Nothing Special   »   [go: up one dir, main page]

JP4002291B2 - Pit generation etching method - Google Patents

Pit generation etching method Download PDF

Info

Publication number
JP4002291B2
JP4002291B2 JP2006195480A JP2006195480A JP4002291B2 JP 4002291 B2 JP4002291 B2 JP 4002291B2 JP 2006195480 A JP2006195480 A JP 2006195480A JP 2006195480 A JP2006195480 A JP 2006195480A JP 4002291 B2 JP4002291 B2 JP 4002291B2
Authority
JP
Japan
Prior art keywords
etching
pit
solution
surface layer
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006195480A
Other languages
Japanese (ja)
Other versions
JP2007092167A (en
Inventor
章 吉井
英雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2006195480A priority Critical patent/JP4002291B2/en
Publication of JP2007092167A publication Critical patent/JP2007092167A/en
Application granted granted Critical
Publication of JP4002291B2 publication Critical patent/JP4002291B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • ing And Chemical Polishing (AREA)

Description

本発明は、アルミニウム電解コンデンサ用電極箔などを無電解エッチングして、エッチングピットを生成させることができるピット生成エッチング方法に関するものである。   The present invention relates to a pit generation etching method capable of generating an etching pit by electroless etching an electrode foil for an aluminum electrolytic capacitor.

アルミニウム陽極箔は、一般に、アルミニウム箔を電気的、電気化学的な電解工程によるエッチングによって、ピットと呼ばれるトンネル状の孔を形成し、電気的、電気化学的な電解あるいは無電解にてエッチングしてピット孔を拡大するという処理工程が施されている。通常、これらの処理工程は、上記のように、エッチングピット発生工程と、発生したピットを使用用途に応じた太さに拡大する、ピット拡大工程の二段階で行われ、ピット発生工程では電解法、ピット拡大工程では電解又は化学溶解法が用いられている。
これは、従来の箔は、溶解性が低く、ピット発生工程においては、化学溶解ではエッチングピットが成長しないため、電解エッチングが不可欠となるものである。
また、ピット発生工程において、各種金属化合物を含有させることにより、無電解法でのピット発生を可能にする技術が特許文献1に提案されている。
特開2003−318069号公報
Aluminum anode foil is generally formed by forming tunnel-shaped holes called pits by etching the aluminum foil through an electrical or electrochemical electrolysis process, and etching it electrically or electrochemically or electrolessly. A processing step of enlarging the pit hole is performed. Usually, these processing steps are performed in two stages, as described above, an etching pit generation step and a pit expansion step that expands the generated pits to a thickness corresponding to the intended use. In the pit enlargement process, an electrolytic or chemical dissolution method is used.
This is because conventional foils have low solubility, and in the pit generation process, etching pits are not grown by chemical dissolution, so that electrolytic etching is indispensable.
Patent Document 1 proposes a technique that enables generation of pits in an electroless method by including various metal compounds in the pit generation process.
JP 2003-318069 A

ところで、通常、実機ラインでの電解エッチングは、3000〜4000Aの電流を印加するため、箔が発熱する。そのため、一定の通電量以上は困難であり、又、その電解面積は、対極となるカーボン電極により規定されるため、生産能力の向上には限界があった。さらに、アルミニウム箔の発熱は通電電気量の幅方向バラツキを生じ、エッチング箔の静電容量バラツキの一因となっている。
又、一般に銅管ローラを用い給電しているため、給電部のスパークを引き起こし、アルミニウム箔の切断、穴欠陥等の品質問題原因となる。さらには、発熱対策のため、冷却設備が必要になり、生産設備のコスト上昇につながっている。以上のように、ピット発生工程にて、電解法を用いる場合は、エッチング箔の低コスト化が困難であった。
このような背景より、特許文献1に記載されるような無電解法での方法も提案されているが、特許文献1で提案されている方法では特殊な試薬を用いる必要があり、その管理も複雑になるため、実用上の問題がある。
By the way, normally, in the electrolytic etching in the actual machine line, a current of 3000 to 4000 A is applied, so that the foil generates heat. Therefore, it is difficult to exceed a certain amount of energization, and the electrolysis area is defined by the carbon electrode serving as a counter electrode, so that there has been a limit to improving the production capacity. Furthermore, the heat generation of the aluminum foil causes variations in the amount of energized electricity in the width direction, which contributes to variations in the capacitance of the etching foil.
In addition, since power is generally supplied using a copper tube roller, it causes sparking of the power supply section, which causes quality problems such as cutting of aluminum foil and hole defects. Furthermore, cooling equipment is required to prevent heat generation, leading to increased production equipment costs. As described above, when an electrolytic method is used in the pit generation process, it is difficult to reduce the cost of the etching foil.
From such a background, an electroless method as described in Patent Document 1 has also been proposed, but the method proposed in Patent Document 1 requires the use of a special reagent, and its management is also There are practical problems due to the complexity.

一方、本願発明者は、特殊な試薬を用いなくとも、アルミニウム箔にある種の元素を含有することで、無電解法によるエッチングピットの発生が可能であることを見いだしている。この箔を用いれば、現在の生産条件を大幅に変更することなく、簡易に無電解でエッチングピットの発生が行え、その結果、生産能力の拡大、製造設備の低コスト化が行え、低コスト高品位のエッチング箔を供給することができる。   On the other hand, the inventor of the present application has found that etching pits can be generated by an electroless method by containing a certain element in the aluminum foil without using a special reagent. Using this foil, etching pits can be generated easily and electrolessly without significantly changing the current production conditions. As a result, the production capacity can be expanded and the cost of manufacturing equipment can be reduced. A quality etching foil can be supplied.

本発明は、上記事情を背景としてなされたものであり、無電解法によってエッチングピットを良好に生成することができるエッチング方法を提供するものである。   The present invention has been made against the background of the above circumstances, and provides an etching method capable of satisfactorily generating etching pits by an electroless method.

すなわち、本発明のピット生成エッチング方法は、質量比で、Mn、Zn、Ni、Sn、Ag、Pt、Auの中から選択される1種又は2種以上を総量で20〜200ppm含有し、残部がAlと不可避不純物からなる、最終焼鈍後のアルミニウム合金箔に、塩素イオン濃度が1000ppm未満の溶液を接触させて、通電することなく、該アルミニウム合金箔表面の酸化皮膜を含む表層部を20〜200Åの除去厚さで除去する表層部除去を行い、その後、通電することなく、または100mA/cm 以下の微小電流を印加してエッチングピット発生工程を行ない、その後、エッチングピット孔径拡大工程を行うことを特徴とする。 That is, the pit generation etching method of the present invention contains, by mass ratio, 20 to 200 ppm in total of one or more selected from Mn, Zn, Ni, Sn, Ag, Pt, and Au, and the balance. The surface layer portion including the oxide film on the surface of the aluminum alloy foil is brought into contact with the aluminum alloy foil after final annealing, which is made of Al and inevitable impurities, without contacting with a solution having a chlorine ion concentration of less than 1000 ppm. The surface layer is removed at a removal thickness of 200 mm, and then an etching pit generation process is performed without applying current or by applying a minute current of 100 mA / cm 2 or less , and then an etching pit hole diameter expanding process is performed. It is characterized by that.

請求項記載のピット生成エッチング方法は、請求項記載の発明において、前記ピット径拡大工程が、塩素イオン濃度が1000ppm未満の溶液を前記アルミニウム合金箔に接触させて行うことを特徴とする。 According to a second aspect of the present invention, in the pit generation etching method according to the first aspect , the pit diameter expanding step is performed by bringing a solution having a chlorine ion concentration of less than 1000 ppm into contact with the aluminum alloy foil.

請求項記載のピット生成エッチング方法は、請求項記載の発明において、前記表層部除去とエッチングピット孔径拡大工程は、塩素イオン濃度が1000ppm未満の同一溶液を用いて行うことを特徴とする。 According to a third aspect of the present invention, in the pit generation etching method according to the second aspect of the present invention, the surface layer portion removal and the etching pit hole diameter expanding step are performed using the same solution having a chlorine ion concentration of less than 1000 ppm.

請求項記載のピット生成エッチング方法は、請求項1〜3のいずれかに記載の発明において、前記エッチングピット発生工程は、0.1mol/l以上の塩酸を含む溶液を前記アルミニウム合金箔に接触させて行うことを特徴とする。 The pit generation etching method according to claim 4 is the invention according to any one of claims 1 to 3 , wherein the etching pit generation step contacts the aluminum alloy foil with a solution containing 0.1 mol / l or more hydrochloric acid. It is characterized by being carried out.

すなわち、本発明によれば、塩素イオン濃度が1000ppm未満の溶液で表面溶解除去を行うことで、表層部が適量除去される。この表層部の除去量は20〜200Åとする。
無電解によるエッチングピットの生成、成長を可能とするために、本発明では、Mn、Zn、Ni、Sn、Ag、Pt、Auの中から選択される1種又は2種以上を含有している。これら元素とバルクのアルミニウムとが局部電池反応を起こすためにピット生成が引き起こされる。箔表層よりエッチングピットを発生させるためには、これらの物質を適量、具体的には20〜200ppm含有させて、熱処理によってアルミ箔表面に濃縮させる必要がある。通常、95%以上の立方晶率を確保している箔は、500℃以上の高温焼鈍が施されている為、その表面には平均厚さで20〜60Åの酸化皮膜が生成されている。この熱処理の際、局部電池反応の基点となる物質は、酸化皮膜の内側のアルミ箔に濃縮されるため、エッチングの際に表面が酸化皮膜で厚く覆われた状態では、反応性が低く、又、ピットの均一性も悪い。そこで、表面溶解除去により酸化皮膜を含む表層部を除去することでエッチング時の反応性等を高める。さらに、アルミニウム箔表面には圧延目に起因する凹凸があるため、酸化皮膜を含めた表層部を適度に除去することにより、均一性に優れたエッチングピットを得ることができる。その際表層の除去量が20Å未満では、酸化皮膜、アルミニウム箔表面の凹凸の影響が大きく均一性が低下する。一方、200Åを越える量を除去した場合、反応性物質の濃化部分まで除去されるため、ピット発生の反応性が低下する。したがって、表層部の除去量は重量換算における厚さとして20〜200Åとし、さらに下限40Å、上限60Åとするのが一層望ましい。
That is, according to the present invention, an appropriate amount of the surface layer portion is removed by performing surface dissolution removal with a solution having a chlorine ion concentration of less than 1000 ppm. Removal of the surface layer portion shall be the 20~200A.
In order to enable generation and growth of etching pits by electroless, the present invention contains one or more selected from Mn, Zn, Ni, Sn, Ag, Pt, and Au. . Pit formation occurs because these elements and bulk aluminum cause a local cell reaction. In order to generate etching pits from the foil surface layer, it is necessary to contain an appropriate amount of these substances, specifically 20 to 200 ppm, and to concentrate on the aluminum foil surface by heat treatment. Usually, a foil having a cubic crystal ratio of 95% or higher is subjected to high-temperature annealing at 500 ° C. or higher, and therefore an oxide film having an average thickness of 20 to 60 mm is formed on the surface thereof. During this heat treatment, the substance that becomes the base point of the local battery reaction is concentrated on the aluminum foil inside the oxide film, so that the reactivity is low when the surface is thickly covered with the oxide film during the etching. The uniformity of pits is also poor. Then, the reactivity at the time of etching, etc. is improved by removing the surface layer part containing an oxide film by surface dissolution removal. Furthermore, since the surface of the aluminum foil has irregularities due to rolling, etching pits with excellent uniformity can be obtained by appropriately removing the surface layer portion including the oxide film. At that time, if the removal amount of the surface layer is less than 20 mm, the influence of the unevenness on the surface of the oxide film and the aluminum foil is large, and the uniformity is lowered. On the other hand, when the amount exceeding 200 kg is removed, even the concentrated portion of the reactive substance is removed, so that the reactivity of pit generation is lowered. Therefore, the removal amount of the surface layer portion is more preferably 20 to 200 mm as a thickness in terms of weight , and further preferably a lower limit of 40 mm and an upper limit of 60 mm.

アルミニウム箔表面の表層部除去は、一般的な酸溶液やアルカリ溶液を用いて行うことができる。ただし、塩素イオン濃度が1000ppm以上の溶液を使用したり、通電を併用すると、除去工程でエッチングピットがまばらに生成され、表面の均一性が低下する為、塩素イオン濃度が1000ppm未満の溶液を選択することが必要がある。
表面表層部の除去量は、試薬浸漬前後における質量減量より、以下の数式(1)により算出することができる。
片面表層部除去厚さ(Å)=ΔW/(S・α)×10×1/2 …(1)
ただし、ΔW(減量):g/cm、S(面積):cm、α(酸化アルミ密度):2.7g/cm
Removal of the surface layer portion on the surface of the aluminum foil can be performed using a general acid solution or alkali solution. However, if a solution with a chlorine ion concentration of 1000 ppm or more is used, or when energization is used together, etching pits are generated sparsely in the removal process, and the surface uniformity is reduced. Therefore, a solution with a chlorine ion concentration of less than 1000 ppm is selected. It is necessary to do.
The removal amount of the surface surface layer part can be calculated by the following numerical formula (1) from the weight loss before and after the reagent immersion.
Single-sided surface layer removal thickness (Å) = ΔW / (S · α) × 10 8 × 1/2 (1)
However, ΔW (weight loss): g / cm 2 , S (area): cm 2 , α (aluminum oxide density): 2.7 g / cm 3

表面表層部除去後は、一般的な電解エッチングに用いられる酸溶液に浸漬することで、エッチングピットを発生させることができる。なお、ピット発生、及び後述するピット径拡大において、化学溶解反応を促進するため、100mA/cm以下の微小電流を印加しても問題はない。
また、上記微量元素は、上述のように、バルクのアルミニウムと局部電池反応を起こすことで、例えば10μm以上の深さのエッチングピットの生成、成長を促す。ただし、前記微量元素の含有量が合計で20ppm未満であると、エッチングピットの生成、成長作用が不十分で、エッチングピットが良好に生成されない。一方、微量元素の含有量が合計で200ppmを超えると、表面溶解が過度になり、面溶解状態になって同じくエッチングピットが良好に形成されない。なお、同様の理由で下限を50ppm、上限を150ppmとするのが望ましい。
After the surface surface layer is removed, etching pits can be generated by dipping in an acid solution used for general electrolytic etching. In addition, in order to accelerate the chemical dissolution reaction in the pit generation and the pit diameter expansion described later, there is no problem even if a minute current of 100 mA / cm 2 or less is applied.
In addition, as described above, the trace element promotes the generation and growth of etching pits having a depth of, for example, 10 μm or more by causing a local battery reaction with bulk aluminum. However, if the content of the trace elements is less than 20 ppm in total, the generation and growth of etching pits are insufficient and the etching pits are not generated well. On the other hand, if the content of the trace elements exceeds 200 ppm in total, the surface dissolution becomes excessive and the surface dissolution state occurs, and the etching pits are not formed well. For the same reason, it is desirable to set the lower limit to 50 ppm and the upper limit to 150 ppm.

エッチングピット発生工程後は、さらに、エッチングピットが発生した箔を、好適には塩素イオン濃度が1000ppm未満の酸溶液に浸漬することで、エッチングピット孔径拡大工程として余分なピットを増やすことなく、その径を拡大することができ、使用電圧に適した、ピット径に成長させることができる。エッチングピット孔径拡大工程においても、上記のように、塩素イオン濃度が1000ppm未満の溶液を用いるのが望ましい。塩素イオンを1000ppm以上含むとエッチングピットが新たに生成されて、ピット分散が不均一になる。
また、表層部除去工程と、エッチングピット孔径拡大工程とで、塩素イオン濃度が1000ppm未満の同一溶液を用いることもできる。これにより溶液使用量を低減できるとともに、溶液を用意するための手間やスペースを省略することができる。
After the etching pit generation process, the foil in which the etching pits are generated is preferably immersed in an acid solution having a chlorine ion concentration of less than 1000 ppm without increasing the number of extra pits as an etching pit hole diameter expansion process. The diameter can be enlarged, and the pit can be grown to a suitable pit diameter. Also in the etching pit hole diameter expanding step, as described above, it is desirable to use a solution having a chlorine ion concentration of less than 1000 ppm. When chlorine ions are contained in an amount of 1000 ppm or more, etching pits are newly generated and pit dispersion becomes non-uniform.
Further, the same solution having a chlorine ion concentration of less than 1000 ppm can be used in the surface layer portion removing step and the etching pit hole diameter expanding step. As a result, the amount of solution used can be reduced, and the labor and space for preparing the solution can be omitted.

以上説明したように、本発明のピット生成エッチング方法によれば、質量比で、Mn、Zn、Ni、Sn、Ag、Pt、Auの中から選択される1種又は2種以上を合計量で20〜200ppm含有し、残部がAlと不可避不純物からなる、最終焼鈍後のアルミニウム合金箔に、塩素イオン濃度が1000ppm未満の溶液を接触させて、通電することなく、該アルミニウム合金箔表面の表層部を20〜200Å除去する表層部除去を行い、その後、通電することなく、または100mA/cm 以下の微小電流を印加してエッチングピット発生工程を行ない、その後、エッチングピット孔径拡大工程を行うので、無電解によってエッチングピットを均一かつ高密度に生成させることができ、低コストでの処理が可能になる効果がある。 As described above, according to the pit generation etching method of the present invention, the total amount of one or more selected from Mn, Zn, Ni, Sn, Ag, Pt, and Au in terms of mass ratio. A surface layer portion on the surface of the aluminum alloy foil containing 20 to 200 ppm, the balance being made of Al and inevitable impurities, without contacting the aluminum alloy foil after the final annealing with a solution having a chlorine ion concentration of less than 1000 ppm. Since the surface layer portion is removed to remove 20 to 200 Å, then the etching pit generation step is performed without applying current or by applying a minute current of 100 mA / cm 2 or less , and then the etching pit hole diameter expanding step is performed. Etching pits can be generated uniformly and with high density by electroless, and there is an effect that processing at low cost is possible.

純度99.9%以上で本発明の成分となるように調製された高純度アルミニウム材を用意する。該アルミニウム材は常法により得ることができ、本発明としては特にその製造方法が限定されるものではない。例えば、半連続鋳造によって得たスラブを熱間圧延したものを用いることができるし、その他に連続鋳造により得られる高純度アルミニウム材を対象とするものであってもよい。上記熱間圧延または連続鋳造圧延によって例えば数mm厚程度のシート材とする。このシート材に対し冷間圧延を行い、数十μmから100μm程度のアルミニウム合金箔を得る。なお、冷間圧延途中あるいは冷間圧延終了後に適宜脱脂を加えてもよく、また冷間圧延の途中で適宜中間焼鈍を加えても差し支えない。
最終冷間圧延後には、通常は最終焼鈍熱処理を行う。最終焼鈍の加熱条件等は常法などにより定めることができるが、例えば、500〜580℃×3〜24hr、還元性雰囲気で加熱することで、平均厚さで20〜60Åの酸化皮膜を有するアルミニウム合金箔を得る。
A high-purity aluminum material prepared to be a component of the present invention with a purity of 99.9% or more is prepared. The aluminum material can be obtained by a conventional method, and the production method is not particularly limited in the present invention. For example, a hot-rolled slab obtained by semi-continuous casting can be used, or a high-purity aluminum material obtained by continuous casting can be used. For example, a sheet material having a thickness of about several mm is formed by the hot rolling or continuous casting rolling. This sheet material is cold-rolled to obtain an aluminum alloy foil of about several tens of μm to 100 μm. In addition, degreasing may be appropriately added during the cold rolling or after the end of the cold rolling, and intermediate annealing may be appropriately added during the cold rolling.
After the final cold rolling, a final annealing heat treatment is usually performed. The heating conditions and the like for the final annealing can be determined by a conventional method. For example, aluminum having an oxide film with an average thickness of 20 to 60 mm by heating in a reducing atmosphere at 500 to 580 ° C. for 3 to 24 hours. Obtain an alloy foil.

上記各工程を経て得られたアルミニウム箔には、その後、エッチング処理がなされる。エッチング処理は、表層部除去工程と、エッチングピット発生工程と、エッチングピット孔径拡大工程により行われる。
表層部除去工程は、塩素イオン濃度が1000ppm未満の溶液によって酸化皮膜を含む表層部を溶解することによって除去する。この際の除去量は、20〜200Åとする。表層部除去は、HSO、HPO、HNO、HFに代表される一般的な酸溶液、又はその混合溶液を用いることができる。又、アルカリ溶液でも同様の効果が引き出せる。
The aluminum foil obtained through the above steps is then subjected to an etching process. The etching process is performed by a surface layer portion removing process, an etching pit generating process, and an etching pit hole diameter expanding process.
The surface layer portion removing step is performed by dissolving the surface layer portion including the oxide film with a solution having a chlorine ion concentration of less than 1000 ppm. The removal amount at this time is 20 to 200 mm. For removing the surface layer portion, a general acid solution typified by H 2 SO 4 , H 3 PO 4 , HNO 3 , and HF, or a mixed solution thereof can be used. The same effect can be obtained even with an alkaline solution.

表層部除去後は、アルミニウム箔表面にエッチングピットを発生させるエッチングピット発生工程を行う。
表面表層部除去後は、一般的な電解エッチングに用いられる酸溶液を用いてエッチングピットを発生させる。例えば、溶液1lに対し、塩酸0.1〜3mol、硫酸1〜5molを含む溶液、60〜90℃中に20〜120sec浸漬することで行うことができる。なお、所望により微小電流を印加することもできる。
After the surface layer portion is removed, an etching pit generation step for generating etching pits on the aluminum foil surface is performed.
After the surface surface layer portion is removed, etching pits are generated using an acid solution used for general electrolytic etching. For example, it can carry out by immersing 20 to 120 sec in 60 to 90 degreeC in the solution containing 0.1-3 mol hydrochloric acid and 1-5 mol sulfuric acid with respect to 1 l of solutions. Note that a minute current can be applied if desired.

エッチングピット発生工程後に、エッチングピット孔径拡大工程を行う。このエッチングピット孔径拡大工程でも、酸化皮膜除去と同様に、HSO、HPO、HNO、HFに代表される一般的な酸溶液、又はその混合溶液、又、アルカリ溶液を用いて行うことができる。該エッチングピット孔径拡大工程においても塩素イオン濃度が1000ppm未満の溶液を用いるのが望ましく、表層部除去工程で用いた溶液と同一の溶液を用いることもできる。
なお、理想的なエッチング工程としては、1〜4mol/lの硫酸20〜70℃中に30〜500sec浸漬し表面酸化皮膜を除去した後、溶液1lに対し、塩酸0.1〜3mol、硫酸1〜5molを含む溶液60〜90℃中に20〜120sec浸漬しエッチングピットを発生させ、さらに1〜4mol/lの硫酸60〜90℃中に400〜1000sec浸漬させピット径を拡大する方法である。
After the etching pit generation process, an etching pit hole diameter expanding process is performed. In this etching pit hole diameter expanding step, a general acid solution typified by H 2 SO 4 , H 3 PO 4 , HNO 3 , or HF, or a mixed solution thereof, or an alkaline solution is used as in the removal of the oxide film. Can be done. Also in the etching pit hole diameter expanding step, it is desirable to use a solution having a chlorine ion concentration of less than 1000 ppm, and the same solution as that used in the surface layer portion removing step can also be used.
As an ideal etching process, after removing the surface oxide film by immersing in 20 to 70 ° C. of 1 to 4 mol / l sulfuric acid for 30 to 500 seconds, 0.1 to 3 mol of hydrochloric acid and 1 sulfuric acid are added to 1 l of the solution. This is a method of increasing the pit diameter by immersing in a solution containing ˜5 mol for 60 to 90 ° C. for 20 to 120 seconds to generate etching pits and further immersing in 1 to 4 mol / l sulfuric acid 60 to 90 ° C. for 400 to 1000 seconds.

エッチング処理においては、前記成分の設定および使用溶液の設定によって箔にピットが高密度で形成され、高い粗面化率が得られる。この箔を化成処理し、必要な耐電圧を得た後、常法により電解コンデンサに電極として組み込むことにより静電容量の高いコンデンサが得られる。   In the etching process, pits are formed at a high density on the foil by setting the components and the use solution, and a high roughening rate is obtained. This foil is subjected to a chemical conversion treatment to obtain a necessary withstand voltage, and then a capacitor having a high capacitance is obtained by incorporating it as an electrode in an electrolytic capacitor by a conventional method.

本発明は中高圧電解コンデンサの陽極として使用するのが好適であるが、本発明としてはこれに限定されるものではなく、より化成電圧の低いコンデンサ用としても使用することができ、また電解コンデンサの陰極用の材料として使用することもできる。   The present invention is preferably used as an anode of a medium-high voltage electrolytic capacitor. However, the present invention is not limited to this, and can be used for a capacitor having a lower formation voltage. It can also be used as a cathode material.

Al純度99.9%以上で、表1に示すように、Mn、Zn、Ni、Sn、Ag、Pt、Auから選択した元素の一種以上を20〜200ppm含有し、その他不可避不純物よりなるアルミニウムスラブを作製し、常法に従い、均質化処理、均熱処理を施し、熱間圧延、冷間圧延を行い110μmのアルミニウム箔とした。この箔に、アルゴン雰囲気中で520℃×6時間の熱処理を行い、立方晶率95%以上の110μmの自己反応性を有する軟質箔を作製した。なお、軟質箔表面には平均厚さで45Åの酸化皮膜が形成されていた。   Aluminum slab having an Al purity of 99.9% or more and containing 20 to 200 ppm of one or more elements selected from Mn, Zn, Ni, Sn, Ag, Pt, and Au as shown in Table 1, and other inevitable impurities In accordance with an ordinary method, homogenization treatment and soaking treatment were performed, and hot rolling and cold rolling were performed to obtain a 110 μm aluminum foil. This foil was heat-treated at 520 ° C. for 6 hours in an argon atmosphere to produce a soft foil having a self-reactivity of 110 μm with a cubic rate of 95% or more. An oxide film having an average thickness of 45 mm was formed on the surface of the soft foil.

このアルミニウム箔を40℃、3mol/lの硫酸溶液(塩素イオン濃度20ppm)に浸漬し酸化皮膜を含む表層部除去を行った。表層部除去の際、浸漬時間を変化させ、表1に示すように、表層部の除去量を変化させた。なお、表層部の除去量(厚さ)は、試薬として硫酸を用い、前記数式(1)を用いて算出した。表層部除去後、水洗を行い、70℃、溶液1lに対し、塩酸1mol、硫酸3molを含む溶液に60sec浸漬しエッチングピットを発生させた。又その際、一部のアルミニウム箔では電流密度10〜200mA/cm(片面当たり)の直流を60sec印加した。ピット発生後、水洗を行い、75℃、3mol/l硫酸溶液(塩素イオン濃度20ppm)中に600sec浸漬し、ピット径の拡大を行った。ピット径拡大後、イオン交換水にて洗浄を行い乾燥した。 This aluminum foil was immersed in a 3 mol / l sulfuric acid solution (chlorine ion concentration 20 ppm) at 40 ° C. to remove the surface layer portion including the oxide film. When removing the surface layer portion, the immersion time was changed, and as shown in Table 1, the removal amount of the surface layer portion was changed. In addition, the removal amount (thickness) of the surface layer portion was calculated using the above formula (1) using sulfuric acid as a reagent. After removing the surface layer portion, it was washed with water and immersed in a solution containing 1 mol of hydrochloric acid and 3 mol of sulfuric acid at 70 ° C. and 1 l of solution to generate etching pits. At that time, a direct current having a current density of 10 to 200 mA / cm 2 (per one side) was applied to some aluminum foils for 60 seconds. After the pit was generated, it was washed with water and immersed in a 3 mol / l sulfuric acid solution (chlorine ion concentration 20 ppm) at 75 ° C. for 600 sec to enlarge the pit diameter. After expanding the pit diameter, it was washed with ion-exchanged water and dried.

得られたエッチング箔を10wt%のホウ酸溶液で300Vの化成を行い静電容量の評価を行った。
表1の通り、本発明で規定する微量元素を添加した場合、ピット発生工程において電流を流さない無電解溶解でも適正な容量が得られており、エッチングピットが正常に成長していることがわかる。又、酸化皮膜を含む表層部除去量が20〜200Åにて高い静電容量が得られることがわかる。さらに、このような箔は、電解エッチングを行っても、特性的な差はなく、表面酸化皮膜の影響が大きいことがわかる。
また、比較例の通り、本発明の微量元素を添加しても、表層部除去量が少ない、又は過剰の場合は、静電容量の低下が見られる。さらに、微量元素の含有量が適正でない場合も、高い静電容量は得られなかった。
The obtained etching foil was formed at 300 V with a 10 wt% boric acid solution, and the capacitance was evaluated.
As shown in Table 1, when the trace element defined in the present invention is added, an appropriate capacity is obtained even by electroless melting without flowing current in the pit generation process, and it can be seen that the etching pits grow normally. . It can also be seen that a high capacitance can be obtained when the removal amount of the surface layer containing the oxide film is 20 to 200 mm. Furthermore, it can be seen that such a foil has no characteristic difference even when electrolytic etching is performed, and the influence of the surface oxide film is large.
Moreover, even if the trace element of the present invention is added as in the comparative example, when the surface layer removal amount is small or excessive, a decrease in capacitance is observed. Furthermore, even when the trace element content was not appropriate, a high capacitance was not obtained.

Figure 0004002291
Figure 0004002291

また、比較のため、前記実施例1で得たNi130ppm添加のアルミニウム箔を用い、40℃、3mol硫酸溶液(塩素イオン濃度10ppm)または40℃で溶液1l当たり3mol硫酸と1mol塩酸を含む溶液に浸漬し質量換算で酸化皮膜を含む40Åの表層部除去を行った。表層部除去後、水洗を行い、70℃で溶液1l当たり塩酸1molと硫酸3molを含む溶液に60sec浸漬しエッチングピットを発生させた。ピット発生後、水洗を行い、85℃、3mol/l硫酸溶液(塩素イオン濃度10ppm)または、85℃で溶液1l当たり、3mol/l硫酸と1mol塩酸を含む溶液中に600sec浸漬し、ピット径の拡大を行った。ピット径拡大後、イオン交換水にて洗浄を行い乾燥した。上記比較例では、上記表層部除去とピット孔径拡大の少なくとも一つの処理で塩酸を含む溶液を用いた。
得られたエッチング箔を10wt%のホウ酸溶液で300Vの化成を行い静電容量の評価を行った。また、各供試材について折り曲げ強度の測定を行い、実施例1の供試材を基準にして相対評価を行い、これらの結果を表2に示した。該測定試験は、JIS P 8115:2001紙及び板紙−耐折強さ試験方法−MIT試験機法に準じて行い、φ1.0mm、250g荷重、折曲げ角度90度の条件下で1往復を1回で評価した。
For comparison, the aluminum foil with 130 ppm Ni obtained in Example 1 was used and immersed in a solution containing 3 mol sulfuric acid and 1 mol hydrochloric acid per liter of the solution at 40 ° C., 3 mol sulfuric acid solution (chlorine ion concentration 10 ppm) or 40 ° C. Then, the surface layer portion of 40 mm including the oxide film was removed in terms of mass. After removing the surface layer portion, it was washed with water and immersed in a solution containing 1 mol of hydrochloric acid and 3 mol of sulfuric acid per liter of solution at 70 ° C. to generate etching pits. After the pit is generated, it is washed with water and immersed in a solution containing 3 mol / l sulfuric acid and 1 mol hydrochloric acid at 85 ° C., 3 mol / l sulfuric acid solution (chlorine ion concentration 10 ppm) or 1 liter of solution at 85 ° C. for 600 sec. Enlarged. After expanding the pit diameter, it was washed with ion-exchanged water and dried. In the comparative example, a solution containing hydrochloric acid was used in at least one treatment of the surface layer removal and pit hole diameter expansion.
The obtained etching foil was formed at 300 V with a 10 wt% boric acid solution, and the capacitance was evaluated. In addition, the bending strength of each test material was measured, and relative evaluation was performed based on the test material of Example 1. The results are shown in Table 2. The measurement test was carried out in accordance with JIS P 8115: 2001 paper and paperboard − folding strength test method − MIT testing machine method, conditions of φ1.0 mm, 250 g load, and bending angle 90 degrees. Below, one round trip was evaluated at a time.

表層部除去及び孔径拡大を塩酸の入っていない溶液(塩素イオン濃度1000ppm未満)で行った場合と比較して、表層部除去を塩酸の入っている溶液(塩素イオン濃度1000ppm以上)で行った場合は、静電容量と折り曲げ強度の低下が見られる。さらに、孔径拡大を塩酸の入った溶液(塩素イオン濃度1000ppm以上)で行った場合、折り曲げ強度の低下が顕著になる。これは、塩酸が入ることで、ピットの発生が促進された結果、表層部除去段階でのピット発生、及び孔径拡大時のピット成長が起こるためである。以上のように、無電解でピットが成長する箔をエッチングする際は、表層部除去において、塩素イオン濃度が1000ppm未満の溶液を選択することで、高容量の箔を得ることができる。また、孔径拡大においても塩素イオン濃度が1000ppm未満の溶液を選択することで、高強度の箔を得ることができる。   When surface layer removal is performed with a solution containing hydrochloric acid (chlorine ion concentration of 1000 ppm or more) compared to when removing the surface layer portion and increasing the pore size with a solution containing no hydrochloric acid (chlorine ion concentration less than 1000 ppm) Shows a decrease in capacitance and bending strength. Furthermore, when the pore size is expanded with a solution containing hydrochloric acid (chlorine ion concentration of 1000 ppm or more), the bending strength is significantly reduced. This is because the generation of pits is promoted by the entry of hydrochloric acid, and as a result, pits are generated at the surface layer removal stage and pits grow when the hole diameter is expanded. As described above, when etching a foil in which pits grow electrolessly, a high-capacity foil can be obtained by selecting a solution having a chlorine ion concentration of less than 1000 ppm in removing the surface layer. In addition, a high-strength foil can be obtained by selecting a solution having a chlorine ion concentration of less than 1000 ppm even when the pore size is enlarged.

Figure 0004002291
Figure 0004002291

Claims (4)

質量比で、Mn、Zn、Ni、Sn、Ag、Pt、Auの中から選択される1種又は2種以上を総量で20〜200ppm含有し、残部がAlと不可避不純物からなる、最終焼鈍後のアルミニウム合金箔に、塩素イオン濃度が1000ppm未満の溶液を接触させて、通電することなく、該アルミニウム合金箔表面の酸化皮膜を含む表層部を20〜200Åの除去厚さで除去する表層部除去を行い、その後、通電することなく、または100mA/cm 以下の微小電流を印加してエッチングピット発生工程を行ない、その後、エッチングピット孔径拡大工程を行うことを特徴とするピット生成エッチング方法。 After final annealing, containing one or more selected from Mn, Zn, Ni, Sn, Ag, Pt, Au in a mass ratio of 20 to 200 ppm in total, with the balance consisting of Al and inevitable impurities The surface layer part removal which removes the surface layer part including the oxide film on the surface of the aluminum alloy foil with a removal thickness of 20 to 200 mm without contacting the aluminum alloy foil with a solution having a chlorine ion concentration of less than 1000 ppm. And then performing an etching pit generating step by applying a small current of 100 mA / cm 2 or less without energization , and then performing an etching pit hole diameter expanding step. 前記ピット径拡大工程は、塩素イオン濃度が1000ppm未満の溶液を前記アルミニウム合金箔に接触させて行うことを特徴とする請求項記載のピット生成エッチング方法。 The pit diameter enlarging step, the pit generation etching method according to claim 1, wherein the chloride ion concentration is performed by contacting a solution of less than 1000ppm in the aluminum alloy foil. 前記表層部除去とエッチングピット孔径拡大工程は、塩素イオン濃度が1000ppm未満の同一溶液を用いて行うことを特徴とする請求項記載のピット生成エッチング方法。 3. The pit generation etching method according to claim 2, wherein the surface layer portion removal and the etching pit hole diameter expanding step are performed using the same solution having a chlorine ion concentration of less than 1000 ppm. 前記エッチングピット発生工程は、0.1mol/l以上の塩酸を含む溶液を前記アルミニウム合金箔に接触させて行うことを特徴とする請求項1〜3のいずれかに記載のピット生成エッチング方法。 The pit generation etching method according to any one of claims 1 to 3 , wherein the etching pit generation step is performed by bringing a solution containing hydrochloric acid of 0.1 mol / l or more into contact with the aluminum alloy foil.
JP2006195480A 2005-08-29 2006-07-18 Pit generation etching method Expired - Fee Related JP4002291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006195480A JP4002291B2 (en) 2005-08-29 2006-07-18 Pit generation etching method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005247094 2005-08-29
JP2006195480A JP4002291B2 (en) 2005-08-29 2006-07-18 Pit generation etching method

Publications (2)

Publication Number Publication Date
JP2007092167A JP2007092167A (en) 2007-04-12
JP4002291B2 true JP4002291B2 (en) 2007-10-31

Family

ID=37978208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006195480A Expired - Fee Related JP4002291B2 (en) 2005-08-29 2006-07-18 Pit generation etching method

Country Status (1)

Country Link
JP (1) JP4002291B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7000120B2 (en) * 2017-10-31 2022-02-04 東洋アルミニウム株式会社 Aluminum foil and electronic component wiring boards using it, and their manufacturing methods
CN113026087B (en) * 2021-04-29 2021-08-10 南通海星电子股份有限公司 Preparation method of nano-microporous structure aluminum electrode foil for automobile electronics

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4048462B2 (en) * 1999-08-20 2008-02-20 日本軽金属株式会社 Surface treatment method of aluminum material
JP3959680B2 (en) * 2002-04-19 2007-08-15 日立エーアイシー株式会社 Etching method of aluminum electrolytic capacitor anode foil
JP4300041B2 (en) * 2002-08-21 2009-07-22 昭和電工株式会社 Aluminum material for electrolytic capacitor electrode and electrolytic capacitor
JP2004249728A (en) * 2003-01-31 2004-09-09 Fuji Photo Film Co Ltd Support for lithographic printing plate, and lithographic printing plate
JP4938226B2 (en) * 2003-06-03 2012-05-23 昭和電工株式会社 Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor

Also Published As

Publication number Publication date
JP2007092167A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP5094172B2 (en) Aluminum base material for etching and aluminum electrode material for electrolytic capacitor using the same
CN101147220B (en) Aluminum plate for aluminum electrolytic capacitor electrode, aluminum electrolytic capacitor, and process for producing aluminum electrolytic capacitor
JP4002291B2 (en) Pit generation etching method
JP2008138277A (en) High strength aluminum alloy plate for printing plate
JPS6229519B2 (en)
JP4237236B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JP5328129B2 (en) Aluminum alloy foil for electrolytic capacitors
JP4181597B2 (en) High-strength aluminum alloy plate for printing plates
JP3983785B2 (en) Aluminum foil for electrolytic capacitors
JP3920301B2 (en) Aluminum foil for electrolytic capacitors
JP4650887B2 (en) Aluminum foil for electrolytic capacitors
JP3959680B2 (en) Etching method of aluminum electrolytic capacitor anode foil
JP4612572B2 (en) Manufacturing method of high purity Ni diffusion plated steel sheet
JP4732892B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4793827B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JP4827103B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP5053702B2 (en) Capacitor electrode sheet and manufacturing method thereof
JP4539912B2 (en) Aluminum foil for electrolytic capacitor anode and manufacturing method thereof
JP3930033B1 (en) Aluminum foil for electrolytic capacitors
US12091766B2 (en) Electrolytic copper foil and method for producing same
JP4308556B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrolytic capacitor electrode material, and electrolytic capacitor
JPH07132689A (en) Aluminum alloy substrate for lithographic plate
JP2010013714A (en) Aluminum foil for electrolytic capacitor electrode
JP4758827B2 (en) Method for producing electrode foil for electrolytic capacitor
JP3112257B2 (en) Method for electrolytic descaling of Ni annealed plate or Ni alloy annealed plate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees