゲッタリング領域となったリン添加領域915はこの加熱処理により再結晶化する。さらに、後に補助容量の下部電極として機能するリン添加領域916もこの加熱処理により再結晶化する。
【0102】
そして、前述の非晶質領域908も自然核発生による結晶化が進行し、結晶領域917となる。この場合、後に補助容量の下部電極となるリン添加領域916はゲッタリング領域として機能しないのでニッケルは殆ど含まれない。
【0103】
そして、図10(A)の状態が得られたら、必要箇所をパターニングにより残して活性層918〜920を形成する。そして、実施例1の工程に従ってゲイト絶縁膜921を形成する。
【0104】
以上の様な工程で図10(B)に示す状態が得られる。この後は実施例1と同様の工程に従って半導体装置を作製すれば良い。
【0105】
〔実施例7〕
本実施例では図2(A)に示したリン元素によるゲッタリング工程の加熱方法としてランプアニールを用いる例を示す。
【0106】
ランプアニールによる加熱処理としてはRTA(ラピッド・サーマル・アニール)が知られている。これはハロゲンランプ等を用いた赤外光を試料に対して照射し、薄膜を加熱する技術である。
【0107】
ゲッタリング工程における加熱処理としてRTAを利用すると、 700〜1100℃という高温アニール処理を数秒から数分と短い時間で処理することができる。従って、ファーネスアニールよりも高温処理ができるので触媒元素のゲッタリング効果が向上する。また、処理時間もはるかに短いのでスループットも大幅に向上する。
【0108】
さらに、 700〜1100℃という高い温度による加熱処理によって結晶性珪素膜の結晶粒界付近に存在する珪素原子の再配列がなされ、結晶粒界の不活性化が促進する。即ち、不対結合手の如き結晶欠陥が大幅に減少してキャリアが捕獲される可能性が低くなり、全体的な結晶性が著しく改善される。
【0109】
〔実施例8〕
本発明では、触媒元素(代表的にはニッケル)の添加方法としてイオンプランテーション法を用いることもできる。この場合、ドーズ量は 0.5×1013〜 1×1015atoms/cm2 (好ましくは 2×1013〜 2×1014atoms/cm2 )となる様に調節することが好ましい。
【0110】
本実施例の様にイオンプランテーション法で触媒元素を添加する場合、マスク絶縁膜に設ける開口部の幅(短辺)は0.01〜5 μm(代表的には0.25〜2 μm)程度で良い。即ち、微細なパターンに形成された開口部に対しても十分な量のニッケルを添加することが可能である。
【0111】
従って、回路設計の段階においてデッドスペースとなる触媒元素の添加領域の占有面積を大幅に低減することができるため、回路設計の自由度が向上するという利点が得られる。
【0112】
〔実施例9〕
実施例1ではゲイト電極としてアルミニウムまたはアルミニウムを主成分とする材料を用いたが、本発明はゲイト電極として一導電性を有する結晶性珪素膜を用いることも可能である。
【0113】
また、チタン、タンタル、タングステン、モリブデン等の金属材料やそれら金属材料と珪素との化合物でなる金属シリサイド等をゲイト電極として用いることもできる。
【0114】
〔実施例10〕
実施例1乃至実施例9では代表的なTFT構造の一例としてプレーナ型TFTの例を示しているが、他にも逆スタガ型TFTなどのボトムゲイト型TFTを本発明に適用することも可能である。
【0115】
また、TFTに限らず、シリコンウェハー上に形成されたMOSFETに対して適用することも可能である。
【0116】
この様に、本願発明は半導体素子(半導体装置)の構造によらず適用することが可能であり、特定構造の半導体素子に限定されるものではない。
【0117】
〔実施例11〕
本実施例では画素マトリクス回路を構成する画素構成の一例を図11に示す。ただし、構造を簡略化するため画素電極は省略してある。
【0118】
図11において11は活性層であり、図2(C)の活性層119に対応する。本実施例では活性層11のドレイン側を、画素内いっぱいに広がる様に形成してあり、補助容量の下部電極12を兼ねる点に特徴がある。
【0119】
その上方にはゲイト絶縁膜を介してゲイト線13が配置されている。ゲイト線13は図3(B)のゲイト電極135に対応する。また、ゲイト線13とは別に補助容量の上部電極14が形成される。この上部電極14は図3(B)の上部電極136に対応する。
【0120】
この場合、上部電極14は下部電極となる活性層とほぼ一致する様な形状に設けられており、ほぼ画素の占有面積の相当する補助容量を形成する。また、隣接する画素間で上部電極14は電気的に接続されている(ゲイト線とクロスしない様にゲイト線と平行に接続する)。即ち、全ての画素において補助容量の上部電極は同電位に保たれる。
【0121】
次に、ゲイト線13及び補助容量の上部電極14の上には第1の層間絶縁膜を介してソース電極(ソース線)15及びドレイン電極16が形成される。これらの電極はそれぞれは図4(B)のソース電極165とドレイン電極167に対応する。
【0122】
そして、図示していないが、後は図4(C)に示す様に層間絶縁膜168と画素電極169を形成して、公知のセル組み工程を行えば反射型液晶表示装置が完成する。本実施例の様な構造とすると、画素面積が小さくなってもその面積を最大限に生かして補助容量を確保することが可能である。
【0123】
〔実施例12〕
本発明は透過型液晶表示装置に適用することもできる。なお、TFTの作製工程は基本的に実施例1で説明した通りなので、詳細な説明は省略する。
【0124】
実施例1では画素電極としてアルミニウムを主成分とする材料を用いているが、本実施例では透明導電膜としてITO膜を用いる。また、透過型では開口率を大きくとることが重要な課題となるので、電界遮蔽膜やブラックマスク等は必要な箇所に最小限の大きさで設ければ良い。
【0125】
ここで、本実施例の透過型液晶表示装置を上面から見た図を図12に示す。なお、特定の構造を分かり易く説明するためにソース/ドレイン電極を形成した状態の上面図を説明する。従って、画素電極、電界遮蔽膜、ブラックマスク等の記載は省略する。
【0126】
図12において、21は活性層であり、その一部(ドレイン領域側)には補助容量の下部電極部22が形成されている。また、活性層21の上にはゲイト電極(ゲイト線)23が配置され、下部電極22の上には補助容量の上部電極24が配置される。なお、下部電極22は上部電極24によって覆われてしまうので図12では点線で示している。勿論、下部電極22と上部電極24との間にはゲイト絶縁膜が挟持されて補助容量を形成している。
【0127】
そして、ゲイト電極23、上部電極24と交差する様にしてソース電極(ソース線)25が形成される。このソース電極25はコンタクト部26で活性層21のソース領域と電気的に接続している。
【0128】
実際には、活性層や各配線を遮蔽する様にブラックマスクが設けられたり、上下配線間に電界遮蔽膜が設けられたりする。そして、図示しない画素電極がコンタクト部27で活性層21のドレイン領域と電気的に接続する。
【0129】
以上の様な構造とすれば、透過型液晶表示装置を作製することができる。なお、本発明は図12に示した装置構造に限定されないことは言うまでもない。
【0130】
〔実施例13〕
実施例1で説明した反射型液晶表示装置を簡略化した断面図を図13に示す。なお、アクティブマトリクス基板の説明は実施例1で既に行ったので、ここではそれ以外の構造について説明する。
【0131】
図13において、31は透光性を有する基板、302は透明導電膜である。ここでは省略しているが、透光性基板31の上には他にもカラーフィルター、配向膜、ブラックマスク等が設けられる場合がある。また、そして、これらをまとめて対向基板と呼ぶ。
【0132】
対向基板とアクティブマトリクス基板との間では封止材33に囲まれて液晶層34が挟持されている。本発明はECBモード、ゲストホストモード等のあらゆるモードに対応可能であるので、それに応じて液晶材料を変更すれば良い。また、この様な駆動モードによってカラーフィルターが必要になる場合もある。さらに、液晶表示装置の駆動モードによっては偏光板を用いることもある。
【0133】
なお、本実施例では周辺回路の上方には液晶層を配置しない構成とし、周辺回路と対向側の透明導電膜32との間に寄生容量が形成されるのを防いでいる。勿論、基板全面に液晶層が配置される様な構成でも構わない。
【0134】
また、図14にアクティブマトリクス基板上に配置される各回路の配置構成の一例を示す。図14において、41は基板、42は下地膜、43は画素マトリクス回路、44はソースドライバー回路、45はゲイトドライバー回路、46はロジック回路である。
【0135】
以上は反射型液晶表示装置の概略であるが、透過型液晶表示装置でも基本的な構成は変わらない。この様に、本発明はどの様な構造の液晶表示装置に対しても適用することが可能である。
【0136】
〔実施例14〕
本発明は液晶表示装置以外の電気光学装置に対して適用することもできる。その様な電気光学装置としては、EL(エレクトロルミネッセンス)表示装置、EC(エレクトロクロミクス)表示装置等が挙げられる。
【0137】
〔実施例15〕
本実施例では、本発明を利用した電気光学装置を利用する応用製品(電子デバイス)の一例を図15に示す。本発明を利用した応用製品としてはビデオカメラ、スチルカメラ、プロジェクター、ヘッドマウントディスプレイ、カーナビゲーション、パーソナルコンピュータ、携帯情報端末(モバイルコンピュータ、携帯電話等)などが挙げられる。
【0138】
図15(A)は携帯電話であり、本体2001、音声出力部2002、音声入力部2003、表示装置2004、操作スイッチ2005、アンテナ2006で構成される。本発明は表示装置2004に適用することができる。
【0139】
図15(B)はビデオカメラであり、本体2101、表示装置2102、音声入力部2103、操作スイッチ2104、バッテリー2105、受像部2106で構成される。本発明は表示装置2102に適用することができる。
【0140】
図15(C)はモバイルコンピュータ(モービルコンピュータ)であり、本体2201、カメラ部2202、受像部2203、操作スイッチ2204、表示装置2205で構成される。本発明は表示装置2205に適用できる。
【0141】
図15(D)はヘッドマウントディスプレイであり、本体2301、表示装置2302、バンド部2303で構成される。本発明は表示装置2302に適用することができる。
【0142】
図15(E)はリア型プロジェクターであり、本体2401、光源2402、表示装置2403、偏光ビームスプリッタ2404、リフレクター2405、2406、スクリーン2407で構成される。本発明は表示装置2403に適用することができる。
【0143】
図15(F)はフロント型プロジェクターであり、本体2501、光源2502、表示装置2503、光学系2504、スクリーン2505で構成される。本発明は表示装置2503に適用することができる。
【0144】
以上の様に、本発明の応用範囲は極めて広く、あらゆる分野の表示媒体に適用することが可能である。特に、液晶表示装置をプロジェクターの様な投射型表示装置に用いる場合には、非常に高い解像度が要求される。その様な場合において、本発明は非常に有効な技術である。
【0145】
【発明の効果】
触媒元素をゲッタリングするための領域を形成する工程と、補助容量の下部電極を形成する工程とを共通化することで製造プロセスが簡略化される。そのため、スループット、歩留り等が向上し、経済的に有益である。
【0146】
さらに、本発明を用いて得られた結晶性膜は触媒元素の効果により結晶性が非常に優れ、かつ、ゲッタリング処理によりその触媒元素が除去または低減されている。そのため、半導体装置の活性層として利用した場合、優れた電気特性と高い信頼性とを備えた半導体装置を得ることができる。
【図面の簡単な説明】
【図1】 半導体装置の作製工程を示す図。
【図2】 半導体装置の作製工程を示す図。
【図3】 半導体装置の作製工程を示す図。
【図4】 半導体装置の作製工程を示す図。
【図5】 半導体装置の作製工程を示す図。
【図6】 半導体装置の作製工程を示す図。
【図7】 半導体装置の作製工程を示す図。
【図8】 半導体装置の作製工程を示す図。
【図9】 半導体装置の作製工程を示す図。
【図10】 半導体装置の作製工程を示す図。
【図11】 画素領域を上面から見た図。
【図12】 画素領域を上面から見た図。
【図13】 液晶表示装置の断面を示す図。
【図14】 アクティブマトリクス基板の概略を示す図。
【図15】 応用製品の一例を示す図。
【符号の説明】
101 石英基板
102 非晶質珪素膜
103 マスク絶縁膜
104、105 開口部
106 ニッケル含有層
107、108 ニッケル添加領域
109、110 横成長領域
111 開口部
112、113 リン添加領域(ゲッタリングサイト)
114 リン添加領域(補助容量の下部電極)
115、116 横成長領域
117〜119 活性層
120 ゲイト絶縁膜[0001]
[Technical field to which the invention belongs]
The present invention relates to a semiconductor device using a semiconductor thin film and a manufacturing method thereof, and more particularly to a thin film transistor (TFT) using a crystalline film containing silicon.
[0002]
In this specification, a semiconductor device refers to all devices that function using a semiconductor, and includes not only semiconductor elements such as TFTs and MOSFETs (IGFETs), but also electro-optical devices (liquid crystal display devices, etc.) Application products (electronic devices, etc.) on which they are mounted are also included in the category of semiconductor devices. In this specification, in order to clarify the distinction, a semiconductor element, a display device, and the like are described as appropriate.
[0003]
[Prior art]
2. Description of the Related Art In recent years, there has been remarkable progress in technology for forming semiconductor circuits using thin film transistors (TFTs) formed on a substrate. In particular, an active matrix display device using a crystalline silicon film (polysilicon film or the like) as a thin film semiconductor and mounting a peripheral circuit and a pixel matrix circuit on the same substrate has reached a practical level.
[0004]
In particular, active matrix liquid crystal display devices (hereinafter referred to as AM-LCDs) are being actively developed for displays such as notebook computers, projectors, and portable devices. AM-LCDs are roughly classified into transmissive LCDs and reflective LCDs according to their operation modes.
[0005]
At present, the development of high-definition and bright liquid crystal display devices is urgently required, and each pixel has a very fine structure of 30 μm square or less like XGA (1024 × 768 pixels) and SXGA (1280 × 1024 pixels). Has been developed.
[0006]
The AM-LCD as described above performs on / off control of light by changing the optical response characteristics of the liquid crystal layer according to the voltage applied to the liquid crystal layer. In general, an auxiliary capacitor is provided in each pixel in order to compensate for leakage of charges held in the liquid crystal layer.
[0007]
By the way, the present inventors have disclosed a method for obtaining a crystalline film by utilizing a catalytic element (typically nickel) that promotes crystallization as a method for forming a crystalline film containing silicon (Japanese Patent Laid-Open No. Hei. 7-130652).
[0008]
In this publication, a region crystallized by adding a catalyst element directly (hereinafter referred to as a vertical growth region) and a crystallized region formed around a region to which a catalyst element is added (hereinafter referred to as a lateral growth region). A technique for forming the above is disclosed.
[0009]
However, since most of the catalyst elements are metal elements, if they remain after crystallization, the reliability of the TFT may be impaired, which is not preferable.
[0010]
[Problems to be solved by the invention]
It is an object of the present invention to provide a technique for simplifying a manufacturing process in a method for manufacturing a semiconductor device including a process of effectively removing or reducing the catalytic element.
[0011]
[Means for Solving the Problems]
The configuration of the invention disclosed in this specification is as follows.
Holding or adding a catalytic element for promoting crystallization of the silicon to all or a part of the amorphous film containing silicon;
Crystallizing the element forming portion of the amorphous film containing silicon by heat treatment;
Simultaneously adding an element selected from
A step of gettering the catalytic element in a region to which an element selected from the
It is characterized by having.
[0012]
A basic object of the present invention is to simplify a process in a manufacturing method in which a catalytic element used for crystallization of an amorphous film containing silicon is gettered from a formed crystalline film.
[0013]
Here, a method for gettering the catalyst element will be briefly described. One of the features of the present invention is that it uses a gettering effect by an element selected from
[0014]
Typical examples of the catalytic element include Ni (nickel), Co (cobalt), Fe (iron), Pd (palladium), Pt (platinum), Cu (copper), and Au (gold). In our experiments, nickel has been found to be the most suitable element.
[0015]
Examples of the
[0016]
As a typical example, when nickel is used as a catalyst element and phosphorus is used as a gettering element (
[0017]
As described above, when nickel is used as a catalyst element for promoting crystallization of an amorphous film containing silicon, it can be removed or reduced from the crystalline film by the gettering action of an element selected from
[0018]
【Example】
[Example 1]
An example of manufacturing a reflective liquid crystal display device using the present invention will be described with reference to FIGS. In this embodiment, a process of forming a CMOS circuit and a pixel matrix circuit which are basic circuits constituting a peripheral circuit on the same substrate will be described.
[0019]
For the convenience of drawing, the scale ratio of the peripheral circuit and the pixel matrix circuit does not correspond, and the pixel matrix circuit portion is shown larger.
[0020]
Further, the peripheral circuit includes not only a driver circuit typified by a shift resist and the like, but also a logic circuit that performs other signal processing. For example, a memory, a D / A converter, an operational amplifier, a pulse generator, and the like are included in the logic circuit.
[0021]
First, a glass substrate on which a silicon oxide film or the like is deposited as a base film is prepared as the
[0022]
Next, an
[0023]
Next, the
[0024]
First, a
[0025]
The
[0026]
Next, a thin oxide film (not shown) is formed on the exposed surface of the amorphous silicon film. This step may be performed by UV light irradiation in an oxygen atmosphere. This oxide film has an effect of improving the wettability in the next solution coating step.
[0027]
Next, an amorphous silicon film containing a solution (for example, a nickel acetate salt solution, a nickel nitrate salt solution, etc.) containing 100 ppm in terms of weight of a catalyst element (in this specification, nickel is used as an example) that promotes crystallization of silicon The nickel-containing
[0028]
When the technique described in the publication is used, the surface of the amorphous silicon film exposed through the
[0029]
In this state, heat treatment for crystallization is performed. This heat treatment is performed at a temperature of 500 to 700 ° C. (typically 550 to 650 ° C.), and the treatment time is 4 to 24 hours (typically 8 to 15 hours). By this treatment, nickel diffuses into the film and crystallizes to form crystalline silicon films 107-110. (Fig. 1 (B))
[0030]
Here, 107 and 108 are regions where nickel is added, which contain nickel in a very high concentration.
[0031]
This laterally grown region has a crystal structure in which needle-like or columnar crystals are arranged in a specific direction with regularity. Further, each acicular crystal is characterized by growing substantially parallel to each other and macroscopically in the same direction.
[0032]
Next, the
[0033]
In this state, P (phosphorus) ions are added by an ion plantation method or a plasma doping method. It is also effective to use As (arsenic) ions instead of P ions. (Figure 1 (C))
[0034]
In the ion implantation process of this embodiment, the acceleration voltage is 5 to 25 kV, and the dose is 1 × 10 13 ~ 8 × 10 15 atoms / cm 2 (Preferably 5 × 10 13 ~ 1 × 10 15 atoms / cm 2 ). With this setting, the exposed amorphous silicon film has 5 × 10 19 ~ 2 × 10 twenty one atoms / cm Three P ions are added at a concentration of
[0035]
A feature of this embodiment is that the
[0036]
In addition, the phosphorus-added region 114 formed under the second opening 111 serves as a lower electrode of an auxiliary capacitor having N-type conductivity. At the same time, it functions as a gettering region for collecting nickel.
[0037]
Thus, one of the most important configurations of the present invention is that the step of adding P ions for the purpose of forming the gettering region also serves as the step of forming the lower electrode of the auxiliary capacitor.
[0038]
After the addition process of P ions is completed, the
[0039]
Note that this step may be performed before the
[0040]
Thus, the nickel remaining in the
[0041]
The phosphorus-added
[0042]
As a result of confirmation by SIMS (mass secondary ion analysis) by the present inventors, the concentration of nickel contained in the
[0043]
At this time, the phosphorus-added
1 × 10 18 ~ 1 × 10 20 atoms / cm 2 The presence of nickel was confirmed at a concentration of.
[0044]
However, there is no problem as long as the phosphorus-added region 114 that functions as a lower electrode of the auxiliary capacitor later functions as an electrode even if nickel remains. Further, the phosphorus-added
[0045]
When the state of FIG. 2A is thus obtained, the silicon film is patterned to form active layers 117-119. The
[0046]
Next, the oxide (not shown) formed on the silicon film surface is removed. Since such a surface oxide takes in contaminants and the like in the silicon film, a clean silicon film surface can be obtained by removing the surface oxide.
[0047]
Then, a
[0048]
Next,
[0049]
In this embodiment, a triple gate type TFT is used as the pixel TFT. Therefore, although the
[0050]
When the state shown in FIG. 3A is obtained in this manner, two anodic oxidation processes are performed next. The steps from the anodic oxidation step described below to ion implantation (phosphorus (P) or boron (B)) are based on the technique described in Japanese Patent Laid-Open No. 7-13318 by the present inventors. Therefore, the detailed conditions and the like should be referred to the same publication.
[0051]
After the
[0052]
When the state shown in FIG. 3B is thus obtained, the
[0053]
Next, as shown in FIG. 3D, the porous
[0054]
In this embodiment, since the pixel TFT is composed of an N-type TFT, a
[0055]
At this time, P ions are also added to the active layer of the P-type TFT, and
[0056]
Next, a resist
[0057]
When the ion implantation process as described above is used, the source / drain regions of the N-type TFT and the P-type TFT can be formed by only one patterning process.
[0058]
Next, the implanted P ions and B ions are activated by any one of furnace annealing, laser annealing, lamp annealing or a combination of these with the resist
[0059]
Next, a stacked film including a silicon oxide film and a silicon nitride film is formed as the first
[0060]
Next, an organic resin film (polyimide, polyamide, polyimideamide, acrylic, or the like) is formed as the second
[0061]
Next, contact holes are formed in the second
[0062]
Finally, the entire TFT obtained is heat-treated in a hydrogen atmosphere and hydrogenated to reduce dangling bonds in the active layer. Thus, an active matrix substrate in which the CMOS circuit and the pixel TFT are integrally formed on the same substrate as shown in FIG. 4C is completed.
[0063]
Thereafter, a reflective liquid crystal display device is completed by sandwiching a liquid crystal layer between the active matrix substrate and the counter substrate by a known cell assembling process.
[0064]
A practitioner may appropriately determine design items such as the type of liquid crystal material and the cell gap. In this embodiment, the black mask is provided on the opposite side. However, the black mask may be provided on a necessary portion on the active matrix substrate side.
[0065]
[Example 2]
In this embodiment, an example in which a crystalline silicon film is formed by means different from that in Embodiment 1 will be described. Note that basically the only different process is the process corresponding to FIGS. 1A, 1B, and 1C of the first embodiment (the process before the gettering process using phosphorus element), and only these processes will be described. I decided to.
[0066]
In this embodiment, as a means for crystallizing the amorphous silicon film, a method of forming a vertical growth region according to the technique described in Japanese Patent Laid-Open No. 7-30625 is used.
[0067]
In FIG. 5A,
[0068]
At this time, the nickel concentration in the solution containing nickel is 10 ppm in terms of weight (about 3 × 10 × 10 on the surface of the amorphous silicon film). 13 atoms / cm 2 )
[0069]
In this state, heat treatment for crystallization is performed. In this embodiment, the temperature is 600 ° C. for 4 hours. By this heat treatment, the entire surface of the
[0070]
Next, a resist
[0071]
At this time, the
[0072]
The
[0073]
The state shown in FIG. 5C is obtained by the process as described above. Thereafter, a semiconductor device may be manufactured according to the same steps as in the first embodiment.
[0074]
Example 3
In this embodiment, an example in which a semiconductor device is manufactured using a vertical growth region and a horizontal growth region on the same substrate will be described. Basically, only the gettering process using phosphorus element is different, and the process is similar to that in the first and second embodiments, so only the necessary parts will be described.
[0075]
In FIG. 6A,
[0076]
Then, a nickel-containing
[0077]
In this state, heat treatment for crystallization is performed. In this embodiment, the temperature is set to 600 ° C. for 8 hours in order to sufficiently perform the lateral growth. By this heat treatment, a nickel-added region (also referred to as a vertical growth region) 606 and a
[0078]
Then, after removing the
[0079]
In this embodiment, similarly to the first and second embodiments, the phosphorus-added
[0080]
The state shown in FIG. 6C is obtained by the process as described above. Thereafter, a semiconductor device may be manufactured according to the same steps as in the first embodiment.
[0081]
Example 4
In this embodiment, an example in which the vertical growth region and the horizontal growth region are selectively used with a configuration different from that of the third embodiment will be described. In this embodiment, only the gettering process using phosphorus element will be described.
[0082]
In FIG. 7A, reference numeral 701 denotes a substrate, and
[0083]
Then, a nickel-containing
[0084]
In this state, heat treatment for crystallization is performed. In this embodiment, the temperature is set to 600 ° C. for 8 hours in order to sufficiently perform the lateral growth. By this heat treatment, a
[0085]
Then, after removing the
[0086]
In this embodiment, as in the first to third embodiments, the phosphorus-added
[0087]
The state shown in FIG. 7C is obtained by the process as described above. Thereafter, a semiconductor device may be manufactured according to the same steps as in the first embodiment.
[0088]
Example 5
In this embodiment, an example will be described in which a region constituting the lower electrode of the auxiliary capacitor is used as a nickel addition region. In this embodiment, only the gettering process using phosphorus element will be described.
[0089]
In FIG. 8A,
[0090]
Then, a nickel-containing
[0091]
In this state, heat treatment for crystallization is performed. In this embodiment, this heat treatment is performed at 570 ° C. for 14 hours. Thus, by lowering the crystallization temperature to 560 ° C., crystallization due to the generation of natural nuclei can be sufficiently prevented. If natural nucleation occurs, it is not preferable because lateral crystal growth may stop there.
[0092]
By this heat treatment, a
[0093]
Then, as shown in FIG. 8C, a P ion implantation process is performed using the
[0094]
In this embodiment, since the
[0095]
Example 6
In this embodiment, an example in which no nickel is added to the pixel matrix circuit will be described. In this configuration, the peripheral circuit may be formed of a vertical growth region or a horizontal growth region. In this embodiment, an example in which the peripheral circuit is formed of a horizontal growth region will be described.
[0096]
In FIG. 9A, 901 is a substrate, 902 is an amorphous silicon film, and 903 is a mask insulating film. In this embodiment, an
[0097]
And the
[0098]
In this state, heat treatment for crystallization is performed. In this embodiment, the crystallization process is performed at 560 ° C. for 20 hours. By this heat treatment, a
[0099]
Then, after removing the
[0100]
Next, heat treatment is performed at 600 ° C. for about 24 hours to perform a gettering step with phosphorus element. Through this step, nickel contained in the
[0101]
Further, the phosphorus-added
[0102]
The above-described
[0103]
Then, when the state of FIG. 10A is obtained, the
[0104]
The state shown in FIG. 10B is obtained by the process as described above. Thereafter, a semiconductor device may be manufactured according to the same steps as in the first embodiment.
[0105]
Example 7
In this embodiment, an example in which lamp annealing is used as a heating method in the gettering step using the phosphorus element shown in FIG.
[0106]
RTA (rapid thermal annealing) is known as a heat treatment by lamp annealing. This is a technique for heating a thin film by irradiating a sample with infrared light using a halogen lamp or the like.
[0107]
When RTA is used as the heat treatment in the gettering step, a high-temperature annealing process of 700 to 1100 ° C. can be performed in a short time from several seconds to several minutes. Accordingly, the gettering effect of the catalytic element is improved because a higher temperature treatment can be performed than the furnace annealing. In addition, since the processing time is much shorter, the throughput is greatly improved.
[0108]
Further, the heat treatment at a high temperature of 700 to 1100 ° C. causes rearrangement of silicon atoms existing in the vicinity of the crystal grain boundary of the crystalline silicon film, thereby promoting inactivation of the crystal grain boundary. That is, crystal defects such as dangling bonds are greatly reduced and the possibility that carriers are trapped is reduced, and the overall crystallinity is remarkably improved.
[0109]
Example 8
In the present invention, an ion plantation method can also be used as a method for adding a catalyst element (typically nickel). In this case, the dose is 0.5 x 10 13 ~ 1 × 10 15 atoms / cm 2 (Preferably 2 × 10 13 ~ 2 × 10 14 atoms / cm 2 It is preferable to adjust so that.
[0110]
When the catalyst element is added by the ion plantation method as in this embodiment, the width (short side) of the opening provided in the mask insulating film may be about 0.01 to 5 μm (typically 0.25 to 2 μm). That is, a sufficient amount of nickel can be added to the opening formed in a fine pattern.
[0111]
Accordingly, the area occupied by the addition region of the catalyst element that becomes a dead space in the circuit design stage can be greatly reduced, and the advantage that the degree of freedom in circuit design is improved can be obtained.
[0112]
Example 9
In Embodiment 1, aluminum or a material mainly composed of aluminum is used as the gate electrode. However, in the present invention, a crystalline silicon film having one conductivity can be used as the gate electrode.
[0113]
Further, a metal material such as titanium, tantalum, tungsten, or molybdenum, or a metal silicide formed of a compound of these metal materials and silicon can be used as the gate electrode.
[0114]
Example 10
In Examples 1 to 9, an example of a planar type TFT is shown as an example of a typical TFT structure. However, a bottom gate type TFT such as an inverted stagger type TFT can also be applied to the present invention. is there.
[0115]
Further, the present invention can be applied not only to the TFT but also to a MOSFET formed on a silicon wafer.
[0116]
Thus, the present invention can be applied regardless of the structure of the semiconductor element (semiconductor device), and is not limited to a semiconductor element having a specific structure.
[0117]
Example 11
In this embodiment, an example of a pixel configuration constituting the pixel matrix circuit is shown in FIG. However, in order to simplify the structure, the pixel electrode is omitted.
[0118]
In FIG. 11,
[0119]
Above that, a
[0120]
In this case, the
[0121]
Next, a source electrode (source line) 15 and a
[0122]
Although not shown, after that, as shown in FIG. 4C, an
[0123]
Example 12
The present invention can also be applied to a transmissive liquid crystal display device. Since the TFT manufacturing process is basically the same as that described in Embodiment 1, detailed description thereof is omitted.
[0124]
In Example 1, a material mainly composed of aluminum is used as the pixel electrode, but in this example, an ITO film is used as the transparent conductive film. In addition, since it is an important issue to increase the aperture ratio in the transmission type, the electric field shielding film, the black mask, and the like may be provided in a necessary size at a minimum size.
[0125]
Here, FIG. 12 shows a top view of the transmissive liquid crystal display device of this example. In order to easily explain a specific structure, a top view of a state where source / drain electrodes are formed will be described. Accordingly, description of the pixel electrode, the electric field shielding film, the black mask, and the like is omitted.
[0126]
In FIG. 12,
[0127]
A source electrode (source line) 25 is formed so as to intersect the
[0128]
Actually, a black mask is provided to shield the active layer and each wiring, or an electric field shielding film is provided between the upper and lower wirings. A pixel electrode (not shown) is electrically connected to the drain region of the
[0129]
With the above structure, a transmissive liquid crystal display device can be manufactured. Needless to say, the present invention is not limited to the device structure shown in FIG.
[0130]
Example 13
A simplified cross-sectional view of the reflective liquid crystal display device described in Example 1 is shown in FIG. Note that since the description of the active matrix substrate has already been made in the first embodiment, other structures will be described here.
[0131]
In FIG. 13, 31 is a light-transmitting substrate, and 302 is a transparent conductive film. Although omitted here, a color filter, an alignment film, a black mask, and the like may be provided on the light-transmitting
[0132]
A
[0133]
In this embodiment, the liquid crystal layer is not disposed above the peripheral circuit, and a parasitic capacitance is prevented from being formed between the peripheral circuit and the transparent
[0134]
FIG. 14 shows an example of an arrangement configuration of each circuit arranged on the active matrix substrate. In FIG. 14, 41 is a substrate, 42 is a base film, 43 is a pixel matrix circuit, 44 is a source driver circuit, 45 is a gate driver circuit, and 46 is a logic circuit.
[0135]
The above is the outline of the reflective liquid crystal display device, but the basic configuration of the transmissive liquid crystal display device is not changed. Thus, the present invention can be applied to a liquid crystal display device having any structure.
[0136]
Example 14
The present invention can also be applied to electro-optical devices other than liquid crystal display devices. Examples of such an electro-optical device include an EL (electroluminescence) display device and an EC (electrochromic) display device.
[0137]
Example 15
In this embodiment, an example of an application product (electronic device) using the electro-optical device using the present invention is shown in FIG. Application products using the present invention include video cameras, still cameras, projectors, head mounted displays, car navigation systems, personal computers, personal digital assistants (mobile computers, mobile phones, etc.), and the like.
[0138]
FIG. 15A illustrates a mobile phone, which includes a main body 2001, an audio output unit 2002, an audio input unit 2003, a display device 2004, operation switches 2005, and an antenna 2006. The present invention can be applied to the display device 2004.
[0139]
FIG. 15B illustrates a video camera, which includes a main body 2101, a display device 2102, an
[0140]
FIG. 15C illustrates a mobile computer, which includes a
[0141]
FIG. 15D illustrates a head mounted display which includes a
[0142]
FIG. 15E illustrates a rear projector, which includes a main body 2401, a
[0143]
FIG. 15F illustrates a front type projector which includes a main body 2501, a
[0144]
As described above, the application range of the present invention is extremely wide and can be applied to display media in various fields. In particular, when the liquid crystal display device is used in a projection type display device such as a projector, a very high resolution is required. In such a case, the present invention is a very effective technique.
[0145]
【The invention's effect】
The manufacturing process is simplified by sharing the step of forming the region for gettering the catalyst element and the step of forming the lower electrode of the auxiliary capacitor. Therefore, throughput, yield, etc. are improved, which is economically beneficial.
[0146]
Furthermore, the crystalline film obtained by using the present invention is very excellent in crystallinity due to the effect of the catalytic element, and the catalytic element is removed or reduced by the gettering treatment. Therefore, when used as an active layer of a semiconductor device, a semiconductor device having excellent electrical characteristics and high reliability can be obtained.
[Brief description of the drawings]
FIGS. 1A to 1C illustrate a manufacturing process of a semiconductor device. FIGS.
FIGS. 2A to 2D are diagrams illustrating a manufacturing process of a semiconductor device. FIGS.
FIGS. 3A to 3D are diagrams illustrating a manufacturing process of a semiconductor device. FIGS.
4A and 4B illustrate a manufacturing process of a semiconductor device.
FIGS. 5A to 5D are diagrams illustrating a manufacturing process of a semiconductor device. FIGS.
6A and 6B illustrate a manufacturing process of a semiconductor device.
FIGS. 7A to 7C illustrate a manufacturing process of a semiconductor device. FIGS.
FIGS. 8A to 8D are diagrams illustrating a manufacturing process of a semiconductor device. FIGS.
FIG. 9 illustrates a manufacturing process of a semiconductor device.
10 is a diagram illustrating a manufacturing process of a semiconductor device. FIG.
FIG. 11 is a top view of a pixel region.
FIG. 12 is a top view of a pixel region.
FIG. 13 is a cross-sectional view of a liquid crystal display device.
FIG. 14 is a diagram schematically showing an active matrix substrate.
FIG. 15 is a diagram showing an example of an applied product.
[Explanation of symbols]
101 Quartz substrate
102 Amorphous silicon film
103 Mask insulation film
104, 105 opening
106 Nickel-containing layer
107,108 Nickel added region
109, 110 Horizontal growth region
111 opening
112, 113 Phosphorus added region (gettering site)
114 Phosphorus added region (lower electrode of auxiliary capacitance)
115, 116 lateral growth region
117-119 active layer
120 Gate insulation film
Claims (13)
前記第1の絶縁膜をマスクとして前記珪素を含む非晶質膜に対して該珪素の結晶化を助長する触媒元素を保持または添加し、
加熱処理により前記珪素を含む非晶質膜の素子形成部を結晶化し、
補助容量の下部電極となる領域上の前記第1の絶縁膜に第2の開口部を形成し、
前記結晶化工程で得られた珪素を含む膜のうち、前記第1の開口部及び前記第2の開口部の底部に対して15族元素を同時に添加し、
加熱処理により前記15族元素を添加した領域に前記触媒元素をゲッタリングし、
前記素子形成部の半導体素子の活性層および前記補助容量の下部電極となる領域をパターニングし、
前記パターニングされた前記活性層および前記補助容量の下部電極上に第2の絶縁膜を形成し、
前記活性層上および前記補助容量の下部電極上にそれぞれ前記第2の絶縁膜を介して、金属膜または一導電性を有する結晶性珪素膜を形成することを特徴とする半導体装置の作製方法。Forming a first insulating film having a first opening on an amorphous film containing silicon ;
Holding or adding a catalyst element for promoting crystallization of the silicon to the amorphous film containing silicon using the first insulating film as a mask ;
The element forming part of the amorphous film containing silicon is crystallized by heat treatment ,
Forming a second opening in the first insulating film on the region serving as the lower electrode of the storage capacitor ;
Wherein among the film containing the obtained silicon crystallization step, adding the first opening and the second 15 group element against the bottom of the opening at the same time,
Gettering the catalyst element in the region where the group 15 element is added by heat treatment ;
Patterning the region to be the lower electrode of the active layer and the storage capacitor of the semiconductor element of the element forming portion,
Forming a second insulating film on the patterned active layer and the lower electrode of the auxiliary capacitor ;
Through each of the second insulating film on the lower electrode of the active layer and the storage capacitor, a method for manufacturing a semiconductor device according to claim Rukoto forming form a crystalline silicon film having a metal film or one conductivity .
珪素を含む非晶質膜上の前記画素マトリクス回路となる領域のみに、開口部を有する第1の絶縁膜を形成し、
前記第1の絶縁膜をマスクとして前記珪素を含む非晶質膜に対して該珪素の結晶化を助長する触媒元素を保持または添加し、
加熱処理により前記珪素を含む非晶質膜の素子形成部を結晶化し、
前記素子形成部に隣接する領域および補助容量の下部電極となる領域に対して15族元素を同時に添加し、
加熱処理により前記15族元素を添加した領域に前記触媒元素をゲッタリングし、
前記素子形成部の半導体素子の活性層および前記補助容量の下部電極となる領域をパターニングし、
前記パターニングされた前記活性層および前記補助容量の下部電極上に第2の絶縁膜を形成し、
前記活性層上および前記補助容量の下部電極上にそれぞれ前記第2の絶縁膜を介して、金属膜または一導電性を有する結晶性珪素膜を形成することを特徴とする半導体装置の作製方法。In a method for manufacturing a semiconductor device having a peripheral circuit and a pixel matrix circuit over the same substrate,
Forming a first insulating film having an opening only in a region to be the pixel matrix circuit on the amorphous film containing silicon ;
Holding or adding a catalyst element for promoting crystallization of the silicon to the amorphous film containing silicon using the first insulating film as a mask ;
The element forming part of the amorphous film containing silicon is crystallized by heat treatment ,
Group 15 elements for the region to be the lower electrode area and the auxiliary capacitor adjacent to the element forming portion simultaneously added,
Gettering the catalyst element in the region where the group 15 element is added by heat treatment ;
Patterning a region to be an active layer of a semiconductor element of the element formation portion and a lower electrode of the auxiliary capacitor;
Forming a second insulating film on the patterned active layer and the lower electrode of the auxiliary capacitor;
Through each of the second insulating film on the lower electrode of the active layer and the storage capacitor, a method for manufacturing a semiconductor device which is characterized that you form a crystalline silicon film having a metal film or one conductivity .
珪素を含む非晶質膜上の前記周辺回路となる領域のみに、開口部を有する第1の絶縁膜を形成し、
前記第1の絶縁膜をマスクとして前記珪素を含む非晶質膜に対して該珪素の結晶化を助長する触媒元素を保持または添加し、
加熱処理により前記珪素を含む非晶質膜の素子形成部を結晶化し、
前記素子形成部に隣接する領域および補助容量の下部電極となる領域に対して15族元素を同時に添加し、
加熱処理により前記15族元素を添加した領域に前記触媒元素をゲッタリングし、
前記素子形成部の半導体素子の活性層および前記補助容量の下部電極となる領域をパターニングし、
前記パターニングされた前記活性層および前記補助容量の下部電極上に第2の絶縁膜を形成し、
前記活性層上および前記補助容量の下部電極上にそれぞれ前記第2の絶縁膜を介して、金属膜または一導電性を有する結晶性珪素膜を形成することを特徴とする半導体装置の作製方法。In a method for manufacturing a semiconductor device having a peripheral circuit and a pixel matrix circuit over the same substrate,
Forming a first insulating film having an opening only in a region to be the peripheral circuit on the amorphous film containing silicon ;
Holding or adding a catalyst element for promoting crystallization of the silicon to the amorphous film containing silicon using the first insulating film as a mask ;
The element forming part of the amorphous film containing silicon is crystallized by heat treatment ,
Group 15 elements for the region to be the lower electrode area and the auxiliary capacitor adjacent to the element forming portion simultaneously added,
Gettering the catalyst element in the region where the group 15 element is added by heat treatment ;
Patterning a region to be an active layer of a semiconductor element of the element formation portion and a lower electrode of the auxiliary capacitor;
Forming a second insulating film on the patterned active layer and the lower electrode of the auxiliary capacitor;
Through each of the second insulating film on the lower electrode of the active layer and the storage capacitor, a method for manufacturing a semiconductor device which is characterized that you form a crystalline silicon film having a metal film or one conductivity .
前記第1の開口部により露出された領域の前記珪素を含む非晶質膜の表面に酸化膜を形成し、Forming an oxide film on the surface of the amorphous film containing silicon in the region exposed by the first opening;
前記第1の絶縁膜をマスクとして前記珪素を含む非晶質膜に対して該珪素の結晶化を助長する触媒元素を保持または添加し、Holding or adding a catalyst element for promoting crystallization of the silicon to the amorphous film containing silicon using the first insulating film as a mask;
加熱処理により前記珪素を含む非晶質膜の素子形成部を結晶化し、The element forming part of the amorphous film containing silicon is crystallized by heat treatment,
補助容量の下部電極となる領域上の前記第1の絶縁膜に第2の開口部を形成し、Forming a second opening in the first insulating film on the region serving as the lower electrode of the storage capacitor;
前記結晶化工程で得られた珪素を含む膜のうち、前記第1の開口部及び前記第2の開口部の底部に対して15族元素を同時に添加し、Of the silicon-containing film obtained in the crystallization step, a group 15 element is simultaneously added to the bottom of the first opening and the second opening,
加熱処理により前記15族元素を添加した領域に前記触媒元素をゲッタリングし、Gettering the catalyst element in the region where the group 15 element is added by heat treatment;
前記素子形成部の半導体素子の活性層および前記補助容量の下部電極となる領域をパターニングし、Patterning a region to be an active layer of a semiconductor element of the element forming portion and a lower electrode of the auxiliary capacitor;
前記パターニングされた前記活性層および前記補助容量の下部電極上に第2の絶縁膜を形成し、Forming a second insulating film on the patterned active layer and the lower electrode of the auxiliary capacitor;
前記活性層上および前記補助容量の下部電極上にそれぞれ前記第2の絶縁膜を介して、金属膜または一導電性を有する結晶性珪素膜を形成することを特徴とする半導体装置の作製方法。 A method for manufacturing a semiconductor device, comprising: forming a metal film or a crystalline silicon film having one conductivity over the active layer and the lower electrode of the storage capacitor through the second insulating film, respectively.
珪素を含む非晶質膜上の前記画素マトリクス回路となる領域のみに、開口部を有する第1の絶縁膜を形成し、Forming a first insulating film having an opening only in a region to be the pixel matrix circuit on the amorphous film containing silicon;
前記周辺回路となる領域および前記開口部により露出された領域の前記珪素を含む非晶質膜の表面に酸化膜を形成し、Forming an oxide film on the surface of the amorphous film containing silicon in the region to be the peripheral circuit and the region exposed by the opening;
前記第1の絶縁膜をマスクとして前記珪素を含む非晶質膜に対して該珪素の結晶化を助長する触媒元素を保持または添加し、Holding or adding a catalyst element for promoting crystallization of the silicon to the amorphous film containing silicon using the first insulating film as a mask;
加熱処理により前記珪素を含む非晶質膜の素子形成部を結晶化し、The element forming part of the amorphous film containing silicon is crystallized by heat treatment,
前記素子形成部に隣接する領域および補助容量の下部電極となる領域に対して15族元素を同時に添加し、A group 15 element is simultaneously added to a region adjacent to the element formation portion and a region serving as a lower electrode of a storage capacitor,
加熱処理により前記15族元素を添加した領域に前記触媒元素をゲッタリングし、Gettering the catalyst element in the region where the group 15 element is added by heat treatment;
前記素子形成部の半導体素子の活性層および前記補助容量の下部電極となる領域をパターニングし、Patterning a region to be an active layer of a semiconductor element of the element forming portion and a lower electrode of the auxiliary capacitor;
前記パターニングされた前記活性層および前記補助容量の下部電極上に第2の絶縁膜を形成し、Forming a second insulating film on the patterned active layer and the lower electrode of the auxiliary capacitor;
前記活性層上および前記補助容量の下部電極上にそれぞれ前記第2の絶縁膜を介して、金属膜または一導電性を有する結晶性珪素膜を形成することを特徴とする半導体装置の作製方法。A method for manufacturing a semiconductor device, comprising: forming a metal film or a crystalline silicon film having one conductivity over the active layer and the lower electrode of the storage capacitor through the second insulating film, respectively.
珪素を含む非晶質膜上の前記周辺回路となる領域のみに、開口部を有する第1の絶縁膜を形成し、Forming a first insulating film having an opening only in a region to be the peripheral circuit on the amorphous film containing silicon;
前記画素マトリクス回路となる領域および前記開口部により露出された領域の前記珪素を含む非晶質膜の表面に酸化膜を形成し、Forming an oxide film on a surface of the amorphous film containing silicon in a region to be the pixel matrix circuit and a region exposed by the opening;
前記第1の絶縁膜をマスクとして前記珪素を含む非晶質膜に対して該珪素の結晶化を助長する触媒元素を保持または添加し、Holding or adding a catalyst element for promoting crystallization of the silicon to the amorphous film containing silicon using the first insulating film as a mask;
加熱処理により前記珪素を含む非晶質膜の素子形成部を結晶化し、The element forming part of the amorphous film containing silicon is crystallized by heat treatment,
前記素子形成部に隣接する領域および補助容量の下部電極となる領域に対して15族元素を同時に添加し、A group 15 element is simultaneously added to a region adjacent to the element formation portion and a region serving as a lower electrode of a storage capacitor,
加熱処理により前記15族元素を添加した領域に前記触媒元素をゲッタリングし、Gettering the catalyst element in the region where the group 15 element is added by heat treatment;
前記素子形成部の半導体素子の活性層および前記補助容量の下部電極となる領域をパターニングし、Patterning a region to be an active layer of a semiconductor element of the element forming portion and a lower electrode of the auxiliary capacitor;
前記パターニングされた前記活性層および前記補助容量の下部電極上に第2の絶縁膜を形成し、Forming a second insulating film on the patterned active layer and the lower electrode of the auxiliary capacitor;
前記活性層上および前記補助容量の下部電極上にそれぞれ前記第2の絶縁膜を介して、金属膜または一導電性を有する結晶性珪素膜を形成することを特徴とする半導体装置の作製方法。A method for manufacturing a semiconductor device, comprising: forming a metal film or a crystalline silicon film having one conductivity over the active layer and the lower electrode of the storage capacitor through the second insulating film, respectively.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12328397A JP4024341B2 (en) | 1997-04-25 | 1997-04-25 | Method for manufacturing semiconductor device |
US09/065,692 US6133075A (en) | 1997-04-25 | 1998-04-24 | Semiconductor device and method of fabricating the same |
US09/617,105 US6524896B1 (en) | 1997-04-25 | 2000-07-14 | Semiconductor device and method of fabricating the same |
US10/357,333 US6864127B2 (en) | 1997-04-25 | 2003-02-04 | Semiconductor device and method of fabricating the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12328397A JP4024341B2 (en) | 1997-04-25 | 1997-04-25 | Method for manufacturing semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10301146A JPH10301146A (en) | 1998-11-13 |
JP4024341B2 true JP4024341B2 (en) | 2007-12-19 |
Family
ID=14856743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12328397A Expired - Fee Related JP4024341B2 (en) | 1997-04-25 | 1997-04-25 | Method for manufacturing semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4024341B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW386238B (en) | 1997-01-20 | 2000-04-01 | Semiconductor Energy Lab | Semiconductor device and method of manufacturing the same |
JPH1140498A (en) | 1997-07-22 | 1999-02-12 | Semiconductor Energy Lab Co Ltd | Manufacture of semiconductor device |
TW515104B (en) * | 2000-11-06 | 2002-12-21 | Semiconductor Energy Lab | Electro-optical device and method of manufacturing the same |
US20100033665A1 (en) * | 2006-12-12 | 2010-02-11 | Kohei Tanaka | Liquid crystal display device |
JP4668247B2 (en) * | 2007-07-26 | 2011-04-13 | 三菱電機株式会社 | Manufacturing method of liquid crystal display device |
JP5288662B2 (en) * | 2012-08-07 | 2013-09-11 | 株式会社半導体エネルギー研究所 | Display device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3070062B2 (en) * | 1990-03-29 | 2000-07-24 | ソニー株式会社 | Liquid crystal display device and method of manufacturing the same |
JP3431682B2 (en) * | 1993-03-12 | 2003-07-28 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor circuit |
JP2649325B2 (en) * | 1993-07-30 | 1997-09-03 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor device |
JP3067949B2 (en) * | 1994-06-15 | 2000-07-24 | シャープ株式会社 | Electronic device and liquid crystal display device |
JP3539821B2 (en) * | 1995-03-27 | 2004-07-07 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor device |
-
1997
- 1997-04-25 JP JP12328397A patent/JP4024341B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10301146A (en) | 1998-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6133075A (en) | Semiconductor device and method of fabricating the same | |
JP3032801B2 (en) | Method for manufacturing semiconductor device | |
KR100465416B1 (en) | Semiconductor device and method of manufacturing the same | |
US6424012B1 (en) | Semiconductor device having a tantalum oxide blocking film | |
US6358766B1 (en) | Method of fabricating a semiconductor device | |
KR100254600B1 (en) | Semiconductor device, method for producing the same, and liquid crystal display device including the same | |
JP3830623B2 (en) | Method for manufacturing crystalline semiconductor film | |
JP4493741B2 (en) | Method for manufacturing semiconductor device | |
JP4024508B2 (en) | Method for manufacturing semiconductor device | |
US6620711B2 (en) | Method of manufacturing a semiconductor device | |
US6380011B1 (en) | Semiconductor device and a method of manufacturing the same | |
KR100515279B1 (en) | Semiconductor device and method for fabricating the same | |
US20010049163A1 (en) | Semiconductor device and method for producing it | |
JPH11204435A (en) | Semiconductor device and preparation of the same | |
US6337235B1 (en) | Semiconductor device and manufacturing method thereof | |
JPH10223534A (en) | Manufacturing method for semiconductor device | |
JP4376331B2 (en) | Method for manufacturing semiconductor device | |
KR19990013835A (en) | Semiconductor device manufacturing method | |
US7138657B2 (en) | Semiconductor device having two insulating films provided over a substrate | |
JP4115153B2 (en) | Manufacturing method of semiconductor device | |
JP4024341B2 (en) | Method for manufacturing semiconductor device | |
JP4397439B2 (en) | Semiconductor device | |
JP4090533B2 (en) | Method for manufacturing semiconductor device | |
JP4656685B2 (en) | Semiconductor device | |
JP3942878B2 (en) | Method for manufacturing semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040401 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040401 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060414 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070227 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071002 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071003 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101012 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101012 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101012 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111012 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111012 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121012 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121012 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131012 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |