Nothing Special   »   [go: up one dir, main page]

JP4017280B2 - Fluid supply cutoff equipment - Google Patents

Fluid supply cutoff equipment Download PDF

Info

Publication number
JP4017280B2
JP4017280B2 JP06462899A JP6462899A JP4017280B2 JP 4017280 B2 JP4017280 B2 JP 4017280B2 JP 06462899 A JP06462899 A JP 06462899A JP 6462899 A JP6462899 A JP 6462899A JP 4017280 B2 JP4017280 B2 JP 4017280B2
Authority
JP
Japan
Prior art keywords
valve
pressure
fluid
shut
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06462899A
Other languages
Japanese (ja)
Other versions
JP2000257733A (en
Inventor
明 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP06462899A priority Critical patent/JP4017280B2/en
Publication of JP2000257733A publication Critical patent/JP2000257733A/en
Application granted granted Critical
Publication of JP4017280B2 publication Critical patent/JP4017280B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Safety Valves (AREA)
  • Indication Of The Valve Opening Or Closing Status (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、流体供給路に設けてある圧力調整器の上流側に、その流体供給路にて供給される流体の通流を遮断する遮断弁を設け、前記遮断弁を流体圧力で遮断状態に作動させる作動手段を設け、前記流体供給路の流体圧力を前記作動手段に導入して、その流体圧力が設定圧力以上になると、導入した流体圧力で前記遮断弁を遮断状態に作動させるように構成してある流体供給遮断設備に関する。
【0002】
【従来の技術】
従来の流体供給遮断設備は、例えば都市ガスの供給設備において、図8に示すように、流体供給路Aに設けてある圧力調整器1の上流側に、その流体供給路Aにて供給される流体の通流を遮断する遮断弁2と、その遮断弁2を流体圧力で遮断状態に作動させる作動手段3とを設けるとともに、作動手段3を圧力調整器1の下流側の二次側配管6内の二次側流体圧力P2を導入するように流体供給路Aに接続し、圧力調整器1の上流側の一次側配管5内の一次側流体圧力P1が異常に上昇したり、圧力調整器1が故障して二次側流体圧力P2を所定圧力に調整できなくなった結果、二次側流体圧力P2が設定圧力以上になると、その二次側流体圧力P2で遮断弁2を遮断状態に作動させるように構成している。
【0003】
【発明が解決しようとする課題】
上記従来の流体供給遮断設備は、一次側流体圧力が異常に上昇したり、圧力調整器が故障して二次側流体圧力を所定圧力に調整できなくなって、二次側流体圧力が設定圧力以上にならない限り、遮断弁が遮断状態に作動することがないので、一次側流体圧力や二次側流体圧力の変化にかかわらず、必要に応じてその遮断弁を遮断状態に作動させることができない欠点がある。
本発明は上記実情に鑑みてなされたものであって、二次側流体圧力が設定圧力以上になると、遮断弁を遮断状態に作動させることができるようにしながら、必要に応じて遮断弁を遮断状態に作動させることができるようにすることを目的とする。
【0004】
【課題を解決するための手段】
請求項1記載の発明の特徴構成は、流体供給路に設けてある圧力調整器の上流側に、その流体供給路にて供給される流体の通流を遮断する遮断弁を設け、前記遮断弁を流体圧力で遮断状態に作動させる作動手段を設け、前記流体供給路の流体圧力を前記作動手段に導入して、その流体圧力が設定圧力以上になると、導入した流体圧力で前記遮断弁を遮断状態に作動させるように構成してある流体供給遮断設備であって、前記設定圧力を前記圧力調整器の上流側の一次側流体圧力の変動範囲よりも低い圧力に設定し、前記一次側流体圧力を前記作動手段に導入して、その導入した一次側流体圧力で前記遮断弁を遮断状態に作動させる第1状態と、前記圧力調整器の下流側の二次側流体圧力を前記作動手段に導入して、その導入した二次側流体圧力が前記設定圧力以上になると、導入した二次側流体圧力で前記遮断弁を遮断状態に作動させる第2状態とに択一的に切り換え自在な切換手段と、地震の振動を検出する振動検出手段と、前記振動検出手段が設定加速度以上の振動を検出すると、前記切換手段が前記第1状態に切り換わるように制御する制御手段とを設けてある点にある。
【0005】
〔作用〕
二次側流体圧力を作動手段に導入して、その二次側流体圧力が設定圧力以上になると、導入した二次側流体圧力で遮断弁を遮断状態に作動させる第2状態に切換手段を切り換えておくと、従来と同様に、圧力調整器の上流側の一次側流体圧力が異常に上昇して、圧力調整器が正常に機能しなくなり、その結果、二次側流体圧力が設定圧力以上になると、遮断弁が遮断状態に作動する。
また、遮断弁を遮断状態に作動させる設定圧力が一次側流体圧力の変動範囲よりも低いので、一次側流体圧力を作動手段に導入して、その導入した一次側流体圧力で前記遮断弁を遮断状態に作動させる第1状態に切換手段を切り換えると、遮断弁が遮断状態に作動する。
また、振動検出手段が設定加速度以上の振動を検出すると、制御手段は、切換手段が第1状態に切り換わるように制御する。
【0006】
〔効果〕
従って、切換手段を第2状態に切り換えておくことにより、二次側流体圧力が設定圧力以上になると、遮断弁を遮断状態に作動させることができるようにしながら、必要に応じて切換手段を第1状態に切り換えて、遮断弁を遮断状態に作動させることができる。
また、設定加速度以上の振動を伴う地震が発生すると、遮断弁を迅速に遮断状態に作動 させて、遮断弁の下流側の流体供給路が破損したような場合に、その破損個所からの流体の流出を抑制して、二次災害の発生を防止することができる。
【0007】
【0008】
【0009】
【0010】
請求項記載の発明の特徴構成は、前記作動手段を、前記流体圧力でダイヤフラムを動かして前記遮断弁を遮断状態に作動させるように構成し、前記第1状態において、前記圧力調整器と前記遮断弁との間の一次側流体圧力を前記作動手段に導入するように構成してある点にある。
【0011】
〔作用〕
切換手段を第1状態に切り換えると、圧力調整器と遮断弁との間の一次側流体圧力が作動手段に導入され、その一次側流体圧力でダイヤフラムを動かして、遮断弁が遮断状態に作動し、その結果、圧力調整器と遮断弁との間に流体が供給されなくなるので、ダイヤフラムに作用していた一次側流体圧力が低下する。
【0012】
〔効果〕
従って、高い一次側流体圧力が、次に遮断弁を開くまでの長期に亘ってダイヤフラムに作用することがなく、ダイヤフラムの耐久性の低下を防止することができる。
【0013】
請求項記載の発明の特徴構成は、前記作動手段に導入した一次側流体圧力が前記設定圧力よりも高い許容圧力を越えると、前記圧力調整器と前記遮断弁との間の流体を前記圧力調整弁の下流側の流体供給路に逃がす逃し弁を設けてある点にある。
【0014】
〔作用〕
作動手段に導入した一次側流体圧力が設定圧力よりも高い許容圧力を越えると、圧力調整器と遮断弁との間の流体が圧力調整器の下流側の流体供給路に逃げて、作動手段に導入した一次側流体圧力が低下する。
【0015】
〔効果〕
従って、過大な流体圧力がダイヤフラムに作用することによる、そのダイヤフラムの破損を防止することができる。
【0016】
請求項記載の発明の特徴構成は、前記切換手段を、前記圧力調整器と前記遮断弁との間の一次側流体を前記作動手段に供給して、その一次側流体圧力を前記作動手段に導入する第1状態と、前記圧力調整器の下流側の二次流体を前記作動手段に供給して、その二次側流体圧力を前記作動手段に導入する第2状態とに択一的に切り換え自在な三方弁で構成し、前記三方弁の弁箱を形成してある弁箱形成部材に、前記逃し弁の弁箱と、前記三方弁の流体流出用弁孔と前記逃し弁の流体流入口とを連通する連通路と、前記連通路の過剰流体を前記逃し弁から前記流体供給路に逃がす逃し流路とを一体形成してある点にある。
【0017】
〔作用〕
三方弁を第1状態に切り換えることにより、圧力調整器と遮断弁との間の一次側流体を作動手段に供給して、その一次側流体圧力で遮断弁が遮断状態に作動するとともに、一次側流体圧力が許容圧力を越えると、連通路の過剰流体が逃し弁から圧力調整器の下流側の流体供給路に逃げて、作動手段に導入した一次側流体圧力が低下し、三方弁を第2状態に切り換えることにより、圧力調整器の下流側の二次流体を作動手段に供給して、その二次側流体圧力が設定圧力を越えると、遮断弁が遮断状態に作動する。
そして、三方弁の弁箱を形成してある弁箱形成部材に、逃し弁の弁箱と、三方弁の流体流出用弁孔と逃し弁の流体流入口とを連通する連通路と、連通路の過剰流体を逃し弁から流体供給路に逃がす逃し流路とを一体形成してあるので、三方弁と逃し弁とを流体の漏れがないように接続し易いとともに、そのための配管工事を省略することができる。
また、三方弁と逃し弁とをコンパクトに接続することができる。
〔効果〕
従って、三方弁と逃し弁との接続作業の簡略化を図ることができるとともに、設備の小型化を図ることができる。
【0018】
請求項記載の発明の特徴構成は、前記三方弁を切換作動させる電磁操作ユニットと、前記三方弁の流体流出用弁孔内の流体圧力を検出する圧力計とを、前記電磁操作ユニットに設けた切換状態表示部と前記圧力計に設けた圧力表示部とを同じ方向に向けて、前記弁箱形成部材に固定してある点にある。
【0019】
〔作用〕
三方弁を切換作動させる電磁操作ユニットと、三方弁の流体流出用弁孔の流体圧力、つまり、作動手段に導入する流体圧力を検出する圧力計とを弁箱形成部材に固定してあるので、電磁操作ユニットと圧力計とを三方弁に対してコンパクトに組み付けることができる。
また、電磁操作ユニットに設けた切換状態表示部と圧力計に設けた圧力表示部とを同じ方向に向けて固定してあるので、それらの表示内容を同じ方向から確認できる。
【0020】
〔効果〕
従って、設備の小型化を図ることができるとともに、その作動状態を確認し易い。
【0021】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。尚、図面において従来例と同一の符号で表示した部分は、同一又は相当の部分を示している。
図1は、都市ガス( 流体の一例) を供給するガス供給路Aに設けたガス供給遮断設備を示し、ガス供給路Aに設けてある圧力調整器1の上流側( 供給元側) に、そのガス供給路Aにて供給されるガスの通流を遮断する遮断弁( スラムシャットバルブ) 2と、その遮断弁2をガス圧力で遮断状態に作動させる作動手段としての遮断弁作動用ガバナ3と、遮断弁作動用ガバナ3に作動用のガスを供給する三方弁ユニット4とを設け、三方弁ユニット4を介して遮断弁作動用ガバナ3にガス供給路Aのガスを供給することにより、その遮断弁作動用ガバナ3にガス供給路Aのガス圧力を導入して、そのガス圧力が設定圧力以上になると遮断弁2を遮断状態に作動させるように構成してある。
【0022】
前記圧力調整器1は、供給元側の一次側配管5から5〜6kg/cm 2 の圧力( 以下、一次側ガス圧力という) P1で供給されるガスを、1.5kg/cm 2 程度の圧力( 以下、二次側ガス圧力という) P2になるように調整しながら供給先側の二次側配管6に通流させる主ガバナで構成してあり、一次側配管5と二次側配管6と接続するパイロット調整管7に、パイロットガバナ8と絞り弁9とを設けるとともに、パイロットガバナ8の圧力検出部8aをパイロットガバナ調整管10でパイロット調整管7の絞り弁9の下流側に接続し、主ガバナ1の圧力検出部1aを主ガバナ調整管11でパイロット調整管7のパイロットガバナ8と絞り弁9との間に接続してある。
【0023】
前記主ガバナ1は、圧力低下を検出すると閉弁側に移動するように弁体1bをバネ付勢してあるノーマルクローズのダイヤフラム式直動弁で構成してあり、パイロットガバナ8は、圧力低下を検出すると開弁側に移動するように弁体8bをバネ付勢してあるノーマルオープンのダイヤフラム式直動弁で構成してある。
【0024】
そして、二次側配管6内の二次側ガス圧力P2の低下に伴って、パイロットガバナ8の弁体8bが開弁側に移動すると、パイロット調整管7を通して一次側配管5から主ガバナ1の圧力検出部1aに供給されるガス量が増大してその検出圧力が上昇し、主ガバナ1の弁体1bが開弁側に移動して、一次側配管5から二次側配管6に流れるガス量が増大し、また、二次側配管6内の二次側ガス圧力P2の上昇に伴って、パイロットガバナ8の弁体8bが閉弁側に移動すると、主ガバナ1の圧力検出部1aに供給されるガス量が減少してその検出圧力が低下し、主ガバナ1の弁体1bが閉弁側に移動して、一次側配管6から二次側配管7に流れるガス量が減少する状態で、二次側ガス圧力P2を略一定圧力に調整するように構成してある。
【0025】
前記三方弁ユニット4は、図2に示すように、三方弁12の弁箱を形成してある直方体形状の金属製弁箱形成部材13に、三方弁12を切換作動させる電磁操作ユニット14と、三方弁12のガス流出用弁孔17内のガス圧力を検出する圧力計15とを固定して構成してあり、電磁操作ユニット14に設けた切換状態表示部14aと圧力計15に設けた圧力表示部15aとを同じ方向に向けてある。
【0026】
前記弁箱形成部材13には、図3〜図5に示すように、一次側配管5からのガスを三方弁12に流入させる一次側ガス流入用弁孔17と、二次側配管6からのガスを三方弁12に流入させる二次側ガス流入用弁孔18と、三方弁12から遮断弁作動用ガバナ3へガスを流出させるガス流出用弁孔16と、ガス流出用弁孔16内のガス圧力が許容圧力( 本実施形態では4kg/cm 2 )を越えると、そのガス流出用弁孔16内のガスを二次側ガス流入路18に逃がす逃し弁( チャッキ弁) 20の弁箱と、ガス流出用弁孔16と逃し弁20のガス流入口とを連通する連通路19と、連通路19の過剰ガスを逃し弁20から二次側ガス流入用弁孔18に逃がす逃し流路21と、圧力計15の接続用雌ネジ部21とを一体に切削形成してある。
【0027】
前記三方弁12は、図4,図6,図7に示すように、一次側ガス流入用弁孔17が開口する一次側開口部23と二次側ガス流入用弁孔18が開口する二次側開口部24とを、弁箱形成部材13の厚み方向に沿って同芯状に、かつ、表裏に切削形成して、弁箱形成部材13に厚み方向に往復移動自在に挿通した三本のピン25を挟んで、一次側ガス流入用弁孔17を開閉自在な第1弁体26と、二次側ガス流入用弁孔18を開閉自在な第2弁体27とを設け、ガス流出用弁孔16を一次側開口部23と二次側開口部24とに連通させる連通路28を切削形成し、弁箱形成部材13にねじ込み固定したキャップ29と第1弁体26との間に圧縮コイルスプリング30を装着するとともに、電磁操作ユニット14を二次側開口部24側にねじ込み固定して構成してあり、一次側ガス流入用弁孔17を、一次側ガス流入管31で主ガバナ1と遮断弁2との間の一次側配管5に接続し、二次側ガス流入用弁孔18を、二次側ガス流入管32で主ガバナ1の下流側の二次側配管6に接続してある。
【0028】
そして、電磁操作ユニット14は、非通電状態では可動軸部材33が引退していて、図6に示すように、圧縮コイルスプリング30の付勢力によって、第1弁体26が一次側ガス流入用弁孔17を閉じるとともに、第2弁体27が二次側ガス流入用弁孔18を開いてガス流出用弁孔16に連通させ、ソレノイドが励磁される通電状態では、可動軸部材33が圧縮コイルスプリング30の付勢力に抗して第1弁体26側に突出移動して、図7に示すように、第1弁体26が一次側ガス流入用弁孔17を開いてガス流出用弁孔16に連通させるとともに、第2弁体27が二次側ガス流入用弁孔18を閉じるように作動する。
【0029】
前記遮断弁作動用ガバナ3の圧力検出部3aは、作動ガス導入管34で三方弁12のガス流出用弁孔16に接続してあり、耐圧が4kg/cm 2 程度のダイヤフラム35と一体移動する操作軸36で遮断弁2の弁体を操作して、圧力検出部3aに導入したガス圧力が設定圧力( 本実施形態では2kg/cm 2 )未満のときは、遮断弁2を開いた状態に保持し、設定圧力以上になるとダイヤフラム35がバネ37の付勢力に抗して動いて、操作軸36がスライド移動し、遮断弁2の弁体が遮断位置に移動して、遮断弁2を遮断状態に保持するように構成してある。
【0030】
従って、三方弁12が、主ガバナ1と遮断弁2との間の一次側ガスを遮断弁作動用ガバナ3に供給して、その一次側ガス圧力P1を遮断弁作動用ガバナ3に導入する第1状態と、主ガバナ1の下流側の二次側ガスを遮断弁作動用ガバナ3に供給して、その二次側ガス圧力P2を遮断弁作動用ガバナ3に導入する第2状態とに択一的に切り換え自在な切換手段に構成され、また、逃し弁20は、第1状態において、遮断弁作動用ガバナ3に導入した一次側ガス圧力P1が設定圧力よりも高い許容圧力を越えると、主ガバナ1と遮断弁2との間の一次側ガスを、二次側ガス流入管32を通して、主ガバナ1の下流側の二次側配管6に逃がすように構成してある。
【0031】
前記電磁操作ユニット14は、ガス供給路Aの供給エリアを管理する管理センタBから無線或いは有線で通電指令が入力されると通電状態に切り換えるように構成してあり、供給エリアの適宜箇所には、地震の振動を検出する振動検出手段としての加速度計38を設置してある。
【0032】
前記加速度計38は、無線或いは有線の通信手段39で検出情報を管理センタBに送信するように接続してあり、管理センタBに設置した制御手段としての制御装置40は、その検出情報に基づいて、設定加速度以上の振動を検出したか否かを判別し、設定加速度以上の振動を検出したと判別すると、所定規模の地震が発生したと判断して、電磁操作ユニット14に通電指令を入力し、三方弁12を第1状態に切り換える。
【0033】
従って、二次側ガス圧力P2が遮断弁作動用ガバナ3の圧力検出部3aに導入されている通常時には、その二次側ガス圧力P2が設定圧力以上に異常上昇すると、遮断弁2が遮断状態に強制的に切り換え保持され、また、所定規模の地震が発生すると、一次側ガス圧力P1が遮断弁作動用ガバナ3の圧力検出部3aに導入されて、遮断弁2が遮断状態に強制的に切り換え保持される。
【0034】
〔その他の実施形態〕
1.本発明による流体供給遮断設備は、都市ガス以外の工業用ガスや水道水等の流体の供給を遮断するものであっても良い。
2.本発明による流体供給遮断設備は、設定圧力以上の流体圧力が作用すると移動するピストンで遮断弁を遮断状態に作動させる作動手段を設けてあっても良い。
3.本発明による流体供給遮断設備は、第1状態において、遮断弁の上流側の一次側流体圧力を作動手段に導入するように構成してあっても良い。
【図面の簡単な説明】
【図1】 流体供給遮断設備の概略図
【図2】 要部の正面図
【図3】 要部の断面図
【図4】 図3のIV−IV線矢視図
【図5】 図3のV−V線矢視図
【図6】 三方弁の作動状態を説明する要部断面図
【図7】 三方弁の作動状態を説明する要部断面図
【図8】 従来の流体供給遮断設備の概略図
【符号の説明】
1 圧力調整器
2 遮断弁
3 作動手段
12 切換手段( 三方弁)
13 弁箱形成部材
14 電磁操作ユニット
14a 切換状態表示部
15 圧力計
15a 圧力表示部
16 流体流出用弁孔
19 連通路
20 逃し弁
21 逃し流路
35 ダイヤフラム
38 振動検出手段
40 制御手段
A 流体供給路
P1 一次側流体圧力
P2 二次側流体圧力
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a shut-off valve that shuts off the flow of fluid supplied through the fluid supply path on the upstream side of the pressure regulator provided in the fluid supply path, and shuts off the shut-off valve with fluid pressure. An actuating means is provided to operate, the fluid pressure of the fluid supply path is introduced into the actuating means, and the shutoff valve is actuated to a shut-off state with the introduced fluid pressure when the fluid pressure exceeds a set pressure. The present invention relates to a fluid supply cutoff facility.
[0002]
[Prior art]
For example, in the conventional gas supply facility, as shown in FIG. 8, the conventional fluid supply cutoff facility is supplied to the upstream side of the pressure regulator 1 provided in the fluid supply passage A through the fluid supply passage A. A shut-off valve 2 that shuts off the flow of fluid and an actuating means 3 that actuates the shut-off valve 2 in a shut-off state with a fluid pressure are provided. The secondary side fluid pressure P2 is connected to the fluid supply path A so as to introduce the secondary side fluid pressure P2, and the primary side fluid pressure P1 in the primary side pipe 5 upstream of the pressure regulator 1 rises abnormally, or the pressure regulator When the secondary fluid pressure P2 exceeds the set pressure as a result of the failure of 1 and the secondary fluid pressure P2 cannot be adjusted to the predetermined pressure, the secondary valve pressure P2 activates the shutoff valve 2 in the shutoff state. It is configured to make it.
[0003]
[Problems to be solved by the invention]
In the above conventional fluid supply shut-off equipment, the primary fluid pressure rises abnormally, or the pressure regulator fails and the secondary fluid pressure cannot be adjusted to the specified pressure. Since the shut-off valve will not operate in the shut-off state unless it becomes, the disadvantage that the shut-off valve cannot be operated in the shut-off state as necessary regardless of changes in the primary fluid pressure or the secondary fluid pressure. There is.
The present invention has been made in view of the above circumstances, and when the secondary fluid pressure becomes equal to or higher than the set pressure, the shut-off valve is shut off as necessary while allowing the shut-off valve to be operated in the shut-off state. The purpose is to be able to operate in a state.
[0004]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a shut-off valve for shutting off a flow of fluid supplied through the fluid supply path on the upstream side of the pressure regulator provided in the fluid supply path. Is provided with an operating means for operating a fluid pressure in a shut-off state, the fluid pressure of the fluid supply path is introduced into the operating means, and when the fluid pressure exceeds a set pressure, the shut-off valve is shut off with the introduced fluid pressure. A fluid supply shut-off device configured to operate in a state, wherein the set pressure is set to a pressure lower than a fluctuation range of a primary fluid pressure upstream of the pressure regulator, and the primary fluid pressure Is introduced into the actuating means, and a first state in which the shut-off valve is actuated in the shut-off state with the introduced primary fluid pressure, and a secondary fluid pressure downstream of the pressure regulator is introduced into the actuating means. The introduced secondary fluid pressure Vibration detecting means but which detects becomes more than the set pressure, and freely switching means switched alternatively to the second state to operate the shut-off valve to cut-off state introduced secondary side fluid pressure, the vibration of an earthquake And a control means for controlling the switching means to switch to the first state when the vibration detecting means detects a vibration equal to or higher than a set acceleration .
[0005]
[Action]
When the secondary fluid pressure is introduced into the operating means, and the secondary fluid pressure exceeds the set pressure , the switching means is switched to the second state in which the shut-off valve is operated in the shut-off state with the introduced secondary fluid pressure. Therefore, as before, the primary fluid pressure upstream of the pressure regulator will rise abnormally and the pressure regulator will not function properly.As a result, the secondary fluid pressure will exceed the set pressure. Then, the shut-off valve operates in the shut-off state.
In addition, since the set pressure for operating the shut-off valve in the shut-off state is lower than the fluctuation range of the primary fluid pressure, the primary fluid pressure is introduced into the operating means, and the shut-off valve is shut off with the introduced primary fluid pressure. When the switching means is switched to the first state that is activated to the state, the cutoff valve is activated to the cutoff state.
In addition, when the vibration detection unit detects a vibration greater than the set acceleration, the control unit controls the switching unit to switch to the first state.
[0006]
〔effect〕
Therefore, by switching the switching means to the second state, when the secondary fluid pressure becomes equal to or higher than the set pressure, the switching means can be switched to the second state as necessary while allowing the shut-off valve to be operated to the shut-off state. By switching to the 1 state, the shut-off valve can be operated in the shut-off state.
In addition, when an earthquake with vibration exceeding the set acceleration occurs, the shutoff valve is quickly activated to shut off, and if the fluid supply path on the downstream side of the shutoff valve is damaged, fluid from the damaged part The outflow can be suppressed and the occurrence of secondary disasters can be prevented.
[0007]
[0008]
[0009]
[0010]
According to a second aspect of the present invention, the operating means is configured to operate the shut-off valve in a shut-off state by moving a diaphragm with the fluid pressure, and in the first state, the pressure regulator and the The primary fluid pressure between the shut-off valve is introduced into the operating means.
[0011]
[Action]
When the switching means is switched to the first state, the primary fluid pressure between the pressure regulator and the shut-off valve is introduced into the actuating means, and the shut-off valve is actuated in the shut-off state by moving the diaphragm with the primary fluid pressure. As a result, no fluid is supplied between the pressure regulator and the shut-off valve, so that the primary fluid pressure acting on the diaphragm decreases.
[0012]
〔effect〕
Therefore, the high primary fluid pressure does not act on the diaphragm for a long period of time until the next shut-off valve is opened, and the deterioration of the durability of the diaphragm can be prevented.
[0013]
According to a third aspect of the present invention, when the primary fluid pressure introduced into the actuating means exceeds an allowable pressure higher than the set pressure, the fluid between the pressure regulator and the shut-off valve A relief valve is provided in the fluid supply path on the downstream side of the regulating valve.
[0014]
[Action]
When the primary fluid pressure introduced into the actuating means exceeds the allowable pressure higher than the set pressure, the fluid between the pressure regulator and the shutoff valve escapes to the fluid supply path on the downstream side of the pressure regulator, and enters the actuating means. The introduced primary fluid pressure decreases.
[0015]
〔effect〕
Accordingly, the diaphragm can be prevented from being damaged due to excessive fluid pressure acting on the diaphragm.
[0016]
According to a fourth aspect of the present invention, the switching means supplies a primary fluid between the pressure regulator and the shutoff valve to the operating means, and the primary fluid pressure is supplied to the operating means. The first state to be introduced and the second state in which the secondary fluid downstream of the pressure regulator is supplied to the operating means and the secondary fluid pressure is introduced to the operating means are alternatively switched. The valve box forming member, which is composed of a free three-way valve and forms the valve box of the three-way valve, includes a valve box of the relief valve, a fluid outlet valve hole of the three-way valve, and a fluid inlet of the relief valve And a relief passage for allowing excess fluid in the communication passage to escape from the relief valve to the fluid supply passage.
[0017]
[Action]
By switching the three-way valve to the first state, the primary fluid between the pressure regulator and the shutoff valve is supplied to the operating means, and the shutoff valve is actuated in the shutoff state by the primary fluid pressure, and the primary side When the fluid pressure exceeds the allowable pressure, excess fluid in the communication passage escapes from the relief valve to the fluid supply passage on the downstream side of the pressure regulator, the primary fluid pressure introduced into the operating means decreases, and the three-way valve is By switching to the state, the secondary fluid on the downstream side of the pressure regulator is supplied to the operating means, and when the secondary fluid pressure exceeds the set pressure, the shut-off valve operates in the shut-off state.
And, in the valve box forming member forming the valve box of the three-way valve, a communication path for communicating the valve box of the relief valve, the fluid outlet valve hole of the three-way valve and the fluid inlet of the relief valve, and a communication path Since the relief flow path that allows excess fluid to escape from the relief valve to the fluid supply path is integrally formed, it is easy to connect the three-way valve and the relief valve so that there is no fluid leakage, and piping work for that is omitted. be able to.
Further, the three-way valve and the relief valve can be connected in a compact manner.
〔effect〕
Therefore, the connection work between the three-way valve and the relief valve can be simplified, and the facility can be downsized.
[0018]
According to a fifth aspect of the present invention, the electromagnetic operation unit is provided with an electromagnetic operation unit that switches the three-way valve and a pressure gauge that detects a fluid pressure in a fluid outlet valve hole of the three-way valve. The switching state display section and the pressure display section provided on the pressure gauge are fixed to the valve box forming member in the same direction.
[0019]
[Action]
Since the electromagnetic operating unit for switching the three-way valve and the pressure gauge for detecting the fluid pressure of the fluid outlet valve hole of the three-way valve, that is, the fluid pressure introduced into the operating means, are fixed to the valve box forming member, The electromagnetic operation unit and the pressure gauge can be compactly assembled to the three-way valve.
Further, since the switching state display part provided in the electromagnetic operation unit and the pressure display part provided in the pressure gauge are fixed in the same direction, the display contents can be confirmed from the same direction.
[0020]
〔effect〕
Accordingly, it is possible to reduce the size of the facility and to easily check the operating state.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the parts denoted by the same reference numerals as those in the conventional example indicate the same or corresponding parts.
FIG. 1 shows a gas supply shut-off facility provided in a gas supply path A for supplying city gas (an example of fluid). On the upstream side (supply side) of the pressure regulator 1 provided in the gas supply path A, A shut-off valve (slam shut valve) 2 that shuts off the flow of gas supplied through the gas supply path A, and a shut-off valve actuating governor 3 as actuating means for actuating the shut-off valve 2 in a shut-off state by gas pressure And a three-way valve unit 4 for supplying the operating gas to the shut-off valve operating governor 3, and supplying the gas in the gas supply path A to the shut-off valve operating governor 3 through the three-way valve unit 4, The gas pressure of the gas supply path A is introduced into the shut-off valve operating governor 3 so that the shut-off valve 2 is operated in a shut-off state when the gas pressure exceeds a set pressure.
[0022]
The pressure regulator 1 supplies a gas supplied at a pressure of 5 to 6 kg / cm 2 (hereinafter referred to as a primary gas pressure) P1 from the primary side pipe 5 of the supply side to a pressure of about 1.5 kg / cm 2. (Hereinafter referred to as “secondary gas pressure”) It is composed of a main governor that flows to the secondary side pipe 6 on the supply side while adjusting to P2, and the primary side pipe 5 and the secondary side pipe 6 A pilot governor 8 and a throttle valve 9 are provided in the pilot adjustment pipe 7 to be connected, and a pressure detector 8a of the pilot governor 8 is connected to the downstream side of the throttle valve 9 of the pilot adjustment pipe 7 by a pilot governor adjustment pipe 10. A pressure detector 1 a of the main governor 1 is connected by a main governor adjusting pipe 11 between the pilot governor 8 of the pilot adjusting pipe 7 and the throttle valve 9.
[0023]
The main governor 1 is constituted by a normally closed diaphragm type direct acting valve in which the valve body 1b is spring-biased so as to move to the valve closing side when a pressure drop is detected, and the pilot governor 8 has a pressure drop. When the valve is detected, the valve body 8b is spring-biased so as to move to the valve opening side, and is constituted by a normally open diaphragm type direct acting valve.
[0024]
When the valve body 8b of the pilot governor 8 moves to the valve opening side as the secondary gas pressure P2 in the secondary pipe 6 decreases, the primary governor 1 is connected to the main governor 1 through the pilot adjustment pipe 7. The amount of gas supplied to the pressure detector 1a increases and the detected pressure rises, the valve body 1b of the main governor 1 moves to the valve opening side, and the gas flows from the primary side pipe 5 to the secondary side pipe 6 When the valve body 8b of the pilot governor 8 moves to the valve closing side as the secondary gas pressure P2 in the secondary pipe 6 increases and the amount increases, the pressure detector 1a of the main governor 1 A state in which the amount of gas supplied decreases and the detected pressure decreases, the valve body 1b of the main governor 1 moves to the valve closing side, and the amount of gas flowing from the primary side pipe 6 to the secondary side pipe 7 decreases. Thus, the secondary gas pressure P2 is adjusted to a substantially constant pressure.
[0025]
As shown in FIG. 2, the three-way valve unit 4 includes an electromagnetic operation unit 14 that switches the three-way valve 12 to a rectangular-shaped metal valve box forming member 13 that forms the valve box of the three-way valve 12; The pressure gauge 15 for detecting the gas pressure in the gas outlet valve hole 17 of the three-way valve 12 is fixed, and the switching state display portion 14 a provided in the electromagnetic operation unit 14 and the pressure provided in the pressure gauge 15 are configured. The display unit 15a is oriented in the same direction.
[0026]
As shown in FIGS. 3 to 5, the valve box forming member 13 includes a primary side gas inflow valve hole 17 through which the gas from the primary side pipe 5 flows into the three-way valve 12 and the secondary side pipe 6. A secondary gas inflow valve hole 18 through which gas flows into the three-way valve 12, a gas outflow valve hole 16 through which gas flows out from the three-way valve 12 to the shutoff valve operating governor 3, and a gas outflow valve hole 16 When the gas pressure exceeds the allowable pressure (4 kg / cm 2 in this embodiment), the valve box of the relief valve (check valve) 20 that releases the gas in the gas outlet valve hole 16 to the secondary gas inlet passage 18 , A communication passage 19 that connects the gas outlet valve hole 16 and the gas inlet of the relief valve 20, and an escape passage 21 that releases excess gas in the communication passage 19 from the relief valve 20 to the secondary gas inlet valve hole 18. And the female thread portion 21 for connection of the pressure gauge 15 are integrally formed by cutting.
[0027]
As shown in FIGS. 4, 6, and 7, the three-way valve 12 includes a primary side opening 23 in which the primary gas inflow valve hole 17 opens and a secondary side in which the secondary gas inflow valve hole 18 opens. The three side openings 24 are concentrically formed along the thickness direction of the valve box forming member 13 and are cut and formed on the front and back, and are inserted into the valve box forming member 13 so as to be reciprocally movable in the thickness direction. A first valve body 26 that can freely open and close the primary side gas inflow valve hole 17 and a second valve body 27 that can open and close the secondary side gas inflow valve hole 18 are provided across the pin 25, for gas outflow. A communication passage 28 for communicating the valve hole 16 with the primary side opening 23 and the secondary side opening 24 is cut and formed, and compressed between a cap 29 screwed and fixed to the valve box forming member 13 and the first valve body 26. The coil spring 30 is mounted, and the electromagnetic operation unit 14 is screwed into the secondary opening 24 and fixed. The primary side gas inflow valve hole 17 is connected to the primary side pipe 5 between the main governor 1 and the shut-off valve 2 by the primary side gas inflow pipe 31, and the secondary side gas inflow valve is configured. The hole 18 is connected to the secondary side pipe 6 on the downstream side of the main governor 1 by the secondary side gas inflow pipe 32.
[0028]
In the electromagnetic operation unit 14, the movable shaft member 33 is retracted in the non-energized state, and the first valve body 26 is moved to the primary side gas inflow valve by the urging force of the compression coil spring 30 as shown in FIG. 6. While the hole 17 is closed, the second valve element 27 opens the secondary gas inflow valve hole 18 to communicate with the gas outflow valve hole 16, and in the energized state in which the solenoid is excited, the movable shaft member 33 is a compression coil. As shown in FIG. 7, the first valve body 26 opens the primary-side gas inflow valve hole 17 and protrudes toward the first valve body 26 against the urging force of the spring 30 to open the gas outflow valve hole. 16 and the second valve element 27 operates to close the secondary gas inflow valve hole 18.
[0029]
The pressure detector 3a of the shut-off valve operating governor 3 is connected to the gas outlet valve hole 16 of the three-way valve 12 by a working gas introduction pipe 34, and moves integrally with a diaphragm 35 having a pressure resistance of about 4 kg / cm 2. When the gas pressure introduced into the pressure detector 3a is less than the set pressure (2 kg / cm 2 in this embodiment) by operating the valve body of the shut-off valve 2 with the operating shaft 36, the shut-off valve 2 is opened. When the pressure exceeds the set pressure, the diaphragm 35 moves against the biasing force of the spring 37, the operating shaft 36 slides, the valve body of the shutoff valve 2 moves to the shutoff position, and the shutoff valve 2 is shut off. It is configured to be held in a state.
[0030]
Therefore, the three-way valve 12 supplies the primary gas between the main governor 1 and the shutoff valve 2 to the shutoff valve operating governor 3 and introduces the primary gas pressure P1 into the shutoff valve operating governor 3. The first state and the second state in which the secondary gas downstream of the main governor 1 is supplied to the shut-off valve operating governor 3 and the secondary gas pressure P2 is introduced into the shut-off valve operating governor 3 is selected. When the primary side gas pressure P1 introduced into the shut-off valve operating governor 3 exceeds the allowable pressure higher than the set pressure in the first state, the relief valve 20 is configured as a switching means that is freely switchable. The primary side gas between the main governor 1 and the shutoff valve 2 is configured to escape to the secondary side pipe 6 on the downstream side of the main governor 1 through the secondary side gas inflow pipe 32.
[0031]
The electromagnetic operation unit 14 is configured to switch to an energized state when an energization command is input wirelessly or by wire from a management center B that manages the supply area of the gas supply path A. An accelerometer 38 is installed as a vibration detection means for detecting earthquake vibrations.
[0032]
The accelerometer 38 is connected so as to transmit detection information to the management center B by wireless or wired communication means 39, and the control device 40 as control means installed in the management center B is based on the detection information. It is determined whether or not a vibration exceeding the set acceleration is detected. If it is determined that a vibration exceeding the set acceleration is detected, it is determined that an earthquake of a predetermined scale has occurred and an energization command is input to the electromagnetic operation unit 14. Then, the three-way valve 12 is switched to the first state.
[0033]
Therefore, when the secondary gas pressure P2 is normally introduced into the pressure detection unit 3a of the shutoff valve operating governor 3, if the secondary gas pressure P2 abnormally rises above the set pressure, the shutoff valve 2 is shut off. When an earthquake of a predetermined scale occurs, the primary gas pressure P1 is introduced into the pressure detector 3a of the shutoff valve operating governor 3, and the shutoff valve 2 is forced into the shutoff state. The switching is held.
[0034]
[Other Embodiments]
1. The fluid supply shut-off facility according to the present invention may shut off the supply of fluids such as industrial gas other than city gas and tap water.
2. The fluid supply shut-off facility according to the present invention may be provided with an operating means for operating the shut-off valve in a shut-off state with a piston that moves when a fluid pressure higher than a set pressure acts.
3. The fluid supply shut-off facility according to the present invention may be configured to introduce the primary fluid pressure upstream of the shut-off valve into the operating means in the first state.
[Brief description of the drawings]
1 is a schematic view of a fluid supply shut-off facility. FIG. 2 is a front view of the main part. FIG. 3 is a cross-sectional view of the main part. FIG. 4 is a view taken along the line IV-IV in FIG. FIG. 6 is a cross-sectional view of the main part explaining the operating state of the three-way valve. FIG. 7 is a cross-sectional view of the main part explaining the operating state of the three-way valve. Schematic [Explanation of symbols]
1 Pressure regulator 2 Shut-off valve 3 Actuating means 12 Switching means (3-way valve)
DESCRIPTION OF SYMBOLS 13 Valve box formation member 14 Electromagnetic operation unit 14a Switching state display part 15 Pressure gauge 15a Pressure display part 16 Fluid outlet valve hole 19 Communication path 20 Relief valve 21 Relief flow path 35 Diaphragm 38 Vibration detection means 40 Control means A Fluid supply path P1 Primary fluid pressure P2 Secondary fluid pressure

Claims (5)

流体供給路に設けてある圧力調整器の上流側に、その流体供給路にて供給される流体の通流を遮断する遮断弁を設け、
前記遮断弁を流体圧力で遮断状態に作動させる作動手段を設け、
前記流体供給路の流体圧力を前記作動手段に導入して、その流体圧力が設定圧力以上になると、導入した流体圧力で前記遮断弁を遮断状態に作動させるように構成してある流体供給遮断設備であって、
前記設定圧力を前記圧力調整器の上流側の一次側流体圧力の変動範囲よりも低い圧力に設定し、
前記一次側流体圧力を前記作動手段に導入して、その導入した一次側流体圧力で前記遮断弁を遮断状態に作動させる第1状態と、前記圧力調整器の下流側の二次側流体圧力を前記作動手段に導入して、その導入した二次側流体圧力が前記設定圧力以上になると、導入した二次側流体圧力で前記遮断弁を遮断状態に作動させる第2状態とに択一的に切り換え自在な切換手段と、
地震の振動を検出する振動検出手段と、
前記振動検出手段が設定加速度以上の振動を検出すると、前記切換手段が前記第1状態に切り換わるように制御する制御手段とを設けてある流体供給遮断設備。
Provided on the upstream side of the pressure regulator provided in the fluid supply path is a shut-off valve that blocks the flow of the fluid supplied in the fluid supply path,
An operating means for operating the shut-off valve in a shut-off state with fluid pressure;
A fluid supply shut-off facility configured to introduce the fluid pressure of the fluid supply path into the operating means and to operate the shut-off valve in a shut-off state with the introduced fluid pressure when the fluid pressure becomes a set pressure or higher. Because
The set pressure is set to a pressure lower than the fluctuation range of the primary fluid pressure upstream of the pressure regulator;
A first state in which the primary fluid pressure is introduced into the actuating means, and the shut-off valve is operated in a shut-off state with the introduced primary fluid pressure; and a secondary fluid pressure on the downstream side of the pressure regulator. When introduced into the actuating means and the introduced secondary fluid pressure becomes equal to or higher than the set pressure, the second state is selected as the second state in which the shut-off valve is operated in the shut-off state with the introduced secondary fluid pressure. Switchable switching means ;
Vibration detection means for detecting earthquake vibrations;
A fluid supply cutoff facility provided with a control means for controlling the switching means to switch to the first state when the vibration detecting means detects a vibration greater than a set acceleration .
前記作動手段を、前記流体圧力でダイヤフラムを動かして前記遮断弁を遮断状態に作動させるように構成し、
前記第1状態において、前記圧力調整器と前記遮断弁との間の一次側流体圧力を前記作動手段に導入するように構成してある請求項1記載の流体供給遮断設備。
The actuating means is configured to actuate the shut-off valve by moving a diaphragm with the fluid pressure;
Wherein in the first state, claim 1 Symbol placement of the fluid supply shut off facility primary side fluid pressure is arranged to introduce into said actuating means between said pressure regulator and said shut-off valve.
前記作動手段に導入した一次側流体圧力が前記設定圧力よりも高い許容圧力を越えると、前記圧力調整器と前記遮断弁との間の流体を前記圧力調整器の下流側の流体供給路に逃がす逃し弁を設けてある請求項記載の流体供給遮断設備。When the primary fluid pressure introduced into the actuating means exceeds an allowable pressure higher than the set pressure, the fluid between the pressure regulator and the shutoff valve is released to the fluid supply path downstream of the pressure regulator. The fluid supply shut-off facility according to claim 2, wherein a relief valve is provided. 前記切換手段を、前記圧力調整器と前記遮断弁との間の一次側流体を前記作動手段に供給して、その一次側流体圧力を前記作動手段に導入する第1状態と、前記圧力調整器の下流側の二次流体を前記作動手段に供給して、その二次側流体圧力を前記作動手段に導入する第2状態とに択一的に切り換え自在な三方弁で構成し、
前記三方弁の弁箱を形成してある弁箱形成部材に、前記逃し弁の弁箱と、前記三方弁の流体流出用弁孔と前記逃し弁の流体流入口とを連通する連通路と、前記連通路の過剰流体を前記逃し弁から前記流体供給路に逃がす逃し流路とを一体形成してある請求項記載の流体供給遮断設備。
A first state in which the switching means supplies a primary fluid between the pressure regulator and the shutoff valve to the operating means and introduces the primary fluid pressure to the operating means; and the pressure regulator A downstream secondary fluid is supplied to the actuating means, and the secondary fluid pressure is constituted by a three-way valve that can be selectively switched to a second state of introducing the secondary fluid pressure into the actuating means,
A valve passage forming member that forms the valve box of the three-way valve, a communication passage that communicates the valve box of the relief valve, the fluid outlet valve hole of the three-way valve, and the fluid inlet of the relief valve; 4. A fluid supply shut-off facility according to claim 3, wherein a relief flow path for allowing excess fluid in the communication path to escape from the relief valve to the fluid supply path is integrally formed.
前記三方弁を切換作動させる電磁操作ユニットと、前記三方弁の流体流出用弁孔内の流体圧力を検出する圧力計とを、前記電磁操作ユニットに設けた切換状態表示部と前記圧力計に設けた圧力表示部とを同じ方向に向けて、前記弁箱形成部材に固定してある請求項記載の流体供給遮断設備。An electromagnetic operation unit for switching the three-way valve and a pressure gauge for detecting a fluid pressure in a fluid outlet valve hole of the three-way valve are provided in the switching state display section provided in the electromagnetic operation unit and the pressure gauge. The fluid supply shut-off facility according to claim 4 , wherein the pressure display unit is fixed to the valve box forming member in the same direction.
JP06462899A 1999-03-11 1999-03-11 Fluid supply cutoff equipment Expired - Lifetime JP4017280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06462899A JP4017280B2 (en) 1999-03-11 1999-03-11 Fluid supply cutoff equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06462899A JP4017280B2 (en) 1999-03-11 1999-03-11 Fluid supply cutoff equipment

Publications (2)

Publication Number Publication Date
JP2000257733A JP2000257733A (en) 2000-09-19
JP4017280B2 true JP4017280B2 (en) 2007-12-05

Family

ID=13263725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06462899A Expired - Lifetime JP4017280B2 (en) 1999-03-11 1999-03-11 Fluid supply cutoff equipment

Country Status (1)

Country Link
JP (1) JP4017280B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571685U (en) * 1992-02-28 1993-09-28 東洋ラジエーター株式会社 Intercooler tank structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4117552B2 (en) * 2003-07-10 2008-07-16 矢崎総業株式会社 Fluid shut-off device
JP2016003800A (en) * 2014-06-16 2016-01-12 I・T・O株式会社 Vibration-sensitive cutoff device for gas pipeline

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571685U (en) * 1992-02-28 1993-09-28 東洋ラジエーター株式会社 Intercooler tank structure

Also Published As

Publication number Publication date
JP2000257733A (en) 2000-09-19

Similar Documents

Publication Publication Date Title
JP4369292B2 (en) Emergency shut-off valve device
JP6290923B2 (en) Back pressure control device with simple pump start-up
US4971094A (en) Safety valve system
WO2001088382A1 (en) Pipe breakage control valve device
WO2019173120A1 (en) Solenoid operated valve for reducing excessive piping pressure in a fluid distribution system
EP2280205B1 (en) Diverter valve and heating system
US9689534B2 (en) Pipeline-waste-gas reduction method
JPH09178025A (en) Two stage type electric hydraulic pressure control valve
JP4017280B2 (en) Fluid supply cutoff equipment
US6923197B2 (en) Pressure regulator with tamper-proof safety feature
JP2001235046A (en) Emergency shutoff valve
JP2003166866A (en) Gas supply/interruption mechanism
US9695988B2 (en) Pipeline-waste-gas reducer apparatus
JP2757212B2 (en) Emergency shut-off valve
EP1548288B1 (en) A progressive-starting unit for pneumatic systems
JP2007280034A (en) Pressure governing device
US20240247733A1 (en) Automatic Gas Valve with Concentric Solenoid
JP3894646B2 (en) Pressure regulating mechanism
EP1150194A2 (en) A gas pressure regulator
JP3089550B2 (en) Pressure reducing valve
JPS6119251Y2 (en)
JPH0854936A (en) Pressure reducing valve
JPH0756637A (en) Pressure reduction valve with abnormal mode of cut-off function
JPS6141003Y2 (en)
JPH02278315A (en) Reducing valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070918

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

EXPY Cancellation because of completion of term