JP4023760B2 - Aluminum alloy clad material for heat exchangers with excellent brazing and corrosion resistance - Google Patents
Aluminum alloy clad material for heat exchangers with excellent brazing and corrosion resistance Download PDFInfo
- Publication number
- JP4023760B2 JP4023760B2 JP00377099A JP377099A JP4023760B2 JP 4023760 B2 JP4023760 B2 JP 4023760B2 JP 00377099 A JP00377099 A JP 00377099A JP 377099 A JP377099 A JP 377099A JP 4023760 B2 JP4023760 B2 JP 4023760B2
- Authority
- JP
- Japan
- Prior art keywords
- brazing
- aluminum alloy
- content
- corrosion resistance
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Laminated Bodies (AREA)
- Prevention Of Electric Corrosion (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ろう付け性および耐食性に優れた熱交換器用アルミニウム合金クラッド材、とくに自動車用熱交換器、例えばラジエータ、ヒータコアなど、ろう付けにより接合される熱交換器の流体通路構成材(チューブ材)、ヘッダープレート材として適し、フッ化物系フラックスを用いるろう付けにおけるろう付け性および耐食性に優れた熱交換器用アルミニウム合金クラッド材に関する。
【0002】
【従来の技術】
ラジエータやヒーターコアなど、自動車用熱交換器のチューブ材やヘッダープレート材には、JIS3003合金などのAl−Mn系合金を芯材とし、芯材の一方の面にAl−Si系のろう材をクラッドし、他方の面のAl−Zn系合金やAl−Zn−Mg系合金からなる犠牲陽極材をクラッドしたアルミニウム合金の3層クラッド材が使用されている。
【0003】
Al−Si系のろう材は、チューブとフィンとの接合、チューブとヘッダープレートとのろう付けのためにクラッドされるものであり、ろう付けは、一般的には不活性ガス雰囲気中でフッ化物系フラックスを用いて行うろう付けが適用されるが、真空ろう付けが行われる場合もある。犠牲陽極材はチュ−ブの内面を構成し、熱交換器の使用中に作動流体と接して犠牲陽極効果を発揮し、芯材の孔食発生や隙間腐食を防ぐ。チュ−ブ外面に接合されるフィンは、犠牲陽極効果を発揮して芯材を防食するもので、Al−Mn系合金にCu,Mg、Zn、Sn、Inなどを添加したアルミニウム合金が適用される。
【0004】
近年、自動車の軽量化の観点から、自動車用熱交換器の軽量化およびコスト低減が強く要求され、チュ−ブ材など熱交換器構成材料をさらに薄肉化することが必要となっている。このため、チューブ材やヘッダープレート材に各種元素を添加して強度を高めることが試みられているが、添加成分の含有は耐食性を低下させる原因となり、また、材料の薄肉化に伴ってろう付けが難しくなって、熱交換器の製造性、耐久性に問題が生じることから、ろう付け性および耐食性に優れた熱交換器用材料の開発が強く要望されている。
【0005】
【発明が解決しようとする課題】
本発明は、上記の要求を満足させる熱交換器用アルミニウム合金材料を得るために、3層クラッド材における芯材、犠牲陽極材およびろう材の組成、およびそれらの組合わせと、とくにフッ化物系のフラックスを用いるろう付けにおけるろう付け性と耐食性との関係について、多角的に実験、検討を重ねた結果としてなされたものであり、その目的は、熱交換器、とくに自動車用熱交換器のチューブ材、ヘッダープレート材として好適に使用することができるろう付け性と耐食性に優れた熱交換器用アルミニウム合金クラッド材を提供することにある。
【0006】
【課題を解決するための手段】
上記の目的を達成するための本発明の請求項1によるろう付け性と耐食性に優れた熱交換器用アルミニウム合金クラッド材は、芯材の一方の面に犠牲陽極材をクラッドし、他方の面にAl−Si系のろう材をクラッドしたアルミニウム合金クラッド材であって、芯材は、Mn:0.6〜2.0 %、Cu:0.3〜1.0 %、Si:0.06 〜1.0 %を含有し、Feの含有量を0.4 %以下、Mgの含有量を0.04%以下に規制し、残部アルミニウムおよび不可避的不純物からなるアルミニウム合金で構成され、犠牲陽極材は、Zn:0.5〜4.0 %、In:0.005〜0.1 %、Sn:0.01 〜0.1 %のうちの1種または2種以上を含有し、さらにSi:0.3%を越え1.0 %以下を含有し、Feの含有量を0.5 %以下、Mgの含有量を0.04%以下に規制し、残部アルミニウムおよび不可避的不純物からなるアルミニウム合金で構成され、ろう材は、Si:6〜14%、Fe:0.06 〜0.7 %を含有し、Mgの含有量を0.04%以下、Caの含有量を0.006 %以下に規制し、残部Alおよび不純物からなるアルミニウム合金で構成されることを特徴とする。
【0007】
本発明の請求項2によるアルミニウム合金クラッド材は、請求項1において、ろう材が、さらにBi:0.01 〜0.4 %を含有することを特徴とし、本発明の請求項3によるアルミニウム合金クラッド材は、請求項1または2において、芯材が、さらにTi:0.06 〜0.35%を含有することを特徴とする。
【0008】
【発明の実施の形態】
本発明のアルミニウム合金クラッド材における芯材、犠牲陽極材およびろう材の合金成分の意義およびその限定理由について説明する。
(1)芯材
芯材中のMnは、強度を向上させるとともに、芯材の電位を貴にして、犠牲陽極材との電位差を大きくして耐食性を高めるよう機能する。好ましい含有範囲は0.6 〜2.0 %であり、0.6 %未満ではその効果が小さく、2.0 %を越えて含有すると、鋳造時に粗大な化合物が生成し、圧延加工性が害される結果、健全な板材が得難い。
【0009】
Cuは、強度を向上させるとともに、芯材の電位を貴にし、犠牲陽極材、ろう材との電位差を大きくして、耐食性を高めるよう機能する。さらに、芯材中のCuは、ろう付け加熱時に犠牲陽極材中およびろう材中に拡散して、なだらかな濃度勾配を形成する。その結果、芯材側の電位は貴となり、犠牲陽極材の表面側およびろう材の表面側の電位は卑となって、犠牲陽極材中およびろう材中になだらかな電位勾配が形成され、腐食形態を横拡がりの全面腐食型にする。Cuの好ましい含有量は0.3 〜1.0 %の範囲であり、0.3 %未満ではその効果が小さく、1.0 %を越えると、芯材の耐食性が低下し、また、融点が低下して、ろう付け時に局部的な溶融が生じ易くなる。Cuのさらに好ましい含有量は0.3 〜1.0 %の範囲である。
【0010】
Siは、強度を向上させる効果を有する。Siの好ましい含有範囲は0.06〜1.0 %であり、0.06%未満ではその効果が十分でなく、1.0 %を越えると、耐食性を低下させ、また融点が低下して局部溶融が生じ易くなる。
【0011】
不純物としてのFeは、アルミニウム母材に対してカソードとなり、耐食性を低下させるため、0.4 %以下に規制するのが好ましい。また、Feの含有量の極めて少ない高純度のアルミニウム地金はコストが高く実用的でないから、さらに好ましいFeの含有量は0.01〜0.4 %とする。
【0012】
Mgは、ろう付け性低下の観点から0.04%以下に制限するのが好ましい。0.04%を越えて含有すると、フッ化物系のフラックスを使用する不活性ガス雰囲気ろう付けの場合、Mgがフラックスと反応してMgF2 などの化合物を生成するため、フラックスの絶対量は不足し、ろう付け性が低下する。Mgのさらに好ましい含有量は0.02%以下の範囲である。
【0013】
Tiは、芯材の耐食性をより一層向上させる効果を有する。すなわち、Tiは、濃度の高い領域と低い領域との分かれ、それらが板厚方向に交互に分布して層状となり、Ti濃度の低い領域が高い領域に比べて優先的に腐食することにより腐食形態が層状となる結果、板厚方向への腐食の進行が妨げられ、耐孔食性が向上する。Tiの好ましい含有量は0.06〜0.35%の範囲であり、0.06%未満では効果が十分でなく、0.35%を越えると、鋳造時に粗大な化合物が生成して材料の圧延を阻害し、健全なクラッド材が得難くなる。
【0014】
なお、芯材中には、不純物として、Zn、Cr、Zrなどの成分が含まれていても良い。但し、Znは芯材の電位を卑にし、犠牲陽極材およびろう材との電位差を小さくして耐食性を低下させるので、0.2 %以下に規制するのが好ましく、CrおよびZrは、組織の微細化などの目的で添加することもできるが、加工性を害するので、それぞれ0.3 %以下に制限するのが好ましい。
【0015】
(2)犠牲陽極材
犠牲陽極材中のZnは、犠牲陽極材の電位を卑にし、芯材に対する犠牲陽極効果を保持し、クラッド材の腐食を全面腐食型にして、芯材の孔食や隙間腐食を防止するよう機能する。Znの好ましい含有範囲は0.5 〜4.0 %であり、Znの含有量が0.5 %未満ではその効果が十分でなく、4.0 %を越えると、自己耐食性が低下して犠牲陽極材の腐食消耗が激しくなり、犠牲陽極効果が長期に持続されない。また、0.4 %を越えて含有してもその効果が飽和する。
【0016】
Inは犠牲陽極材の電位を卑にし、芯材に対し犠牲陽極効果を確実に付与するために役立つ。Inの好ましい含有量は0.005 〜0.1 %の範囲であり、0.005 %未満ではその効果が小さく、0.1 %を越えて含有すると、効果が飽和するとともに、犠牲陽極材の自己耐食性が低下し、また圧延加工性が劣化する。
【0017】
Snは犠牲陽極材の電位を卑にし、芯材に対し犠牲陽極効果を確実に付与するために役立つ。Snの好ましい含有量は0.01〜0.1 %の範囲であり、0.01%未満ではその効果が小さく、0.1 %を越えて含有すると、効果が飽和するとともに、犠牲陽極材の自己耐食性が低下し、また圧延加工性が劣化する。
【0018】
Siは、強度を高めるよう作用する。Siの好ましい含有量は0.3 %を越え1.0 %以下の範囲であり、0.3 %以下ではその効果が十分でなく、1.0 %を越えると犠牲陽極材の自己耐食性が低下する。
【0019】
不純物としてのFeは、アルミニウム母材に対してカソードとなり、自己耐食性を低下させるから、Feの含有量は0.5 %以下の規制するのが好ましい。また、Feの極めて少ない高純度のアルミニウム地金はコストが高く実用的でないから、Fe:0.01 〜0.5 %の範囲とするのがさらに好ましい。
【0020】
犠牲陽極材中のMgは、フッ化物系のフラックスを使用してろう付けを行う場合、フラックス成分のフッ素(F)と反応してMgF2 などの化合物を生成するため、フラックスの絶対量が不足して、ろう付け性が低下するので、0.04%以下に規制するのが好ましい。より好ましくは0.02%以下に規制する。
【0021】
なお、犠牲陽極材中には、Mn、Cu、Cr、Zr、Tiなどの元素が、発明の効果を損なわない範囲で少量含まれていても良いが、MnおよびCuは、犠牲陽極材の電位を貴にし、芯材との電位差を小さくして犠牲陽極効果を低下させるので、それぞれ0.3 %以下に制限するのが好ましい。また、Cr、ZrおよびTiは、結晶粒の微細化などの目的で添加する場合もあるが、加工性を害するので、それぞれ0.3 %以下に制限するのが好ましい。
【0022】
(3)ろう材
ろう材中のSiは、ろう材の融点を下げ、ろうの流動性を高めるよう機能する。Siの好ましい含有量は6 〜14%の範囲であり、6 %未満ではその効果が十分でなく、14%を越えると、ろう材の融点が高くなり、ろう材製造時の加工性が低下する。
【0023】
Feは、ろう材の組織を微細化し、ろうの流動性を高める効果を有する。Feの好ましい含有量は0.06〜0.7 %の範囲であり、0.06%未満ではその効果が小さく、0.7 %を越えて含有すると、その効果が飽和するとともに、アルミニウム母材に対してカソードとなり、Al−Fe系の化合物の生成量も多くなって、耐食性が低下する。
【0024】
ろう材中のMgは、フッ化物系のフラックスを使用してろう付けを行う場合、ろう付け加熱過程において、ろう材表面に濃縮し易く、フラックス成分のフッ素(F)と反応してMgF2 などの化合物を生成するため、フラックスの絶対量が不足して、ろう付け性が低下するので、0.04%以下に規制するのが好ましい。より好ましくは0.02%以下に規制する。
【0025】
Caは、ろう材表面に緻密な酸化物を形成するため、ろうの濡れ性および拡がり性が低下して、ろう付け性を阻害する。ろう付け性の低下は、Caの含有量が0.006 %を越えると顕著となるから、Caの含有量は0.006 %以下に規制するのが好ましい。さらに好ましくは0.004 %以下とする。
【0026】
Biは、ろう材の融点を下げ、ろうの濡れ性および拡がり性を改善する。Biの好ましい含有量は0.01〜0.4 %の範囲であり、0.01%未満ではその効果が小さく、0.4 %を越えると、その効果が飽和するとともに、ろう材の自己耐食性が低下する。Biのさらに好ましい含有範囲は0.1 〜0.4 %である。
【0027】
ろう材には、ろう付け性を改善するために、少量、例えば0.1 %以下のBe、Sr、Li、Naのうちの1種以上を含有させることもできる。ろう材の電位を卑にして、芯材に対してろう材に犠牲陽極効果を与え、クラッド材の耐食性を向上させるために、Zn、InおよびSnなどの1種以上を含有させても良い。但し、Zn、InおよびSnは、含有量が多くなると、自己耐食性が低下して、ろう材の腐食消耗が激しくなり、犠牲陽極効果が長期に持続されなくなるから、Znの含有量は4 %以下、InおよびSnの含有量はそれぞれ0.1 %以下に規制するのが好ましい。また、Mn,Cu、Ti、Cr、Zr、Niなども、ろう材の強度を向上させるために、発明の効果を損なわない範囲で添加しても良いが、添加量が多くなると自己耐食性が低下するので、総量を1 %以下に制限するのが好ましい。
【0028】
本発明の熱交換器用アルミニウム合金クラッド材は、芯材、犠牲陽極材およびろう材を構成するアルミニウム合金を、例えば半連続鋳造により造塊し、必要に応じて均質化処理したのち、それぞれ所定厚さまで熱間圧延し、ついで、各材料を組合わせ、常法に従って、熱間圧延によりクラッド材とし、最終的に所定厚さまで冷間圧延し、必要により焼鈍を行う工程を経て製造される。
【0029】
本発明のアルミニウム合金クラッド材を、ラジエータ、ヒータコアなど、自動車用熱交換器のチューブ材とするには、クラッド板を曲成し、突き合わせ部を溶接またはろう付けすることによりチューブ形状とする。犠牲陽極材層が内皮層を構成して作動流体と接し、ろう材層が外皮層となる。外皮層にはアルミニウム合金フィン材をろう付けして熱交換器を組立てる。
【0030】
【実施例】
実施例1
連続鋳造により、表1に示す組成を有する芯材用アルミニウム合金を造塊し、均質化処理後、厚さ25mmに面削して芯材用素材とした。また、表2に示す組成を有するろう材用合金および表3に示す組成を有する犠牲陽極材用合金を、芯材用合金と同様にして造塊し、面削後、熱間圧延を行って、それぞれ厚さ3mmの板材とした。このろう材および犠牲陽極材を芯材の両面に重ね合わせ、熱間圧延して厚さ3mmのクラッド材を得た。その後、冷間圧延、中間焼鈍、最終冷間圧延を施して、厚さ0.25mmの3層クラッド材(調質H14)とした。
【0031】
得られたアルミニウム合金クラッド材(試験材)について、以下の方法に従って、ろう付け後の強度を測定し、ろう付け性および耐食性を評価した。結果を表4〜5に示す。
(1)ろう付け後の強度
クラッド材に、ろう付け条件と同様、フッ化物系フラックス(濃度1%)を塗布して窒素ガス中で、ろう付け温度の600℃(材料温度)に5分間加熱した後、冷却して引張試験を行い、引張強さを測定した。
【0032】
(2)ろう付け性
クラッド材を、幅20mm、長さ40mmに切断し、図1に示すように、ろう材4、犠牲陽極材5および芯材6からなるクラッド材2を3003合金材(厚さ1mm、幅25mm、長さ40mm)3の上に載せて、逆T字型継手1に組合わせ、ろう付け条件と同様、フッ化物系フラックスを塗布した後、窒素ガス雰囲気中で600℃の温度に5分間加熱し、図2に示すように、加熱により逆T字型継手1の隅角部に溶融形成されたフィレット部7、8の断面積A1 およびA2 を測定し、ろう付け加熱前のろう材の断面積A0 との比から流動係数K(K=(A1 +A2 )/A0 )を求める。流動係数Kが大きいほど、ろう材の溶融した割合が多く、ろうの流動性が良好で、ろう付け性に優れていることを示す。通常の自動車用熱交換器用3層クラッド材のろう付けでは、流動係数Kが0.20未満の場合、フィレット切れ(フィレット未成形部発生)などのろう付け不良が生じ易くなるから、流動係数Kが0.20未満または実際にフィレット切れが生じたものをろう付け性不十分(×)、流動係数Kが0.20以上をろう付け性良好と評価した。
【0033】
(3)耐食性
クラッド材の外面側(ろう材側)の耐食性は、前記ろう付け加熱後の逆T字型継手について、内面側(犠牲陽極材側)をシールした後、JIS H8681に従ってCASS試験を2週間実施し、試験後のクラッド材の一般部(フィレット部以外の部分)の最大腐食深さを測定し、また、フィレット部については、フィレット面積の50%以上が腐食により消滅したものを耐食性不十分(×)と評価し、消滅面積がフィレット面積の50%未満のものを耐食性良好と評価した。
【0034】
内面側(犠牲陽極材側)の耐食性は、クラッド材単板にフッ化物系フラックス(濃度1%)を塗布して窒素ガス中で、ろう付け温度の600℃(材料温度)に5分間加熱した後、外面側(ろう材側)をシールし、Cl- :100ppm、SO4 2-:100ppm、HCO3 - :100ppm、Cu2+:10ppmを含む水溶液中に浸漬して、80℃の温度に8時間保持し、その後室温まで放冷しながら16時間放置するというサイクルを2か月間繰り返した後、最大腐食深さを測定した。
【0035】
【表1】
【0036】
【表2】
【0037】
【表3】
【0038】
【表4】
【0039】
【表5】
【0040】
表4および表5にみられるように、本発明に従う試験材はいずれも、ろう付け後に145MPa以上の優れた引張強さを示し、腐食試験における外面一般部の最大腐食深さは0.10〜0.17mm、内面側の最大腐食深さは0.08〜0.15mmであり優れた耐食性をそなえている。ろう付け性についても、良好な接合部が形成された。また、本発明のクラッド材は、加工性良好であり、製造上何ら問題を生じることがなかった。
【0041】
比較例1
連続鋳造により、表6に示す組成を有する芯材用アルミニウム合金、表7に示す組成を有するろう材用アルミニウム合金および表8に示す組成を有する犠牲陽極材用アルミニウム合金を造塊し、実施例1と同一の条件により、厚さ0.25mmのアルミニウム合金クラッド材(H14)を作製した。得られたクラッド材(試験材)について、実施例1の方法に従って、ろう付け後の引張強さを測定し、ろう付け性および耐食性の評価を行った。結果を表9〜10に示す。
【0042】
【表6】
【0043】
【表7】
【0044】
【表8】
【0045】
【表9】
【0046】
【表10】
【0047】
表9〜10にみられるように、本発明の条件を外れた試験材は、ろう付け後の強度、ろう付け性、耐食性のいずれかが劣っている。試験材No.34 およびNo.41 は、芯材のMn量が少ないため、ろう付け後の強度が低い。試験材No.35 およびNo.42 は、芯材のMn量が多いため、加工性が劣り健全な板材の製造ができなかった。試験材No.36 およびNo.43 は、それぞれ芯材のCu量が少ないため、ろう付け後の強度が低く、腐食試験において、外面側に貫通孔が生じ、内面側の最大腐食深さも大きい。試験材No.37 およびNo.44 は、それぞれ芯材のCu量が多いため、ろう付け時の加熱において、芯材に局部溶融が生じた。試験材No.38 およびNo.45 は、芯材のSi量が少ないため、ろう付け後の強度が低い。試験材No.39 およびNo.46 は、芯材のSi量が多いため、ろう付け時の加熱において、芯材に局部溶融が生じた。試験材No.40 およびNo.50 は、芯材のMg量が多いため、ろう付け性が劣り、ろう付けにおいて十分なフィレットが形成されず、フィレット切れが生じた。
【0048】
試験材No.47 は、芯材のFe量が多いため、耐食性が劣り、外面側および内面側で貫通孔が生じた。試験材No.48 は、芯材のTi量が少ないため、外面側および内面側の最大腐食深さが本発明のTi含有芯材からなるクラッド材に比べて大きくなっている。試験材No.49 は、芯材のTiの含有量が多いため、圧延が困難となり、健全なクラッド材が製造できなかった。試験材No.50 は、芯材がJIS3003合金に相当し、Cuの含有量が少ないため、ろう付け後の強度が低い。またFe量が多いため耐食性が劣り、内面側に貫通孔が生じた。さらにMg量が多いため、ろう付け性が劣り、ろう付けにおいてフィレット切れが生じた。
【0049】
試験材No.51 は、ろう材のSi量が少ないため、流動係数が小さく、ろう付け性が劣る。試験材No.52 は、ろう材のSi量が多いため、圧延加工性がわるく、健全なクラッド材が製造できなかった。試験材No.53 は、ろう材のFe量が少ないため、流動係数が小さく、ろう付け性が劣る、試験材No.54 は、ろう材のFe量が多いため、耐食性が劣り、外面側のフィレット部の腐食が顕著であった。試験材No.55 は、ろう材のMg量が多いため、また試験材No.56 は、ろう材のCa量が多いため、ろう付け性が劣り、全くフィレットが形成されず、未接合状態となった。
【0050】
試験材No.57 は、ろう材のBi量が少ないため、Biを含有する本発明のクラッド材に比べて流動係数が小さく、ろう付け性が劣る。試験材No.58 は、ろう材のBi量が多いため、外面側のフィレット部の自己腐食が激しい。試験材No.59 およびNo.60 は、それぞれ犠牲陽極材のSi量およびFe量が多いため、また試験材No.62 は犠牲陽極材のZn量が多いため、試験材No.63 は犠牲陽極材のIn量が多いため、試験材No.64 は犠牲陽極材のSn量が多いため、いずれも耐食性が劣り、内面側の犠牲陽極材の腐食消耗が激しく、犠牲陽極効果が長期に持続しない。試験材No.61 は、犠牲陽極材のMg量が多いため、ろう付けにおいて全くフィレットが形成されず、未接合状態となった。また、犠牲陽極材のZn、In、Snの含有量が少ないため、犠牲陽極効果が十分に発揮されず、内面側に貫通孔が生じた。
【0051】
【発明の効果】
本発明によれば、ろう付け後の強度が高く、ろう付け性と耐食性に優れた熱交換器用アルミニウム合金クラッド材が提供される。このクラッド材は、自動車用アルミニウム合金製熱交換器の流体通路を構成するチューブ材として特に好適に使用できる。
【図面の簡単な説明】
【図1】本発明のろう付け性の評価試験において使用する逆T字型継手(試験前)を示す断面図である。
【図2】本発明のろう付け性の評価試験において使用する逆T字型継手(試験後)を示す断面図である。
【符号の説明】
1 逆T字型継ぎ手
2 アルミ合金クラッド材(耐食性に優れた熱交換器用高強度アルミニウム合金クラッド材)
3 3003合金材
4 ろう材
5 犠牲陽極材
6 芯材
7、8 フィレット部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum alloy clad material for heat exchangers excellent in brazing and corrosion resistance, in particular, a heat passage fluid passage component (tube material) for heat exchangers joined by brazing, such as automotive heat exchangers such as radiators and heater cores. ), An aluminum alloy clad material for a heat exchanger that is suitable as a header plate material and has excellent brazing properties and corrosion resistance in brazing using a fluoride-based flux.
[0002]
[Prior art]
The tube material and header plate material of automotive heat exchangers such as radiators and heater cores are made of Al-Mn alloy such as JIS3003 alloy as the core material, and Al-Si brazing material on one side of the core material. An aluminum alloy three-layer clad material is used which is clad and clad with a sacrificial anode material made of an Al—Zn alloy or an Al—Zn—Mg alloy on the other surface.
[0003]
The Al-Si brazing material is clad for joining the tube and the fin and brazing the tube and the header plate, and brazing is generally performed in an inert gas atmosphere with fluoride. Brazing performed using a system flux is applied, but vacuum brazing may also be performed. The sacrificial anode material constitutes the inner surface of the tube, contacts the working fluid during use of the heat exchanger, exhibits the sacrificial anode effect, and prevents pitting corrosion and crevice corrosion of the core material. The fin joined to the outer surface of the tube exhibits a sacrificial anode effect to prevent the core material, and an aluminum alloy in which Cu, Mg, Zn, Sn, In or the like is added to an Al-Mn alloy is applied. The
[0004]
In recent years, from the viewpoint of reducing the weight of automobiles, there has been a strong demand for weight reduction and cost reduction of automobile heat exchangers, and it is necessary to further reduce the thickness of heat exchanger constituent materials such as tube materials. For this reason, attempts have been made to increase the strength by adding various elements to the tube material and header plate material, but the inclusion of the additive component causes a decrease in corrosion resistance, and brazing is accompanied by the thinning of the material. Therefore, there is a strong demand for the development of materials for heat exchangers that are excellent in brazing and corrosion resistance.
[0005]
[Problems to be solved by the invention]
In order to obtain an aluminum alloy material for a heat exchanger that satisfies the above requirements, the present invention provides a composition of a core material, a sacrificial anode material and a brazing material in a three-layer clad material, and combinations thereof, and particularly a fluoride-based material. It was made as a result of repeated experiments and examinations on the relationship between brazing and corrosion resistance in brazing using flux. The purpose of this is the tube material of heat exchangers, especially automotive heat exchangers. An object of the present invention is to provide an aluminum alloy clad material for a heat exchanger that can be suitably used as a header plate material and has excellent brazeability and corrosion resistance.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the aluminum alloy clad material for a heat exchanger excellent in brazing and corrosion resistance according to claim 1 of the present invention has a sacrificial anode material clad on one surface of a core material, and the other surface. An aluminum alloy clad material clad with an Al-Si brazing material, the core material containing Mn: 0.6 to 2.0%, Cu: 0.3 to 1.0%, Si: 0.06 to 1.0%, and Fe content 0.4% or less, Mg content is regulated to 0.04% or less, and is composed of an aluminum alloy composed of the balance aluminum and unavoidable impurities, the sacrificial anode material is Zn: 0.5-4.0%, In: 0.005-0.1%, Contains Sn or more of Sn: 0.01-0.1%, Si: more than 0.3% and 1.0% or less, Fe content 0.5% or less, Mg content 0.04% or less The balance of aluminum and inevitable impurities It is composed of a minium alloy, and the brazing material contains Si: 6 to 14%, Fe: 0.06 to 0.7%, Mg content is regulated to 0.04% or less, Ca content is regulated to 0.006% or less, and the balance Al And an aluminum alloy made of impurities.
[0007]
The aluminum alloy clad material according to
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The significance of the alloy components of the core material, the sacrificial anode material, and the brazing material in the aluminum alloy clad material of the present invention and the reason for the limitation will be described.
(1) Mn in the core material improves the strength and functions to make the potential of the core material noble and increase the potential difference from the sacrificial anode material to improve the corrosion resistance. The preferable content range is 0.6 to 2.0%. If the content is less than 0.6%, the effect is small. If the content exceeds 2.0%, a coarse compound is produced during casting, and rolling workability is impaired. As a result, it is difficult to obtain a sound plate material. .
[0009]
Cu functions to improve the corrosion resistance by improving the strength, making the potential of the core material noble, and increasing the potential difference between the sacrificial anode material and the brazing material. Furthermore, Cu in the core material diffuses into the sacrificial anode material and the brazing material during brazing heating, and forms a gentle concentration gradient. As a result, the potential on the core side becomes noble, the potential on the surface side of the sacrificial anode material and the surface side of the brazing material becomes base, and a gentle potential gradient is formed in the sacrificial anode material and the brazing material. The form is a full-surface corrosion type that spreads horizontally. The preferable content of Cu is in the range of 0.3 to 1.0%. When the content is less than 0.3%, the effect is small. When the content exceeds 1.0%, the corrosion resistance of the core material is lowered, and the melting point is lowered. Melting tends to occur. A more preferable content of Cu is in the range of 0.3 to 1.0%.
[0010]
Si has an effect of improving strength. The preferable range of Si is 0.06 to 1.0%. If it is less than 0.06%, the effect is not sufficient, and if it exceeds 1.0%, the corrosion resistance is lowered, the melting point is lowered, and local melting tends to occur.
[0011]
Fe as an impurity serves as a cathode with respect to the aluminum base material, and lowers the corrosion resistance. Therefore, it is preferable to regulate it to 0.4% or less. Further, since a high-purity aluminum ingot having a very low Fe content is expensive and impractical, a more preferable Fe content is 0.01 to 0.4%.
[0012]
Mg is preferably limited to 0.04% or less from the viewpoint of reducing brazing properties. When the content exceeds 0.04%, in the case of brazing in an inert gas atmosphere using a fluoride-based flux, Mg reacts with the flux to produce a compound such as MgF 2, so the absolute amount of flux is insufficient. Brazing property decreases. A more preferable content of Mg is in the range of 0.02% or less.
[0013]
Ti has the effect of further improving the corrosion resistance of the core material. That is, Ti is divided into a high-concentration region and a low region, they are alternately distributed in the plate thickness direction and become layered, and a low-Ti concentration region corrodes preferentially in comparison with a high region. As a result, the progress of corrosion in the thickness direction is hindered and the pitting corrosion resistance is improved. The preferable content of Ti is in the range of 0.06 to 0.35%, and if it is less than 0.06%, the effect is not sufficient, and if it exceeds 0.35%, a coarse compound is generated during casting, which inhibits rolling of the material and provides a sound cladding It becomes difficult to obtain materials.
[0014]
The core material may contain components such as Zn, Cr, and Zr as impurities. However, since Zn lowers the potential of the core material and reduces the potential difference between the sacrificial anode material and the brazing material and lowers the corrosion resistance, it is preferable to limit it to 0.2% or less. Cr and Zr are finer structures. However, it is preferable to limit the content to 0.3% or less because it impairs workability.
[0015]
(2) Sacrificial anode material Zn in the sacrificial anode material lowers the potential of the sacrificial anode material, maintains the sacrificial anode effect on the core material, makes the corrosion of the clad material full corrosion type, Functions to prevent crevice corrosion. The preferable content range of Zn is 0.5 to 4.0%. If the Zn content is less than 0.5%, the effect is not sufficient, and if it exceeds 4.0%, the self-corrosion resistance is lowered and the sacrificial anode material is severely corroded. The sacrificial anode effect is not sustained for a long time. Even if the content exceeds 0.4%, the effect is saturated.
[0016]
In serves to make the potential of the sacrificial anode material low and to reliably impart the sacrificial anode effect to the core material. The preferable content of In is in the range of 0.005 to 0.1%. If the content is less than 0.005%, the effect is small. If the content exceeds 0.1%, the effect is saturated and the self-corrosion resistance of the sacrificial anode material is reduced. Workability deteriorates.
[0017]
Sn serves to base the potential of the sacrificial anode material and reliably impart the sacrificial anode effect to the core material. The preferable content of Sn is in the range of 0.01 to 0.1%. If the content is less than 0.01%, the effect is small. If the content exceeds 0.1%, the effect is saturated and the self-corrosion resistance of the sacrificial anode material is reduced. Workability deteriorates.
[0018]
Si acts to increase the strength. The preferable content of Si is in the range of more than 0.3% and 1.0% or less. If the content is less than 0.3%, the effect is not sufficient, and if it exceeds 1.0%, the self-corrosion resistance of the sacrificial anode material is lowered.
[0019]
Fe as an impurity serves as a cathode with respect to the aluminum base material and lowers the self-corrosion resistance. Therefore, the Fe content is preferably regulated to 0.5% or less. Further, since a high-purity aluminum ingot having a very small amount of Fe is expensive and impractical, it is more preferable that the Fe content be in the range of 0.01 to 0.5%.
[0020]
Mg in the sacrificial anode material, when brazing using a fluoride-based flux, reacts with the flux component fluorine (F) to produce compounds such as MgF 2, so the absolute amount of flux is insufficient And since brazing property falls, it is preferable to regulate to 0.04% or less. More preferably, it is regulated to 0.02% or less.
[0021]
The sacrificial anode material may contain a small amount of elements such as Mn, Cu, Cr, Zr, and Ti within a range that does not impair the effects of the invention. , And the potential difference with the core material is reduced to reduce the sacrificial anode effect. Therefore, it is preferable to limit each to 0.3% or less. Cr, Zr and Ti may be added for the purpose of refining crystal grains. However, since workability is impaired, it is preferable to limit each to 0.3% or less.
[0022]
(3) Si in the brazing filler metal functions to lower the melting point of the brazing filler metal and increase the fluidity of the brazing filler metal. The preferable content of Si is in the range of 6 to 14%. If the content is less than 6%, the effect is not sufficient, and if it exceeds 14%, the melting point of the brazing material becomes high, and the workability during the production of the brazing material decreases. .
[0023]
Fe has the effect of refining the structure of the brazing material and enhancing the fluidity of the brazing material. The preferable content of Fe is in the range of 0.06 to 0.7%. When the content is less than 0.06%, the effect is small. When the content exceeds 0.7%, the effect is saturated, and the cathode becomes the aluminum base material. The production amount of Fe-based compounds also increases and the corrosion resistance decreases.
[0024]
When brazing using a fluoride-based flux, Mg in the brazing material is easily concentrated on the brazing filler metal surface during the brazing heating process, and reacts with the flux component fluorine (F) to produce MgF 2, etc. Therefore, it is preferable to regulate the amount to 0.04% or less. More preferably, it is regulated to 0.02% or less.
[0025]
Since Ca forms a dense oxide on the surface of the brazing material, the wettability and spreadability of the braze are lowered, and the brazing property is inhibited. The decrease in brazeability becomes significant when the Ca content exceeds 0.006%. Therefore, the Ca content is preferably regulated to 0.006% or less. More preferably, it is 0.004% or less.
[0026]
Bi lowers the melting point of the brazing material and improves the wettability and spreadability of the brazing material. The preferable Bi content is in the range of 0.01 to 0.4%. If the content is less than 0.01%, the effect is small. If the content exceeds 0.4%, the effect is saturated and the self-corrosion resistance of the brazing material is lowered. A more preferable range of Bi is 0.1 to 0.4%.
[0027]
The brazing material may contain a small amount, for example, 0.1% or less of one or more of Be, Sr, Li, and Na in order to improve brazing properties. One or more of Zn, In, Sn, and the like may be included in order to provide a brazing material with a sacrificial anode effect with respect to the core material and improve the corrosion resistance of the cladding material. However, if the content of Zn, In and Sn is increased, the self-corrosion resistance is lowered, the corrosion consumption of the brazing material becomes severe, and the sacrificial anode effect is not sustained for a long time. Therefore, the Zn content is 4% or less. , In and Sn contents are preferably regulated to 0.1% or less, respectively. In addition, Mn, Cu, Ti, Cr, Zr, Ni, etc. may be added within a range that does not impair the effects of the invention in order to improve the strength of the brazing material, but the self-corrosion resistance decreases as the addition amount increases. Therefore, it is preferable to limit the total amount to 1% or less.
[0028]
The aluminum alloy clad material for a heat exchanger of the present invention is formed by ingot forming an aluminum alloy constituting a core material, a sacrificial anode material, and a brazing material, for example, by semi-continuous casting, and after homogenizing treatment as necessary, each has a predetermined thickness. It is manufactured through a process of hot rolling to the thickness, then combining the respective materials, forming a clad material by hot rolling according to a conventional method, finally cold rolling to a predetermined thickness, and annealing if necessary.
[0029]
In order to use the aluminum alloy clad material of the present invention as a tube material for an automotive heat exchanger such as a radiator or a heater core, the clad plate is bent and the butt portion is welded or brazed to form a tube shape. The sacrificial anode material layer constitutes the endothelial layer and is in contact with the working fluid, and the brazing material layer becomes the outer skin layer. A heat exchanger is assembled by brazing aluminum alloy fins on the outer skin layer.
[0030]
【Example】
Example 1
By continuous casting, an aluminum alloy for a core material having the composition shown in Table 1 was ingot, homogenized, and then chamfered to a thickness of 25 mm to obtain a core material. In addition, the brazing alloy having the composition shown in Table 2 and the sacrificial anode material having the composition shown in Table 3 are ingoted in the same manner as the core alloy, and after face chamfering, hot rolling is performed. The plate material was 3 mm thick. The brazing material and the sacrificial anode material were superposed on both sides of the core material and hot-rolled to obtain a clad material having a thickness of 3 mm. Thereafter, cold rolling, intermediate annealing, and final cold rolling were performed to obtain a three-layer clad material (tempered H14) having a thickness of 0.25 mm.
[0031]
About the obtained aluminum alloy clad material (test material), the strength after brazing was measured according to the following method, and brazing property and corrosion resistance were evaluated. The results are shown in Tables 4-5.
(1) Applying a fluoride-based flux (concentration 1%) to brazing strength clad material after brazing and heating to 600 ° C. (material temperature) brazing temperature in nitrogen gas for 5 minutes After cooling, a tensile test was performed and the tensile strength was measured.
[0032]
(2) The brazing clad material is cut into a width of 20 mm and a length of 40 mm. As shown in FIG. 1, the
[0033]
(3) Corrosion resistance The corrosion resistance of the outer surface side (brazing material side) of the clad material is determined by performing a CASS test in accordance with JIS H8681, after sealing the inner surface side (sacrificial anode material side) of the inverted T-shaped joint after brazing heating. Conducted for 2 weeks, measured the maximum corrosion depth of the general part (parts other than the fillet part) of the clad material after the test. Also, for the fillet part, corrosion resistance was obtained by eliminating 50% or more of the fillet area due to corrosion. It was evaluated as insufficient (x), and those having an extinction area of less than 50% of the fillet area were evaluated as having good corrosion resistance.
[0034]
Corrosion resistance on the inner surface side (sacrificial anode material side) was measured by applying a fluoride-based flux (concentration 1%) to a clad plate and heating it to a brazing temperature of 600 ° C. (material temperature) for 5 minutes in nitrogen gas. Then, the outer surface side (the brazing filler metal side) is sealed and immersed in an aqueous solution containing Cl − : 100 ppm, SO 4 2− : 100 ppm, HCO 3 − : 100 ppm, Cu 2+ : 10 ppm, and the temperature is increased to 80 ° C. The cycle of holding for 8 hours and then leaving to cool to room temperature for 16 hours was repeated for 2 months, and then the maximum corrosion depth was measured.
[0035]
[Table 1]
[0036]
[Table 2]
[0037]
[Table 3]
[0038]
[Table 4]
[0039]
[Table 5]
[0040]
As can be seen from Tables 4 and 5, all of the test materials according to the present invention showed excellent tensile strength of 145 MPa or more after brazing, and the maximum corrosion depth of the general portion of the outer surface in the corrosion test was 0.10 to 0.10. The maximum corrosion depth on the inner surface side is 0.18 mm and 0.08 to 0.15 mm, providing excellent corrosion resistance. As for the brazing property, a good joint was formed. In addition, the clad material of the present invention has good workability and did not cause any problems in production.
[0041]
Comparative Example 1
By continuous casting, an aluminum alloy for core material having the composition shown in Table 6, an aluminum alloy for brazing material having the composition shown in Table 7, and an aluminum alloy for sacrificial anode material having the composition shown in Table 8 were ingoted. Under the same conditions as 1, an aluminum alloy clad material (H14) having a thickness of 0.25 mm was produced. About the obtained clad material (test material), according to the method of Example 1, the tensile strength after brazing was measured, and brazing properties and corrosion resistance were evaluated. The results are shown in Tables 9-10.
[0042]
[Table 6]
[0043]
[Table 7]
[0044]
[Table 8]
[0045]
[Table 9]
[0046]
[Table 10]
[0047]
As can be seen from Tables 9 to 10, the test materials that deviate from the conditions of the present invention are inferior in strength after brazing, brazing properties, and corrosion resistance. Test materials No. 34 and No. 41 have low strength after brazing because the core material has a small amount of Mn. Since the test materials No. 35 and No. 42 had a large amount of Mn in the core material, the workability was inferior and a sound plate material could not be produced. Since each of the test materials No. 36 and No. 43 has a small amount of Cu in the core material, the strength after brazing is low, and in the corrosion test, a through hole is formed on the outer surface side, and the maximum corrosion depth on the inner surface side is also large. Since each of the test materials No. 37 and No. 44 had a large amount of Cu in the core material, local melting occurred in the core material during heating during brazing. Test materials No. 38 and No. 45 have low strength after brazing because the Si content of the core material is small. Since the test materials No. 39 and No. 46 had a large amount of Si in the core material, local melting occurred in the core material during heating during brazing. Since the test materials No. 40 and No. 50 had a large amount of Mg in the core material, the brazing property was inferior, and sufficient fillets were not formed in the brazing, resulting in fillet breakage.
[0048]
Since test material No. 47 had a large amount of Fe in the core material, the corrosion resistance was inferior, and through holes were formed on the outer surface side and the inner surface side. Since the test material No. 48 has a small amount of Ti in the core material, the maximum corrosion depth on the outer surface side and the inner surface side is larger than that of the clad material made of the Ti-containing core material of the present invention. Since test material No. 49 had a high Ti content in the core material, rolling was difficult, and a sound clad material could not be produced. In test material No. 50, the core material corresponds to JIS3003 alloy and the Cu content is low, so the strength after brazing is low. Moreover, since there was much Fe amount, corrosion resistance was inferior and the through-hole was produced in the inner surface side. Furthermore, since there was much Mg amount, brazing property was inferior and the fillet cut | disconnection produced in brazing.
[0049]
Since test material No. 51 has a small amount of Si in the brazing material, the flow coefficient is small and the brazing property is inferior. Since test material No. 52 had a large amount of Si in the brazing material, rolling processability was poor and a sound clad material could not be produced. Test material No. 53 has a low flow coefficient due to the small amount of Fe in the brazing material, and the brazing property is inferior. Corrosion of the fillet portion was remarkable. Test material No. 55 has a large amount of Mg in the brazing material, and test material No. 56 has a large amount of Ca in the brazing material, so that the brazing property is inferior and no fillet is formed. became.
[0050]
Since test material No. 57 has a small amount of Bi in the brazing material, it has a smaller flow coefficient and inferior brazing properties than the clad material of the present invention containing Bi. Since test material No. 58 has a large amount of Bi in the brazing material, self-corrosion of the fillet portion on the outer surface side is severe. Test materials No. 59 and No. 60 have a large amount of Si and Fe in the sacrificial anode material, respectively. Test material No. 62 has a large amount of Zn in the sacrificial anode material, so test material No. 63 is a sacrificial anode. Since the In amount of the material is large, the test material No. 64 has a large amount of Sn in the sacrificial anode material, so the corrosion resistance is inferior, the corrosion consumption of the sacrificial anode material on the inner surface side is severe, and the sacrificial anode effect does not last for a long time. . In test material No. 61, since the amount of Mg in the sacrificial anode material was large, no fillet was formed during brazing, and the test material No. 61 was in an unjoined state. Further, since the content of Zn, In, and Sn in the sacrificial anode material was small, the sacrificial anode effect was not sufficiently exhibited, and a through hole was formed on the inner surface side.
[0051]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the intensity | strength after brazing is high, and the aluminum alloy clad material for heat exchangers excellent in brazing property and corrosion resistance is provided. This clad material can be particularly suitably used as a tube material constituting a fluid passage of an aluminum alloy heat exchanger for automobiles.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an inverted T-shaped joint (before a test) used in a brazeability evaluation test of the present invention.
FIG. 2 is a cross-sectional view showing an inverted T-shaped joint (after the test) used in the brazeability evaluation test of the present invention.
[Explanation of symbols]
1 Inverted T-shaped joint 2 Aluminum alloy clad material (high strength aluminum alloy clad material for heat exchangers with excellent corrosion resistance)
3 3003 Alloy material 4
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00377099A JP4023760B2 (en) | 1999-01-11 | 1999-01-11 | Aluminum alloy clad material for heat exchangers with excellent brazing and corrosion resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00377099A JP4023760B2 (en) | 1999-01-11 | 1999-01-11 | Aluminum alloy clad material for heat exchangers with excellent brazing and corrosion resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000202680A JP2000202680A (en) | 2000-07-25 |
JP4023760B2 true JP4023760B2 (en) | 2007-12-19 |
Family
ID=11566422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00377099A Expired - Fee Related JP4023760B2 (en) | 1999-01-11 | 1999-01-11 | Aluminum alloy clad material for heat exchangers with excellent brazing and corrosion resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4023760B2 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4577634B2 (en) * | 2000-09-07 | 2010-11-10 | 三菱アルミニウム株式会社 | Aluminum alloy extruded tube with brazing filler metal for heat exchanger |
JP4485671B2 (en) * | 2000-09-11 | 2010-06-23 | 古河スカイ株式会社 | Anti-corrosion aluminum alloy brazing material for heat exchanger and high corrosion resistance aluminum alloy composite for heat exchanger |
JP4993439B2 (en) * | 2006-06-07 | 2012-08-08 | 住友軽金属工業株式会社 | High strength aluminum alloy clad material for heat exchangers with excellent brazeability |
JP4993440B2 (en) * | 2006-06-07 | 2012-08-08 | 住友軽金属工業株式会社 | High strength aluminum alloy clad material for heat exchangers with excellent brazeability |
JP4111456B1 (en) * | 2006-12-27 | 2008-07-02 | 株式会社神戸製鋼所 | Aluminum alloy brazing sheet for heat exchanger |
JP2009030814A (en) * | 2007-07-24 | 2009-02-12 | Showa Denko Kk | Tube for heat exchanger and heat exchanger |
JP5388084B2 (en) * | 2007-07-27 | 2014-01-15 | 三菱アルミニウム株式会社 | Aluminum alloy clad material for heat exchangers with excellent strength and pitting corrosion resistance |
JP5396042B2 (en) * | 2008-07-14 | 2014-01-22 | 株式会社Uacj | Aluminum alloy brazing sheet with excellent brazeability |
JP2011068933A (en) * | 2009-09-24 | 2011-04-07 | Kobe Steel Ltd | Aluminum alloy clad material for heat exchanger |
EP2418042A1 (en) * | 2011-01-17 | 2012-02-15 | Aleris Aluminum Koblenz GmbH | Aluminium brazing sheet material for tubes |
JP6186239B2 (en) * | 2013-10-15 | 2017-08-23 | 株式会社Uacj | Aluminum alloy heat exchanger |
WO2016017716A1 (en) | 2014-07-30 | 2016-02-04 | 株式会社Uacj | Aluminium alloy brazing sheet |
US10150186B2 (en) | 2014-12-11 | 2018-12-11 | Uacj Corporation | Brazing method |
JP6186455B2 (en) | 2016-01-14 | 2017-08-23 | 株式会社Uacj | Heat exchanger and manufacturing method thereof |
JP6283069B2 (en) * | 2016-07-05 | 2018-02-21 | 三菱アルミニウム株式会社 | Heat exchanger |
JP6312968B1 (en) | 2016-11-29 | 2018-04-18 | 株式会社Uacj | Brazing sheet and method for producing the same |
JP7053281B2 (en) | 2017-03-30 | 2022-04-12 | 株式会社Uacj | Aluminum alloy clad material and its manufacturing method |
JP6916715B2 (en) | 2017-11-08 | 2021-08-11 | 株式会社Uacj | Brazing sheet and its manufacturing method |
JP7291714B2 (en) | 2018-09-11 | 2023-06-15 | 株式会社Uacj | Brazing sheet manufacturing method |
CN111187954B (en) * | 2020-02-27 | 2021-06-01 | 西安石油大学 | Aluminum alloy sacrificial anode material for improving water/gas interface protection effect of sewage storage tank and preparation method thereof |
-
1999
- 1999-01-11 JP JP00377099A patent/JP4023760B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000202680A (en) | 2000-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4023760B2 (en) | Aluminum alloy clad material for heat exchangers with excellent brazing and corrosion resistance | |
JP6243837B2 (en) | Aluminum alloy brazing sheet for heat exchanger, brazing body made of aluminum alloy for heat exchanger and method for producing the same | |
JP4993440B2 (en) | High strength aluminum alloy clad material for heat exchangers with excellent brazeability | |
EP1090745A1 (en) | Aluminum alloy clad material for heat exchangers exhibiting high strength and excellent corrosion resistance | |
JP2008303405A (en) | Aluminum alloy material for header plate of heat exchanger, and soldering body for heat exchanger | |
JP3910506B2 (en) | Aluminum alloy clad material and manufacturing method thereof | |
JP2000204427A (en) | Aluminum alloy clad material for heat exchanger excellent in brazing property and corrosion resistance | |
JP2005232506A (en) | Aluminum alloy clad material for heat exchanger | |
JPH11293372A (en) | Aluminum alloy clad material for heat exchanger, having high strength and high corrosion resistance | |
JP4030006B2 (en) | Aluminum alloy clad material and manufacturing method thereof | |
JP4623729B2 (en) | Aluminum alloy clad material and heat exchanger excellent in surface bonding by brazing of sacrificial anode material surface | |
JP4424568B2 (en) | High strength aluminum alloy clad material for heat exchangers excellent in tube forming property and corrosion resistance, and method for producing the same | |
JP3360026B2 (en) | Brazing method of aluminum alloy brazing sheet for heat exchanger | |
JP5632175B2 (en) | Aluminum alloy clad material and heat exchanger for high-strength heat exchangers with excellent brazing properties | |
JPH11315335A (en) | Aluminum alloy brazing sheet for formation of brazed tube, and brazed tube | |
JP2000167688A (en) | Aluminum alloy clad material for heat exchanger excellent in brazability and corrosion resistance | |
JPH1180870A (en) | Aluminum alloy clad material for heat exchanger excellent in strength and corrosion resistance | |
JP3222768B2 (en) | Aluminum alloy clad material excellent in brazing property and method for producing the same | |
JPH11315337A (en) | Aluminum alloy brazing sheet for formation of brazed tube, and brazed tube | |
JP4236187B2 (en) | Aluminum alloy clad material for automotive heat exchanger | |
JP3876180B2 (en) | Aluminum alloy three-layer clad material | |
JP3243188B2 (en) | Aluminum alloy clad material for heat exchangers with excellent alkali corrosion resistance | |
JP4440550B2 (en) | Aluminum heat exchanger | |
JP3243189B2 (en) | Aluminum alloy clad material for heat exchangers with excellent alkali corrosion resistance | |
JP2000135588A (en) | High strength aluminum alloy clad material for heat exchanger superior in corrosion resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051229 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070921 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070928 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071001 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101012 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111012 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111012 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121012 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131012 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |