Nothing Special   »   [go: up one dir, main page]

JP4081639B2 - Thermal mass flow meter for liquids - Google Patents

Thermal mass flow meter for liquids Download PDF

Info

Publication number
JP4081639B2
JP4081639B2 JP2001138324A JP2001138324A JP4081639B2 JP 4081639 B2 JP4081639 B2 JP 4081639B2 JP 2001138324 A JP2001138324 A JP 2001138324A JP 2001138324 A JP2001138324 A JP 2001138324A JP 4081639 B2 JP4081639 B2 JP 4081639B2
Authority
JP
Japan
Prior art keywords
liquid
measured
temperature
pipe
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001138324A
Other languages
Japanese (ja)
Other versions
JP2002333357A (en
Inventor
智美 阿久津
仁章 田中
修司 占部
浩明 本橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2001138324A priority Critical patent/JP4081639B2/en
Publication of JP2002333357A publication Critical patent/JP2002333357A/en
Application granted granted Critical
Publication of JP4081639B2 publication Critical patent/JP4081639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Details Of Flowmeters (AREA)
  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液体用熱式質量流量計に関するものであり、詳しくは、被測定液体を通過させる配管を合成樹脂部材で形成し、腐食等に耐えることができる構造にして幅広い液体の測定に適応できる液体用熱式質量流量計に関する。
【0002】
【従来の技術】
従来技術における代表的な液体用熱式質量流量計には、気体用と同じく配管の外側に設けた測定用のセンサーチューブにヒータと複数個の測温センサを取り付け、ヒータ近傍の液体の温度分布の変化を検出して流量を測定するものが周知である。
【0003】
ここで、加熱又は冷却を行う素子を伝熱素子とよぶ。又、測温センサのうちで、液体が気化しない加熱温度を保つために初期の液温をモニタする測温センサを特に液温センサとよぶ。
【0004】
具体的な構成は、図2に示すように、細管(毛細管)であるセンサーチューブ1の上流側に設置した第1の測温センサ2と、センサーチューブ1内の被測定液体を加熱するヒータ3と、センサーチューブ1の下流側に設置した第2の測温センサ4とから構成され、第1及び第2測温センサ2、4からの温度により、被測定流体の流量を測定する演算部とから構成されている。
【0005】
図示しない演算部は、ヒータ3を挟んだ第1及び第2の測温センサ2、4で測定した温度の差(ΔT=T2−T1)に基づいて被測定液体の流量を算出する。
【0006】
ここで、ヒータ3の温度が高すぎると気化する場合があるため、加熱する素子ではなくペルチェ素子等で冷却しているものもあるが、これらの原理も同様である。
【0007】
この方式以外に、ヒータ3の上流側、若しくは下流側のみの温度変化を検出する手法、流速に応じて異なるヒータで消費される熱量を検出する手法がある。
【0008】
【発明が解決しようとする課題】
しかしながら、上述した従来技術における液体用熱式質量流量計の場合、伝熱素子と測温センサは、液体へ伝わる熱量が信号であるため、配管へ伝わる熱量の信号は誤差となってしまうため液体に伝導する熱量を正確に測定することができないという問題がある。
【0009】
又、金属の細管であるセンサーチューブを用いて熱伝導率を高くすることができると共に、被測定流体を流すセンサーチューブ自体の熱容量を極めて小さくすることができるため、センサーチューブに伝わる熱量が小さくなり伝熱の誤差を軽減することが可能である。反面、使用している金属を腐食するような薬液や、金属イオンの溶出を嫌う液体の流量測定には利用できないという問題もある。
【0010】
従って、金属を腐食するような薬液等にも広く使用できるような液体用熱式質量流量計の構造に解決しなければならない課題を有する。
【0011】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る液体用熱式質量流量計は、次に示す構成にすることである。
【0012】
(1)合成樹脂部材で形成された配管内を流れる被測定液体の温度を計測する温度計測手段と、該温度計測手段により計測された温度のうち初期温度を基準にして一定温度になるように被測定液体に熱を伝導する伝熱手段と、該伝熱手段の近傍位置に配置され、伝熱手段により伝導された熱のうち配管に伝導する熱を測定する配管測温手段と、前記伝熱手段により被測定液体に伝導された熱量を、前記配管測温手段で測定された配管への熱量により補正し、前記被測定液体に伝導する熱量から被測定液体の流量を計測する流量計測手段と、を有することを特徴とする液体用熱式質量流量計。
(2)前記温度測定手段の液温センサ及び前記伝熱手段の伝熱素子は被測定液体に接液状態で配置し、前記配管測温手段の配管温度測温センサは前記伝熱素子の近傍位置であって被測定液体に非接液状態で配置したことを特徴とする(1)記載の液体用熱式質量流量計。
【0013】
【発明の実施の形態】
次に、本発明に係る液体用熱式質量流量計の実施形態について、図面を参照して説明する。
【0014】
液体用熱式質量流量計は、伝熱素子を用い、その消費熱量から流量を測定するものであり、従来型と異なり、金属の細管であるセンサーチューブを使用するものではなく、ライン上の他の配管と同様の径を持つ合成樹脂部材の測定配管を用いる。
【0015】
その構成は、図1に示すように、図示しない配管の間に設置され合成樹脂部材で形成されている測定配管5と、測定配管5の上流側であって流入する被測定液体に接液状態で設置され、被測定液体の温度を検出する液温センサ6と、測定配管5の下流側であって被測定液体に接液状態で設置され、被測定液体に熱を伝導する伝熱素子7と、前記液温センサ6で測定した被測定液体の初期温度(液温)を基準にして数℃上昇した一定温度になるように被測定液体に熱を伝導するように伝熱素子7をコントロールする第1の演算部9と、この伝熱素子7近傍であって非接液状態で設置され測定配管5の温度を測定する配管温度測温センサ8と、配管温度測温センサ8により測定された測定配管5の温度から伝熱素子7により測定配管5に加えられた熱量を算出し、この熱量を補正に使用して伝熱素子7で消費される熱量を算出して被測定液体の流量を算出する第2の演算部10とから構成されている。
ここで、液温センサ6と第1の演算部9とで温度計測手段を、伝熱素子7と第1の演算部9とで伝熱手段を、伝熱素子7と配管温度測温センサ8と第2の演算部10とで流量計測手段を構成する。
【0016】
このような構成において、信号として検出される伝熱素子7の消費熱量は被測定液体へ伝達する熱量と、測定配管5へ伝導する熱量とがある。従来の如く金属の細管(毛細管)からなるセンサーチューブを用いた場合と異なり、配管と同径の合成樹脂部材を用いた場合、熱伝導率が小さく、又、耐圧のため測定配管5の肉厚が厚いため熱容量が大きくなるため、測定配管5に伝達される熱量は無視できない。
【0017】
そこで、上記の伝熱素子7の近傍に配設した配管温度測温センサ8で測定した温度を用いて測定配管5に伝導した熱量を算出し、この測定配管5に伝導した熱量により補正して被測定液体に伝導された熱量を算出すれば、正確に被測定液体に伝導される熱量が測定でき、高精度な流量を測定することができるのである。
【0018】
理論的に、測定配管5へ伝導する熱量は、伝熱素子7の温度と測定配管5の温度との差に比例するため、配管温度測温センサ8から求まる温度で補正することによって、測定配管5への熱量の影響を除去できる。
【0019】
その結果、信号は被測定液体へ伝達する熱量となり、液温と伝熱素子7との温度差を一定にコントロールしている場合、信号は被測定液体の流速にのみ依存することとなる。層流の場合には、信号は流速の平方根に比例する。
【0020】
尚、上記の実施例においては定温度制御としたが、定電流でも同等の測定が行える。又、伝熱素子として加熱ではなく冷却するものを用いてもよい。
【0021】
このように、伝熱素子7近傍の測定配管5の温度を測定することで、測定配管5への熱伝導の影響を除くことができ、合成樹脂部材の測定配管5を用いても高精度な流量測定を行うことが可能になるのである。
【0022】
【発明の効果】
以上説明したように、本発明に係る液体用熱式質量流量計は、被測定液体に熱を伝導する伝熱素子の近傍に配管の温度を測定する測温センサを備え、配管に伝導する熱量を除去した形で被測定液体に伝導される熱量により流量を算出するようにしたことにより、配管が合成樹脂部材等の肉厚が厚く熱容量が大きくても正確に液体に伝導される熱量を測定することができ、そのため、高精度に流量を測定することができるという効果がある。
【図面の簡単な説明】
【図1】本願発明に係る液体用熱式質量流量計の略示的な断面図である。
【図2】従来技術におけるバイパスしたセンサーチューブ(細管)を用いた液体の流量測定の原理を示す説明図である。
【符号の説明】
5 測定配管
6 液温センサ
7 伝熱素子
8 配管温度測温センサ
9 第1の演算部
10 第2の演算部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermal mass flow meter for liquids, and more specifically, a pipe that allows the liquid to be measured to pass through is formed of a synthetic resin member, and has a structure that can withstand corrosion, etc., and is suitable for measuring a wide range of liquids. The present invention relates to a thermal mass flow meter for liquid.
[0002]
[Prior art]
In a typical thermal mass flowmeter for liquids in the prior art, a heater and a plurality of temperature sensors are attached to a sensor tube for measurement provided outside the pipe as in the case of gas, and the temperature distribution of the liquid in the vicinity of the heater It is well known that the flow rate is measured by detecting the change in.
[0003]
Here, an element that performs heating or cooling is referred to as a heat transfer element. Of the temperature sensors, a temperature sensor that monitors the initial liquid temperature in order to maintain a heating temperature at which the liquid does not vaporize is particularly called a liquid temperature sensor.
[0004]
As shown in FIG. 2, the specific configuration includes a first temperature sensor 2 installed on the upstream side of the sensor tube 1 that is a capillary (capillary tube), and a heater 3 that heats the liquid to be measured in the sensor tube 1. And a second temperature measuring sensor 4 installed on the downstream side of the sensor tube 1, and an arithmetic unit for measuring the flow rate of the fluid to be measured based on the temperatures from the first and second temperature measuring sensors 2 and 4, It is composed of
[0005]
A calculation unit (not shown) calculates the flow rate of the liquid to be measured based on the temperature difference (ΔT = T2−T1) measured by the first and second temperature measuring sensors 2 and 4 with the heater 3 interposed therebetween.
[0006]
Here, if the temperature of the heater 3 is too high, it may be vaporized, and some of them are cooled not by a heating element but by a Peltier element or the like, but these principles are also the same.
[0007]
In addition to this method, there are a method for detecting a temperature change only on the upstream side or the downstream side of the heater 3 and a method for detecting the amount of heat consumed by different heaters according to the flow velocity.
[0008]
[Problems to be solved by the invention]
However, in the case of the above-described prior art thermal mass flow meter for liquids, the heat transfer element and the temperature sensor have a signal indicating the amount of heat transmitted to the liquid, and therefore the signal of the amount of heat transmitted to the pipe becomes an error. There is a problem that it is impossible to accurately measure the amount of heat conducted.
[0009]
In addition, the thermal conductivity can be increased by using a sensor tube, which is a thin metal tube, and the heat capacity of the sensor tube itself for flowing the fluid to be measured can be extremely reduced, so the amount of heat transferred to the sensor tube is reduced. It is possible to reduce heat transfer errors. On the other hand, there is also a problem that it cannot be used for measuring the flow rate of a chemical solution that corrodes the metal used or a liquid that dislikes elution of metal ions.
[0010]
Therefore, there is a problem that must be solved in the structure of a thermal mass flow meter for liquid that can be widely used for chemicals that corrode metals.
[0011]
[Means for Solving the Problems]
In order to solve the above-described problems, the thermal mass flow meter for liquid according to the present invention is configured as follows.
[0012]
(1) Temperature measuring means for measuring the temperature of the liquid to be measured flowing in the pipe formed of the synthetic resin member, and the temperature measured by the temperature measuring means so as to be a constant temperature based on the initial temperature. A heat transfer means that conducts heat to the liquid to be measured; a pipe temperature measurement means that is disposed near the heat transfer means and that measures heat conducted to the pipe out of the heat conducted by the heat transfer means; and A flow rate measuring unit that corrects the amount of heat conducted to the liquid to be measured by the heat unit by the amount of heat to the pipe measured by the pipe temperature measuring unit and measures the flow rate of the liquid to be measured from the amount of heat conducted to the liquid to be measured. And a thermal mass flowmeter for liquids.
(2) The liquid temperature sensor of the temperature measuring means and the heat transfer element of the heat transfer means are arranged in contact with the liquid to be measured, and the pipe temperature measurement sensor of the pipe temperature measuring means is in the vicinity of the heat transfer element. The thermal mass flowmeter for liquid according to (1), wherein the thermal mass flowmeter for liquid according to (1) is disposed at a position and not in contact with the liquid to be measured.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of a thermal mass flow meter for liquid according to the present invention will be described with reference to the drawings.
[0014]
A thermal mass flow meter for liquid uses a heat transfer element and measures the flow rate from the amount of heat consumed. Unlike conventional models, it does not use a sensor tube, which is a metal thin tube, A synthetic resin member measuring pipe having the same diameter as that of the pipe is used.
[0015]
As shown in FIG. 1, the configuration is in contact with the measurement pipe 5 installed between the pipes (not shown) and formed of a synthetic resin member, and the liquid to be measured that is upstream of the measurement pipe 5 and flows in. And a liquid temperature sensor 6 for detecting the temperature of the liquid to be measured, and a heat transfer element 7 which is disposed downstream of the measurement pipe 5 and in contact with the liquid to be measured and conducts heat to the liquid to be measured. And the heat transfer element 7 is controlled so as to conduct heat to the liquid to be measured so as to reach a constant temperature increased by several degrees with respect to the initial temperature (liquid temperature) of the liquid to be measured measured by the liquid temperature sensor 6. Measured by a first temperature calculating unit 9, a pipe temperature measuring sensor 8 that is installed near the heat transfer element 7 and in a non-wetted state and measures the temperature of the measuring pipe 5, and the pipe temperature measuring sensor 8. The temperature of the measured pipe 5 is added to the measured pipe 5 by the heat transfer element 7. It calculates the amount of heat, and a second arithmetic unit 10 for calculating the flow rate of the liquid to be measured by calculating the amount of heat consumed by the heat transfer element 7 by using this heat to the correction.
Here, the liquid temperature sensor 6 and the first calculation unit 9 serve as temperature measurement means, the heat transfer element 7 and the first calculation unit 9 serve as heat transfer means, and the heat transfer element 7 and the pipe temperature measurement sensor 8. And the second calculation unit 10 constitute a flow rate measuring means.
[0016]
In such a configuration, the amount of heat consumed by the heat transfer element 7 detected as a signal includes the amount of heat transferred to the liquid to be measured and the amount of heat transferred to the measurement pipe 5. Unlike the case where a sensor tube made of a metal thin tube (capillary tube) is used as in the conventional case, when a synthetic resin member having the same diameter as the pipe is used, the thermal conductivity is small, and the thickness of the measurement pipe 5 is high because of pressure resistance. Since the heat capacity is large because the thickness is thick, the amount of heat transferred to the measurement pipe 5 cannot be ignored.
[0017]
Therefore, the amount of heat conducted to the measurement pipe 5 is calculated using the temperature measured by the pipe temperature measuring sensor 8 disposed in the vicinity of the heat transfer element 7 and corrected by the amount of heat conducted to the measurement pipe 5. If the amount of heat conducted to the liquid to be measured is calculated, the amount of heat conducted to the liquid to be measured can be accurately measured, and a highly accurate flow rate can be measured.
[0018]
Theoretically, the amount of heat conducted to the measurement pipe 5 is proportional to the difference between the temperature of the heat transfer element 7 and the temperature of the measurement pipe 5, so that the measurement pipe is corrected by correcting it with the temperature obtained from the pipe temperature measuring sensor 8. The influence of the amount of heat on 5 can be removed.
[0019]
As a result, the signal becomes the amount of heat transferred to the liquid to be measured, and when the temperature difference between the liquid temperature and the heat transfer element 7 is controlled to be constant, the signal depends only on the flow rate of the liquid to be measured. In the case of laminar flow, the signal is proportional to the square root of the flow velocity.
[0020]
Although the constant temperature control is used in the above embodiment, the same measurement can be performed even at a constant current. Moreover, you may use what cools instead of heating as a heat-transfer element.
[0021]
Thus, by measuring the temperature of the measurement pipe 5 in the vicinity of the heat transfer element 7, the influence of heat conduction on the measurement pipe 5 can be eliminated, and even if the measurement pipe 5 made of a synthetic resin member is used, it is highly accurate. It is possible to measure the flow rate.
[0022]
【The invention's effect】
As described above, the thermal mass flowmeter for liquid according to the present invention includes a temperature sensor that measures the temperature of the pipe in the vicinity of the heat transfer element that conducts heat to the liquid to be measured, and the amount of heat conducted to the pipe. Since the flow rate is calculated from the amount of heat conducted to the liquid under measurement in a form where the pipe is removed, the amount of heat conducted to the liquid is accurately measured even if the pipe is thick, such as a synthetic resin member, and has a large heat capacity. Therefore, there is an effect that the flow rate can be measured with high accuracy.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a thermal mass flow meter for liquid according to the present invention.
FIG. 2 is an explanatory diagram showing the principle of liquid flow rate measurement using a bypassed sensor tube (narrow tube) in the prior art.
[Explanation of symbols]
5 Measurement Piping 6 Liquid Temperature Sensor 7 Heat Transfer Element 8 Piping Temperature Temperature Sensor 9 First Computing Unit 10 Second Computing Unit

Claims (2)

合成樹脂部材で形成された配管内を流れる被測定液体の温度を計測する温度計測手段と、
該温度計測手段により計測された温度のうち初期温度を基準にして一定温度になるように被測定液体に熱を伝導する伝熱手段と、
該伝熱手段の近傍位置に配置され、伝熱手段により伝導された熱のうち配管に伝導する熱を測定する配管測温手段と、
前記伝熱手段により被測定液体と配管に伝導された熱量を、前記配管測温手段で測定された配管への熱量により補正し、前記被測定液体に伝導する熱量から被測定液体の流量を計測する流量計測手段と、
を有することを特徴とする液体用熱式質量流量計。
Temperature measuring means for measuring the temperature of the liquid to be measured flowing in the pipe formed of the synthetic resin member;
A heat transfer means for conducting heat to the liquid to be measured so as to be a constant temperature based on the initial temperature among the temperatures measured by the temperature measuring means;
A pipe temperature measuring means that is arranged in the vicinity of the heat transfer means and measures heat conducted to the pipe among heat conducted by the heat transfer means;
The amount of heat conducted to the liquid to be measured and the pipe by the heat transfer means is corrected by the amount of heat to the pipe measured by the pipe temperature measuring means, and the flow rate of the liquid to be measured is measured from the amount of heat conducted to the liquid to be measured. Flow rate measuring means,
A thermal mass flow meter for liquids, comprising:
前記温度測定手段の液温センサ及び前記伝熱手段の伝熱素子は被測定液体に接液状態で配置し、前記配管測温手段の配管温度測温センサは前記伝熱素子の近傍位置であって被測定液体に非接液状態で配置したことを特徴とする請求項1記載の液体用熱式質量流量計。The liquid temperature sensor of the temperature measurement means and the heat transfer element of the heat transfer means are arranged in contact with the liquid to be measured, and the pipe temperature measurement sensor of the pipe temperature measurement means is located near the heat transfer element. 2. The thermal mass flow meter for liquid according to claim 1, wherein the thermal mass flow meter for liquid is arranged in a non-wetted state on the liquid to be measured.
JP2001138324A 2001-05-09 2001-05-09 Thermal mass flow meter for liquids Expired - Fee Related JP4081639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001138324A JP4081639B2 (en) 2001-05-09 2001-05-09 Thermal mass flow meter for liquids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001138324A JP4081639B2 (en) 2001-05-09 2001-05-09 Thermal mass flow meter for liquids

Publications (2)

Publication Number Publication Date
JP2002333357A JP2002333357A (en) 2002-11-22
JP4081639B2 true JP4081639B2 (en) 2008-04-30

Family

ID=18985283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001138324A Expired - Fee Related JP4081639B2 (en) 2001-05-09 2001-05-09 Thermal mass flow meter for liquids

Country Status (1)

Country Link
JP (1) JP4081639B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4700525B2 (en) 2006-03-06 2011-06-15 サーパス工業株式会社 Thermal signal writing device
JP5575359B2 (en) * 2007-07-05 2014-08-20 横河電機株式会社 Thermal flow meter

Also Published As

Publication number Publication date
JP2002333357A (en) 2002-11-22

Similar Documents

Publication Publication Date Title
TWI436039B (en) Flow meter
US11543274B2 (en) Thermal flowmeter including a coupling element with an anisotropic thermal conductivity
EP1477781B1 (en) Mass flowmeter
US8423304B2 (en) Thermal, flow measuring device
CN107110684B (en) Heat flow measuring device
US5237866A (en) Flow sensor for measuring high fluid flow rates
US8583385B2 (en) Thermal, flow measuring device
JP2006010322A (en) Thermal flowmeter
JP2009115504A (en) Thermal flowmeter
JP4081639B2 (en) Thermal mass flow meter for liquids
JP2004069667A (en) Thermal mass flow meter for liquid
JP2930742B2 (en) Thermal flow meter
JP5575359B2 (en) Thermal flow meter
JP5354438B2 (en) Thermal flow meter
JP2964186B2 (en) Thermal flow meter
JP4537776B2 (en) Method for measuring temperature of fluid flowing in pipe and method for measuring fluid heat quantity
JP3719802B2 (en) Multipoint flow meter
JP4811636B2 (en) Thermal flow meter
JP4793621B2 (en) Thermal flow meter
JP2005233859A (en) Thermal mass flowmeter for liquid
JP2019082346A (en) Thermal flowmeter
JP6165949B1 (en) Thermal flow meter
JP7149347B2 (en) Pressure-sensitive thermal flow meter
JP2009109285A (en) Thermal flowmeter
JP2009103589A (en) Thermal flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080129

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees