Nothing Special   »   [go: up one dir, main page]

JP4076062B2 - Array type semiconductor laser device - Google Patents

Array type semiconductor laser device Download PDF

Info

Publication number
JP4076062B2
JP4076062B2 JP2002043442A JP2002043442A JP4076062B2 JP 4076062 B2 JP4076062 B2 JP 4076062B2 JP 2002043442 A JP2002043442 A JP 2002043442A JP 2002043442 A JP2002043442 A JP 2002043442A JP 4076062 B2 JP4076062 B2 JP 4076062B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser device
substrate
array type
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002043442A
Other languages
Japanese (ja)
Other versions
JP2003243777A (en
Inventor
靖久 仙庭
厚 中村
正一 ▲高▼橋
Original Assignee
日本オプネクスト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本オプネクスト株式会社 filed Critical 日本オプネクスト株式会社
Priority to JP2002043442A priority Critical patent/JP4076062B2/en
Publication of JP2003243777A publication Critical patent/JP2003243777A/en
Application granted granted Critical
Publication of JP4076062B2 publication Critical patent/JP4076062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Element Separation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アレイ型半導体レーザ装置及びこれを搭載した半導体レーザモジュールに関し、特に、アレイ型半導体レーザ装置のクロストークの防止に適用して有効な技術に関するものである。
【0002】
【従来の技術】
半導体レーザは、半導体基板に形成した活性層中にて励起状態の電子と正孔とが放射再結合する誘導放射を整然と起こすことにより、振動数や位相が揃ったコヒーレントな光が得られるため、直進性や干渉性が高く、情報処理或いは光通信等の広い分野で用いられている。
【0003】
情報化の進展によって情報通信網のトラフィックは急激な増加を続けており、こうしたトラフィックの増加に対応するために、情報通信網のバックボーンとなる光通信網にはより多くの情報を処理するために高速化が求められている。このため、10Gbps以上の高速大容量光伝送には、波長の異なる複数の光信号を多重化して1本の光ファイバに伝送する波長分割多重通信(WDM:Wavelength Division Multiplexing)技術が一般的となってきている。
【0004】
波長分割多重通信では、複数の光信号を合波器によって多重化するが、合波される複数の光信号は、夫々が独立したチャネルと呼ばれる信号系であり、伝送装置ではチャネルの数と同数の半導体レーザ素子が必要となる。チャネル毎に個別の半導体レーザ素子を搭載する場合には夫々の素子について光学系の調整等を行なわなければならず煩雑であるため、複数の半導体レーザ素子を一体としたアレイ型の半導体レーザ装置が用いられている。この半導体レーザ装置では、図1に示すように、InP等を用いたn型半導体基板1に、InAlAs等を用いたn型クラッド層2、InGaAlAs等を用いた活性層3、InAlAs/InP等を用いたp型クラッド層4、酸化珪素と窒化珪素とを積層した絶縁膜5を順次積層した層構造となっており、この層構造を分離領域に形成された溝6によって分離して4チャネルの半導体レーザ素子が設けられている。
【0005】
夫々の半導体レーザ素子では、発光中心となる領域の両側のクラッド層4に溝を形成したリッジ構造となっており、リッジ部では絶縁膜5を除去してクラッド層4上にInGaAs等を用いたp型キャップ層7を形成し、このキャップ層7及び絶縁膜5上に金を主体としてTi,Pt等を積層させて活性層に電圧を印加するアノード電極8が形成され、半導体基板1裏面にも同様に半導体基板1と導通するカソード電極9が形成されている。
【0006】
【発明が解決しようとする課題】
しかしながら、こうしたアレイ型の半導体レーザ装置では、複数の半導体レーザ素子が同一の半導体基板に形成されているため、半導体レーザの動作時には電気的、熱的、光学的なクロストークが発生し、隣接する半導体レーザ素子に悪影響を及ぼすことがある。即ち、10Gbps等の高周波動作時に電気的な或いは電磁気的な漏れが発生し、隣接する半導体レーザ素子に信号の一部を誘発させてしまう。これがノイズとなり特性悪化の原因となる。
【0007】
本発明の課題は、これらの問題を解決し、アレイ型の半導体レーザ装置について半導体レーザ素子間のクロストークを防止する技術を提供することにある。
本発明の前記ならびにその他の課題と新規な特徴は、本明細書の記述及び添付図面によって明らかになるであろう。
【0008】
【課題を解決するための手段】
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、下記のとおりである。
単一の半導体基板に複数の半導体レーザ素子を並設した半導体レーザ装置において、前記半導体レーザ素子間の分離領域にシールド部を形成する。また、半導体レーザモジュールにおいて、この半導体レーザ装置と、この半導体レーザ装置に光結合する光ファイバとを基板に取り付け、ケースに収納する。
【0009】
上述した本発明によれば、複数の半導体レーザ素子が並設された半導体レーザ装置の分離領域にシールド部を設けることによって、半導体レーザの動作時に隣接する半導体レーザ素子間のクロストークを防止して、半導体レーザ装置の特性悪化を防止することができる。またモジュールでは、アレイ型の半導体レーザ装置を用いることによって基板実装が容易であり、かつ隣接する半導体レーザ素子間のクロストークも生じないので、モジュールの信頼性を向上させることができる。
【0010】
以下、本発明の実施の形態を説明する。
なお、実施の形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
【0011】
【発明の実施の形態】
(実施の形態1)
図2は本発明の一実施となる半導体レーザ装置を示す斜視図であり、図3は図2中のa‐a線に沿った部分拡大縦断面図であり、図4は図2中のb‐b線に沿った部分拡大縦断面図である。
【0012】
本実施の形態の半導体レーザ装置は、InP等を用いたn型半導体基板1に、InAlAs等を用いたn型クラッド層2、InGaAlAs等を用いた活性層3、InAlAs/InP等を用いたp型クラッド層4、酸化珪素と窒化珪素とを積層した絶縁膜5を順次積層した層構造となっており、この層構造を分離領域に形成された溝6によって電気的に分離して、ここでは4チャネルの半導体レーザ素子が単一の半導体基板に並設されている。
【0013】
夫々の半導体レーザ素子では、発光中心となる領域の両側のクラッド層4に溝を形成したリッジ構造となっており、リッジ部では絶縁膜5を除去してクラッド層4上にInGaAs等を用いたp型キャップ層7を形成し、このキャップ層7及び絶縁膜5上に金を主体としてTi,Pt等を積層させて活性層に電圧を印加するアノード電極8が形成され、半導体基板1裏面にも同様に半導体基板1と導通するカソード電極9が形成されている。
【0014】
本実施の形態の半導体レーザ装置では、溝6の形成された分離領域にシールド部10が設けられている。このシールド部は、溝6に形成された電極10aと電極10に対向させて反対面に設けた電極10bと所定間隔で複数設けられ夫々の対向する電極10a,10bを導通させるビアホール10cとからなっている。
【0015】
このシールド部10を例えば接地電位に接続して電位を固定することにより、半導体レーザの動作時に隣接する半導体レーザ素子間のクロストークを防止することができる。このため、10Gbps等の高周波動作時であっても、電気的な或いは電磁気的な漏れを防止し、隣接する半導体レーザ素子にノイズを発生させることがないので、半導体レーザ装置の特性悪化を防止することができる。
【0016】
図5はモジュールに実装するために半導体レーザ装置を基板に取り付けた状態を示す平面図であり、図6は図5中のa‐a線に沿った縦断面図である。シリコン等を用いた基板11と半導体レーザ装置12とは、基板11の接地配線11aに半導体レーザ装置12のアノード電極8を接着導通させるフェイスダウン実装が行なわれ、例えば半導体レーザ装置12上に形成されたマーカと基板11上に形成されたマーカとを検出調整し、所定の位置に取り付けられる。
【0017】
本実施の形態ではアレイ型の半導体レーザ装置12を用いることによって半導体レーザ装置12と基板11との位置合わせは一度で済ますことができるが、チャネル数の個別の半導体レーザ素子を取り付ける場合には取り付ける半導体レーザ素子を個別に位置合わせしなければならない。
【0018】
同様に、基板11にはモニタ用のフォトダイオード13を取り付ける。フォトダイオード13について、図中では個別のフォトダイオードがチャネル毎に取り付けられているが、このフォトダイオードをアレイ化することも可能である。
【0019】
半導体レーザ装置12及びフォトダイオード13は、基板11に蒸着させてある金錫合金等のハンダ材をリフローにより溶融させて、基板11と接続・固定した後に、カソード電極9と基板11に形成された所定の配線とをボンディングワイヤ等によって接続する。同様にフォトダイオード13の電極と所定の配線ともボンディングワイヤ等によって接続する。また、必要に応じて、半導体レーザ装置12のシールド部10と導通させたシールド電極16とも接地電位へボンディングワイヤ等によって接続する。
【0020】
次に、基板に形成されたV字状の溝14に光ファイバ15を取り付けて各半導体レーザ素子の発光中心と光ファイバ15の光軸とを一致させる光結合調整を行ない、接着剤を溝14に塗布し、紫外線照射や加熱等の硬化手段を用いて接着剤を硬化させて光ファイバ15を基板11に固定する。
【0021】
光モジュールでは、この半導体レーザ装置12及び光ファイバ15の接続された基板11をケース等に固定し、駆動用IC等と一緒にふた付けされる。
【0022】
本実施の形態のモジュールでは、アレイ型の半導体レーザ装置を用いることによって半導体レーザ装置の基板実装が容易であり、かつ隣接する半導体レーザ素子間のクロストークも生じないので、半導体レーザ装置の特性悪化を防止し、モジュールの信頼性を向上させることができる。
【0023】
以上、本発明を、前記実施の形態に基づき具体的に説明したが、本発明は、前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは勿論である。
【0024】
【発明の効果】
本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば、下記のとおりである。
(1)本発明によれば、複数の半導体レーザ素子が並設された半導体レーザ装置の分離領域にシールド部を設けることによって、半導体レーザの動作時に隣接する半導体レーザ素子間のクロストークを防止することができるという効果がある。
(2)本発明によれば、上記効果(1)により、高周波動作時であっても、電気的な或いは電磁気的な漏れを防止することができるという効果がある。
(3)本発明によれば、上記効果(2)により、隣接する半導体レーザ素子にノイズを発生させることがないという効果がある。
(4)本発明によれば、上記効果(3)により、半導体レーザ装置の特性悪化を防止することができるという効果がある。
(5)本発明によれば、上記効果(4)により、モジュールの信頼性を向上させることができるという効果がある。
【図面の簡単な説明】
【図1】従来のアレイ型半導体レーザ装置を示す斜視図である。
【図2】本発明の一実施の形態であるアレイ型半導体レーザ装置を示す斜視図である。
【図3】図2中のa‐a線に沿った部分拡大縦断面図である。
【図4】図2中のb‐b線に沿った部分拡大縦断面図である。
【図5】本発明の一実施の形態である半導体レーザ装置の実装された基板を示す平面図である。
【図6】図5中のa‐a線に沿った縦断面図である。
【符号の説明】
1…半導体基板、2…クラッド層、3…活性層、4…クラッド層、5…絶縁膜、6…溝、7…キャップ層、8…アノード電極、9…カソード電極、10…シールド部、10a,10b…電極、10c…ビアホール、11…基板、12…半導体レーザ装置、13…フォトダイオード、14…溝、15…光ファイバ、16…シールド電極。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an array type semiconductor laser device and a semiconductor laser module on which the array type semiconductor laser device is mounted, and more particularly to a technique effective when applied to prevention of crosstalk in an array type semiconductor laser device.
[0002]
[Prior art]
Semiconductor lasers can produce coherent light with the same frequency and phase by orderly inducing stimulated radiation in which the excited electrons and holes radiate and recombine in the active layer formed on the semiconductor substrate. It has high straightness and coherence and is used in a wide range of fields such as information processing and optical communication.
[0003]
With the progress of informatization, the traffic of information communication networks continues to increase rapidly. To cope with this increase in traffic, the optical communication network, which is the backbone of the information communication network, has to process more information. High speed is required. Therefore, for high-speed and large-capacity optical transmission of 10 Gbps or more, wavelength division multiplexing (WDM) technology that multiplexes a plurality of optical signals having different wavelengths and transmits them to one optical fiber is common. It is coming.
[0004]
In wavelength division multiplex communication, a plurality of optical signals are multiplexed by a multiplexer. The plurality of optical signals to be combined are signal systems called independent channels, and the number of channels in the transmission apparatus is the same. The semiconductor laser element is required. When an individual semiconductor laser element is mounted for each channel, the optical system must be adjusted for each element, which is cumbersome. Therefore, an array type semiconductor laser device in which a plurality of semiconductor laser elements are integrated is provided. It is used. In this semiconductor laser device, as shown in FIG. 1, an n-type semiconductor substrate 1 using InP or the like, an n-type cladding layer 2 using InAlAs or the like, an active layer 3 using InGaAlAs or the like, InAlAs / InP, or the like. The p-type cladding layer 4 used and the insulating film 5 in which silicon oxide and silicon nitride are laminated are sequentially laminated, and this layer structure is separated by a groove 6 formed in the separation region to form a 4-channel structure. A semiconductor laser element is provided.
[0005]
Each semiconductor laser element has a ridge structure in which grooves are formed in the clad layer 4 on both sides of the light emission center region, and the insulating film 5 is removed from the ridge portion and InGaAs or the like is used on the clad layer 4. A p-type cap layer 7 is formed, and an anode electrode 8 for applying a voltage to the active layer by laminating Ti, Pt, etc. mainly composed of gold on the cap layer 7 and the insulating film 5 is formed. Similarly, a cathode electrode 9 that is electrically connected to the semiconductor substrate 1 is formed.
[0006]
[Problems to be solved by the invention]
However, in such an array-type semiconductor laser device, since a plurality of semiconductor laser elements are formed on the same semiconductor substrate, electrical, thermal, and optical crosstalk occurs during the operation of the semiconductor laser and are adjacent to each other. The semiconductor laser element may be adversely affected. That is, electrical or electromagnetic leakage occurs during high-frequency operation such as 10 Gbps, and induces a part of the signal in the adjacent semiconductor laser element. This becomes noise and causes deterioration of characteristics.
[0007]
An object of the present invention is to solve these problems and provide a technique for preventing crosstalk between semiconductor laser elements in an array type semiconductor laser device.
The above and other problems and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.
[0008]
[Means for Solving the Problems]
Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
In a semiconductor laser device in which a plurality of semiconductor laser elements are arranged on a single semiconductor substrate, a shield portion is formed in an isolation region between the semiconductor laser elements. In the semiconductor laser module, the semiconductor laser device and an optical fiber optically coupled to the semiconductor laser device are attached to a substrate and housed in a case.
[0009]
According to the present invention described above, by providing a shield portion in the isolation region of the semiconductor laser device in which a plurality of semiconductor laser elements are arranged in parallel, crosstalk between adjacent semiconductor laser elements can be prevented during operation of the semiconductor laser. Thus, deterioration of the characteristics of the semiconductor laser device can be prevented. In addition, the module can be easily mounted on a substrate by using an array type semiconductor laser device, and crosstalk between adjacent semiconductor laser elements does not occur, so that the reliability of the module can be improved.
[0010]
Embodiments of the present invention will be described below.
Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
2 is a perspective view showing a semiconductor laser device according to one embodiment of the present invention, FIG. 3 is a partially enlarged longitudinal sectional view taken along line aa in FIG. 2, and FIG. 4 is b in FIG. -It is a partial expanded longitudinal cross-sectional view along line -b.
[0012]
In the semiconductor laser device of the present embodiment, an n-type semiconductor substrate 1 using InP or the like, an n-type cladding layer 2 using InAlAs or the like, an active layer 3 using InGaAlAs or the like, p using InAlAs / InP or the like. The layer structure is formed by sequentially laminating a mold cladding layer 4 and an insulating film 5 in which silicon oxide and silicon nitride are laminated, and this layer structure is electrically separated by a groove 6 formed in a separation region. Four-channel semiconductor laser elements are arranged in parallel on a single semiconductor substrate.
[0013]
Each semiconductor laser element has a ridge structure in which grooves are formed in the clad layer 4 on both sides of the light emission center region, and the insulating film 5 is removed from the ridge portion and InGaAs or the like is used on the clad layer 4. A p-type cap layer 7 is formed, and an anode electrode 8 for applying a voltage to the active layer by laminating Ti, Pt, etc. mainly composed of gold on the cap layer 7 and the insulating film 5 is formed. Similarly, a cathode electrode 9 that is electrically connected to the semiconductor substrate 1 is formed.
[0014]
In the semiconductor laser device of the present embodiment, the shield portion 10 is provided in the separation region where the groove 6 is formed. The shield part is composed of an electrode 10a formed in the groove 6 and an electrode 10b provided on the opposite surface facing the electrode 10 and a plurality of via holes 10c provided at predetermined intervals to conduct the opposing electrodes 10a and 10b. ing.
[0015]
By connecting the shield portion 10 to, for example, a ground potential and fixing the potential, crosstalk between adjacent semiconductor laser elements can be prevented during operation of the semiconductor laser. For this reason, even during high-frequency operation such as 10 Gbps, electrical or electromagnetic leakage is prevented, and noise is not generated in the adjacent semiconductor laser element, thereby preventing deterioration of the characteristics of the semiconductor laser device. be able to.
[0016]
FIG. 5 is a plan view showing a state in which the semiconductor laser device is attached to the substrate for mounting on the module, and FIG. 6 is a longitudinal sectional view taken along the line aa in FIG. The substrate 11 and the semiconductor laser device 12 using silicon or the like are formed on the semiconductor laser device 12, for example, by face-down mounting in which the anode electrode 8 of the semiconductor laser device 12 is bonded and connected to the ground wiring 11a of the substrate 11. The detected marker and the marker formed on the substrate 11 are detected and adjusted and attached to a predetermined position.
[0017]
In the present embodiment, the alignment of the semiconductor laser device 12 and the substrate 11 can be done only once by using the array type semiconductor laser device 12, but it is attached when attaching individual semiconductor laser elements having the number of channels. The semiconductor laser elements must be individually aligned.
[0018]
Similarly, a monitor photodiode 13 is attached to the substrate 11. In the drawing, individual photodiodes are attached to the photodiodes 13 for each channel. However, the photodiodes can be arrayed.
[0019]
The semiconductor laser device 12 and the photodiode 13 were formed on the cathode electrode 9 and the substrate 11 after melting and soldering a solder material such as gold-tin alloy deposited on the substrate 11 by reflow, and connecting and fixing to the substrate 11. A predetermined wiring is connected by a bonding wire or the like. Similarly, the electrode of the photodiode 13 and a predetermined wiring are connected by a bonding wire or the like. If necessary, the shield electrode 16 connected to the shield part 10 of the semiconductor laser device 12 is also connected to the ground potential by a bonding wire or the like.
[0020]
Next, an optical fiber 15 is attached to the V-shaped groove 14 formed on the substrate, and optical coupling adjustment is performed so that the emission center of each semiconductor laser element and the optical axis of the optical fiber 15 coincide with each other. The optical fiber 15 is fixed to the substrate 11 by curing the adhesive using a curing means such as ultraviolet irradiation or heating.
[0021]
In the optical module, the substrate 11 to which the semiconductor laser device 12 and the optical fiber 15 are connected is fixed to a case or the like and is covered together with a driving IC or the like.
[0022]
In the module of the present embodiment, by using an array type semiconductor laser device, it is easy to mount the semiconductor laser device on the substrate, and crosstalk between adjacent semiconductor laser elements does not occur. And the reliability of the module can be improved.
[0023]
Although the present invention has been specifically described based on the above-described embodiment, the present invention is not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the scope of the invention. It is.
[0024]
【The invention's effect】
The effects obtained by the representative ones of the inventions disclosed in this application will be briefly described as follows.
(1) According to the present invention, by providing a shield portion in the isolation region of a semiconductor laser device in which a plurality of semiconductor laser elements are arranged in parallel, crosstalk between adjacent semiconductor laser elements is prevented during operation of the semiconductor laser. There is an effect that can be.
(2) According to the present invention, the above effect (1) has an effect that electrical or electromagnetic leakage can be prevented even during high-frequency operation.
(3) According to the present invention, the effect (2) has an effect that no noise is generated in the adjacent semiconductor laser element.
(4) According to the present invention, due to the effect (3), there is an effect that the characteristic deterioration of the semiconductor laser device can be prevented.
(5) According to the present invention, there is an effect that the reliability of the module can be improved by the effect (4).
[Brief description of the drawings]
FIG. 1 is a perspective view showing a conventional array type semiconductor laser device.
FIG. 2 is a perspective view showing an array type semiconductor laser device according to an embodiment of the present invention.
3 is a partially enlarged longitudinal sectional view taken along the line aa in FIG. 2. FIG.
4 is a partially enlarged longitudinal sectional view taken along line bb in FIG. 2. FIG.
FIG. 5 is a plan view showing a substrate on which a semiconductor laser device according to an embodiment of the present invention is mounted;
6 is a longitudinal sectional view taken along line aa in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 2 ... Cladding layer, 3 ... Active layer, 4 ... Cladding layer, 5 ... Insulating film, 6 ... Groove, 7 ... Cap layer, 8 ... Anode electrode, 9 ... Cathode electrode, 10 ... Shield part, 10a , 10b ... electrode, 10c ... via hole, 11 ... substrate, 12 ... semiconductor laser device, 13 ... photodiode, 14 ... groove, 15 ... optical fiber, 16 ... shield electrode.

Claims (2)

単一の半導体基板に複数の半導体レーザ素子を並設したアレイ型半導体レーザ装置において、
前記半導体レーザ素子間の分離領域にシールド部を形成し、
前記シールド部が、前記半導体基板の両面に夫々対向して形成された電極と、所定間隔で複数設けられ前記夫々の電極を導通させるビアホールとからなることを特徴とするアレイ型半導体レーザ装置。
In an array type semiconductor laser device in which a plurality of semiconductor laser elements are arranged in parallel on a single semiconductor substrate,
Forming a shield part in a separation region between the semiconductor laser elements ;
2. The array type semiconductor laser device according to claim 1, wherein the shield part is composed of electrodes formed on both sides of the semiconductor substrate so as to face each other, and a plurality of via holes provided at predetermined intervals to conduct the electrodes .
前記シールド部を接地電位に接続することを特徴とする請求項1に記載のアレイ型半導体レーザ装置。  2. The array type semiconductor laser device according to claim 1, wherein the shield portion is connected to a ground potential.
JP2002043442A 2002-02-20 2002-02-20 Array type semiconductor laser device Expired - Fee Related JP4076062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002043442A JP4076062B2 (en) 2002-02-20 2002-02-20 Array type semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002043442A JP4076062B2 (en) 2002-02-20 2002-02-20 Array type semiconductor laser device

Publications (2)

Publication Number Publication Date
JP2003243777A JP2003243777A (en) 2003-08-29
JP4076062B2 true JP4076062B2 (en) 2008-04-16

Family

ID=27783234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002043442A Expired - Fee Related JP4076062B2 (en) 2002-02-20 2002-02-20 Array type semiconductor laser device

Country Status (1)

Country Link
JP (1) JP4076062B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102077700A (en) * 2008-08-19 2011-05-25 株式会社村田制作所 Circuit module and method for manufacturing same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7269197B2 (en) * 2005-09-21 2007-09-11 Agere Systems Inc. Controlling overspray coating in semiconductor devices
JP5971843B2 (en) 2011-05-18 2016-08-17 日本オクラロ株式会社 Array type light receiving device, optical receiving module, and optical transceiver
JP2013120893A (en) * 2011-12-08 2013-06-17 Anritsu Corp Semiconductor laser
JP5229378B2 (en) * 2011-12-19 2013-07-03 住友大阪セメント株式会社 Optical waveguide device
WO2017159782A1 (en) * 2016-03-18 2017-09-21 日本電信電話株式会社 Optical modulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102077700A (en) * 2008-08-19 2011-05-25 株式会社村田制作所 Circuit module and method for manufacturing same
CN102077700B (en) * 2008-08-19 2014-03-26 株式会社村田制作所 Circuit module and method for manufacturing same
US8724334B2 (en) 2008-08-19 2014-05-13 Murata Manufacturing Co., Ltd. Circuit module and manufacturing method for the same

Also Published As

Publication number Publication date
JP2003243777A (en) 2003-08-29

Similar Documents

Publication Publication Date Title
US7062114B2 (en) Submount for a photonic integrated circuit (PIC) chip
EP3276401B1 (en) High-frequency transmission line and optical circuit
US6021149A (en) Optical semiconductor module
US20080044128A1 (en) TRANSMITTER PHOTONIC INTEGRATED CIRCUITS (TxPICs) AND OPTICAL TRANSPORT NETWORK SYSTEM EMPLOYING TxPICs
US10396898B2 (en) Optical module and optical transmitting apparatus installing a number of optical modules
US20040200573A1 (en) Opto-electronic device integration
EP1399953B1 (en) Opto-electronic device integration
US9385830B2 (en) Transmitter module outputting wavelength multiplexed light
EP0779690A2 (en) Semiconductor laser array
JP2005150692A (en) Semiconductor laser device
JP4076062B2 (en) Array type semiconductor laser device
CN109638638B (en) Optical module
CN112835156B (en) Temperature control device with multiple conductive terminals and optical subassembly module for implementing same
WO2007029920A1 (en) Bi-directional optical module
JP2002131712A (en) Optical device and method for manufacturing the same
US10527804B2 (en) Optical module
JP3386571B2 (en) Method of manufacturing dual beam semiconductor laser
US6353625B1 (en) Array type laser diode
JP2012174700A (en) Multichannel optical transmission module and manufacturing method thereof
JP2005505914A (en) Power pack laser diode assembly
JP5800466B2 (en) Multi-channel optical transmission module
US11876345B2 (en) Thermal management for hybrid lasers
JP7123161B2 (en) Manufacturing method of optical semiconductor device
JP6260167B2 (en) Photoelectric fusion module
JP2002280662A (en) Semiconductor electric field absorbing modulator integrated laser module and light transmission device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080124

R150 Certificate of patent or registration of utility model

Ref document number: 4076062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees