Nothing Special   »   [go: up one dir, main page]

JP4084539B2 - Method for producing crystal growth substrate of group III nitride compound semiconductor - Google Patents

Method for producing crystal growth substrate of group III nitride compound semiconductor Download PDF

Info

Publication number
JP4084539B2
JP4084539B2 JP2001002723A JP2001002723A JP4084539B2 JP 4084539 B2 JP4084539 B2 JP 4084539B2 JP 2001002723 A JP2001002723 A JP 2001002723A JP 2001002723 A JP2001002723 A JP 2001002723A JP 4084539 B2 JP4084539 B2 JP 4084539B2
Authority
JP
Japan
Prior art keywords
substrate
layer
crystal growth
iii nitride
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001002723A
Other languages
Japanese (ja)
Other versions
JP2002211999A (en
Inventor
誠二 永井
一義 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Toyota Central R&D Labs Inc
Original Assignee
Toyoda Gosei Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd, Toyota Central R&D Labs Inc filed Critical Toyoda Gosei Co Ltd
Priority to JP2001002723A priority Critical patent/JP4084539B2/en
Publication of JP2002211999A publication Critical patent/JP2002211999A/en
Application granted granted Critical
Publication of JP4084539B2 publication Critical patent/JP4084539B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)

Description

【発明の属する技術分野】
本発明は、結晶成長基板の下地となる下地基板としてシリコン(Si)を用いた、III族窒化物系化合物半導体の結晶成長基板の製造方法に関する。
【0001】
【従来の技術】
図3に例示する様に、シリコン基板上に窒化ガリウム(GaN)を結晶成長させ、その後常温まで冷却すると、GaN成長層に転位やクラックが多数入ることが一般に知られている。
【0002】
【発明が解決しようとする課題】
この様に、成長層に転位やクラックが多数入ると、その上にデバイスを作製した場合に、デバイス中に格子欠陥や転位、変形、クラック等が多数生じる結果となり、デバイス特性の劣化を引き起こす原因となる。
また、シリコン(Si)基板を除去し、成長層のみを残して、独立した基板を得ようとする場合、上記の転位やクラック等の作用により、大面積(1cm2以上)のものが得られない。
【0003】
本発明は、上記の課題を解決するために成されたものであり、その目的は、転位やクラックの密度が低い高品質の結晶成長基板を得ることである。
【0004】
【課題を解決するための手段】
上記の課題を解決するためには、以下の手段が有効である。
即ち、第1の手段は、結晶成長基板の下地となる下地基板としてシリコン(Si)を用いた、III族窒化物系化合物半導体の結晶成長基板の製造工程において、下地基板の上にIII族窒化物系化合物半導体より成る基板層を下地基板の厚さ以上に成長させ、その後下地基板と基板層を50℃/min以下の冷却速度で冷却する際に、基板層の下地基板側の界面への応力により下地基板を基板層から剥離させることにより、残った基板層を結晶成長基板とすることである。
【0005】
また、第2の手段は、上記の第1の手段において、基板層を50μm以上成長させることである。
【0006】
また、第3の手段は、上記の第1又は第2の手段において、下地基板を50μm以上、300μm以下に形成することである。
【0007】
上の手段により、前記の課題を解決することができる。
【0008】
【作用及び発明の効果】
下地基板(Si基板)の上にIII族窒化物系化合物半導体より成る基板層を成長させる際、基板層(III族窒化物系化合物半導体)の結晶成長温度では、歪の少ない状態で結晶成長が進む。しかし、シリコンとGaN等のIII族窒化物系化合物半導体とでは熱膨張係数が大きく異なるため、結晶成長完了後に基板が略常温まで冷却される際には基板に大きな歪が生じ、例えば図3に例示した様に基板層に転位やクラックが発生する。
【0009】
しかしながら、本発明の手段によれば、下地基板(Si基板)に対して、従来よりも比較的厚く基板層(III族窒化物系化合物半導体)が形成されるため、下地基板(Si基板)に対して相対的に基板層が強固となり、基板層の転位やクラックの発生密度が減少する。
【0010】
この時、従来は比較的薄く形成されていた基板層(III族窒化物系化合物半導体)の略全体に略均等に働いていた引っ張り応力は、厚く強固に形成された基板層の下地基板側の界面に集中し易くなり、また、厚く強固に形成された基板層には転位やクラックが発生し難くなっているため、これらの作用により、下地基板と基板層を略常温まで冷却すると、圧縮応力を受ける下地基板は、引っ張り応力を受ける基板層の界面から剥離する。
【0011】
また、これらの作用は熱膨張係数差に基づくものであるので、より一般には、下地基板を基板層との界面より剥離させる応力は、加熱等による温度変化によっても得ることができる。
【0012】
結晶成長させる基板層(III族窒化物系化合物半導体)の厚さは、50μm以上が望ましい。この厚さが厚い程、基板層に対する引っ張り応力が緩和されて、基板層の転位やクラックの発生密度を減少でき、同時に基板層を強固にできるため、上記の応力を基板層と下地基板との界面に集中させ易くなる。
【0013】
また、下地基板(Si基板)の厚さは、300μm以下が望ましい。この厚さが薄い程、基板層に対する引っ張り応力が緩和されて、基板層の転位やクラックの発生密度が減少する。ただし、下地基板(Si基板)の厚さを50μm未満とすると、下地基板自身の絶対的な強度に問題が生じ、高い生産性を維持することが難しくなる。したがって、製造する結晶成長基板の品質と生産性を確保するためには、下地基板(Si基板)の厚さは、50μm以上300μm以下が望ましい。
【0014】
また、相対的には、結晶成長させる基板層(III族窒化物系化合物半導体)の厚さは、下地基板(Si基板)の厚さと同等とするか、或いはそれ以上とすることが望ましい。この様な設定により、基板層に対する引っ張り応力が緩和され易くなり、基板層の転位やクラックの発生を従来よりも大幅に抑制することが可能となる。この効果は、相対的に基板層を厚くする程大きくなる。
【0015】
尚、結晶成長させる基板層(III族窒化物系化合物半導体)と下地基板(Si基板)との間には、或いは、結晶成長後の基板層の上には、例えば、炭化シリコン(SiC)や、任意の混晶比のIII族窒化物系化合物半導体より成るバッファ層等を形成しても良い。これらの基板層やバッファ層は、GaNやAlN、SiCの他、GaNやAlN、SiCに対してその組成比に殆ど影響しない程度のインジウム(In)を添加したものや、或いは、InN,AlxGa1-xN(0<x<1),InxGa1-xN(0<x<1),AlxIn1 -xN(0<x<1),AlxGayIn1-x-yN(0<x<1,0<y<1,0<x+y<1)等から形成しても良く、その他、一般式がAlxGayIn1-x-yN(0≦x≦1,0≦y≦1,0≦x+y≦1)成る2元、3元、若しくは4元のIII族窒化物系半導体において、III族元素のうちの一部をボロン(B)やタリウム(Tl)等で置換したり、或いは、窒素の一部をリン(P)、砒素(As)、アンチモン(Sb)、ビスマス(Bi)等で置換したりした半導体等から形成しても良い。
【0016】
また、これらの基板層やバッファ層をはじめとする、積層される任意のIII族窒化物系化合物半導体層には、Si等のn型ドーパント、或いは、カルシウム(Ca)やMg等のp型ドーパントを添加しても良い。これらの添加物(ドーパント)は、一つの層に対して、n型、p型の両方を好適な比率で添加しても良い。また、これらの各半導体層は、2種以上の半導体の接合から成る超格子構造としても良い。
【0017】
また、バッファ層は、下地基板上に成長させるIII族窒化物系化合物半導体、例えば、GaNから成る基板層中に多重に繰り返して形成しても良い。この層を中間層といい、多重に繰り返して形成された複数の中間層を多重中間層という。これらの中間層には、バッファ層と同じ組成を用いることができる。即ち、例えば、AlN、GaN、その他、上記の2元、3元、4元のAlGaInN等を用いることができる。
【0018】
尚、これらのバッファ層は、900℃〜1200℃で形成するものの他、300℃〜900℃の低温で形成しても良い。この温度範囲は、1000℃〜1150℃が望ましく、更に望ましくは、1050℃〜1100℃である。
【0019】
或いは、バッファ層は、MOCVD法の他、HVPE法やMBE法等が使用できる。又、スパッタリングを使用することも可能である。
また、DCマグネトロンスパッタ装置を用いて、高純度金属アルミニウムと窒素ガスを原材料として、リアクティブスパッタ法によりAlNから成るバッファ層を形成することもできる。
【0020】
その他、金属アルミニウム、金属ガリウム、金属インジウム、窒素ガス又はアンモニアガスを用いて、一般式AlxGayIn1-x-yN(0≦x≦1,0≦y≦1,0≦x+y≦1、組成比は任意)のバッファ層を形成することができる。スパッタリングの他、蒸着法、イオンプレーティング法、レーザアブレーション法、ECR法を用いることができる。これらの物理蒸着法によるバッファ層は、200〜600℃で行うのが望ましい。さらに望ましくは300〜500℃であり、さらに望ましくは400〜500℃である。
【0021】
これらのスパッタリング法等の物理蒸着法を用いた場合には、バッファ層の厚さは、100〜3000Åが望ましい。更に望ましくは、100〜2000Åが望ましく、最も望ましくは、100〜300Åである。
【0022】
また、Si基板の下地基板の上に成長させる任意の半導体層の結晶成長には、横方向成長(ELO)法等を用いることが可能である。これらの横方向成長(ELO)法としては、エッチング等により基板やバッファ層等を部分的に露出させ、エッチングされたバッファ層等の層の上に半導体結晶を横方向成長させる、保護膜を用いない方法と、基板やバッファ層等の上に保護膜層を形成し、露出している基板やバッファ層等の上に半導体結晶を横方向成長させる、保護膜を用いる方法とがある。
【0023】
また、ELOに使用する保護膜としては、III族窒化物系化合物半導体が成長し難い材料が有用である。具体的には、例えば、酸化硅素(SiOX)、窒化硅素(SiXY)、酸化チタン(TiOX)、酸化ジルコニウム(ZrOX)等の酸化物、窒化物、これらの多層膜、或いは、1200℃以上の融点を有する金属等である。
【0024】
即ち、ELOに使用する保護膜としては、600〜1100℃におけるIII族窒化物の成長温度にも耐えることができ、且つ、その上にはIII族窒化物系化合物半導体が成長しないか成長し難いものであることが必要である。また、成膜は、蒸着、CVD等の気相成長法、或いは、スパッタリング等により成膜することができる。
ELOに関するこれらの手段により、更にクラックの発生数を低減できる。
【0025】
【発明の実施の形態】
以下、本発明を具体的な実施例に基づいて説明する。ただし、本発明は以下に示す実施例に限定されるものではない。
図1は、シリコン(Si)より形成された直径約10cmの略円形の下地基板101の上に、有機金属化合物気相成長法(MOVPE)により、窒化ガリウム(GaN)より成る基板層(窒化物半導体層)102を結晶成長させて得られたサンプル(基板100)の模式的な断面図であり、本実施例における結晶成長基板の製造過程(1工程)を例示している。
【0026】
本気相成長では、アンモニア(NH3)ガス、キャリアガス(H2,N2)、トリメチルガリウム(Ga(CH3)3)ガス(以下「TMG」と記す)、及びトリメチルアルミニウム(Al(CH3)3)ガス(以下「TMA」と記す)を用いた。以下、その製造手順の概要を示す。
まず、シリコン(Si)より成る単結晶の下地基板101を有機洗浄及び熱処理により洗浄し、MOVPE装置の反応室に載置されたサセプタに装着した。ただし、装着した下地基板101の厚さは、約50μm、約100μm、約200μm、約500μmの4種類とした。
次に、常圧でH2を反応室に流しながら温度1100℃で下地基板101をベーキングした。
【0027】
その後、H2,NH3,TMG,TMAを供給して、AlGaN層を形成し、下地基板101の温度を1100℃に保持し、H2、NH3及びTMGを供給して、窒化ガリウム(GaN)より成る基板層102を結晶成長させ、その後、下地基板101と基板層102を50℃/min以下の冷却速度で冷却する。
【0028】
以上の手順により得られたGaN成長層のクラック密度を測定した。図2は、本実施例におけるこの結晶成長基板のクラック密度と、下地基板(Si基板)の厚さとの関係を例示するグラフである。
【0029】
例えば、本図2には基板層(GaN成長層)の膜厚を略7μmに決めたサンプルに関する測定結果(◆印)を例示しているが、本図からも判る様に、Si基板の厚さを薄くする程、その減少に伴ってクラック密度は著しく減少する。また、本図より、膜厚200μmの基板層(▲印)ではクラック密度が1cm-1以下となり、よって1cm2以上のGaN基板がえられることが判る。
【0030】
また、例えば、本図2には、基板層(GaN成長層)の膜厚を7μm,50μm、及び200μmに設定し、約200μmの下地基板(Si基板)を使用した際の各サンプルのクラック密度の測定結果を例示しているが、本図からも判る様に、同じSi基板の厚さに対して、基板層(GaN成長層)の厚さを厚くする程、その増加に伴ってクラック密度は著しく減少することが判る。
【0031】
即ち、基板層の厚さを50μm以上にした場合には、有用な大面積のGaN基板を得ることが可能である。
また、逆に、基板層の厚さを例えば7μm程度に留めた実験では、基板層は一部が剥離するが、小面積のものしか得られなかった。
更に、従来の様に、基板層の厚さを2〜3μm程度に留めた場合には、基板層は下地基板から殆ど剥離しなかった。
【0032】
尚、上記の実施例では、有機金属化合物気相成長法(MOVPE)により、下地基板(Si基板)に窒化ガリウム(GaN)より成る基板層(窒化物半導体層)102を結晶成長させて得られたサンプル(基板100)について、その測定結果を例示したが、例えば液相成長法(LPE)や、ハライド気相成長法(HVPE)等の結晶成長法も、厚い基板層を形成する上で有効である。
例えばこれらに代表されるその他の結晶成長法によって得られる基板についても、上記の実施例と略同様に、本発明の手段による本発明の作用・効果を得ることができる。
【図面の簡単な説明】
【図1】 本発明の結晶成長基板の製造過程を例示する基板の模式的な断面図。
【図2】 基板層(GaN成長層)のクラック密度と、下地基板(Si基板)の厚さとの関係を例示するグラフ。
【図3】 従来の結晶成長基板の製造過程を例示する基板の模式的な断面図。
【符号の説明】
100 … 基板
101 … 下地基板(Si基板)
102 … 基板層(窒化物半導体層)
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a group III nitride compound semiconductor crystal growth substrate using silicon (Si 2 ) as a base substrate serving as a base for the crystal growth substrate.
[0001]
[Prior art]
As exemplified in FIG. 3, it is generally known that when gallium nitride (GaN) is crystal-grown on a silicon substrate and then cooled to room temperature, many dislocations and cracks are formed in the GaN growth layer.
[0002]
[Problems to be solved by the invention]
In this way, when a large number of dislocations and cracks enter the growth layer, when a device is fabricated on the growth layer, a large number of lattice defects, dislocations, deformations, cracks, etc. occur in the device, causing deterioration of device characteristics. It becomes.
Also, when the silicon (Si) substrate is removed and only the growth layer is left to obtain an independent substrate, a large area (1 cm 2 or more) is obtained due to the above-described dislocations and cracks. Absent.
[0003]
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to obtain a high-quality crystal growth substrate having a low density of dislocations and cracks.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the following means are effective.
That is, the first means is a group III nitride on the base substrate in the manufacturing process of the group III nitride compound semiconductor crystal growth substrate using silicon (Si 2 ) as the base substrate serving as the base of the crystal growth substrate. When a substrate layer made of a physical compound semiconductor is grown to a thickness equal to or greater than the thickness of the base substrate, and then the base substrate and the substrate layer are cooled at a cooling rate of 50 ° C./min or less , The base substrate is peeled off from the substrate layer by stress , and the remaining substrate layer is used as a crystal growth substrate.
[0005]
The second means is to grow the substrate layer by 50 μm or more in the first means.
[0006]
The third means is to form the base substrate in a thickness of 50 μm or more and 300 μm or less in the first or second means.
[0007]
By means of the following, it is possible to solve the above problems.
[0008]
[Operation and effect of the invention]
When growing a substrate layer made of a Group III nitride compound semiconductor on the base substrate (Si board), the crystal growth temperature of the substrate layer (III nitride compound semiconductor), crystal growth with less distortion Advances. However, since the thermal expansion coefficient differs greatly between silicon and a group III nitride compound semiconductor such as GaN, large distortion occurs in the substrate when the substrate is cooled to substantially room temperature after the completion of crystal growth. As illustrated, dislocations and cracks occur in the substrate layer.
[0009]
However, according to the means of the present invention, with respect to the base substrate (Si board), because a relatively thick substrate layer (III nitride compound semiconductor) is formed than prior art, the base substrate (Si board ) , The substrate layer becomes relatively strong, and the generation density of dislocations and cracks in the substrate layer decreases.
[0010]
At this time, the tensile stress that has been applied almost uniformly to the entire substrate layer (group III nitride compound semiconductor) that has been formed relatively thin in the prior art is on the base substrate side of the substrate layer that is formed thick and strong. Since it is easy to concentrate on the interface, and dislocations and cracks are less likely to occur in the thick and strong substrate layer, the compressive stress is reduced when the base substrate and the substrate layer are cooled to approximately room temperature due to these actions. The base substrate that receives the detachment peels from the interface of the substrate layer that receives the tensile stress.
[0011]
In addition, since these actions are based on the difference in thermal expansion coefficient, more generally, the stress that causes the base substrate to peel from the interface with the substrate layer can be obtained by a temperature change caused by heating or the like.
[0012]
The thickness of the substrate layer (Group III nitride compound semiconductor) for crystal growth is desirably 50 μm or more. The thicker the thickness, the more the tensile stress on the substrate layer is relaxed and the generation density of dislocations and cracks in the substrate layer can be reduced. At the same time, the substrate layer can be strengthened. It becomes easy to concentrate on the interface.
[0013]
The thickness of the base substrate (Si board), the following is preferable 300 [mu] m. The thinner the thickness is, the more the tensile stress on the substrate layer is relaxed and the dislocation density and crack generation density of the substrate layer are reduced. However, when the thickness of the base substrate (Si board) and less than 50 [mu] m, there is a problem in absolute strength of the underlying substrate itself, it is difficult to maintain high productivity. Therefore, in order to ensure the quality and productivity of the crystal growth substrate to produce the thickness of the base substrate (Si board), the following is desirable 300μm least 50 [mu] m.
[0014]
Moreover, relatively, the thickness of the substrate layer where crystal growth (III nitride compound semiconductor), either equal to the thickness of the base substrate (Si board), or it is desirable to more. With such a setting, the tensile stress on the substrate layer is easily relaxed, and the occurrence of dislocations and cracks in the substrate layer can be significantly suppressed as compared with the conventional case. This effect becomes greater as the substrate layer is relatively thickened.
[0015]
The substrate layer is grown between the (III nitride compound semiconductor) and a base substrate (Si board), or on the substrate layer after crystal growth, for example, silicon carbide (SiC) Alternatively, a buffer layer made of a group III nitride compound semiconductor having an arbitrary mixed crystal ratio may be formed. In addition to GaN, AlN, and SiC, these substrate layers and buffer layers are made by adding indium (In) to GaN, AlN, and SiC so as not to affect the composition ratio, or InN, Al x. Ga 1-x N (0 <x <1), In x Ga 1-x N (0 <x <1), Al x In 1 -x N (0 <x <1), Al x Ga y In 1- xy N (0 <x <1,0 <y <1,0 <x + y <1) may be formed from such other general formula Al x Ga y in 1-xy N (0 ≦ x ≦ 1, In binary, ternary or quaternary group III nitride semiconductors of 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1), some of the group III elements are boron (B), thallium (Tl), etc. Or a semiconductor in which part of nitrogen is replaced by phosphorus (P), arsenic (As), antimony (Sb), bismuth (Bi), or the like You may form from.
[0016]
In addition, any group III nitride compound semiconductor layer to be laminated including these substrate layer and buffer layer has an n-type dopant such as Si or a p-type dopant such as calcium (Ca) or Mg. May be added. These additives (dopants) may be added at a suitable ratio of both n-type and p-type to one layer. In addition, each of these semiconductor layers may have a superlattice structure including a junction of two or more kinds of semiconductors.
[0017]
Further, the buffer layer may be repeatedly formed in a multiple layer in a substrate layer made of a group III nitride compound semiconductor, for example, GaN, grown on the base substrate. This layer is called an intermediate layer, and a plurality of intermediate layers formed repeatedly in multiple layers are called multiple intermediate layers. These intermediate layers can have the same composition as the buffer layer. That is, for example, AlN, GaN, and other binary, ternary, and quaternary AlGaInN can be used.
[0018]
In addition, you may form these buffer layers at low temperature of 300 to 900 degreeC other than what is formed at 900 to 1200 degreeC. This temperature range is desirably 1000 ° C. to 1150 ° C., and more desirably 1050 ° C. to 1100 ° C.
[0019]
Alternatively, the buffer layer can use the HVPE method, the MBE method, or the like in addition to the MOCVD method. Sputtering can also be used.
In addition, a buffer layer made of AlN can be formed by reactive sputtering using a DC magnetron sputtering apparatus using high-purity metallic aluminum and nitrogen gas as raw materials.
[0020]
Other, metallic aluminum, metallic gallium, using metal indium, nitrogen gas or ammonia gas, the general formula Al x Ga y In 1-xy N (0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ x + y ≦ 1, A buffer layer having an arbitrary composition ratio can be formed. In addition to sputtering, vapor deposition, ion plating, laser ablation, and ECR can be used. The buffer layer formed by these physical vapor deposition methods is preferably performed at 200 to 600 ° C. More preferably, it is 300-500 degreeC, More preferably, it is 400-500 degreeC.
[0021]
When physical vapor deposition methods such as these sputtering methods are used, the thickness of the buffer layer is preferably 100 to 3000 mm. More preferably, it is 100 to 2000 mm, and most preferably 100 to 300 mm.
[0022]
Further, a lateral growth (ELO) method or the like can be used for crystal growth of an arbitrary semiconductor layer grown on the base substrate of the Si substrate. As these lateral growth (ELO) methods, a protective film is used in which a substrate or a buffer layer is partially exposed by etching or the like, and a semiconductor crystal is laterally grown on the etched layer such as the buffer layer. And a method using a protective film in which a protective film layer is formed on a substrate, a buffer layer or the like, and a semiconductor crystal is laterally grown on the exposed substrate or buffer layer or the like.
[0023]
For the protective film used for ELO, a material in which a group III nitride compound semiconductor is difficult to grow is useful. Specifically, for example, oxides such as silicon oxide (SiO x ), silicon nitride (Si x N y ), titanium oxide (TiO x ), zirconium oxide (ZrO x ), nitrides, multilayer films of these, or A metal having a melting point of 1200 ° C. or higher.
[0024]
That is, the protective film used for ELO can withstand the growth temperature of group III nitride at 600 to 1100 ° C., and the group III nitride compound semiconductor does not grow or is difficult to grow thereon. It must be a thing. The film formation can be performed by vapor deposition such as vapor deposition, CVD, or sputtering.
By these means relating to ELO, the number of occurrences of cracks can be further reduced.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on specific examples. However, the present invention is not limited to the following examples.
FIG. 1 shows a substrate layer (nitride) made of gallium nitride (GaN) on a substantially circular base substrate 101 made of silicon (Si) by a metal organic chemical vapor deposition (MOVPE). FIG. 2 is a schematic cross-sectional view of a sample (substrate 100) obtained by crystal growth of a semiconductor layer 102, and illustrates a manufacturing process (one step) of a crystal growth substrate in the present embodiment.
[0026]
In this vapor phase growth, ammonia (NH 3 ) gas, carrier gas (H 2 , N 2 ), trimethylgallium (Ga (CH 3 ) 3 ) gas (hereinafter referred to as “TMG”), and trimethylaluminum (Al (CH 3 3 ) Gas (hereinafter referred to as “TMA”) was used. The outline of the manufacturing procedure is shown below.
First, the single crystal base substrate 101 made of silicon (Si) was cleaned by organic cleaning and heat treatment, and mounted on a susceptor mounted in a reaction chamber of a MOVPE apparatus. However, the mounted base substrate 101 has four types of thicknesses of about 50 μm, about 100 μm, about 200 μm, and about 500 μm.
Next, the base substrate 101 was baked at a temperature of 1100 ° C. while flowing H 2 into the reaction chamber at normal pressure.
[0027]
Thereafter, H 2 , NH 3 , TMG, and TMA are supplied to form an AlGaN layer, the temperature of the base substrate 101 is maintained at 1100 ° C., and H 2 , NH 3, and TMG are supplied to supply gallium nitride (GaN ) Is grown, and then the base substrate 101 and the substrate layer 102 are cooled at a cooling rate of 50 ° C./min or less.
[0028]
The crack density of the GaN growth layer obtained by the above procedure was measured. FIG. 2 is a graph illustrating the relationship between the crack density of this crystal growth substrate and the thickness of the underlying substrate (Si substrate) in this example.
[0029]
For example, FIG. 2 exemplifies the measurement result (marked with ◆) for a sample in which the film thickness of the substrate layer (GaN growth layer) is set to approximately 7 μm, but as can be seen from this figure, the thickness of the Si substrate As the thickness is reduced, the crack density is remarkably reduced with the reduction. Further, from this figure, it can be seen that the crack density is 1 cm −1 or less in the substrate layer (層) having a film thickness of 200 μm, and thus a GaN substrate having 1 cm 2 or more can be obtained.
[0030]
Further, for example, in FIG. 2, the crack density of each sample when the substrate layer (GaN growth layer) is set to 7 μm, 50 μm, and 200 μm and a base substrate (Si substrate) of about 200 μm is used. As can be seen from this figure, the crack density increases as the thickness of the substrate layer (GaN growth layer) increases with respect to the same Si substrate thickness. Can be seen to decrease significantly.
[0031]
That is, when the thickness of the substrate layer is 50 μm or more, a useful large-area GaN substrate can be obtained.
On the contrary, in the experiment in which the thickness of the substrate layer was kept at about 7 μm, for example, the substrate layer partially peeled off, but only a small area was obtained.
Further, when the thickness of the substrate layer is kept at about 2 to 3 μm as in the prior art, the substrate layer hardly peeled from the base substrate.
[0032]
In the above embodiment, the substrate layer (nitride semiconductor layer) 102 made of gallium nitride (GaN) is crystal-grown on the base substrate (Si substrate) by metal organic compound vapor phase epitaxy (MOVPE). The measurement results of the sample (substrate 100) are illustrated, but crystal growth methods such as liquid phase growth (LPE) and halide vapor phase growth (HVPE) are also effective in forming a thick substrate layer. It is.
For example, with respect to substrates obtained by other crystal growth methods represented by these, the effects and advantages of the present invention can be obtained by means of the present invention, in substantially the same manner as in the above embodiments.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a substrate illustrating a manufacturing process of a crystal growth substrate of the present invention.
FIG. 2 is a graph illustrating the relationship between the crack density of a substrate layer (GaN growth layer) and the thickness of a base substrate (Si substrate).
FIG. 3 is a schematic cross-sectional view of a substrate illustrating a manufacturing process of a conventional crystal growth substrate.
[Explanation of symbols]
100 ... Substrate 101 ... Underlying substrate (Si substrate)
102 ... Substrate layer (nitride semiconductor layer)

Claims (3)

結晶成長基板の下地となる下地基板としてシリコン(Si)を用いた、III族窒化物系化合物半導体の結晶成長基板の製造方法であって、
前記下地基板の上にIII族窒化物系化合物半導体より成る基板層を前記下地基板の厚さ以上に成長させ、
その後前記下地基板と前記基板層を50℃/min以下の冷却速度で冷却する際に、前記基板層の前記下地基板側の界面への応力により前記下地基板を前記基板層から剥離させることにより、残った前記基板層を前記結晶成長基板とする
ことを特徴とするIII族窒化物系化合物半導体の結晶成長基板の製造方法。
A method of manufacturing a crystal growth substrate of a group III nitride compound semiconductor using silicon (Si ) as a base substrate to be a base of a crystal growth substrate,
Growing a substrate layer made of a group III nitride compound semiconductor on the base substrate to a thickness greater than that of the base substrate ,
Thereafter, when the base substrate and the substrate layer are cooled at a cooling rate of 50 ° C./min or less, by peeling the base substrate from the substrate layer due to stress on the base substrate side interface of the substrate layer, A method for producing a crystal growth substrate of a group III nitride compound semiconductor, wherein the remaining substrate layer is used as the crystal growth substrate.
前記基板層を50μm以上成長させることを特徴とする請求項1に記載のIII族窒化物系化合物半導体の結晶成長基板の製造方法。  2. The method for producing a group III nitride compound semiconductor crystal growth substrate according to claim 1, wherein the substrate layer is grown by 50 [mu] m or more. 前記下地基板を50μm以上、300μm以下に形成することを特徴とする請求項1又は請求項2に記載のIII族窒化物系化合物半導体の結晶成長基板の製造方法。  3. The method for producing a group III nitride compound semiconductor crystal growth substrate according to claim 1, wherein the base substrate is formed to have a thickness of 50 μm or more and 300 μm or less.
JP2001002723A 2001-01-10 2001-01-10 Method for producing crystal growth substrate of group III nitride compound semiconductor Expired - Fee Related JP4084539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001002723A JP4084539B2 (en) 2001-01-10 2001-01-10 Method for producing crystal growth substrate of group III nitride compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001002723A JP4084539B2 (en) 2001-01-10 2001-01-10 Method for producing crystal growth substrate of group III nitride compound semiconductor

Publications (2)

Publication Number Publication Date
JP2002211999A JP2002211999A (en) 2002-07-31
JP4084539B2 true JP4084539B2 (en) 2008-04-30

Family

ID=18871181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001002723A Expired - Fee Related JP4084539B2 (en) 2001-01-10 2001-01-10 Method for producing crystal growth substrate of group III nitride compound semiconductor

Country Status (1)

Country Link
JP (1) JP4084539B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073195A (en) * 2001-08-30 2003-03-12 Shin Etsu Handotai Co Ltd Method for producing gallium nitride crystal and gallium nitride crystal
KR100969812B1 (en) * 2007-12-12 2010-07-13 주식회사 실트론 Manufacturing Method of Gallium Nitride Single Crystalline Substrate Using Self-Split
JP5416754B2 (en) * 2011-11-15 2014-02-12 フューチャー ライト リミテッド ライアビリティ カンパニー Semiconductor substrate and manufacturing method thereof

Also Published As

Publication number Publication date
JP2002211999A (en) 2002-07-31

Similar Documents

Publication Publication Date Title
US8541292B2 (en) Group III nitride semiconductor epitaxial substrate and method for manufacturing the same
JP3875821B2 (en) GaN film manufacturing method
US7981713B2 (en) Group III-V nitride-based semiconductor substrate, group III-V nitride-based device and method of fabricating the same
JP4335187B2 (en) Nitride semiconductor device manufacturing method
JP4529846B2 (en) III-V nitride semiconductor substrate and method for manufacturing the same
JP5378829B2 (en) Method for forming epitaxial wafer and method for manufacturing semiconductor device
WO2010110489A1 (en) Substrate for growing group-iii nitride semiconductors, epitaxial substrate for group-iii nitride semiconductors, group-iii nitride semiconductor element, stand-alone substrate for group-iii nitride semiconductors, and methods for manufacturing the preceding
US20070215901A1 (en) Group III-V nitride-based semiconductor substrate and method of fabricating the same
CN210120127U (en) Composite silicon substrate
KR101672213B1 (en) Method for manufacturing semiconductor device
JP4749583B2 (en) Manufacturing method of semiconductor substrate
JP2005306680A (en) Semiconductor substrate, stand-alone substrate, and method for manufacturing these, as well as method for polishing substrate
JP2002299253A5 (en)
JP2004107114A (en) Method of manufacturing group iii nitride compound semiconductor substrate
JP3758537B2 (en) Method for producing group III nitride compound semiconductor
JP4084539B2 (en) Method for producing crystal growth substrate of group III nitride compound semiconductor
JP2005064336A (en) Method for manufacturing group iii nitride compound semiconductor substrate
JP2005183524A (en) Epitaxial substrate and its manufacturing method, and method of reducing dislocation
JP4728460B2 (en) Method for producing gallium nitride compound semiconductor single crystal
JP2011100783A (en) Vapor growth device
JP2010251743A (en) Substrate for growing group-iii nitride semiconductor, group-iii nitride semiconductor device, free-standing substrate for group-iii nitride semiconductor, and method for manufacturing the same
US8026517B2 (en) Semiconductor structures
EP1138062B1 (en) Epitaxial aluminum-gallium-nitride semiconductor substrate and method of manufacture therefor
JP4545389B2 (en) Dislocation reduction method for epitaxial substrate and group III nitride layer group
JP2004273964A (en) Growing method of semiconductor single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4084539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees