JP4093939B2 - Low shrinkage polyester fiber - Google Patents
Low shrinkage polyester fiber Download PDFInfo
- Publication number
- JP4093939B2 JP4093939B2 JP2003319060A JP2003319060A JP4093939B2 JP 4093939 B2 JP4093939 B2 JP 4093939B2 JP 2003319060 A JP2003319060 A JP 2003319060A JP 2003319060 A JP2003319060 A JP 2003319060A JP 4093939 B2 JP4093939 B2 JP 4093939B2
- Authority
- JP
- Japan
- Prior art keywords
- shrinkage
- polyester fiber
- low
- roller
- yarn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Description
本発明は産業資材用途、特に光ケーブルなどのケーブルの主要なコア部分を保護するために捲き付けて固定するに適した低収縮性ポリエステル繊維に関する。 The present invention relates to a low-shrinkage polyester fiber suitable for use in industrial materials, particularly for squeezing and fixing to protect a main core portion of a cable such as an optical cable.
従来より、産業資材用途、特に光ファイバーをコア部分に採用した光ケーブルでは光ファイバーからなるコア部分と、これを被覆保護する保護層(クラッド)を数本束ねる押さえ巻糸として、アラミド繊維やガラス繊維が用いられている。 Conventionally, aramid fibers and glass fibers have been used as press-wound yarns for bundling several cores made of optical fibers and several protective layers (clads) that cover and protect them in optical cables using industrial materials, especially optical fibers in the core. It has been.
しかし、これらはいずれも高価であり、近年の光ケーブル市場の急激な拡大に伴う低価格には対応できなくなっている。 However, these are all expensive and cannot cope with the low price accompanying the rapid expansion of the optical cable market in recent years.
これを解消して、低価格の押さえ巻糸として安価なポリエステル繊維が採用されている。この押さえ巻に要求される特性は、低熱収縮性である。 In order to solve this problem, an inexpensive polyester fiber is used as a low-priced presser winding thread. The characteristic required for the presser winding is low heat shrinkability.
一方、ポリエステルの低熱収縮糸はたとえば特許文献1に記載されるように、ポリエステル部分配向糸(POY糸)をある延伸倍率で延伸し、190〜240℃の高温で熱処理して制限収縮させることによって得られることが公知である。しかし、この場合はミシン糸の様な低伸度の糸に関するものであり、光ケーブルの押さえ巻糸に加工する合撚や合糸する工程で糸切れが多発したり、毛羽が発生するなどの問題があった。また、150℃での乾熱収縮率が記載されているが、いずれも収縮率が大きく光ケーブルには採用できるものではない。 On the other hand, as described in Patent Document 1, for example, a polyester low heat shrink yarn is obtained by drawing a polyester partially oriented yarn (POY yarn) at a certain draw ratio and heat-treating it at a high temperature of 190 to 240 ° C. to limit shrinkage. It is known to be obtained. However, in this case, it is related to low-elongation yarns such as sewing threads, and problems such as frequent yarn breakage and fluffing occur in the twisting process and the process of joining the optical cable. was there. Moreover, although the dry heat shrinkage rate at 150 ° C. is described, any of them has a large shrinkage rate and cannot be employed for an optical cable.
そして、乾熱収縮率が更に低いものとして、特許文献2では強度が7.9〜10.2cN/dtex、破断伸度が18〜30%で、177℃で1分間処理時の乾熱収縮率が−1〜3%である低収縮性ポリエステル繊維が提案されている。 And as a thing with a still lower dry heat shrinkage rate, in Patent Document 2, the strength is 7.9 to 10.2 cN / dtex, the elongation at break is 18 to 30%, and the dry heat shrinkage rate at the time of 1 minute treatment at 177 ° C. A low shrinkage polyester fiber having a -1 to 3% ratio has been proposed.
しかしながら、これは極限粘度が0.92と非常に粘度が高いポリエステルを用いており、紡糸時には特別な装置を必要とするので高価となる。また、タイヤコードなどの産業資材に適した繊維であり、強度は高いが伸度が低く、取り扱い性が悪いものであった。更に、収縮率が0%未満のマイナス領域の場合、熱処理時に繊維が伸長するので光ケーブルの押さえ巻のごとく、内層部を捲回して固定するには不安定であった。 However, this uses polyester having a very high intrinsic viscosity of 0.92, which is expensive because a special apparatus is required for spinning. In addition, it is a fiber suitable for industrial materials such as tire cords, and has high strength but low elongation and poor handleability. Further, in the minus region where the shrinkage rate is less than 0%, the fiber stretches during the heat treatment, so that it is unstable to wind and fix the inner layer portion like a press winding of an optical cable.
また、特許文献3では高タフネスのターポリンなどに有用なポリエステル繊維が提案されているが、これも固相重合した極限粘度の高いポリエステルを用いており高価となる。また、乾熱収縮率も高いものであった。 Patent Document 3 proposes a polyester fiber useful for high-toughness tarpaulins and the like, but this is also expensive because it uses a solid-phase polymerized polyester having a high intrinsic viscosity. Moreover, the dry heat shrinkage was also high.
一方、安価な低収縮性ポリエステル繊維としては、特許文献4記載の様に、未延伸POY糸を低延伸倍率で延伸し、熱処理させて低収縮化或いは自己伸長糸を製造する衣料用異収縮混繊糸が知られている。 On the other hand, as an inexpensive low-shrinkage polyester fiber, as described in Patent Document 4, unstretched POY yarn is drawn at a low draw ratio and heat treated to produce a low-shrinkage or self-stretched yarn. Fiber is known.
しかしながら、この場合、強度が低く伸度が高いために衣料資材には採用されても、産業資材には不安定で採用することが不可能であった。 However, in this case, since the strength is low and the elongation is high, even if it is used as a clothing material, it is unstable and cannot be used as an industrial material.
以上のように、低収縮性ポリエステル繊維は大きく2極分化されており、一つはタイヤコードなどの高粘度樹脂を用いた高強度低伸度繊維と、安価な衣料用の低強度高伸度繊維であり、この間に位置する衣料用にも産業資材用にも採用可能な低収縮性ポリエステル繊維はなかった。 As described above, low-shrinkage polyester fibers are largely divided into two types, one is high-strength low-stretch fibers using high-viscosity resins such as tire cords, and low-strength high-stretch for inexpensive clothing. There was no low-shrinkage polyester fiber that can be used for both clothing and industrial materials.
本発明者等は、かかる従来技術の問題点を解消し、安価であり取り扱い性に優れ、ケーブルの製造工程中に於いても製品に於いても、押さえ巻糸として安定してコア部分を保護することが可能である光ケーブルの押さえ巻糸に適した低収縮性ポリエステル繊維を提供することにある。 The present inventors have solved the problems of the prior art, are inexpensive and excellent in handleability, and stably protect the core portion as a presser winding thread in the cable manufacturing process and in the product. An object of the present invention is to provide a low-shrinkage polyester fiber suitable for a press-wound yarn of an optical cable.
本発明者等は、上記の課題を解決するために鋭意検討を行った結果、本願発明に到達した。
すなわち本発明は、エチレンテレフタレートを主たる繰り返し単位とするポリエステル繊維であって、下記(1)〜(4)を満足することを特徴とする光ファイバー用低収縮性ポリエステル繊維を要旨とする。
(1)極限粘度 0.55〜0.70
(2)破断伸度 28〜38%
(3)130℃での乾熱収縮率 0〜0.5%
(4)熱応力曲線における収縮開始温度 180℃以上
As a result of intensive studies to solve the above problems, the present inventors have reached the present invention.
That is, the gist of the present invention is a polyester fiber having ethylene terephthalate as a main repeating unit, which satisfies the following (1) to (4), and is characterized by low shrinkage polyester fiber for optical fibers.
(1) Intrinsic viscosity 0.55 to 0.70
(2) Elongation at break 28-38%
(3) Dry heat shrinkage at 130 ° C. 0 to 0.5%
(4) Shrinkage start temperature in
本発明の低収縮性ポリエステル繊維は、本発明の範囲の物性を持つことにより、合糸や合撚を施しても糸切れなく安定した操業性を保持でき、熱処理を施しても物性の低下がなく、熱収縮しない。また、粘度が高くないために衣料用の紡糸機にて安価に生産することが可能である。このために、光ケーブルなどの押さえ巻糸に用いても、熱収縮によって主要なコア部分の性能を損なうことがない。 The low-shrinkage polyester fiber of the present invention has the physical properties within the scope of the present invention, so that it can maintain stable operability without yarn breakage even if it is subjected to combined yarn or twisted, and the physical properties are reduced even if heat treatment is performed. There is no heat shrinkage. Further, since the viscosity is not high, it can be produced at low cost by a spinning machine for clothing. For this reason, even if it uses for holding | wound winding yarns, such as an optical cable, the performance of the main core part is not impaired by heat shrink.
以下に本発明を詳細に説明する。本発明は、安価に本発明の低収縮性ポリエステル繊維を得るため、エチレンテレフタレートを主体とするポリエステルを用いる。 The present invention is described in detail below. In order to obtain the low-shrinkage polyester fiber of the present invention at low cost, the present invention uses a polyester mainly composed of ethylene terephthalate.
必要に応じて、5−スルフォイソフタル酸ソーダ、アジピン酸、セバシン酸、イソフタル酸などの酸成分や、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、シクロヘキサンジメタノールなどのジオール成分を共重合したものを採用することで、繊維の機能性を追加することができる。 If necessary, use a copolymer of acid components such as sodium 5-sulfoisophthalate, adipic acid, sebacic acid, and isophthalic acid, and diol components such as diethylene glycol, triethylene glycol, polyethylene glycol, and cyclohexanedimethanol. By doing so, the functionality of the fiber can be added.
また、該ポリエステルの極限粘度は0.55〜0.70であることが必要であり、好ましくは0.60〜0.65である。この範囲内であれば光ケーブル押さえ巻としても十分な破断強度が得られて、また汎用樹脂であるために安価に提供することができる。しかし、0.55未満の場合、繊維の破断強度が高いものは得られず産業資材には不向きとなり、0.70を超える場合、産業資材用の特別な紡糸装置を必要とするので設備が高価となる。 Moreover, the intrinsic viscosity of this polyester needs to be 0.55-0.70, Preferably it is 0.60-0.65. Within this range, sufficient breaking strength can be obtained even as an optical cable holding winding, and since it is a general-purpose resin, it can be provided at low cost. However, if it is less than 0.55, a fiber having a high breaking strength cannot be obtained, and it is not suitable for industrial materials. If it exceeds 0.70, a special spinning device for industrial materials is required, so the equipment is expensive. It becomes.
本発明のポリエステル繊維の破断伸度は28〜38%であることが重要であり、好ましくは30〜35%である。この範囲であれば、該ポリエステル繊維を必要な繊度に合撚、合糸する際に安定した操業性を得ることができ、また適度な柔らかさを持つので光ケーブルのコア部分を捲回するに適している。28%未満の場合、合撚、合糸時に糸切れが多発するという問題が生じ、38%を超える場合は形態安定性に欠けるものとなる。 It is important that the elongation at break of the polyester fiber of the present invention is 28 to 38%, preferably 30 to 35%. If it is within this range, the polyester fiber can be twisted to the required fineness, and stable operability can be obtained when it is twisted. Also, since it has an appropriate softness, it is suitable for winding the core portion of the optical cable. ing. If it is less than 28%, there is a problem that yarn breakage frequently occurs during twisting and joining, and if it exceeds 38%, the form stability is insufficient.
光ケーブルを製造する場合、コア部分とその保護部分の周囲にポリエチレンやポリプロピレンなどのフィルムをラミネートさせ、さらにそれを固定するために本発明のポリエステル繊維を用いた押さえ巻糸を捲回する。このラミネートを行う際に、120〜130℃の乾熱処理を施すため、押さえ巻がこの温度で収縮するとコア部分の光ファイバーを痛めることになる。よって、本発明のポリエステル繊維の130℃での乾熱収縮率は0〜0.5%であることが重要であり、好ましくは0〜0.3%である。この範囲であれば、安定して光ファイバー群を固定することができ、また光ファイバーの性能を損なうことがない。0%未満、つまり熱収縮率がマイナスである熱伸長する場合、光ファイバー群を固定することができない。また、0.5%を超える場合は収縮によって、光ファイバー群を圧迫して性能を損なうことになる。 When manufacturing an optical cable, a film such as polyethylene or polypropylene is laminated around the core portion and the protective portion thereof, and a presser wound yarn using the polyester fiber of the present invention is wound in order to fix the film. When this lamination is performed, a dry heat treatment at 120 to 130 ° C. is performed. Therefore, if the presser winding contracts at this temperature, the optical fiber in the core portion is damaged. Therefore, it is important that the dry heat shrinkage at 130 ° C. of the polyester fiber of the present invention is 0 to 0.5%, preferably 0 to 0.3%. Within this range, the optical fiber group can be stably fixed, and the performance of the optical fiber is not impaired. If the thermal expansion is less than 0%, that is, the thermal contraction rate is negative, the optical fiber group cannot be fixed. On the other hand, if it exceeds 0.5%, the optical fiber group is pressed by the contraction, and the performance is impaired.
また、本発明のポリエステル繊維の熱応力曲線における収縮開始温度は180℃以上であることが重要であり、好ましくは200℃以上である。収縮開始温度とは、図1にて説明するように、収縮応力曲線の2つの接線の交点における温度をいう。この収縮開始温度までは、熱による収縮力が発生しないことを意味しており、この範囲であればこの収縮力によって光ファイバーの性能を損なうことがない。 Moreover, it is important that the shrinkage start temperature in the thermal stress curve of the polyester fiber of the present invention is 180 ° C. or higher, and preferably 200 ° C. or higher. The shrinkage start temperature is a temperature at the intersection of two tangents of the shrinkage stress curve, as will be described with reference to FIG. This means that the contraction force due to heat does not occur up to the contraction start temperature, and within this range, the contraction force does not impair the performance of the optical fiber.
本発明の低収縮性ポリエステル繊維を得るための具体的な方法を以下に示す。本発明のポリエステル繊維は、極限粘度が0.55〜0.70のポリエステルを溶融紡糸し、公知の方法で冷却して巻き取る方法が採用されるが、本発明の特性値を得るためにはまず直接紡糸延伸法(SPD法)にて延伸糸を巻き取り、多段延伸機にて該延伸糸を弛緩熱処理する方法が好ましい。また、SPD法で延伸糸を巻き取る際に、各単糸は個別に分割されて油剤を付与し、数本の単糸を交絡を掛けずに収束させて巻き取れば、単糸間の繊度斑や物性斑を低減させるためにはさらに好ましい。従来技術では、SPD法にて一度に延伸、熱処理を施して巻き取る方法が提案されているが、この場合、巻き取り工程中の張力による歪が繊維中に残留するので、本発明の物性を得ることはできない。 A specific method for obtaining the low-shrinkage polyester fiber of the present invention is shown below. The polyester fiber of the present invention employs a method in which a polyester having an intrinsic viscosity of 0.55 to 0.70 is melt-spun, cooled by a known method, and wound up. First, a method in which a drawn yarn is wound up by a direct spinning drawing method (SPD method) and the drawn yarn is subjected to relaxation heat treatment by a multistage drawing machine is preferable. Further, when winding the drawn yarn by the SPD method, each single yarn is individually divided and applied with an oil agent, and if several single yarns are converged and wound without entanglement, the fineness between the single yarns It is further preferable for reducing spots and physical properties. In the prior art, there has been proposed a method of winding by drawing and heat-treating at once by the SPD method, but in this case, strain due to tension during the winding process remains in the fiber. I can't get it.
次いで、該延伸糸を3〜4段の多段延伸機に投入するが、この際には張力を付与するための延伸を与えた後に、ポリエステルの結晶融点以下の温度で熱処理をし、非加熱ローラーとの間で弛緩させてから巻き取り機にて巻き取る方法が好ましい。弛緩熱処理の際の弛緩率は本発明の物性値になるような条件を適宜選択すればよいが、熱処理ローラーに取られない条件とする。 Next, the drawn yarn is put into a 3 to 4 multi-stage drawing machine. In this case, after drawing to give tension, heat treatment is performed at a temperature below the crystal melting point of the polyester, and the non-heated roller A method in which the film is relaxed between and wound with a winder is preferable. The relaxation rate during the relaxation heat treatment may be selected as appropriate so that the physical property value of the present invention is obtained, but the relaxation rate is set so as not to be taken by the heat treatment roller.
本発明のポリエステル繊維の繊度は特に限定するものではないが、光ファイバー用に好適であり、また上記記載のSPD法と延伸法を用いて安価生産するためには、167〜400dtexとするのが望ましい。 The fineness of the polyester fiber of the present invention is not particularly limited, but is suitable for an optical fiber, and is preferably 167 to 400 dtex for inexpensive production using the SPD method and the drawing method described above. .
本発明の低収縮性ポリエステル繊維を用いて、光ケーブルの押さえ巻糸を製造する工程の一例を以下に示す。
まず、本発明の低収縮性ポリエステル繊維を数本合わせて、合撚機にて合撚する。この際に、収束性を上げるために空気などの流体にて流体交絡を施す。その後、染色加工を施して光ケーブルの押さえ巻糸とする。
An example of a process for producing a press-wound yarn for an optical cable using the low-shrinkage polyester fiber of the present invention is shown below.
First, several low shrinkable polyester fibers of the present invention are combined and twisted with a twister. At this time, fluid entanglement is performed with a fluid such as air in order to improve convergence. After that, a dyeing process is performed to obtain a presser winding thread of the optical cable.
このようにして得られた押さえ巻糸は、数本束ねた光ファイバーをコアとしてその外側に保護するクラッド層の外側に捲回させて束ねることに用いられる。 The press-wound yarn obtained in this way is used to wind and bundle several bundled optical fibers around the outer side of the clad layer that protects the outer side as a core.
以下、実施例によって本発明をさらに詳しく説明する。尚、以下の実施例における特性値は、次に示す方法によって測定したものである。 Hereinafter, the present invention will be described in more detail with reference to examples. The characteristic values in the following examples are measured by the following methods.
(1)極限粘度
極限粘度[η]は、フェノール/テトラクロロエタン=6/4(重量比)の混合溶剤中20℃にて自動粘度計を用いて常法により測定した。
(1) Intrinsic viscosity The intrinsic viscosity [η] was measured by an ordinary method using an automatic viscometer in a mixed solvent of phenol / tetrachloroethane = 6/4 (weight ratio) at 20 ° C.
(2)破断強度・破断伸度
オートグラフ引張り試験機(島津製作所製)を用い、初期長200mm、歪速度100%/分、初荷重1/30cN/dtexとして破断するまで引張り試験を実施し、破断強度及び破断伸度を求めた。
(2) Breaking strength / breaking elongation Using an autograph tensile tester (manufactured by Shimadzu Corporation), a tensile test was carried out until breakage with an initial length of 200 mm, a strain rate of 100% / min, and an initial load of 1/30 cN / dtex, The breaking strength and breaking elongation were determined.
(3)130℃乾熱収縮率
本発明のポリエステル繊維に1/30cN/dtexの荷重を掛けてこの時の長さをL0とした。次いで、無荷重下で130℃のオーブンにて1時間の熱処理を行い、常温で1時間冷却後、1/30cN/dtexの荷重下で熱処理後の繊維長Lを測定し、下記式にて算出した。
130℃乾熱収縮率(%)=(L0−L)/L0×100
(3) Dry heat shrinkage at 130 ° C. A load of 1/30 cN / dtex was applied to the polyester fiber of the present invention, and the length at this time was defined as L0. Next, heat treatment was performed in an oven at 130 ° C. for 1 hour under no load, cooled for 1 hour at room temperature, fiber length L after heat treatment was measured under a load of 1/30 cN / dtex, and calculated by the following formula: did.
130 ° C. dry heat shrinkage (%) = (L0−L) / L0 × 100
(4)熱応力曲線の収縮開始温度(Ts)
本発明のポリエステル繊維100mmに、1/600cN/dtexの初荷重を与えて、熱応力試験機KE−2S(カネボウエンジニアリング製)にて120℃/分の昇温速度で室温から250℃まで昇温した際の温度に対する収縮応力の曲線を描き、図1に示した2つの接線の交点における温度をTs(℃)として評価した。
(4) Thermal stress curve shrinkage start temperature (Ts)
An initial load of 1/600 cN / dtex is applied to 100 mm of the polyester fiber of the present invention, and the temperature is increased from room temperature to 250 ° C. at a temperature increase rate of 120 ° C./min with a thermal stress tester KE-2S (manufactured by Kanebo Engineering). A curve of shrinkage stress with respect to temperature at the time of drawing was drawn, and the temperature at the intersection of two tangents shown in FIG. 1 was evaluated as Ts (° C.).
(5)沸騰水収縮率
本発明のポリエステル繊維500mmに200mgの荷重を吊り下げ初期長L1を求め、荷重を吊り下げた状態で沸騰水中に15分間浸漬し、風乾後の長さL2を測定して下記式にて収縮率を算出した。
沸騰水収縮率(%)=(L1−L2)/L1×100
(5) Boiling water shrinkage The initial length L1 is obtained by suspending a 200 mg load on the polyester fiber 500 mm of the present invention, and immersed in boiling water for 15 minutes with the load suspended, and the length L2 after air drying is measured. The shrinkage was calculated by the following formula.
Boiling water shrinkage rate (%) = (L1-L2) / L1 × 100
(6)合撚時の糸切れ性
本発明のポリエステル繊維を9本合わせて合撚し、空気交絡処理を施し、この際に満管率が90%以上で毛羽が無いものを○、満管率が70〜90%のものを△、70%未満のものを×として評価した。
(6) Yarn breakage at the time of twisting Nine polyester fibers of the present invention are twisted together and subjected to air entanglement treatment. Evaluation was made with a rate of 70-90% as Δ and a value less than 70% as x.
(7)押さえ巻糸性能
本発明のポリエステル繊維を用いた押さえ巻糸を光ケーブルに使用可能なものを○、使用不可のものを×として専門家が評価した。
(7) Presser winding performance The expert evaluated the presser wound yarn using the polyester fiber of the present invention as ◯ when it can be used for an optical cable, and × when it cannot be used.
(実施例1)
極限粘度が0.630で、二酸化チタン(TiO2)を0.4重量%含有するポリエチレンテレフタレートポリマーを296℃で溶融し、12ホールの口金から押し出して冷却後、それぞれの単糸を個別に油剤付与させ、加熱ゴデッドローラーと熱セットゴデッドローラーとの間で延伸し、12本を収束させてSPD法にて267dtex/12フィラメントの延伸糸を得た。その後、該延伸糸を第1ローラー(非加熱)、第2ローラー(80℃)、第3ローラー(100℃)、第4ローラー(220℃)、第5ローラー(非加熱)、巻き取機の順に導き、第1ローラーと第2ローラーの延伸比を1.005倍、第2ローラーと第3ローラーの間の延伸比を1.000倍、第3ローラーと第4ローラーの延伸比を1.000倍、第4ローラーと第5ローラーの間を0.936倍として全延伸比0.941倍にて弛緩熱処理を行い、280dtex/12フィラメントの表1記載の物性値を持つ低収縮性ポリエステル繊維を得た。この後、該ポリエステル繊維を合撚機にて9本収束させて押さえ巻糸を製造した。この押さえ巻き糸は表1に示すように乾熱収縮率が低く熱的に形態が安定しており、光ケーブルとして使用可能であった。
Example 1
A polyethylene terephthalate polymer having an intrinsic viscosity of 0.630 and containing 0.4% by weight of titanium dioxide (TiO 2 ) is melted at 296 ° C., extruded from a 12-hole die, cooled, and each single yarn is individually treated with oil. It was made to give, and it extended | stretched between the heating goded roller and the heat set goded roller, 12 pieces were converged, and the drawn yarn of 267dtex / 12 filament was obtained by SPD method. Thereafter, the drawn yarn is fed into a first roller (non-heated), a second roller (80 ° C.), a third roller (100 ° C.), a fourth roller (220 ° C.), a fifth roller (non-heated), and a winder. The stretching ratio between the first roller and the second roller is 1.005 times, the stretching ratio between the second roller and the third roller is 1.000 times, and the stretching ratio between the third roller and the fourth roller is 1. A low shrinkage polyester fiber having physical properties shown in Table 1 of 280 dtex / 12 filaments, subjected to relaxation heat treatment at 000 times, 0.936 times between the fourth roller and the fifth roller at a total draw ratio of 0.941 times Got. Then, nine polyester fibers were converged with a twister to produce a presser wound yarn. As shown in Table 1, this presser wound yarn has a low dry heat shrinkage rate and is thermally stable, and can be used as an optical cable.
(実施例2、3)
第4ローラーの温度を実施例2は210℃、実施例3は225℃とする以外は実施例1と同様に280dtex/12フィラメントの低収縮性ポリエステル繊維を得た。この押さえ巻き糸は表1に示すように光ケーブルとして使用可能であった。
(Examples 2 and 3)
A low-shrinkage polyester fiber of 280 dtex / 12 filaments was obtained in the same manner as in Example 1 except that the temperature of the fourth roller was 210 ° C. in Example 2 and 225 ° C. in Example 3. As shown in Table 1, this presser wound yarn could be used as an optical cable.
(比較例1、2)
比較例1は第3ローラーと第4ローラーの延伸比を1.10倍とし、比較例2は第4ローラーと第5ローラーの延伸比を0.925倍とする以外は実施例1と同様に延伸した。比較例1は破断伸度が本発明を下回っており、合撚時に毛羽発生が多く糸切れが多発した。また、比較例2は破断伸度が本発明範囲を上回っており、強度が低く押さえ巻糸としての形態安定性にかけるものであった。
(Comparative Examples 1 and 2)
Comparative Example 1 is the same as Example 1 except that the stretching ratio of the third roller and the fourth roller is 1.10 times, and Comparative Example 2 is that the stretching ratio of the fourth roller and the fifth roller is 0.925 times. Stretched. In Comparative Example 1, the elongation at break was lower than that of the present invention. In Comparative Example 2, the elongation at break exceeded the range of the present invention, and the strength was low and the shape stability as a presser wound yarn was applied.
(比較例3,4)
表1記載の極限粘度のポリエステルチップを比較例3は285℃、比較例4は310℃で溶融紡糸し、実施例1と同様の方法でSPD延伸糸を巻き取り延伸した。比較例3は極限粘度が低く、強度が低い為に押さえ巻糸の形態安定性に掛け、比較例4は固相重合チップであるために高価であり、使用した紡糸機も産業資材用途の特別な装置であり高価であった。また、強度が高過ぎて合撚時に毛羽発生が多く、押さえ巻糸も硬すぎて捲回するのが困難であった。
(Comparative Examples 3 and 4)
The polyester chips having the intrinsic viscosity shown in Table 1 were melt-spun at 285 ° C. in Comparative Example 3 and 310 ° C. in Comparative Example 4, and the SPD drawn yarn was wound and stretched in the same manner as in Example 1. Comparative Example 3 is low in intrinsic viscosity and low in strength, so it is subjected to the form stability of the presser wound yarn. Comparative Example 4 is expensive because it is a solid-phase polymerization chip, and the spinning machine used is special for industrial materials. Expensive and expensive. Moreover, since the strength was too high, there was a lot of fluffing at the time of twisting, and the presser wound yarn was too hard to wind.
(比較例5)
第4ローラーの温度を195℃とする以外は、実施例1と同様に紡糸延伸した。130℃の乾熱収縮率が本発明範囲を超えており、押さえ巻糸には不適であった。
(Comparative Example 5)
Spinning and stretching were performed in the same manner as in Example 1 except that the temperature of the fourth roller was 195 ° C. The dry heat shrinkage at 130 ° C. exceeded the range of the present invention and was unsuitable for presser winding yarns.
(比較例6)
表1記載の極限粘度のポリエステルチップを用いて、3200m/分にて未延伸糸(POY糸)を巻き取った。これを、実施例1と同様の延伸機にて第3ローラーと第4ローラーの延伸比を1.3倍として、第4ローラーの温度を150℃とし、第4ローラーと第5ローラーの延伸比を0.950として自己伸長糸を巻き取った。沸騰水収縮率も130℃乾熱収縮率もマイナスであり、つまり熱処理によって伸長するものであった。該繊維は、強度が低く形態安定性に欠けるものであった。
(Comparative Example 6)
An undrawn yarn (POY yarn) was wound at 3200 m / min using a polyester chip having an intrinsic viscosity shown in Table 1. With the same stretching machine as in Example 1, the stretching ratio of the third roller and the fourth roller is 1.3 times, the temperature of the fourth roller is 150 ° C., and the stretching ratio of the fourth roller and the fifth roller The self-stretched yarn was wound up at 0.950. Both the boiling water shrinkage and the 130 ° C. dry heat shrinkage were negative, that is, they were elongated by heat treatment. The fibers had low strength and lacked shape stability.
(比較例7)
第4ローラーの温度を185℃として、第4ローラーと第5ローラーの延伸比を0.945とする以外は、実施例1と同様に紡糸延伸した。収縮開始温度が本発明範囲外であり、押さえ巻糸の収縮力が低温で発現するので光ケーブルの製造時の熱処理によりコア部分を圧迫した。
(Comparative Example 7)
Spinning and stretching were performed in the same manner as in Example 1 except that the temperature of the fourth roller was 185 ° C. and the stretching ratio of the fourth roller and the fifth roller was 0.945. Since the shrinkage start temperature is outside the range of the present invention and the shrinkage force of the presser wound yarn is expressed at a low temperature, the core portion is pressed by heat treatment during the production of the optical cable.
Claims (1)
(1)極限粘度 0.55〜0.70
(2)破断伸度 28〜38%
(3)130℃での乾熱収縮率 0〜0.5%
(4)熱応力曲線における収縮開始温度 180℃以上 A low-shrinkage polyester fiber for an optical cable , which is a polyester fiber having ethylene terephthalate as a main repeating unit and satisfying the following (1) to (4).
(1) Intrinsic viscosity 0.55 to 0.70
(2) Elongation at break 28-38%
(3) Dry heat shrinkage at 130 ° C. 0 to 0.5%
(4) Shrinkage start temperature in thermal stress curve 180 ° C
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003319060A JP4093939B2 (en) | 2003-09-10 | 2003-09-10 | Low shrinkage polyester fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003319060A JP4093939B2 (en) | 2003-09-10 | 2003-09-10 | Low shrinkage polyester fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005082944A JP2005082944A (en) | 2005-03-31 |
JP4093939B2 true JP4093939B2 (en) | 2008-06-04 |
Family
ID=34418117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003319060A Expired - Lifetime JP4093939B2 (en) | 2003-09-10 | 2003-09-10 | Low shrinkage polyester fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4093939B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100427651C (en) * | 2006-07-28 | 2008-10-22 | 施建强 | Preparation technology of ultralow contraction terylene industry long filament |
-
2003
- 2003-09-10 JP JP2003319060A patent/JP4093939B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005082944A (en) | 2005-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3595846B2 (en) | Polyketone fiber and method for producing the same | |
CA2310686A1 (en) | Soft stretch yarns and their method of production | |
JPWO2007046475A1 (en) | Highly crimpable composite fiber cheese-like package and method for producing the same | |
JP6116459B2 (en) | Polyamide latent crimped yarn and method for producing the same | |
US4850186A (en) | Thread of carbon fiber | |
JP2001262437A (en) | Polyketone fiber and method for producing the same | |
JP4289895B2 (en) | Directly spun drawn yarn made of high-shrinkage polyester fiber and method for producing the same | |
JPS584089B2 (en) | Polyester Senino Seizouhouhou | |
JP4093939B2 (en) | Low shrinkage polyester fiber | |
WO2015151220A1 (en) | Polyamide latent crimped yarn and method for manufacturing same | |
JP4826011B2 (en) | Polyester fiber and method for producing the same | |
JP3130683B2 (en) | Method for producing polyester fiber with improved dimensional stability | |
JP2009299209A (en) | Sheath-core conjugate filament | |
KR100546216B1 (en) | Spontaneous high elastic polyester composite fiber | |
JP4024080B2 (en) | False twisted yarn for adhesive tape base fabric and production method thereof | |
JP2859508B2 (en) | High shrinkage polyester fiber | |
JPS59199831A (en) | Polyester sewing machine yarn and production thereof | |
JP2624402B2 (en) | Wire coating material | |
JPH06136615A (en) | Production of polyether ester elastomer yarn | |
JP3234327B2 (en) | High shrinkable conjugate fiber and its manufacturing method | |
JPH07118921A (en) | Polyester fiber of high shrinkage stress and production thereof | |
JPH0617315A (en) | Heat-shrinkable modified polyester filament | |
JP6691857B2 (en) | Polyamide latent crimped yarn and method for producing the same | |
JPH11200142A (en) | Polyester fiber for reinforcing resin hose | |
JP2007154343A (en) | Core-sheath conjugate type partially oriented fiber of polyester and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20051220 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051228 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20051220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070903 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071211 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080304 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080304 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110314 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110314 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130314 Year of fee payment: 5 |