JP4056377B2 - Toner for electrostatic image development - Google Patents
Toner for electrostatic image development Download PDFInfo
- Publication number
- JP4056377B2 JP4056377B2 JP2002364426A JP2002364426A JP4056377B2 JP 4056377 B2 JP4056377 B2 JP 4056377B2 JP 2002364426 A JP2002364426 A JP 2002364426A JP 2002364426 A JP2002364426 A JP 2002364426A JP 4056377 B2 JP4056377 B2 JP 4056377B2
- Authority
- JP
- Japan
- Prior art keywords
- toner
- resin
- developing
- image
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Developing Agents For Electrophotography (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、電子写真や静電記録などにおいて、感光体(静電荷像担持体)の表面に形成された静電荷像を顕像化する静電荷像現像用トナー、現像剤、現像方法、トナー容器、及び現像装置に関する。
【0002】
【従来の技術】
従来より、電子写真装置や静電記録装置等において、電気的または磁気的潜像は、トナーによって顕像化されている。例えば、電子写真法では、感光体上に静電荷像(潜像)を形成し、次いで、該潜像をトナーを用いて現像して、トナー画像を形成している。トナー画像は、通常、紙等の転写材上に転写され、次いで、加熱等の方法で定着させている。
【0003】
静電荷像現像に使用されるトナーは、一般に、バインダー樹脂中に、着色剤、帯電制御剤、その他の添加剤を含有させた着色粒子であり、その製造方法には、大別して粉砕法と懸濁重合法がある。粉砕法では、熱可塑性樹脂中に、着色剤、帯電制御剤、オフセット防止剤などを溶融混合して均一に分散させ、得られた組成物を粉砕、分級することによりトナーを製造している。粉砕法によれば、ある程度優れた特性を有するトナーを製造することができるが、トナー用材料の選択に制限がある。例えば、溶融混合により得られる組成物は、経済的に使用可能な装置により粉砕し、分級できるものでなければならない。この要請から、溶融混合した組成物は、充分に脆くせざるを得ない。このため、実際に上記組成物を粉砕して粒子にする際に、高範囲の粒径分布が形成され易く、良好な解像度と階調性のある複写画像を得ようとすると、例えば、粒径5μm以下の微粉と20μm以上の粗粉を分級により除去しなければならず、収率が非常に低くなるという欠点がある。また、粉砕法では、着色剤や帯電制御剤などを熱可塑性樹脂中に均一に分散することが困難である。配合剤の不均一な分散は、トナーの流動性、現像性、耐久性、画像品質などに悪影響を及ぼす。
【0004】
近年、これらの粉砕法における問題点を克服するために、懸濁重合法によるトナーの製造方法が提案され、実施されている。静電潜像現像用のトナーを重合法によって製造する技術は公知であり、例えば懸濁重合法によってトナー粒子を得ることが行われている。しかしながら、懸濁重合法で得られるトナー粒子は球形であり、クリーニング性に劣るという欠点がある。最も重要な問題としては、像担持体表面の転写残トナーのクリーニング手段による完全除去が困難で、クリーニング不良が発生することである。特に、ブレードクリーニング方式においては、クリーニング時にトナーが像担持体とクリーニングブレードの接触部間で最密充填状態に近くなり、像担持体に対して強い付着力を持っている1層目トナーと次の2層目トナーとの間でトナーが滑り、一層目トナーがクリーニング不良として像担持体上に残ってしまう。
【0005】
このような問題を解決するために、以下のような案が提案されている。
<特開平5−265360号公報>
クリーニングブレードを像担持体表面に圧接し、像担持体表面の残留トナーを除去する画像形成装置のクリーニング方法において、クリーニングブレードに導電性部材を用いて、これに交流バイアス電圧および現像時のトナーの帯電電荷と同極性の直流バイアス電圧を印加して像担持体表面の残留トナーを除去することを特徴とするクリーニング方法が提供される。
<特開平7−210053号公報>
転写後の感光体上の残留トナーをクリーニングブレードで掻き落して感光体表面を清掃する電子写真装置のクリーニング装置において、クリーニングブレードを導電性材料でつくり、それをアースする。あるいは、残留トナーと逆極性の直流電圧を印加する。あるいは、残留トナーと同極性の直流電圧を印加する。あるいは、それに交流電圧を印加するなどが提案されている。
【0006】
しかしながら、いずれの公報に記載されたものも、クリーニングブレードを像担持体に当接し、トナーをかき取ることによってクリーニングする作用があるため、従来トナーより低溶融粘度であるシャープメルト性のポリエステル系のトナーバインダーを用いたトナーの場合、トナー樹脂内部の表面近傍に存在するワックスが、その圧力によって表面に滲み出て像担持体にこすりつけられることによって付着する、いわゆるワックスフィルミングが起こってしまう。また、感光体を接触帯電させる帯電ローラ等を汚染してしまい、本来の帯電能力を発揮できなくなってしまう。
【0007】
また、トナーについて着目すると、クリーニング性の良好な条件として大粒径で、更に形状が非球形であることが知られているが、高画像品質を得る方向とは逆行する。また、トナーの外添加剤の工夫により改良することが考えられるが、十分なクリーニング性を得ることができなかった。
【0008】
一方、熱ローラなどの加熱部材を使用して行われる接触加熱方式による定着工程において、加熱部材に対するトナー粒子の離型性(以下、「耐オフセット性」という。)が要求される。ここに、耐オフセット性は、トナー粒子表面に離型剤を存在させることにより向上させることができる。
これに対し、特開2000−292973号公報(特許文献1)、特開2000−292978号公報(特許文献2)では樹脂微粒子をトナー粒子中に含有させるだけでなく、当該樹脂微粒子がトナー粒子の表面に偏在していることにより、耐オフセット性を向上する方法が開示されている。
しかし、定着下限温度が上昇し、低温定着性即ち省エネ定着性が十分でない。
【0009】
しかしながら、乳化重合法によって得られる樹脂微粒子を会合させて不定形のトナー粒子を得る方法でも、下記のような問題を生じる。
耐オフセット性を向上させるために、離型剤微粒子を会合させる場合において、当該離型剤微粒子がトナー粒子の内部に取り込まれてしまい、この結果、耐オフセット性の向上を十分に図ることができない。樹脂微粒子、離型剤微粒子、着色剤微粒子などがランダムに融着してトナー粒子が構成されるので、得られるトナー粒子間において組成(構成成分の含有割合)および構成樹脂の分子量等にバラツキが発生し、この結果、トナー粒子間で表面特性が異なり、長期にわたり安定した画像を形成することができない。さらに低温定着が求められる低温定着システムにおいては、トナー表面に偏在する樹脂微粒子による定着阻害が発生し、定着温度幅を確保できない。
【0010】
【特許文献1】
特開2000−292973号公報
【特許文献2】
特開2000−292978号公報
【0011】
【発明が解決しようとする課題】
本発明は以上のような事情に基いてなされたものである。
本発明の第1の目的は、微小ドット再現性に優れ、長期にわたってクリーニング性を維持しつつ、低温定着システムに対応し、耐オフセット性が良好で、定着装置および画像を汚染することのない静電荷像現像用トナーを提供することにある。
本発明の第2の目的は、帯電量分布がシャープで、鮮鋭性の良好な可視画像を長期にわたり形成することができる静電荷像現像用トナーを提供することにある。
本発明の第3の目的は、該トナーを用いる現像剤、現像方法、トナー容器及び現像装置を提供することにある。
【0012】
【課題を解決するための手段】
一般的に高解像で高画質の画像を得る為には、トナーの小粒径化、もしくは、形状を球形化することが有利であることはあきらかではある。小粒径化は転写性が悪くなり静電荷像担持体に残留するトナーが多くなりクリーニング工程に負荷が掛かり、長期にわたってクリーニング性を維持できない。一方、トナーが球形の場合、静電荷像担持体上に残った未転写トナーを当接することによりクリーニングする手段を有する工程においては、トナーのすり抜けが起こり長期にわたってクリーニング性を維持できない。
そこで、本発明者らは、鋭意検討を重ねた結果、上記課題を解決するためには、少なくとも静電荷像担持体上に残った未転写トナーを当接することによりクリーニングする手段を有する静電荷像現像装置を用いる現像においては、特定の粒径、粒径分布、形状を有する静電荷像現像用トナーを用いることにより達成しうることを見い出し、本発明を完成するに至った。
【0013】
すなわち、本発明によれば、下記(1)〜(10)が提供される。
(1)少なくとも結着樹脂、着色剤からなり、少なくとも静電荷像担持体上に残った未転写トナーを当接することによりクリーニングする手段を有する静電荷像現像装置に用いる静電荷像現像用トナーであって、該トナーの体積平均粒径(Dv)が4〜8μmであり、フロー式粒子像分析装置によって測定される円相当径2μm以下の粒子が25個数%以下であり、円形度の個数分布が下記式を満たすことを特徴とする静電荷像現像用トナー。
A<30個数%
B<30個数%
C=100−A−B≧40個数%
(A:円相当径3〜10μmで、且つ円形度0.97以上粒子の個数%
B:円相当径3〜10μmで、且つ円形度0.95以下粒子の個数%)
(2)前記トナーの円相当径2μm以下のトナー粒子が15個数%以下であることを特徴とする前記(1)記載の静電荷像現像用トナー。
(3)前記静電荷像現像装置が、前記静電荷像担持体の回転方向に対してカウンター方向で当接した弾性ゴムブレードでクリーニングする手段を有することを特徴とする前記(1)又は(2)に記載の静電荷像現像用トナー。
(4)前記トナーが、有機溶媒中に活性水素基を有する化合物と反応可能な変性ポリエステル系樹脂からなるトナーバインダー成分を含むトナー組成分を溶解又は分散させて形成した溶解又は分散物を、樹脂微粒子を含む水系媒体中で活性水素基を有する化合物と反応させ、得られた分散物から溶媒を除去し、かつトナー表面に付着した該樹脂微粒子を洗浄・脱離して得られるものであることを特徴とする前記(1)〜(3)のいずれかに記載の静電荷像現像用トナー。
(5)前記トナー中のバインダーが、前記変性ポリエステル系樹脂と共に、未変性ポリエステル系樹脂を含有し、該変性ポリエステル系樹脂と該未変性ポリエステル系樹脂との重量比が5/95〜80/20であることを特徴とする前記(4)に記載の静電荷像現像用トナー。
(6)前記樹脂微粒子が、ビニル系樹脂、ポリウレタン樹脂、エポキシ樹脂及びポリエステル樹脂の中から選ばれる少なくとも1種の樹脂からなることを特徴とする前記(4)に記載の静電荷像現像用トナー。
(7)前記(1)〜(6)のいずれかに記載の静電荷像現像用トナーを含有することを特徴とする現像剤。
(8)トナーリサイクル機構を有する現像装置を用い、トナーとして前記(1)〜(6)のいずれかに記載の静電荷像現像用トナーを用いることを特徴とする現像方法。
(9)前記(1)〜(6)のいずれかに記載の静電荷像現像用トナーを収納したことを特徴とするトナー容器。
(10)前記(9)に記載のトナー容器を装着したことを特徴とする現像装置。
【0014】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
本発明の静電荷像現像用トナーは、トナーの体積平均粒径(Dv)は4〜8μmであり、且つフロー式粒子像分析装置によって測定される円相当径2μm以下が25個数%以下であり、円形度の個数分布が下記式を満たすことにより、十分なクリーニング性と細線再現性に優れた高画質を提供できる。
A<30個数%
B<30個数%
C=100−A−B≧40個数%
(A:円相当径3〜10μmで、且つ円形度0.97以上粒子の個数%
B:円相当径3〜10μmで、且つ円形度0.95以下粒子の個数%)
【0015】
トナー体積平均粒径が4μmより小さいと、転写性が悪くなり静電荷像担持体に残留するトナーが多くなり長期にわたってクリーニング性を維持できなかった。また、トナー比表面積が大きくなるために、チャージアップしやすく、画像濃度低下による不具合も発生した。
逆に、8μmを超えると細線再現性が悪かった。また、トナー間の粒子の存在が疎になる凝集性が悪く、低面圧で転写材と定着するようなシステムにおいては、特に定着不良を起こし低温定着性に不具合を生じた。
【0016】
つまり、高画質かつ長期にわたってクリーニング性を維持するためには、体積平均粒径(Dv)が4〜8μmであり、フロー式粒子像分析装置によって測定される3〜10μmの平均円形度が上記式を満足することが必須の条件である。
また、繰り返し使用において長期クリーニング性の維持と、二成分現像剤では現像装置における長期の攪拌においてキャリアの表面にトナーが融着し、キャリアの帯電能力を低下させたり、一成分現像剤として用いた場合には、現像ローラーへのトナーのフィルミングや、トナーを薄層化する為のブレード等の部材へのトナーの融着を発生を防ぐには、フロー式粒子像分析装置によって測定される個数基準の円相当経で2μm以下の粒子が25個数%以下、さらに好ましくは、15個数%以下が有効であることが明らかになった。
【0017】
これは、コールターカウンター(TAII)は電気信号での抵抗変化の計測で測定しているため、2μm以下の微粒子はノイズによる影響が大きく、測定精度に欠け測定できなかったのに対して、画像解析により計測を行なうフロー式粒子像分析装置では2μm以下の微粒子の測定が可能となり、フロー式粒子像分析装置で測定される円相当経2μm以下の微粒子(以下超微粉トナー)を少なくすることによって、繰り返し使用において現像スリーブへのトナー固着を長期にわたって発生しないことが判明した。
【0018】
これは超微粉トナーは、質量が小さいため、像担持体へ移動(現像)するために必要なクーロン力が現像スリーブとのワンデルワールス力よりも弱く、像担持体へ現像されずに現像剤中に超微粉が蓄積し、現像スリーブに付着したトナーは摩擦熱などのストレスを受け最終的に融着する。特に、非画像部では、現像スリーブにトナーが一度現像される力(バイアス)が働くために、融着がより顕著になる傾向がある。現像スリーブにトナーが融着すると抵抗となって、像担持体と現像スリーブの間に、適切なバイアスがかからないために画像濃度低下や濃度ムラが発生しやすくなるためである。
【0019】
また、トナーの体積平均粒径(Dv)と個数平均粒径(Dn)との比(Dv/Dn)は1.00〜1.20が好ましく、更に好ましくは、1.00〜1.10の場合が、トナーの挙動の均一化、安定化、帯電量の均一化の面から好ましい。
【0020】
また、円形度の個数分布がA:円相当径3〜10μmで、且つ内径度0.97以上粒子が30個数%以上の場合、すなわち丸い粒子が多いと、接触式クリーニング方式では、粒子のすり抜けが発生し、長期にわたってクリーニング性を維持できない。また、B:円相当径3〜10μmで、且つ円形度0.95以上粒子が30個数%以上の場合、すなわち形状が変形した粒子が多いと、粒子間の凝集性が悪くなり、細線再現性や、特に面圧の小さな定着装置を用いた場合の低温低着性が悪化する。特に、C=100−A−B≧40個数%の前記式を満足することが、クリーニング性、細線再現性を両立する上で重要である。
【0021】
本発明において粒子の粒径の測定に用いたコールターカウンター及びフロー式粒子像装置の概略を示す。体積平均粒径及びDv/Dnの測定は、米国コールターエレクトロニクス社製のコールターカウンターTAIIに個数分布,体積分布を出力するインターフェイス(日科機製)及びPC9801パーソナルコンピューター(NEC製)に接続して用いる。電解液は、1級塩化ナトリウムを用いて1%NaCl水溶液に調整する。測定方法としては、前記電解液50〜100ml中に分散剤として界面活性剤、好ましくはアルキルベンゼンスルフォン酸塩を0.1〜5ml加え、試料を1〜10mg加える。これを、超音波分散機で1分間の分散処理を行ない。別のビーカーに電解水溶液100〜200mlを入れ、その中に前記サンプル分散液を所定の濃度になるように加え、前記コールターカウンターTA−II型によりアパーチャーとして100μmアパーチャーを用いて個数を基準として2〜40μmの粒子の30000個の粒度分布を測定し、2〜40μmの粒子の体積分布と個数分布を算出し、体積平均粒径(Dv:各チャンネルの中央値をチャンネルの代表値とする)およびDv/Dnを求める。
【0022】
円相当径および各円形度における個数%の測定は(株)SYSMEX製フロー式粒子像分析装置FPIA−1000を用いて測定することができる。装置および測定の概略は特開平8−136439号公報に記載されている。測定は、1級塩化ナトリウムを用いて1%NaCl水溶液に調整した後0.45μmのフィルターを通した液50〜100mlに分散剤として界面活性剤、好ましくはアルキルベンゼンスルフォン酸塩を0.1〜5ml加え、試料を1〜10mg加える。これを、超音波分散機で1分間の分散処理を行ない、粒子濃度を5000〜15000個/μlに調整した分散液を用いて測定を行なう。粒子個数の測定は、CCDカメラで撮像した2次元の画像面積と、同一の面積を有する円の直径を円相当径として算出を行なう。CCDの画素の精度から、円相当径で0.6μm以上を有効とし粒子の測定データを得る。
【0023】
本発明において、トナーを、その体積平均粒径(Dv)が4〜8μmであり、前記円相当径2μm以下の粒子を25個数%以下、かつ円形度の個数分布が前記式を満足するものとするには、乳化分散体を作製するときの、分散条件により、目的とする体積平均粒径、および2μm以下の個数%をもった粒子を得ることができる。円形度の個数分布については、得られた粒子(乳化分散体)は実質球状を有するために、粒子(分散体)中の有機溶剤の存在下で、乳化分散液に攪拌等によるシェアにより変形させ、この変形した粒子(分散体)の有機溶剤を抜くことで固定化することにより得ることができる。また、攪拌条件等によっては微粉の発生があった場合は、分散液中の粒子を公知の湿式分級や、乾燥後の粒子を公知の風力分級等を実施することもできる。
【0024】
本発明において好適なトナーについて説明する。
本発明のトナーは、紡錘形状であることが好ましい。
トナー形状が一定しない不定形、又は扁平形状では粉体流動性が悪いことから、次のような課題を持つ。摩擦帯電が円滑に行えないことから地肌汚れ等の問題が発生しやすい。微小な潜像ドットを現像する際には、緻密で均一なトナー配置をとりにくいことから、ドット再現性に劣る。静電転写方式では、電気力線の影響を受けにくく、転写効率が劣る。
トナーが真球に近い場合、粉体流動性が良すぎて、外力に対して過度に作用してしまうことから、現像及び転写の際に、ドットの外側にトナー粒子が飛び散りやすいといった問題がある。また、球形トナーでは、感光体上で転がりやすいために、感光体とクリーニング部材との間に潜り込みクリーニング不良となることが多いという問題点がある。
【0025】
本発明の紡錘形状のトナーは、粉体流動性が適度に調節されているために、摩擦帯電が円滑に行われて地肌汚れを発生させることがなく、微小な潜像ドットに対して整然と現像され、その後、効率よく転写されてドット再現性に優れる。更に、その際の飛び散りに対しては、粉体流動性が適度にブレーキをかけて飛び散りを防いでいる。紡錘形状のトナーは球形トナーに比べて、転がる軸が限られていることから、クリーニング部材の下に潜り込むようなクリーニング不良が発生しにくい。
【0026】
トナー形状を図1(a)及び(b)に基づいて説明する。
本発明の紡錘形状のトナーは、短軸と長軸との比(r2/r1)が0.5〜0.8で、厚さと短軸との比(r3/r2)が0.7〜1.0で表される紡錘形状であることが好ましい。
短軸と長軸との比(r2/r1)が0.5未満では、真球形状から離れるためにクリーニング性が高いが、ドット再現性及び転写効率が劣るために高品位な画質が得られなくなる。一方短軸と長軸との比(r2/r1)が0.8を越えると、球形に近づくために、低温低湿の環境下では特にクリーニング不良が発生することがある。
また、厚さと短軸との比(r3/r2)が0.7未満では、扁平形状に近く、不定形トナーのように飛び散りは少ないが、球形トナーのような高転写率は得られない。特に、厚さと短軸との比(r3/r2)が1.0では、長軸を回転軸とする回転体となる。これに近い紡錘形状にすることで不定形・扁平形状でもなく真球状でもない形状であって、双方の形状が有する摩擦帯電性、ドット再現性、転写効率、飛び散りの防止性、クリーニング性の全てを満足させる形状となる。なお、r1、r2、r3は、走査型電子顕微鏡(SEM)で、視野の角度を変えて写真を撮り、観察しながら測定した。
【0027】
(樹脂微粒子)
本発明で使用される樹脂微粒子は、ガラス転移点(Tg)が50〜90℃であることが好ましく、ガラス転移点(Tg)が50℃未満の場合、トナー保存性が悪化してしまい、保管時および現像機内でブロッキングを発生してしまう。ガラス転移点(Tg)が90℃超の場合、樹脂微粒子が定着紙との接着性を阻害してしまい、定着下限温度が上がってしまう。更に好ましい範囲としては50〜70℃の範囲があげられる。
【0028】
また、その重量平均分子量は10万以下であることが望ましい。好ましくは5万以下である。その下限値は、通常4000である。重量平均分子量が10万を超える場合、樹脂微粒子が定着紙との接着性を阻害してしまい、定着下限温度が上がってしまう。
【0029】
樹脂微粒子は水性分散体を形成しうる樹脂であればいかなる樹脂も使用でき、熱可塑性樹脂でも熱硬化性樹脂でもよいが、例えばビニル系樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ケイ素系樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、アニリン樹脂、アイオノマー樹脂、ポリカーボネート樹脂等が挙げられる。樹脂微粒子としては、上記の樹脂を2種以上併用しても差し支えない。このうち好ましいのは、微細球状樹脂粒子の水性分散体が得られやすい点から、ビニル系樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリエステル樹脂又はそれらの併用樹脂からなるものが好ましい。
【0030】
ビニル系樹脂としては、ビニル系モノマーを単独重合また共重合したポリマーで、例えば、スチレン−(メタ)アクリル酸エステル樹脂、スチレン−ブタジエン共重合体、(メタ)アクリル酸−アクリル酸エステル重合体、スチレン−アクリロニトリル共重合体、スチレン−無水マレイン酸共重合体、スチレン−(メタ)アクリル酸共重合体等が挙げられる。
樹脂微粒子において、その平均粒径は5〜200nmが好ましく、より好ましくは20〜300nmである。
【0031】
(樹脂微粒子の被覆率)
本発明トナーにおける樹脂微粒子は、トナー形状(円形度、粒度分布など)を制御する(揃える)ために、その製造工程で添加されるが、トナー表面上に偏在する樹脂微粒子のガラス転移点(Tg)が50〜90℃であり、トナー粒子に対する被覆率が1〜99%の範囲であることが好ましい。被覆率90%超では、トナー粒子表面を樹脂微粒子が ほぼ完全に被覆してしまっている状態であり、トナー粒子内部のワックスのしみ出しを阻害し、ワックスの離型性効果が得られず、オフセットを発生してしまう。ガラス転移点(Tg)が50℃未満の場合、トナー保存性が悪化してしまい、保管時および現像機内でブロッキングを発生してしまう。ガラス転移点(Tg)が90℃超の場合、樹脂微粒子がトナーの定着紙との接着性を阻害してしまい、定着下限温度が上がってしまう。従って、十分な定着温度幅を確保できないため、低温定着システムの複写機では定着できない、または定着画像を擦ると剥がれてしまうといった不具合が発生する。本発明の樹脂微粒子はトナーの摩擦帯電性を良好にする機能を持っている。そこで、被覆率が1%未満では、トナーに十分な摩擦帯電特性を付与することができないため、十分な画像濃度を出せなかったり、地肌汚れを発生したりする。また、被覆率は、より好ましくは5〜80%の範囲である。
樹脂微粒子の被覆率は、まず倍率5万倍でトナー表面の電子顕微鏡写真を数視野撮り、その中から、なるべく傾きや亀裂のない表面を選び、ルーゼックスIII画像解析装置で、トナー表面に対する樹脂微粒子の被覆率を測定することによって得られる。
【0032】
(結着樹脂)
結着樹脂(バインダー)としては、従来の一般的な材料を使用することができる。従来、トナー製造に用いられる結着樹脂としては、例えば、ポリエステル樹脂、スチレン樹脂、アクリル樹脂、エポキシ樹脂等があるが、通常のトナーにおいては、これらの中でもスチレンとアクリル酸エステルの共重合体からなる樹脂が最も一般的に使われている。これに対して、低温定着トナーにおいては、上述したような熱特性を満たしやすい樹脂である。ポリエステル樹脂は結着樹脂の軟化温度が低くガラス転移点が高いことにより、低温定着性と保存安定性に優れている。更にポリエステル樹脂のエステル結合と紙との親和性が良好であるため、耐オフセット性にも優れたトナーになる。
【0033】
本発明の静電荷像現像用トナーの結着樹脂の主成分に用いられるポリエステル樹脂は、酸成分とアルコール成分の縮合反応、或いは環状エステルの開環反応により合成されるか、或いは、ハロゲン化合物とアルコール成分及び一酸化炭素により合成される。本発明の静電荷像現像用トナーの製造方法においては、上記した高分子化合物(樹脂微粒子)溶液中で、ポリエステル樹脂の合成材料となる上記したモノマーを組み合わせて重合させることによって、先に述べた優れた物性を有する本発明の静電荷像現像用トナーが容易に得られる。以下、ポリエステル樹脂の合成材料として用いられる各種モノマーについて説明する。
【0034】
先ず、アルコール成分及び酸成分としては、2価以上のものが好適に用いられる。例えば、2価のアルコールとしては、エチレングリコール、トリエチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、ネオペンチルグリコール、1,4−ブテンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール等のジオール類;ビスフェノールA、水素添加ビスフェノールA、α,α′−ビス(4−ヒドロキシフェニル)−1,4−ジイソプロピルベンゼン、ポリオキシエチレン化ビスフェノールA、ポリオキシプロピレン化ビスフェノールA等のビスフェノールAアルキレンオキシド付加物等が挙げられる。
【0035】
又、3価以上のアルコールとしては、例えば、ソルビトール、1,2,3,6−ヘキサンテトロール、1,4−ソルビタン、ペンタエリスリトール、蔗糖、1,2,4−ブタントリオール、1,2,5−ペンタトリオール、グリセロール、2−メチルプロパントリオール、2−メチル−1,2,4−ブタンジトリオール、トリメチロールメタン、トリメチロールエタン、トリメチロールプロパン、1,3,5−トリヒドロキシメチルベンゼン等が挙げられる。
【0036】
2価の酸としては、例えば、マレイン酸、フマール酸、シトラコン酸、イタコン酸、グルタコン酸、フタル酸、イソフタル酸、テレフタル酸、シクロヘキサンジカルボン酸、コハク酸、アジピン酸、セバチン酸、アゼライン酸、マロン酸、及びその他の2価の有機酸が挙げられる。又、3価の酸としては、例えば、1,2,4−ベンゼントリカルボン酸、1,2,5−ベンゼントリカルボン酸、1,2,4−シクロヘキサントリカルボン酸、2,5,7−ナフタレントリカルボン酸、1,2,5−ナフタレントリカルボン酸、1,2,5−ヘキサントリカルボン酸、1,3−ジカルボキシル−2−メチル−2−カルボキシメチルプロパン、テトラ(カルボキシメチル)メタン、1,2,7,8−オクタンテトラカルボン酸等が挙げられる。これら有機酸の酸無水物及び酸ハロゲン化物も合成上好ましい酸成分である。
【0037】
これ以外の酸成分に相当する化合物としては、ハロゲン化合物を用いることができる。ハロゲン化物としては多ハロゲン化合物を使用するが、例えば、cis−1,2−ジクロロエテン、trans−1,2−ジクロロエテン、1,2−ジクロロプロペン、2,3−ジクロロプロペン、1,3−ジクロロプロペン、o−ジクロロベンゼン、m−ジクロロベンゼン、p−ジクロロベンゼン、o−ジブロモベンゼン、m−ジブロモベンゼン、p−ジブロモベンゼン、o−クロロブロモベンゼン、ジクロロシクロヘキサン、ジクロロエタン、1,4−ジクロロブタン、1,8−ジクロロオクタン、1,7−ジクロロオクタン、ジクロロメタン、4,4′−ジブロモビニルフェノール、1,2,4−トリブロモベンゼン等が挙げられる。
【0038】
本発明においては、ポリエステル樹脂の合成成分として、上記に挙げた酸成分とアルコール成分のどちらか一方に、少なくとも芳香環を有するものを使用することが好ましい。又、本発明においては、ポリエステル樹脂の合成成分である酸成分とアルコール成分の合計量が、先に述べた高分子化合物(樹脂微粒子)1重量部に対して1〜30重量部、好ましくは1.5〜10重量部の範囲となる様にして用いることが好ましい。
【0039】
又、酸成分とアルコール成分の使用比は、カルボキシル基1モル当量に対して、アルコール基0.9〜1.5モル当量、好ましくは1.0〜1.3モル当量の範囲であることが好ましい。尚、ここでいうカルボキシル基としては、上記に挙げた酸成分に相当する化合物であるハロゲン化物も含まれる。その他の添加剤としては、アミン成分を用いてもよい。具体的には例えば、トリエチルアミン、トリメチルアミン、N,N−ジメチルアニリン等が挙げられる。又、他の縮合剤、例えば、ジシクロヘキシルカルボジイミド等を用いて反応を行ってもよい。
【0040】
(活性水素基を有する化合物と反応可能な変性ポリエステル)
活性水素基を有する化合物と反応可能な反応性変性ポリエステル系樹脂(RMPE)(以下、ポリエステル系樹脂は単にポリエステルとも言う)には、例えば、インシアネート基等の活性水素と反応する官能基を有するポリエステルプレポリマー等が包含される。本発明で好ましく使用されるポリエステルプレポリマーは、イソシアネート基を有するポリエステルプレポリマー(A)である。このイソシアネート基を有するポリエステルプレポリマー(A)は、ポリオール(PO)とポリカルボン酸(PC)の重縮合物でかつ活性水素基を有するポリエステルにポリイソシアネート(PIC)と反応させることによって製造される。上記ポリエステルの有する活性水素基としては、水酸基(アルコール性水酸基およびフェノール性水酸基)、アミノ基、カルボキシル基、メルカプト基などが挙げられ、これらのうち好ましいものはアルコール性水酸基である。
【0041】
ポリオールとしては、ジオール(DIO)および3価以上のポリオール(TO)が挙げられ、DIO単独、またはDIOと少量のTOとの混合物が好ましい。ジオールとしては、アルキレングリコール(エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオールなど);アルキレンエーテルグリコール(ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコールなど);脂環式ジオール(1,4−シクロヘキサンジメタノール、水素添加ビスフェノールAなど);ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールSなど);上記脂環式ジオールのアルキレンオキサイド(エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドなど)付加物;上記ビスフェノール類のアルキレンオキサイド(エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドなど)付加物などが挙げられる。これらのうち好ましいものは、炭素数2〜12のアルキレングリコールおよびビスフェノール類のアルキレンオキサイド付加物であり、特に好ましいものはビスフェノール類のアルキレンオキサイド付加物、およびこれと炭素数2〜12のアルキレングリコールとの併用である。
【0042】
3価以上のポリオールとしては、3〜8価またはそれ以上の多価脂肪族アルコール(グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ソルビトールなど);3価以上のフェノール類(トリスフェノールPA、フェノールノボラック、クレゾールノボラックなど);上記3価以上のポリフェノール類のアルキレンオキサイド付加物などが挙げられる。
【0043】
ポリカルボン酸(PC)としては、ジカルボン酸(DIC)および3価以上のポリカルボン酸(TC)が挙げられ、DIC単独、およびDICと少量のTCとの混合物が好ましい。
ジカルボン酸としては、アルキレンジカルボン酸(コハク酸、アジピン酸、セバシン酸など);アルケニレンジカルボン酸(マレイン酸、フマール酸など);芳香族ジカルボン酸(フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸など)などが挙げられる。これらのうち好ましいものは、炭素数4〜20のアルケニレンジカルボン酸および炭素数8〜20の芳香族ジカルボン酸である。
【0044】
3価以上のポリカルボン酸としては、炭素数9〜20の芳香族ポリカルボン酸(トリメリット酸、ピロメリット酸など)などが挙げられる。なお、ポリカルボン酸としては、上述のものの酸無水物または低級アルキルエステル(メチルエステル、エチルエステル、イソプロピルエステルなど)を用いてポリオールと反応させてもよい。
【0045】
ポリオールとポリカルボン酸の比率は、水酸基[OH]とカルボキシル基[COOH]の当量比[OH]/[COOH]として、通常2/1〜1/1、好ましくは1.5/1〜1/1、さらに好ましくは1.3/1〜1.02/1である。
【0046】
ポリイソシアネート(PIC)としては、脂肪族ポリイソシアネート(テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,6−ジイソシアナトメチルカプロエートなど);脂環式ポリイソシアネート(イソホロンジイソシアネート、シクロヘキシルメタンジイソシアネートなど);芳香族ジイソシアネート(トリレンジイソシアネート、ジフェニルメタンジイソシアネートなど);芳香脂肪族ジイソシアネート(α,α,α′,α′−テトラメチルキシリレンジイソシアネートなど);イソシアヌレート類;前記ポリイソシアネートをフェノール誘導体、オキシム、カプロラクタムなどでブロックしたもの;およびこれら2種以上の併用が挙げられる。
【0047】
ポリイソシアネートの比率は、イソシアネート基[NCO]と、水酸基を有するポリエステルの水酸基[OH]の当量比[NCO]/[OH]として、通常5/1〜1/1、好ましくは4/1〜1.2/1、さらに好ましくは2.5/1〜1.5/1である。[NCO]/[OH]が5を超えると低温定着性が悪化する。[NCO]のモル比が1未満では、変性ポリエステル中のウレア含量が低くなり、耐ホットオフセット性が悪化する。
【0048】
末端にイソシアネート基を有するプレポリマー(A)中のポリイソシアネート(PIC)構成成分の含有量は、通常0.5〜40重量%、好ましくは1〜30重量%、さらに好ましくは2〜20重量%である。0.5重量%未満では、耐ホットオフセット性が悪化するとともに、耐熱保存性と低温定着性の両立の面で不利になる。また、40重量%を超えると低温定着性が悪化する。
【0049】
イソシアネート基を有するポリエステルプレポリマー(A)中の1分子当たりに含有するイソシアネート基は、通常1個以上、好ましくは、平均1.5〜3個、さらに好ましくは、平均1.8〜2.5個である。1分子当たり1個未満では、ウレア変性ポリエステルの分子量が低くなり、耐ホットオフセット性が悪化する。
【0050】
前記イソシアネート基を有するポリエステルプレポリマー(A)からは、これにアミン類(B)を反応させることにより、ウレア変性ポリエステル系樹脂(UMPE)を得ることができる。このものは、トナーバインダーとしてすぐれた効果を示す。
【0051】
アミン類(B)としては、ジアミン(B1)、3価以上のポリアミン(B2)、アミノアルコール(B3)、アミノメルカプタン(B4)、アミノ酸(B5)、およびB1〜B5のアミノ基をブロックしたもの(B6)などが挙げられる。ジアミン(B1)としては、芳香族ジアミン(フェニレンジアミン、ジエチルトルエンジアミン、4,4′−ジアミノジフェニルメタンなど);脂環式ジアミン(4,4′−ジアミノ−3,3′−ジメチルジシクロヘキシルメタン、ジアミンシクロヘキサン、イソホロンジアミンなど);および脂肪族ジアミン(エチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミンなど)などが挙げられる。3価以上のポリアミン(B2)としては、ジエチレントリアミン、トリエチレンテトラミンなどが挙げられる。アミノアルコール(B3)としては、エタノールアミン、ヒドロキシエチルアニリンなどが挙げられる。アミノメルカプタン(B4)としては、アミノエチルメルカプタン、アミノプロピルメルカプタンなどが挙げられる。アミノ酸(B5)としては、アミノプロピオン酸、アミノカプロン酸などが挙げられる。B1〜B5のアミノ基をブロックしたもの(B6)としては、前記B1〜B5のアミン類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトンなど)から得られるケチミン化合物、オキサゾリジン化合物などが挙げられる。これらアミン類(B)のうち好ましいものは、B1およびB1と少量のB2の混合物である。
【0052】
さらに、必要により伸長停止剤を用いてウレア変性ポリエステル等の変性ポリエステルの分子量を調整することができる。伸長停止剤としては、モノアミン(ジエチルアミン、ジブチルアミン、ブチルアミン、ラウリルアミンなど)、およびそれらをブロックしたもの(ケチミン化合物)などが挙げられる。
【0053】
アミン類(B)の比率は、イソシアネート基を有するプレポリマー(A)中のイソシアネート基[NCO]と、アミン類(B)中のアミノ基[NHx]の当量比[NCO]/[NHx]として、通常1/2〜2/1、好ましくは1.5/1〜1/1.5、さらに好ましくは1.2/1〜1/1.2である。[NCO]/[NHx]が2を超えたり1/2未満では、ウレア変性ポリエステルの分子量が低くなり、耐ホットオフセット性が悪化する。
【0054】
本発明においては、ウレア結合で変性されたポリエステル中に、ウレア結合と共にウレタン結合を含有していてもよい。ウレア結合含有量とウレタン結合含有量のモル比は、通常100/0〜10/90であり、好ましくは80/20〜20/80、さらに好ましくは、60/40〜30/70である。ウレア結合のモル比が10%未満では、耐ホットオフセット性が悪化する。
【0055】
前記アミン類(B)は、活性水素基を有する化合物と反応可能な変性ポリエステルに対する架橋剤や伸長剤として作用する。
【0056】
本発明で用いるウレア変性ポリエステルは、ワンショット法、プレポリマー法により製造される。ウレア変性ポリエステル等の変性ポリエステルの重量平均分子量は、通常1万以上、好ましくは2万〜1000万、さらに好ましくは3万〜100万である。1万未満では耐ホットオフセット性が悪化する。ウレア変性ポリエステル等の変性ポリエステルの数平均分子量は、後述の変性されていないポリエステルを用いる場合は特に限定されるものではなく、前記重量平均分子量とするのに得やすい数平均分子量でよい。ウレア変性ポリエステル等の変性ポリエステル単独の場合は、数平均分子量は、通常20000以下、好ましくは1000〜10000、さらに好ましくは2000〜8000である。20000を超えると低温定着性およびフルカラー装置に用いた場合の光沢性が悪化する。
【0057】
(未変性ポリエステル)
本発明においては、前記ウレア結合で変性されたポリエステル等の変性ポリエステル(MPE)単独使用だけでなく、このものと共に、変性されていないポリエステル(PE)をトナーバインダー成分として含有させることもできる。PEを併用することで、低温定着性およびフルカラー装置に用いた場合の光沢性が向上し、単独使用より好ましい。PEとしては、前記MPEのポリエステル成分と同様なポリオールとポリカルボン酸との重縮合物などが挙げられ、好ましいものもMPEと同様である。また、PEは無変性のポリエステルだけでなく、ウレア結合以外の化学結合で変性されているものでもよく、例えばウレタン結合で変性されていてもよい。MPEとPEは少なくとも一部が相溶していることが低温定着性、耐ホットオフセット性の面で好ましい。従って、MPEのポリエステル成分とPEは類似の組成が好ましい。
【0058】
PEを含有させる場合のMPEとPEの重量比は、通常5/95〜80/20、好ましくは5/95〜30/70、さらに好ましくは5/95〜25/75、特に好ましくは7/93〜20/80である。MPEの重量比が5%未満では、耐ホットオフセット性が悪化するとともに、耐熱保存性と低温定着性の両立の面で不利になる。
【0059】
PEのピーク分子量は、通常1000〜30000、好ましくは1500〜10000、さらに好ましくは2000〜8000である。1000未満では耐熱保存性が悪化し、10000を超えると低温定着性が悪化する。PEの水酸基価は5以上であることが好ましく、さらに好ましくは10〜120、特に好ましくは20〜80である。5未満では耐熱保存性と低温定着性の両立の面で不利になる。PEの酸価は通常1〜30、好ましくは5〜20である。酸価を持たせることで負帯電性となりやすい傾向がある。
【0060】
本発明において、トナー中のバインダー(トナーバインダー)のガラス転移点(Tg)は、通常50〜70℃、好ましくは55〜65℃である。50℃未満ではトナーの耐熱保存性が悪化し、70℃を超えると低温定着性が不十分となる。ウレア変性ポリエステル系樹脂等の変性ポリエステルの共存により、本発明の乾式トナーにおいては、公知のポリエステル系トナーと比較して、ガラス転移点が低くても耐熱保存性が良好な傾向を示す。
【0061】
トナーバインダーの貯蔵弾性率としては、測定周波数20Hzにおいて10000dyne/cm2となる温度(TG′)が、通常100℃以上、好ましくは110〜200℃である。100℃未満では耐ホットオフセット性が悪化する。トナーバインダーの粘性としては、測定周波数20Hzにおいて1000ポイズとなる温度(Tη)が、通常180℃以下、好ましくは90〜160℃である。180℃を超えると低温定着性が悪化する。すなわち、低温定着性と耐ホットオフセット性の両立の観点から、TG′はTηより高いことが好ましい。言い換えるとTG′とTηの差(TG′−Tη)は0℃以上が好ましい。さらに好ましくは10℃以上であり、特に好ましくは20℃以上である。差の上限は特に限定されない。また、耐熱保存性と低温定着性の両立の観点から、TηとTgの差は0〜100℃が好ましい。さらに好ましくは10〜90℃であり、特に好ましくは20〜80℃である。
【0062】
(着色剤)
本発明のトナーにおいて用いる着色剤としては、公知の染料及び顔料が全て使用でき、例えば、カーボンブラック、ニグロシン染料、鉄黒、ナフトールイエローS、ハンザイエロー(10G、5G、G)、カドミュウムイエロー、黄色酸化鉄、黄土、黄鉛、チタン黄、ポリアゾイエロー、オイルイエロー、ハンザイエロー(GR、A、RN、R)、ピグメントイエローL、ベンジジンイエロー(G、GR)、パーマネントイエロー(NCG)、バルカンファストイエロー(5G、R)、タートラジンレーキ、キノリンイエローレーキ、アンスラザンイエローBGL、イソインドリノンイエロー、ベンガラ、鉛丹、鉛朱、カドミュウムレッド、カドミュウムマーキュリレッド、アンチモン朱、パーマネントレッド4R、パラレッド、ファイセーレッド、パラクロルオルトニトロアニリンレッド、リソールファストスカーレットG、ブリリアントファストスカーレット、ブリリアントカーンミンBS、パーマネントレッド(F2R、F4R、FRL、FRLL、F4RH)、ファストスカーレットVD、ベルカンファストルビンB、ブリリアントスカーレットG、リソールルビンGX、パーマネントレッドF5R、ブリリアントカーミン6B、ポグメントスカーレット3B、ボルドー5B、トルイジンマルーン、パーマネントボルドーF2K、ヘリオボルドーBL、ボルドー10B、ボンマルーンライト、ボンマルーンメジアム、エオシンレーキ、ローダミンレーキB、ローダミンレーキY、アリザリンレーキ、チオインジゴレッドB、チオインジゴマルーン、オイルレッド、キナクリドンレッド、ピラゾロンレッド、ポリアゾレッド、クロームバーミリオン、ベンジジンオレンジ、ペリノンオレンジ、オイルオレンジ、コバルトブルー、セルリアンブルー、アルカリブルーレーキ、ピーコックブルーレーキ、ビクトリアブルーレーキ、無金属フタロシアニンブルー、フタロシアニンブルー、ファストスカイブルー、インダンスレンブルー(RS、BC)、インジゴ、群青、紺青、アントラキノンブルー、ファストバイオレットB、メチルバイオレットレーキ、コバルト紫、マンガン紫、ジオキサンバイオレット、アントラキノンバイオレット、クロムグリーン、ジンクグリーン、酸化クロム、ピリジアン、エメラルドグリーン、ピグメントグリーンB、ナフトールグリーンB、グリーンゴールド、アシッドグリーンレーキ、マラカイトグリーンレーキ、フタロシアニングリーン、アントラキノングリーン、酸化チタン、亜鉛華、リトボン及びそれらの混合物が使用できる。
着色剤の含有量はトナーに対して通常1〜15重量%、好ましくは3〜10重量%である。
【0063】
本発明においては、用いる着色剤は樹脂と複合化されたマスターバッチとして用いることもできる。マスターバッチの製造またはマスターバッチとともに混練されるバインダー樹脂としては、先にあげた変性、未変性ポリエステル樹脂の他にポリスチレン、ポリp−クロロスチレン、ポリビニルトルエンなどのスチレン及びその置換体の重合体;スチレン−p−クロロスチレン共重合体、スチレン−プロピレン共重合体、スチレン−ビニルトルエン共重合体、スチレン−ビニルナフタリン共重合体、スチレン−アクリル酸メチル共重合体、スチレン−アクリル酸エチル共重合体、スチレン−アクリル酸ブチル共重合体、スチレン−アクリル酸オクチル共重合体、スチレン−メタクリル酸メチル共重合体、スチレン−メタクリル酸エチル共重合体、スチレン−メタクリル酸ブチル共重合体、スチレン−α−クロルメタクリル酸メチル共重合体、スチレン−アクリロニトリル共重合体、スチレン−ビニルメチルケトン共重合体、スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体、スチレン−アクリロニトリル−インデン共重合体、スチレン−マレイン酸共重合体、スチレン−マレイン酸エステル共重合体などのスチレン系共重合体;ポリメチルメタクリレート、ポリブチルメタクリレート、ポリ塩化ビニル、ポリ酢酸ビニル、ポリエチレン、ポリプロピレン、ポリエステル、エポキシ樹脂、エポキシポリオール樹脂、ポリウレタン、ポリアミド、ポリビニルブチラール、ポリアクリル酸樹脂、ロジン、変性ロジン、テルペン樹脂、脂肪族又は脂環族炭化水素樹脂、芳香族系石油樹脂、塩素化パラフィン、パラフィンワックスなどが挙げられ、単独あるいは混合して使用できる。
【0064】
本マスターバッチはマスターバッチ用の樹脂と着色剤とを高せん断力をかけて混合、混練してマスターバッチを得る事ができる。この際着色剤と樹脂の相互作用を高めるために、有機溶剤を用いる事ができる。またいわゆるフラッシング法と呼ばれる着色剤の水を含んだ水性ペーストを樹脂と有機溶剤とともに混合混練し、着色剤を樹脂側に移行させ、水分と有機溶剤成分を除去する方法も着色剤のウエットケーキをそのまま用いる事ができるため乾燥する必要がなく、好ましく用いられる。混合混練するには3本ロールミル等の高せん断分散装置が好ましく用いられる。
【0065】
(離型剤)
本発明のトナーにおいて、トナーに対しては、トナーバインダー、着色剤とともにワックスを含有させることもできる。ワックスとしては公知のものが使用でき、例えばポリオレフィンワックス(ポリエチレンワックス、ポリプロピレンワックスなど);長鎖炭化水素(パラフィンワックス、サゾールワックスなど);カルボニル基含有ワックスなどが挙げられる。これらのうち好ましいものは、カルボニル基含有ワックスである。カルボニル基含有ワックスとしては、ポリアルカン酸エステル(カルナバワックス、モンタンワックス、トリメチロールプロパントリベヘネート、ペンタエリスリトールテトラベヘネート、ペンタエリスリトールジアセテートジベヘネート、グリセリントリベヘネート、1,18−オクタデカンジオールジステアレートなど);ポリアルカノールエステル(トリメリット酸トリステアリル、ジステアリルマレエートなど);ポリアルカン酸アミド(エチレンジアミンジベヘニルアミドなど);ポリアルキルアミド(トリメリット酸トリステアリルアミドなど);およびジアルキルケトン(ジステアリルケトンなど)などが挙げられる。これらカルボニル基含有ワックスのうち好ましいものは、ポリアルカン酸エステルである。
【0066】
本発明のワックスの融点は、通常40〜160℃であり、好ましくは50〜120℃、さらに好ましくは60〜90℃である。融点が40℃未満のワックスは耐熱保存性に悪影響を与え、160℃を超えるワックスは低温での定着時にコールドオフセットを起こしやすい。また、ワックスの溶融粘度は、融点より20℃高い温度での測定値として、5〜1000cpsが好ましく、さらに好ましくは10〜100cpsである。1000cpsを超えるワックスは、耐ホットオフセット性、低温定着性への向上効果に乏しい。
トナー中のワックスの含有量は通常0〜40重量%であり、好ましくは3〜30重量%である。
【0067】
(帯電制御剤)
本発明のトナーは、必要に応じて帯電制御剤を含有してもよい。帯電制御剤としては公知のものが全て使用でき、例えばニグロシン系染料、トリフェニルメタン系染料、クロム含有金属錯体染料、モリブデン酸キレート顔料、ローダミン系染料、アルコキシ系アミン、4級アンモニウム塩(フッ素変性4級アンモニウム塩を含む)、アルキルアミド、燐の単体または化合物、タングステンの単体または化合物、フッ素系活性剤、サリチル酸金属塩、及びサリチル酸誘導体の金属塩等である。具体的にはニグロシン系染料のボントロン03、第四級アンモニウム塩のボントロンP−51、含金属アゾ染料のボントロンS−34、オキシナフトエ酸系金属錯体のE−82、サリチル酸系金属錯体のE−84、フェノール系縮合物のE−89(以上、オリエント化学工業社製)、第四級アンモニウム塩モリブデン錯体のTP−302、TP−415(以上、保土谷化学工業社製)、第四級アンモニウム塩のコピーチャージPSY VP2038、トリフェニルメタン誘導体のコピーブルーPR、第四級アンモニウム塩のコピーチャージNEG VP2036、コピーチャージNX VP434(以上、ヘキスト社製)、LRA−901、ホウ素錯体であるLR−147(日本カーリット社製)、銅フタロシアニン、ペリレン、キナクリドン、アゾ系顔料、その他スルホン酸基、カルボキシル基、四級アンモニウム塩等の官能基を有する高分子系の化合物が挙げられる。
【0068】
本発明において帯電制御剤の使用量は、バインダー樹脂の種類、必要に応じて使用される添加剤の有無、分散方法を含めたトナー製造方法によって決定されるもので、一義的に限定されるものではないが、好ましくはバインダー樹脂100重量部に対して、0.1〜10重量部の範囲で用いられる。好ましくは、0.2〜5重量部の範囲がよい。10重量部を越える場合にはトナーの帯電性が大きすぎ、主帯電制御剤の効果を減退させ、現像ローラとの静電的吸引力が増大し、現像剤の流動性低下や、画像濃度の低下を招く。これらの帯電制御剤はマスターバッチ、樹脂とともに溶融混練した後溶解分散させる事もできるし、もちろん有機溶剤に直接溶解、分散する際に加えても良いし、トナー表面にトナー粒子作成後固定化させてもよい。
【0069】
(外添剤)
本発明で得られた着色樹脂粒子の流動性や現像性、帯電性を補助するための外添剤としては、無機微粒子を好ましく用いることができる。この無機微粒子の一次粒子径は、5mμ〜2μmであることが好ましく、特に5mμ〜500mμであることが好ましい。また、BET法による比表面積は、20〜500m2/gであることが好ましい。
この無機微粒子の使用割合は、トナーの0.01〜5重量%であることが好ましく、特に0.01〜2.0重量%であることが好ましい。
無機微粒子の具体例としては、例えばシリカ、アルミナ、酸化チタン、チタン酸バリウム、チタン酸マグネシウム、チタン酸カルシウム、チタン酸ストロンチウム、酸化亜鉛、酸化スズ、ケイ砂、クレー、雲母、ケイ灰石、ケイソウ土、酸化クロム、酸化セリウム、ペンガラ、三酸化アンチモン、酸化マグネシウム、酸化ジルコニウム、硫酸バリウム、炭酸バリウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素などを挙げることができる。
【0070】
この他高分子系微粒子たとえばソープフリー乳化重合や懸濁重合、分散重合によって得られるポリスチレン、メタクリル酸エステルやアクリル酸エステル共重合体やシリコーン、ベンゾグアナミン、ナイロンなどの重縮合系、熱硬化性樹脂による重合体粒子が挙げられる。
【0071】
このような外添剤は表面処理を行って、疎水性を上げ、高湿度下においても流動特性や帯電特性の悪化を防止することができる。例えばシランカップリング剤、シリル化剤、フッ化アルキル基を有するシランカップリング剤、有機チタネート系カップリング剤、アルミニウム系のカップリング剤、シリコーンオイル、変性シリコーンオイルなどが好ましい表面処理剤として挙げられる。
【0072】
感光体や一次転写媒体に残存する転写後の現像剤を除去するためのクリーニング性向上剤を用いることが好ましく、該クリーニング性向上剤としては、例えばステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸など脂肪酸金属塩、例えばポリメチルメタクリレート微粒子、ポリスチレン微粒子などのソープフリー乳化重合などによって製造された、ポリマー微粒子などを挙げることかできる。ポリマー微粒子は比較的粒度分布が狭く、体積平均粒径が0.01〜1μmのものが好ましい。
【0073】
(製造方法)
トナーバインダーは以下の方法などで製造することができる。ポリオールとポリカルボン酸を、テトラブトキシチタネート、ジブチルチンオキサイドなど公知のエステル化触媒の存在下、150〜280℃に加熱し、必要により減圧としながら生成する水を留去して、水酸基を有するポリエステルを得る。次いで40〜140℃にて、これにポリイソシアネートを反応させ、イソシアネート基を有するプレポリマー(A)を得る。さらにこのAにアミン類(B)を0〜140℃にて反応させ、ウレア結合で変性されたポリエステルを得る。ポリイソシアネートを反応させる際およびAとBを反応させる際には、必要により溶剤を用いることもできる。使用可能な溶剤としては、芳香族溶剤(トルエン、キシレンなど);ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトンなど);エステル類(酢酸エチルなど);アミド類(ジメチルホルムアミド、ジメチルアセトアミドなど)およびエーテル類(テトラヒドロフランなど)などのポリイソシアネート(PIC)に対して不活性なものが挙げられる。ウレア結合で変性されていないポリエステル(PE)を併用する場合は、水酸基を有するポリエステルの場合と同様な方法でこのPEを製造し、これを前記ウレア変性ポリエステルの反応完了後の溶液に溶解し、混合する。
【0074】
(トナーの製造)
本発明の乾式トナーは以下の方法で製造することができるが、勿論これらに限定されることはない。
【0075】
(水系媒体中でのトナー製造法)
水系媒体としては、水単独でもよいが、水と混和可能な溶剤を併用することもできる。混和可能な溶剤としては、アルコール(メタノール、イソプロパノール、エチレングリコールなど)、ジメチルホルムアミド、テトラヒドロフラン、セルソルブ類(メチルセルソルブなど)、低級ケトン類(アセトン、メチルエチルケトンなど)などが挙げられる。
【0076】
トナー粒子は、水系媒体中でイソシアネート基を有するプレポリマー(A)からなる分散体を、アミン類(B)と反応させて形成することができる。水系媒体中でウレア変性ポリエステルやプレポリマー(A)からなる分散体を安定して形成させる方法としては、水系媒体中にウレア変性ポリエステルやプレポリマー(A)からなるトナー原料の組成分を加えて、せん断力により分散させる方法などが挙げられる。プレポリマー(A)と他のトナー組成分(以下トナー原料と呼ぶ)である着色剤、着色剤マスターバッチ、離型剤、帯電制御剤、未変性ポリエステル樹脂などは、水系媒体中で分散体を形成させる際に混合してもよいが、あらかじめトナー原料を混合した後、水系媒体中にその混合物を加えて分散させたほうがより好ましい。また、本発明においては、着色剤、離型剤、帯電制御剤などの他のトナー原料は、必ずしも、水系媒体中で粒子を形成させる時に混合しておく必要はなく、粒子を形成せしめた後、添加してもよい。例えば、着色剤を含まない粒子を形成させた後、公知の染着の方法で着色剤を添加することもできる。
【0077】
分散の方法としては特に限定されるものではないが、低速せん断式、高速せん断式、摩擦式、高圧ジェット式、超音波などの公知の設備が適用できる。分散体の粒径を2〜20μmにするために高速せん断式が好ましい。高速せん断式分散機を使用した場合、回転数は特に限定はないが、通常1000〜30000rpm、好ましくは5000〜20000rpmである。分散時間は特に限定はないが、バッチ方式の場合は、通常0.1〜5分である。分散時の温度としては、通常、0〜150℃(加圧下)、好ましくは40〜98℃である。高温なほうが、ウレア変性ポリエステルやプレポリマー(A)からなる分散体の粘度が低く、分散が容易な点で好ましい。
【0078】
ウレア変性ポリエステルやプレポリマー(A)を含むトナー組成分(組成物)100重量部に対する水系媒体の使用量は、通常50〜2000重量部、好ましくは100〜1000重量部である。50重量部未満ではトナー組成分の分散状態が悪く、所定の粒径のトナー粒子が得られない。2000重量部を超えると経済的でない。また、必要に応じて、分散剤を用いることもできる。分散剤を用いたほうが、粒度分布がシャープになるとともに分散が安定である点で好ましい。
【0079】
プレポリマー(A)からウレア変性ポリエステルを合成する工程は水系媒体中でトナー組成分を分散する前にアミン類(B)を加えて反応させても良いし、水系媒体中に分散した後にアミン類(B)を加えて粒子界面から反応を起こしても良い。この場合、製造されるトナー表面に優先的にウレア変性ポリエステルが生成し、粒子内部で濃度勾配を設けることもできる。
【0080】
トナー組成分が分散された油性相を、水が含まれる液体に乳化、分散するための分散剤として、アルキルベンゼンスルホン酸塩、α−オレフィンスルホン酸塩、リン酸エステルなどの陰イオン界面活性剤、アルキルアミン塩、アミノアルコール脂肪酸誘導体、ポリアミン脂肪酸誘導体、イミダゾリンなどのアミン塩型や、アルキルトリメチルアンモニム塩、ジアルキルジメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩、ピリジニウム塩、アルキルイソキノリニウム塩、塩化ベンゼトニウムなどの四級アンモニウム塩型の陽イオン界面活性剤、脂肪酸アミド誘導体、多価アルコール誘導体などの非イオン界面活性剤、例えばアラニン、ドデシルジ(アミノエチル)グリシン、ジ(オクチルアミノエチル)グリシンやN−アルキル−N,N−ジメチルアンモニウムべタインなどの両性界面活性剤が挙げられる。
【0081】
また、フルオロアルキル基を有する界面活性剤を用いることにより、非常に少量でその効果をあげることができる。好ましく用いられるフルオロアルキル基を有するアニオン性界面活性剤としては、炭素数2〜10のフルオロアルキルカルボン酸及びその金属塩、パーフルオロオクタンスルホニルグルタミン酸ジナトリウム、3−[オメガ−フルオロアルキル(C6〜C11)オキシ]−1−アルキル(C3〜C4)スルホン酸ナトリウム、3−[オメガ−フルオロアルカノイル(C6〜C8)−N−エチルアミノ]−1−プロパンスルホン酸ナトリウム、フルオロアルキル(C11〜C20)カルボン酸及び金属塩、パーフルオロアルキルカルボン酸(C7〜C13)及びその金属塩、パーフルオロアルキル(C4〜C12)スルホン酸及びその金属塩、パーフルオロオクタンスルホン酸ジエタノールアミド、N−プロピル−N−(2−ヒドロキシエチル)パーフルオロオクタンスルホンアミド、パーフルオロアルキル(C6〜C10)スルホンアミドプロピルトリメチルアンモニウム塩、パーフルオロアルキル(C6〜C10)−N−エチルスルホニルグリシン塩、モノパーフルオロアルキル(C6〜C16)エチルリン酸エステルなどが挙げられる。
【0082】
商品名としては、サーフロンS−111、S−112、S−113(旭硝子社製)、フロラードFC−93、FC−95、FC−98、FC−l29(住友3M社製)、ユニダインDS−101、DS−l02、(ダイキン工業社製)、メガファックF−ll0、F−l20、F−113、F−191、F−812、F−833(大日本インキ社製)、エクトップEF−102、l03、104、105、112、123A、123B、306A、501、201、204、(トーケムプロダクツ社製)、フタージェントF−100、F150(ネオス社製)などが挙げられる。
【0083】
また、カチオン界面活性剤としては、フルオロアルキル基を有する脂肪族一級、二級もしくは二級アミン酸、パーフルオロアルキル(C6−C10)スルホンアミドプロピルトリメチルアンモニウム塩などの脂肪族4級アンモニウム塩、ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩、商品名としてはサーフロンS−l21(旭硝子社製)、フロラードFC−135(住友3M社製)、ユニダインDS−202(ダイキン工業社製)、メガファックF−150、F−824(大日本インキ社製)、エクトップEF−l32(トーケムプロダクツ社製)、フタージェントF−300(ネオス社製)などが挙げられる。
【0084】
また、水に難溶の無機化合物分散剤としてリン酸カルシウム、炭酸カルシウム、酸化チタン、コロイダルシリカ、ヒドロキシアパタイトなども用いる事が出来る。
【0085】
また高分子系保護コロイドにより分散液滴を安定化させても良い。例えばアクリル酸、メタクリル酸、α−シアノアクリル酸、α−シアノメタクリル酸、イタコン酸、クロトン酸、フマール酸、マレイン酸または無水マレイン酸などの酸類、あるいは水酸基を含有する(メタ)アクリル系単量体、例えばアクリル酸β−ヒドロキシエチル、メタクリル酸β−ヒドロキシエチル、アクリル酸β−ヒドロキシプロビル、メタクリル酸β−ヒドロキシプロピル、アクリル酸γ−ヒドロキシプロピル、メタクリル酸γ−ヒドロキシプロピル、アクリル酸3−クロロ−2−ヒドロキシプロビル、メタクリル酸3−クロロ−2−ヒドロキシプロピル、ジエチレングリコールモノアクリル酸エステル、ジエチレングリコールモノメタクリル酸エステル、グリセリンモノアクリル酸エステル、グリセリンモノメタクリル酸エステル、N−メチロールアクリルアミド、N−メチロールメタクリルアミドなど、ビニルアルコールまたはビニルアルコールとのエーテル類、例えばビニルメチルエーテル、ビニルエチルエーテル、ビニルプロピルエーテルなど、またはビニルアルコールとカルボキシル基を含有する化合物のエステル類、例えば酢酸ビニル、プロピオン酸ビニル、酪酸ビニルなど、アクリルアミド、メタクリルアミド、ジアセトンアクリルアミドあるいはこれらのメチロール化合物、アクリル酸クロライド、メタクリル酸クロライドなどの酸クロライド類、ビニルビリジン、ビニルピロリドン、ビニルイミダゾール、エチレンイミンなどの窒素原子、またはその複素環を有するものなどのホモポリマーまたは共重合体、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシエチレンアルキルアミン、ポリオキシプロピレンアルキルアミン、ポリオキシエチレンアルキルアミド、ポリオキシプロピレンアルキルアミド、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンラウリルフェニルエーテル、ポリオキシエチレンステアリルフェニルエステル、ポリオキシエチレンノニルフェニルエステルなどのポリオキシエチレン系、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどのセルロース類などが使用できる。
【0086】
なお、分散安定剤としてリン酸カルシウム塩などの酸、アルカリに溶解可能な物を用いた場合は、塩酸等の酸により、リン酸カルシウム塩を溶解した後、水洗するなどの方法によって、微粒子からリン酸カルシウム塩を除去する。その他酵素による分解などの操作によっても除去できる。
【0087】
分散剤を使用した場合には、該分散剤がトナー粒子表面に残存したままとすることもできるが、反応後、洗浄除去するほうがトナーの帯電面から好ましい。
【0088】
さらに、トナー組成分を含む液体の粘度を低くするために、ウレア変性ポリエステルやプレポリマー(A)が可溶の溶剤を使用することもできる。溶剤を用いたほうが粒度分布がシャープになる点で好ましい。該溶剤は沸点が100℃未満の揮発性であることが除去が容易である点から好ましい。該溶剤としては、例えば、トルエン、キシレン、ベンゼン、四塩化炭素、塩化メチレン、1,2−ジクロロエタン、1,1,2−トリクロロエタン、トリクロロエチレン、クロロホルム、モノクロロベンゼン、ジクロロエチリデン、酢酸メチル、酢酸エチル、メチルエチルケトン、メチルイソブチルケトンなどを単独あるいは2種以上組合せて用いることができる。特に、トルエン、キシレン等の芳香族系溶媒および塩化メチレン、1,2−ジクロロエタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素が好ましい。
プレポリマー(A)100重量部に対する溶剤の使用量は、通常0〜300重量部、好ましくは0〜100重量部、さらに好ましくは25〜70部である。溶剤を使用した場合は、伸長および/または架橋反応後、常圧または減圧下にて加温し除去する。
【0089】
活性水素基を有する化合物と反応可能な変性ポリエステルに活性水素基を有する化合物としてのアミン類(B)を反応させる場合、その伸長および/または架橋反応時間は、プレポリマー(A)の有するイソシアネート基構造とアミン類(B)との組み合わせによる反応性により選択されるが、通常10分〜40時間、好ましくは2〜24時間である。反応温度は、通常0〜150℃、好ましくは40〜98℃である。また、必要に応じて公知の触媒を使用することができる。具体的にはジブチルチンラウレート、ジオクチルチンラウレートなどが挙げられる。
【0090】
(異形化工程)
所望の形状を得るためには、得られた伸長及び/又は架橋反応後の分散液(反応液)から脱溶剤に先立ち、この分散液にホモミキサー、エバラマイルダー、攪拌機を備えた攪拌槽などのせん断力を与える装置を使用して、実質球形状を有する粒子を紡錘形状に変形させ、その後該分散液から溶媒をバインダー樹脂のTg以下で除去する工程を設けることにより粒子を固定化させて、所望の形状トナーの作製が可能となる。
せん断力を調整する方法は、装置の処理時間や処理回数、分散液の温度、粘度、粒子中の有機溶媒の濃度等が挙げられる。また、粒子自身も、粒子表面の樹脂微粒子の被覆率、活性水素基を有する化合物との反応度等の違いにより、せん断力による変形の度合いも異なり得られる形状に差が出る。
【0091】
得られた乳化分散体から有機溶媒を除去するためには、系全体を徐々に昇温し、液滴中の有機溶媒を完全に蒸発除去する方法を採用することができる。あるいはまた、乳化分散体を乾燥雰囲気中に噴霧して、液滴中の非水溶性有機溶媒を完全に除去してトナー微粒子を形成し、合せて水系分散剤を蒸発除去することも可能である。乳化分散体が噴霧される乾燥雰囲気としては、空気、窒素、炭酸ガス、燃焼ガス等を加熱した気体、特に使用される最高沸点溶媒の沸点以上の温度に加熱された各種気流が一般に用いられる。スプレイドライアー、ベルトドライアー、ロータリーキルンなどの短時間の処理で十分目的とする品質が得られる。
【0092】
乳化分散時の粒度分布が広く、その粒度分布を保って洗浄、乾燥処理が行われた場合、所望の粒度分布に分級して粒度分布を整えることができる。
分級操作は液中でサイクロン、デカンター、遠心分離等により、微粒子部分を取り除くことができる。もちろん乾燥後に粉体として取得した後に分級操作を行っても良いが、液体中で行うことが効率の面で好ましい。得られた不要の微粒子、または粗粒子は再び混練工程に戻して粒子の形成に用いることができる。その際微粒子、または粗粒子はウェットの状態でも構わない。
また、分散液の温度10〜50℃で有機溶媒の脱溶剤を行うことが好ましい。50℃より高温ではカーボンの凝集やWAXが溶融するケースも十分あるので50℃以下での脱溶剤が望ましい。
【0093】
用いた分散剤は得られた分散液からできるだけ取り除くことが好ましいが、先に述べた分級操作と同時に行うのが好ましい。
【0094】
得られた乾燥後のトナーの粉体と離型剤微粒子、帯電制御性微粒子、流動化剤微粒子、着色剤微粒子などの異種粒子とともに混合したり、混合粉体に機械的衝撃力を与えることによって表面で固定化、融合化させ、得られる複合体粒子の表面からの異種粒子の脱離を防止することができる。
【0095】
具体的手段としては、高速で回転する羽根によって混合物に衝撃力を加える方法、高速気流中に混合物を投入し、加速させ、粒子同士または複合化した粒子を適当な衝突板に衝突させる方法などがある。装置としては、オングミル(ホソカワミクロン社製)、I式ミル(日本ニューマチック社製)を改造して、粉砕エアー圧力を下げた装置、ハイブリダイゼイションシステム(奈良機械製作所社製)、クリプトロンシステム(川崎重工業社製)、自動乳鉢などがあげられる。
【0096】
(二成分用キャリア)
本発明のトナーを二成分系現像剤に用いる場合には、磁性キャリアと混合して用いれば良く、現像剤中のキャリアとトナーの含有比は、キャリア100重量部に対してトナー1〜10重量部が好ましい。磁性キャリアとしては、粒子径20〜200μm程度の鉄粉、フェライト粉、マグネタイト粉、磁性樹脂キャリアなど従来から公知のものが使用できる。
また、キャリアは表面を被覆してもよい。被覆材料としては、アミノ系樹脂、例えば尿素−ホルムアルデヒド樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ユリア樹脂、ポリアミド樹脂、エポキシ樹脂等があげられる。またポリビニルおよびポリビニリデン系樹脂、例えばアクリル樹脂、ポリメチルメタクリレート樹脂、ポリアクリロニトリル樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリスチレン樹脂およびスチレンアクリル共重合樹脂等のポリスチレン系樹脂、ポリ塩化ビニル等のハロゲン化オレフィン樹脂、ポリエチレンテレフタレート樹脂およびポリブチレンテレフタレート樹脂等のポリエステル系樹脂、ポリカーボネート系樹脂、ポリエチレン樹脂、ポリ弗化ビニル樹脂、ポリ弗化ビニリデン樹脂、ポリトリフルオロエチレン樹脂、ポリヘキサフルオロプロピレン樹脂、弗化ビニリデンとアクリル単量体との共重合体、弗化ビニリデンと弗化ビニルとの共重合体、テトラフルオロエチレンと弗化ビニリデンと非弗化単量体とのターポリマー等のフルオロターポリマー、およびシリコーン樹脂等が使用できる。
また必要に応じて、導電粉等を被覆樹脂中に含有させてもよい。導電粉としては、金属粉、カーボンブラック、酸化チタン、酸化錫、酸化亜鉛等が使用できる。これらの導電粉は、平均粒子径1μm以下のものが好ましい。平均粒子径が1μmよりも大きくなると、電気抵抗の制御が困難になる。
【0097】
また、本発明のトナーはキャリアを使用しない1成分系の磁性トナー或いは、非磁性トナーとしても用いることができる。
【0098】
本発明に係る現像装置を備えた画像形成装置の実施の形態を図2を参照して以下に説明する。
まず、本発明に係る現像装置を用いた画像形成装置の構成を説明する。
図2は画像形成装置の断面を示しており、像担持体である感光体ドラム1の周囲に近接あるいは接触して、感光体ドラム1上に一様な電荷を帯電させる帯電ロ−ラ2、感光体ドラム1上に静電潜像を形成するための露光手段である露光装置3、静電潜像を顕像化してトナ−像とする現像装置4、トナ−像を転写紙に転写する転写ベルト6、感光体ドラム1上の残留トナ−を除去するクリ−ニング装置8、感光体ドラム1上の残電荷を除電する除電ランプ9、帯電ローラ印加電圧及び現像のトナー濃度を制御するための光センサ10が配置されている。また、この現像装置4にはここには図示していないトナ−補給装置よりトナ−補給口を介してトナ−が補給される。作像動作は次のように行われる。
【0099】
感光体1は反時計回転方向に回転する。感光体1は除電光9により除電され、表面電位が0〜−150Vの基準電位に平均化される。次に帯電ロ−ラ2により帯電され、表面電位が−1000V前後となる。次に露光装置3で露光され、光が照射された部分(画像部)は表面電位が0〜−200Vとなる。現像装置4によりスリーブ上のトナ−が上記画像部分に付着する。トナー像が作られた感光体1は回転移動し、給紙部5より用紙先端部画像先端部とが転写ベルト6で一致するようなタイミングで転写紙が送られ、転写ベルト6で感光体1表面のトナー像が転写紙に転写される。その後転写紙は定着部7へ送られ、熱と圧力によりトナーが転写紙に融着されてコピーとして排出される。感光体1上に残った残留トナーはクリーニングブレード8により掻き落とされ、トナー補給口を介してトナーがリサイクルされる構成を有する(図示していない)。その後感光体1は除電光9により残留電荷が除電されてトナーの無い初期状態となり、再び次の作像工程へ移る。
【0100】
本発明では、クリーニングブレード8が、感光対1の回転方向に対してカウンター方向で当接した弾性ゴムブレードでクリーニングを行う工程を設ければ、紙粉やフィルミングをより有効に除去することが可能なことから好ましい。また、弾性体ゴムブレードは、支持部材上に自由端をもつように設けた構成であることが好ましいが、これに限定されるものではない。弾性ゴムブレードの硬度はJIS A 60〜70°、反発弾性は30〜70%、ヤング率は30〜60kgf/cm2、厚さは1.5〜3.0mm、自由長は7〜12mm、感光対への押圧力は15g/cm以下、感光対1への弾性ゴムブレードの当接角を5°〜50°、好ましくは、10°〜30°、のものが好ましい。
【0101】
【実施例】
以下実施例により本発明を更に説明するが、本発明はこれに限定されるものではない。
【0102】
実施例1
(有機微粒子エマルションの合成)
製造例1
撹拌棒および温度計をセットした反応容器に、水683部、メタクリル酸エチレンオキサイド付加物硫酸エステルのナトリウム塩(エレミノールRS−30、三洋化成工業製)11部、スチレン83部、メタクリル酸83部、アクリル酸ブチル110部、過硫酸アンモニウム1部を仕込み、400回転/分で15分間撹拌したところ、白色の乳濁液が得られた。加熱して、系内温度75℃まで昇温し5時間反応させた。さらに、1%過硫酸アンモニウム水溶液30部加え、75℃で5時間熟成してビニル系樹脂(スチレン−メタクリル酸−アクリル酸ブチル−メタクリル酸エチレンオキサイド付加物硫酸エステルのナトリウム塩の共重合体)の水性分散液[微粒子分散液1]を得た。[微粒子分散液1]をLA−920で測定した体積平均粒径は、0.10μmであった。[微粒子分散液1]の一部を乾燥して樹脂分を単離した。該樹脂分のTgは57℃であった。
【0103】
(水相の調製)
製造例2
水990部、[微粒子分散液1]80部、ドデシルジフェニルエーテルジスルホン酸ナトリウムの48.5%水溶液(エレミノールMON−7:三洋化成工業製)40部、酢酸エチル90部を混合撹拌し、乳白色の液体を得た。これを[水相1]とする。
【0104】
(低分子ポリエステルの合成)
製造例3
冷却管、撹拌機および窒素導入管の付いた反応容器中に、ビスフェノールAエチレンオキサイド2モル付加物220部、ビスフェノールAプロピレンオキサイド3モル付加物561部、テレフタル酸218部、アジピン酸48部およびジブチルチンオキサイド2部を入れ、常圧230℃で8時間反応し、さらに10〜15mmHgの減圧で5時聞反応した後、反応容器に無水トリメリット酸45部を入れ、180℃、常圧で2時間反応し、[低分子ポリエステル1]を得た。[低分子ポリエステル1]は、数平均分子量2500、重量平均分子量6700、Tg43℃、酸価25であった。
【0105】
(プレポリマーの合成)
製造例4
冷却管、撹拌機および窒索導入管の付いた反応容器中に、ビスフェノールAエチレンオキサイド2モル付加物682部、ビスフェノールAプロピレンオキサイド2モル付加物81部、テレフタル酸283部、無水トリメリツト酸22部およびジブチルチンオキサイド2部を入れ、常圧230℃で8時間反応し、さらに10〜15mmHgの減圧で5時間反応した[中間体ポリエステル1]を得た。[中間体ポリエステル1]は、数平均分子量2100、重量平均分子量9500、Tg55℃、酸価0.5、水酸基価49であった。
次に、冷却管、撹拌機および窒素導入管の付いた反応容器中に、[中間体ポリエステル1]411部、イソホロンジイソシアネート89部、酢酸エチル500部を入れ100℃で5時間反応し、[プレポリマー1]を得た。[プレポリマー1]の遊離イソシアネート重量%は、1.53%であった。
【0106】
(ケチミンの合成)
製造例5
撹拌棒および温度計をセットした反応容器に、イソホロンジアミン170部とメチルエチルケトン75部を仕込み、50℃で5時間反応を行い、[ケチミン化合物1]を得た。[ケチミン化合物1]のアミン価は418であった。
【0107】
(マスターバッチの合成)
製造例6
カーボンブラック(キャボット社性 リーガル400R):40部、結着樹脂:ポリエステル樹脂(三洋化成RS−801 酸価10、Mw20000、Tg64℃):60部、水:30部をヘンシェルミキサーにて混合し、顔料凝集体中に水が染み込んだ混合物を得た。これをロ−ル表面温度130℃に設定した2本ロールにより45分間混練を行ない、パルベライザーで1mmφの大きさに粉砕し、[マスターバッチ1]を得た。
【0108】
(油相の作成)
製造例7
撹拌棒および温度計をセットした容器に、[低分子ポリエステル1]378部、カルナバWAX110部、CCA(サリチル酸金属錯体E−84:オリエント化学工業)22部、酢酸エチル947部を仕込み、撹拌下80℃に昇温し、80℃のまま5時間保持した後、1時間で30℃に冷却した。次いで容器に[マスターバッチ1]500部、酢酸エチル500部を仕込み、1時間混合し[原料溶解液1]を得た。
[原料溶解液1]1324部を容器に移し、ビーズミル(ウルトラビスコミル、アイメックス社製)を用いて、送液速度1kg/hr、ディスク周速度6m/秒、0.5mmジルコニアビーズを80体積%充填、3パスの条件で、カーボンブラック、WAXの分散を行った。次いで、[低分子ポリエステル1]の65%酢酸エチル溶液1324部加え、上記条件のビーズミルで1パスし、[顔料・WAX分散液1]を得た。[顔料・WAX分散液1]の固形分濃度(130℃、30分)は50%であった。
【0109】
(乳化)
製造例8
[顔料・WAX分散液1]648部、[プレポリマー1]を154部、[ケチミン化合物1]6.6部を容器に入れ、TKホモミキサー(特殊機化製)で5,000rpmで1分間混合した後、容器に[水相1]1200部を加え、TKホモミキサーで、回転数13,000rpmで20分間混合し[乳化スラリー1]を得た。
【0110】
(異形化)
製造例9
イオン交換水1365部、カルボキシメチルセルロース(CMCダイセル−1280:ダイセル化学工業(株)製)35部容器に入れて攪拌した水溶液に、[乳化スラリー1]1000部を混合し、TKホモミキサー(特殊機化製)で2,000rpmで1時間混合し[異形化スラリー1]を得た。
【0111】
(脱溶剤)
製造例10
撹拌機および温度計をセットした容器に、[異形化スラリー1]を投入し、30℃で8時間脱溶剤した後、45℃で4時間熟成を行い、[分散スラリー1]を得た。
【0112】
(洗浄⇒乾燥)
[分散スラリー1]100部を減圧濾過した後、
▲1▼:濾過ケーキにイオン交換水100部を加え、TKホモミキサーで混合(回転数12,000rpmで10分間)した後濾過した。
▲2▼:▲1▼の濾過ケーキに10%水酸化ナトリウム水溶液100部を加え、超音波振動を付与してTKホモミキサーで混合(回転数12,000rpmで30分間)した後、減圧濾過した。この超音波アルカリ洗浄を再度行った(超音波アルカリ洗浄2回)。
▲3▼:▲2▼の濾過ケーキに10%塩酸100部を加え、TKホモミキサーで混合(回転数12,000rpmで10分間)した後濾過した。
▲4▼:▲3▼の濾過ケーキにイオン交換水300部を加え、TKホモミキサーで混合(回転数12,000rpmで10分間)した後濾過する操作を2回行い[濾過ケーキ1]を得た。
[濾過ケーキ1]を循風乾燥機にて45℃で48時間乾燥し、目開き75μmメッシュで篩い、トナー母体1を得た。
【0113】
実施例2
実施例1(製造例9)のTKホモミキサー(特殊機化製)のTKホモミキサー(特殊機化製)の回転数を2,000rpmで1時間混合を2,500rpmで1時間混合に変更した以外は、実施例1と同様にトナー母体2を得た。
【0114】
実施例3
実施例1(製造例9)のTKホモミキサー(特殊機化製)の回転数を2,000rpmで1時間混合を1,500rpmで2時間混合に変更した以外は、実施例1と同様にトナー母体3を得た。
【0115】
実施例4
実施例1(製造例2)の[微粒子分散液1]80部を60部に変更した以外は、実施例1と同様にトナー母体4を得た。
【0116】
実施例5
実施例1(製造例2)の[微粒子分散液1]80部を100部に変更した以外は、実施例1と同様にトナー母体5を得た。
【0117】
比較例1
実施例1(製造例9)の異形化工程を実施しなかった以外は、実施例1と同様にトナー母体6を得た。
【0118】
比較例2
実施例1(製造例9)のTKホモミキサー(特殊機化製)の回転数を2,000rpmで1時間混合を6,000rpmで1時間混合に変更した以外は、実施例1と同様にトナー母体7を得た。
【0119】
比較例3
実施例1(製造例9)のTKホモミキサー(特殊機化製)の回転数を2,000rpmで1時間混合を4,000rpmで1時間混合に変更した以外は、実施例1と同様にトナー母体8を得た。
【0120】
比較例4
実施例1(製造例9)のTKホモミキサー(特殊機化製)の回転数を2,000rpmで1時間混合を1,000rpmで2時間混合に変更した以外は、実施例1と同様にトナー母体9を得た。
【0121】
比較例5
実施例1(製造例9)のTKホモミキサー(特殊機化製)の回転数を2,000rpmで1時間混合を1,000rpmで3時間混合に変更した以外は、実施例1と同様にトナー母体10を得た。
【0122】
比較例6
実施例1(製造例2)の[微粒子分散液1]80部を50部に変更した以外は、実施例1と同様にトナー母体11を得た。
【0123】
比較例7
実施例1(製造例2)の[微粒子分散液1]80部を110部に変更した以外は、実施例1と同様にトナー母体12を得た。
【0124】
前記のようにして得られたトナー母体1〜12各々100部に疎水性シリカ0.7部と、疎水化酸化チタン0.3部をヘンシェルミキサーにて混合した。得られたトナー物性値については表1に示した。
外添剤処理を施したトナー5重量%とシリコーン樹脂を被覆した平均粒子径が40μmの銅−亜鉛フェライトキャリア95重量%からなる現像剤を調製し、毎分A4サイズの用紙を45枚印刷できるリコー製imagio Neo 450を用いて、連続印刷して下記の基準で評価し、評価結果を表2に示した。
【0125】
(評価項目)
(細線再現性)
(株)リコー製複写機 imagio Neo 450を用いて、縦線、横線がそれぞれ1mmあたり2.0、2.2、2.5、2.8、3.2、3.6、4.0、4.5、5.0、5.6、6.3、7.1本の線が等間隔に並んでいる線画像を出力し、複写画像が線間を評価した。
【0126】
(クリーニング性)
上記画像形成装置で構成されるimagio Neo 450を用いて、クリーニング工程を通過した感光体上の転写残トナーをスコッチテープ(住友スリーエム(株)製)で白紙に移し、それをマクベス反射濃度計RD514型で測定し、ブランクとの差が0.01以下のものを○(良好)、それを越えるものを×(不良)として評価した。
【0127】
(フィルミング)
現像ローラまたは感光体上のトナーフィルミング発生状況の有無を観察した。○はフィルミングがなく、△はスジ上のフィルミングが見られ、×は全体的にフィルミングがある。
【0128】
(画像濃度)
ベタ画像出力後、画像濃度をX−Rite(X−Rite社製)により測定した。これを単独に5点測定し平均を求めた。
【0129】
(地肌汚れ)
白紙画像を現像中に停止させ、現像後の感光体上の現像剤をテープ転写し、未転写のテープの画像濃度との差を938スペクトロデンシトメーター(X−Rite社製)により測定した。
【0130】
(定着性)
リコー製imagio Neo 450を用いて、厚紙の転写紙(NBSリコー製複写印刷用紙<135>)にベタ画像で、1.0±0.1mg/cm2のトナーが現像される様に調整を行ない、定着ベルトの温度が可変となる様に調整を行なって、普通紙でオフセットの発生しない温度を、厚紙で定着下限温度を測定した。定着下限温度は、得られた定着画像をパットで擦った後の画像濃度の残存率が70%以上となる定着ロール温度をもって定着下限温度とした。
【0131】
【表1】
【0132】
【表2】
【0133】
【発明の効果】
本発明の静電荷像現像用トナーは、微小ドット再現性に優れ、長期にわたって優れたクリーニング性を維持しつつ、低温定着性、耐オフセット性、及び耐フィルミング性にも優れたトナーである。
また本発明により、上記トナーを含有する現像剤、該トナーを用いてトナーリサイクル機構を有する現像装置にて現像する方法、該トナーを収納したトナー容器、及び該容器を装着した現像装置を提供することができる。
【図面の簡単な説明】
【図1】トナー形状を説明するための図である。
【図2】本発明の現像装置を備えた画像形成装置の概略図である。
【図3】実施例及び比較例のトナーについて、円相当径が3〜10μmで円径度が0.95より大きく0.97より小さい範囲の粒子の個数%と、フロー式粒子像分析装置によって測定された円相当径2μm以下の微粉の個数%との関係を示すグラフである。
【符号の説明】
(図1)
r1 トナーの長軸
r2 トナーの短軸
r3 トナーの厚さ
(図2)
1 感光体ドラム
2 帯電ローラ
3 露光装置
4 現像装置
5 給紙部
6 転写ベルト
7 定着部
8 クリーニング装置(クリーニングブレード)
9 除電ランプ(除電光)
10 光センサ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrostatic charge image developing toner, developer, developing method, and toner for visualizing an electrostatic charge image formed on the surface of a photoreceptor (electrostatic charge image carrier) in electrophotography and electrostatic recording. The present invention relates to a container and a developing device.
[0002]
[Prior art]
Conventionally, in an electrophotographic apparatus, an electrostatic recording apparatus, or the like, an electric or magnetic latent image is visualized with toner. For example, in electrophotography, an electrostatic charge image (latent image) is formed on a photoreceptor, and then the latent image is developed with toner to form a toner image. The toner image is usually transferred onto a transfer material such as paper and then fixed by a method such as heating.
[0003]
Toner used for electrostatic image development is generally colored particles in which a binder, a colorant, a charge control agent, and other additives are contained in a binder resin. There is a turbid polymerization method. In the pulverization method, a colorant, a charge control agent, an offset preventing agent and the like are melt-mixed in a thermoplastic resin and uniformly dispersed, and the resulting composition is pulverized and classified to produce a toner. According to the pulverization method, a toner having some excellent characteristics can be produced, but there is a limitation in the selection of the toner material. For example, the composition obtained by melt mixing must be capable of being pulverized and classified by economically usable equipment. From this requirement, the melt-mixed composition must be made sufficiently brittle. Therefore, when the above composition is actually pulverized into particles, a high-range particle size distribution is likely to be formed, and when attempting to obtain a copy image with good resolution and gradation, for example, the particle size There is a disadvantage that the fine powder of 5 μm or less and the coarse powder of 20 μm or more must be removed by classification, resulting in a very low yield. Further, in the pulverization method, it is difficult to uniformly disperse the colorant, the charge control agent, and the like in the thermoplastic resin. The uneven dispersion of the compounding agent adversely affects the fluidity, developability, durability, image quality and the like of the toner.
[0004]
In recent years, in order to overcome these problems in the pulverization method, a toner production method by a suspension polymerization method has been proposed and implemented. A technique for producing a toner for developing an electrostatic latent image by a polymerization method is known. For example, toner particles are obtained by a suspension polymerization method. However, the toner particles obtained by the suspension polymerization method are spherical and have a drawback of poor cleaning properties. The most important problem is that it is difficult to completely remove the transfer residual toner on the surface of the image bearing member by a cleaning means, resulting in poor cleaning. In particular, in the blade cleaning method, the toner is close to the closest packed state between the contact portions of the image carrier and the cleaning blade at the time of cleaning, and the first layer toner having a strong adhesion to the image carrier and the next layer toner. The toner slips between the second-layer toner and the first-layer toner remains on the image carrier as a defective cleaning.
[0005]
In order to solve such problems, the following proposals have been proposed.
<JP-A-5-265360>
In a cleaning method of an image forming apparatus in which a cleaning blade is pressed against the surface of an image carrier and residual toner on the surface of the image carrier is removed, a conductive member is used for the cleaning blade, and an AC bias voltage and a toner at the time of development are used. There is provided a cleaning method characterized by applying a DC bias voltage having the same polarity as a charged charge to remove residual toner on the surface of an image carrier.
<JP-A-7-210053>
In a cleaning device of an electrophotographic apparatus that cleans the surface of a photoreceptor by scraping off residual toner on the photoreceptor after transfer with the cleaning blade, the cleaning blade is made of a conductive material and grounded. Alternatively, a DC voltage having a polarity opposite to that of the residual toner is applied. Alternatively, a DC voltage having the same polarity as that of the residual toner is applied. Alternatively, it has been proposed to apply an AC voltage thereto.
[0006]
However, since any of the publications described in any of the publications has a cleaning action by abutting the cleaning blade against the image carrier and scraping off the toner, a sharp-melt polyester type having a lower melt viscosity than conventional toners. In the case of a toner using a toner binder, so-called wax filming occurs in which wax existing in the vicinity of the surface inside the toner resin oozes out to the surface by the pressure and is rubbed against the image carrier. In addition, the charging roller that contacts and charges the photosensitive member is contaminated, and the original charging ability cannot be exhibited.
[0007]
When attention is paid to the toner, it is known that a large particle diameter and a non-spherical shape are favorable conditions for good cleaning properties, but this is contrary to the direction of obtaining high image quality. Further, although improvement can be considered by devising an external additive for the toner, sufficient cleaning properties could not be obtained.
[0008]
On the other hand, in a fixing process using a contact heating method performed using a heating member such as a heat roller, the toner particles are required to release from the heating member (hereinafter referred to as “offset resistance”). Here, the offset resistance can be improved by the presence of a release agent on the toner particle surface.
On the other hand, JP 2000-292773 A (Patent Document 1) and JP 2000-292978 A (Patent Document 2) not only contain the resin fine particles in the toner particles but also the resin fine particles of the toner particles. A method for improving offset resistance by being unevenly distributed on the surface is disclosed.
However, the minimum fixing temperature is increased, and the low temperature fixing property, that is, the energy saving fixing property is not sufficient.
[0009]
However, the following problems also occur in the method of obtaining irregularly shaped toner particles by associating resin fine particles obtained by the emulsion polymerization method.
When releasing agent fine particles are associated with each other in order to improve offset resistance, the releasing agent fine particles are taken into the toner particles, and as a result, the offset resistance cannot be sufficiently improved. . Resin fine particles, release agent fine particles, colorant fine particles, etc. are randomly fused to constitute toner particles, so there is a variation in composition (content ratio of constituent components) and molecular weight of constituent resins among the obtained toner particles. As a result, the toner particles have different surface characteristics, and a stable image cannot be formed over a long period of time. Further, in a low-temperature fixing system requiring low-temperature fixing, fixing inhibition occurs due to resin fine particles unevenly distributed on the toner surface, and a fixing temperature range cannot be secured.
[0010]
[Patent Document 1]
JP 2000-292773 A
[Patent Document 2]
JP 2000-292978 A
[0011]
[Problems to be solved by the invention]
The present invention has been made based on the above situation.
The first object of the present invention is excellent in fine dot reproducibility, maintains cleanability for a long period of time, supports a low-temperature fixing system, has good offset resistance, and does not contaminate the fixing device and the image. An object is to provide a toner for developing a charge image.
A second object of the present invention is to provide a toner for developing an electrostatic charge image capable of forming a visible image having a sharp charge amount distribution and good sharpness over a long period of time.
A third object of the present invention is to provide a developer, a developing method, a toner container, and a developing device using the toner.
[0012]
[Means for Solving the Problems]
Obviously, in order to obtain a high-resolution and high-quality image in general, it is advantageous to reduce the toner particle diameter or to make the shape spherical. When the particle size is reduced, the transferability is deteriorated, and the toner remaining on the electrostatic charge image bearing member is increased, which places a load on the cleaning process, and the cleaning property cannot be maintained over a long period. On the other hand, when the toner is spherical, in the process having a means for cleaning by abutting the untransferred toner remaining on the electrostatic image bearing member, the toner slips through and the cleaning property cannot be maintained for a long time.
Accordingly, as a result of intensive studies, the present inventors have solved at least the electrostatic image having a means for cleaning by abutting the untransferred toner remaining on the electrostatic image carrier in order to solve the above problem. In development using a developing device, it has been found that this can be achieved by using a toner for developing an electrostatic image having a specific particle size, particle size distribution, and shape, and the present invention has been completed.
[0013]
That is, according to the present invention, the following (1) to (10) are provided.
(1) An electrostatic charge image developing toner used in an electrostatic charge image developing device comprising at least a binder resin and a colorant and having means for cleaning at least the non-transferred toner remaining on the electrostatic charge image bearing member. The volume average particle diameter (Dv) of the toner is 4 to 8 μm, the number of particles having an equivalent circle diameter of 2 μm or less measured by a flow type particle image analyzer is 25% by number or less, and the number distribution of circularity Satisfies the following formula: an electrostatic image developing toner.
A <30%
B <30%
C = 100−A−B ≧ 40% by number
(A: Number% of particles having an equivalent circle diameter of 3 to 10 μm and a circularity of 0.97 or more.
B: Number of particles having an equivalent circle diameter of 3 to 10 μm and a circularity of 0.95 or less)
(2) The electrostatic image developing toner according to (1), wherein the toner particles having an equivalent circle diameter of 2 μm or less of the toner are 15% by number or less.
(3) The apparatus (1) or (2), wherein the electrostatic image developing device has a means for cleaning with an elastic rubber blade abutting in a counter direction with respect to a rotation direction of the electrostatic image carrier. The toner for developing an electrostatic image according to (1).
(4) A solution or dispersion formed by dissolving or dispersing a toner composition containing a toner binder component composed of a modified polyester resin capable of reacting with a compound having an active hydrogen group in an organic solvent. It is obtained by reacting with a compound having an active hydrogen group in an aqueous medium containing fine particles, removing the solvent from the obtained dispersion, and washing and desorbing the resin fine particles adhering to the toner surface. The electrostatic image developing toner according to any one of (1) to (3), which is characterized in that
(5) The binder in the toner contains an unmodified polyester resin together with the modified polyester resin, and the weight ratio of the modified polyester resin to the unmodified polyester resin is 5/95 to 80/20. It is characterized by As described in (4) Toner for developing electrostatic images.
(6) The resin fine particles are made of at least one resin selected from vinyl resins, polyurethane resins, epoxy resins and polyester resins. As described in (4) Toner for developing electrostatic images.
(7) Said (1)- (6) A developer comprising the electrostatic image developing toner according to any one of the above.
(8) Using a developing device having a toner recycling mechanism, the toner (1) to (1) (6) A developing method using the electrostatic image developing toner according to any one of the above.
(9) Said (1)- (6) A toner container containing the electrostatic image developing toner according to any one of the above.
(10) Above (9) A developing device comprising the toner container described in 1.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
The toner for developing an electrostatic charge image of the present invention has a volume average particle diameter (Dv) of 4 to 8 μm, and an equivalent circle diameter of 2 μm or less measured by a flow type particle image analyzer is 25% by number or less. When the number distribution of circularity satisfies the following formula, it is possible to provide high image quality with excellent cleaning performance and fine line reproducibility.
A <30%
B <30%
C = 100−A−B ≧ 40% by number
(A: Number% of particles having an equivalent circle diameter of 3 to 10 μm and a circularity of 0.97 or more.
B: Number of particles having an equivalent circle diameter of 3 to 10 μm and a circularity of 0.95 or less)
[0015]
When the toner volume average particle size is less than 4 μm, the transferability is deteriorated and the amount of toner remaining on the electrostatic charge image carrier increases, so that the cleaning property cannot be maintained for a long time. Further, since the specific surface area of the toner is increased, it is easy to charge up and a problem due to a decrease in image density occurs.
On the other hand, when the thickness exceeds 8 μm, the fine line reproducibility was poor. Further, in a system in which the presence of particles between toners is sparse and the agglomeration property is poor and the toner is fixed to a transfer material at a low surface pressure, fixing failure is caused, resulting in a problem in low-temperature fixability.
[0016]
That is, in order to maintain high image quality and long-term cleaning properties, the volume average particle diameter (Dv) is 4 to 8 μm, and the average circularity measured by a flow particle image analyzer is 3 to 10 μm. It is an essential condition to satisfy
In addition, long-term cleaning is maintained in repeated use, and in the case of a two-component developer, the toner is fused to the surface of the carrier during long-term agitation in the developing device, so that the charging ability of the carrier is reduced or the two-component developer is used as a one-component developer In order to prevent toner filming on the developing roller and toner fusing to a member such as a blade for thinning the toner, the number measured by a flow particle image analyzer It became clear that particles having a diameter of 2 μm or less in the standard circle equivalent are 25% by number or less, more preferably 15% by number or less.
[0017]
This is because the Coulter Counter (TAII) measures the resistance change with an electric signal, so fine particles of 2 μm or less are greatly affected by noise, and the measurement accuracy is not sufficient. In the flow type particle image analyzer that measures by the above, it becomes possible to measure fine particles of 2 μm or less, and by reducing the number of fine particles having a diameter equivalent to 2 μm or less (hereinafter referred to as ultrafine toner) measured by the flow type particle image analyzer, It has been found that the toner sticking to the developing sleeve does not occur for a long time in repeated use.
[0018]
This is because the ultra-fine toner has a small mass, so the Coulomb force required to move (develop) to the image carrier is weaker than the one der Waals force with the developing sleeve, and the toner is not developed on the image carrier. Ultrafine powder accumulates on the toner, and the toner adhering to the developing sleeve is finally fused by receiving stress such as frictional heat. In particular, in the non-image portion, a force (bias) for developing the toner once acts on the developing sleeve, so that the fusion tends to become more prominent. This is because when the toner is fused to the developing sleeve, resistance is generated, and an appropriate bias is not applied between the image carrier and the developing sleeve, so that image density reduction and density unevenness are likely to occur.
[0019]
The ratio (Dv / Dn) of the volume average particle diameter (Dv) to the number average particle diameter (Dn) of the toner is preferably 1.00 to 1.20, more preferably 1.00 to 1.10. The case is preferable from the viewpoints of uniform and stable toner behavior and uniform charge amount.
[0020]
In addition, when the number distribution of the circularity is A: equivalent circle diameter of 3 to 10 μm and the inner diameter degree is 0.97 or more and the number of particles is 30 number% or more, that is, when there are many round particles, the contact cleaning method causes the particles to pass through. Occurs and the cleaning property cannot be maintained for a long time. B: When the equivalent circle diameter is 3 to 10 μm and the degree of circularity is 0.95 or more and 30% by number or more, that is, when the number of deformed particles is large, the cohesiveness between the particles deteriorates and the fine line reproducibility is reduced. In addition, the low-temperature low-wearing property is deteriorated particularly when a fixing device having a small surface pressure is used. In particular, satisfying the above formula of C = 100−A−B ≧ 40% by number is important in achieving both cleaning properties and fine line reproducibility.
[0021]
An outline of a Coulter counter and a flow type particle image apparatus used for measuring the particle diameter of particles in the present invention is shown. The volume average particle size and Dv / Dn are measured by connecting to a Coulter Counter TAII manufactured by Coulter Electronics (USA), an interface (manufactured by Nikka) and a PC9801 personal computer (manufactured by NEC). The electrolyte is adjusted to 1% NaCl aqueous solution using first grade sodium chloride. As a measuring method, 0.1 to 5 ml of a surfactant, preferably alkylbenzene sulfonate, is added as a dispersant to 50 to 100 ml of the electrolytic solution, and 1 to 10 mg of a sample is added. This is subjected to a dispersion process for 1 minute with an ultrasonic disperser. Into another beaker, 100 to 200 ml of an electrolytic aqueous solution was added, and the sample dispersion was added to a predetermined concentration therein, and 2 to 2 on the basis of the number using a 100 μm aperture as an aperture by the Coulter Counter TA-II type. The particle size distribution of 30,000 particles of 40 μm particles is measured, the volume distribution and number distribution of particles of 2 to 40 μm are calculated, and the volume average particle diameter (Dv: the median value of each channel is the representative value of the channel) and Dv Find / Dn.
[0022]
The measurement of the equivalent circle diameter and the number% in each circularity can be performed using a flow type particle image analyzer FPIA-1000 manufactured by Sysmex Corporation. An outline of the apparatus and measurement is described in JP-A-8-136439. The measurement was adjusted to a 1% NaCl aqueous solution using primary sodium chloride and then passed through a 0.45 μm filter to 50 to 100 ml of a surfactant, preferably 0.1 to 5 ml of an alkylbenzene sulfonate as a dispersant. In addition, add 1-10 mg of sample. This is subjected to dispersion treatment for 1 minute with an ultrasonic disperser, and measurement is performed using a dispersion liquid in which the particle concentration is adjusted to 5000 to 15000 particles / μl. For the measurement of the number of particles, a two-dimensional image area captured by a CCD camera and a diameter of a circle having the same area are calculated as an equivalent circle diameter. From the accuracy of the CCD pixel, a circle equivalent diameter of 0.6 μm or more is effective and particle measurement data is obtained.
[0023]
In the present invention, the toner has a volume average particle diameter (Dv) of 4 to 8 μm, particles having an equivalent circle diameter of 2 μm or less are 25% by number or less, and the number distribution of circularity satisfies the above formula. For this purpose, particles having a target volume average particle diameter and a number% of 2 μm or less can be obtained depending on the dispersion conditions when preparing the emulsified dispersion. Regarding the number distribution of circularity, since the obtained particles (emulsified dispersion) have a substantially spherical shape, the emulsion dispersion is deformed by a share by stirring or the like in the presence of the organic solvent in the particles (dispersion). It can be obtained by immobilizing the deformed particles (dispersion) by removing the organic solvent. In addition, when fine powder is generated depending on the stirring conditions and the like, the particles in the dispersion can be subjected to known wet classification, the dried particles can be subjected to known air classification, and the like.
[0024]
A toner suitable for the present invention will be described.
The toner of the present invention preferably has a spindle shape.
An irregular shape or a flat shape with a non-constant toner shape has the following problems because the powder fluidity is poor. Since frictional charging cannot be performed smoothly, problems such as background stains are likely to occur. When developing a minute latent image dot, the dot reproducibility is inferior because it is difficult to obtain a dense and uniform toner arrangement. In the electrostatic transfer method, the transfer efficiency is inferior due to being hardly affected by the lines of electric force.
When the toner is close to a true sphere, the powder fluidity is too good and excessively acts on the external force, so that there is a problem that the toner particles are likely to be scattered outside the dots during development and transfer. . Further, since the spherical toner easily rolls on the photoreceptor, there is a problem that the toner often gets into the gap between the photoreceptor and the cleaning member, resulting in poor cleaning.
[0025]
In the spindle-shaped toner of the present invention, the powder fluidity is appropriately adjusted, so that the triboelectric charging is smoothly performed and the background stain is not generated, and the minute latent image dots are developed in an orderly manner. After that, it is efficiently transferred and has excellent dot reproducibility. Further, the powder flowability is moderately braked to prevent scattering at that time. The spindle-shaped toner has a limited rolling axis as compared with the spherical toner, and therefore, it is difficult to cause a cleaning defect such as to sink under the cleaning member.
[0026]
The toner shape will be described with reference to FIGS.
The spindle-shaped toner of the present invention has a ratio between the minor axis and the major axis (r 2 / R 1 ) Is 0.5 to 0.8, and the ratio of thickness to minor axis (r 3 / R 2 ) Is preferably a spindle shape represented by 0.7 to 1.0.
Ratio of short axis to long axis (r 2 / R 1 ) Is less than 0.5, the cleaning performance is high because it is away from the true spherical shape, but high-quality image quality cannot be obtained because of poor dot reproducibility and transfer efficiency. On the other hand, the ratio of the short axis to the long axis (r 2 / R 1 ) Exceeds 0.8, it is close to a sphere, and cleaning failure may occur particularly in a low temperature and low humidity environment.
Also, the ratio of thickness to minor axis (r 3 / R 2 ) Is less than 0.7, it is close to a flat shape and is less scattered like an irregular toner, but a high transfer rate like a spherical toner cannot be obtained. In particular, the ratio of thickness to minor axis (r 3 / R 2 ) Is 1.0, the rotating body has a long axis as a rotation axis. By making the spindle shape close to this, it is a shape that is neither an irregular shape, a flat shape nor a spherical shape, and all of the triboelectric chargeability, dot reproducibility, transfer efficiency, anti-scattering properties, and cleaning properties that both shapes have It will be a shape that satisfies. R 1 , R 2 , R 3 Were measured with a scanning electron microscope (SEM) while changing the angle of field of view and taking pictures.
[0027]
(Resin fine particles)
The resin fine particles used in the present invention preferably have a glass transition point (Tg) of 50 to 90 ° C. When the glass transition point (Tg) is less than 50 ° C., the toner storage stability is deteriorated and stored. Blocking occurs at times and in the developing machine. When the glass transition point (Tg) is higher than 90 ° C., the resin fine particles inhibit the adhesiveness with the fixing paper, and the minimum fixing temperature is increased. A more preferred range is 50 to 70 ° C.
[0028]
The weight average molecular weight is desirably 100,000 or less. Preferably it is 50,000 or less. The lower limit is usually 4000. When the weight average molecular weight exceeds 100,000, the resin fine particles inhibit the adhesiveness with the fixing paper, and the minimum fixing temperature increases.
[0029]
The resin fine particles may be any resin as long as it can form an aqueous dispersion, and may be a thermoplastic resin or a thermosetting resin. For example, vinyl resin, polyurethane resin, epoxy resin, polyester resin, polyamide resin, polyimide Examples thereof include resins, silicon-based resins, phenol resins, melamine resins, urea resins, aniline resins, ionomer resins, and polycarbonate resins. As the resin fine particles, two or more of the above resins may be used in combination. Among these, those made of a vinyl resin, a polyurethane resin, an epoxy resin, a polyester resin, or a combination resin thereof are preferable because an aqueous dispersion of fine spherical resin particles is easily obtained.
[0030]
The vinyl resin is a polymer obtained by homopolymerization or copolymerization of a vinyl monomer, such as a styrene- (meth) acrylate resin, a styrene-butadiene copolymer, a (meth) acrylic acid-acrylate polymer, Examples include styrene-acrylonitrile copolymers, styrene-maleic anhydride copolymers, styrene- (meth) acrylic acid copolymers, and the like.
In the resin fine particles, the average particle size is preferably 5 to 200 nm, more preferably 20 to 300 nm.
[0031]
(Resin fine particle coverage)
The resin fine particles in the toner of the present invention are added in the production process in order to control (align) the toner shape (circularity, particle size distribution, etc.), but the glass transition point (Tg) of the resin fine particles unevenly distributed on the toner surface. ) Is preferably from 50 to 90 ° C., and the coverage of the toner particles is preferably from 1 to 99%. When the coverage is more than 90%, the resin particle surface is almost completely covered with the toner particle surface, and the exudation of the wax inside the toner particle is obstructed, and the wax releasability effect cannot be obtained. An offset will occur. When the glass transition point (Tg) is less than 50 ° C., the toner storage stability deteriorates, and blocking occurs during storage and in the developing machine. When the glass transition point (Tg) exceeds 90 ° C., the resin fine particles inhibit the adhesion of the toner to the fixing paper, and the minimum fixing temperature is increased. Accordingly, since a sufficient fixing temperature range cannot be secured, there is a problem that fixing cannot be performed by a copying machine of a low-temperature fixing system, or the fixed image is peeled off when rubbed. The resin fine particles of the present invention have a function of improving the triboelectric chargeability of the toner. Therefore, if the coverage is less than 1%, sufficient triboelectric charging characteristics cannot be imparted to the toner, so that a sufficient image density cannot be obtained or background stains occur. The coverage is more preferably in the range of 5 to 80%.
The coverage of the resin fine particles is as follows. First, several fields of electron micrographs of the toner surface are taken at a magnification of 50,000 times, and a surface with no inclination or crack is selected as much as possible. Using the Luzex III image analyzer, resin fine particles on the toner surface are selected. It is obtained by measuring the coverage ratio.
[0032]
(Binder resin)
A conventional general material can be used as the binder resin (binder). Conventionally, binder resins used for toner production include, for example, polyester resins, styrene resins, acrylic resins, epoxy resins, and the like. In ordinary toners, among these, copolymers of styrene and acrylate esters are used. The most commonly used resin. On the other hand, the low-temperature fixing toner is a resin that easily satisfies the thermal characteristics described above. Polyester resins are excellent in low-temperature fixability and storage stability due to the low softening temperature of the binder resin and high glass transition point. Further, since the affinity between the ester bond of the polyester resin and the paper is good, the toner has excellent offset resistance.
[0033]
The polyester resin used as the main component of the binder resin of the toner for developing an electrostatic charge image of the present invention is synthesized by a condensation reaction of an acid component and an alcohol component, or a ring-opening reaction of a cyclic ester, or a halogen compound and Synthesized with alcohol component and carbon monoxide. In the method for producing a toner for developing an electrostatic charge image according to the present invention, the above-described monomer that is a synthetic material for the polyester resin is combined and polymerized in the polymer compound (resin fine particle) solution described above. The electrostatic image developing toner of the present invention having excellent physical properties can be easily obtained. Hereinafter, various monomers used as a synthetic material for the polyester resin will be described.
[0034]
First, as the alcohol component and the acid component, those having a valence of 2 or more are preferably used. For example, as the divalent alcohol, ethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, neopentyl glycol, 1,4-butenediol, 1, Diols such as 5-pentanediol and 1,6-hexanediol; bisphenol A, hydrogenated bisphenol A, α, α'-bis (4-hydroxyphenyl) -1,4-diisopropylbenzene, polyoxyethylenated bisphenol A Bisphenol A alkylene oxide adducts such as polyoxypropylenated bisphenol A and the like.
[0035]
Examples of trihydric or higher alcohols include sorbitol, 1,2,3,6-hexanetetrol, 1,4-sorbitan, pentaerythritol, sucrose, 1,2,4-butanetriol, 1,2, 5-pentatriol, glycerol, 2-methylpropanetriol, 2-methyl-1,2,4-butaneditriol, trimethylolmethane, trimethylolethane, trimethylolpropane, 1,3,5-trihydroxymethylbenzene, etc. Is mentioned.
[0036]
Examples of the divalent acid include maleic acid, fumaric acid, citraconic acid, itaconic acid, glutaconic acid, phthalic acid, isophthalic acid, terephthalic acid, cyclohexanedicarboxylic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, malon Examples include acids and other divalent organic acids. Examples of the trivalent acid include 1,2,4-benzenetricarboxylic acid, 1,2,5-benzenetricarboxylic acid, 1,2,4-cyclohexanetricarboxylic acid, and 2,5,7-naphthalenetricarboxylic acid. 1,2,5-naphthalenetricarboxylic acid, 1,2,5-hexanetricarboxylic acid, 1,3-dicarboxyl-2-methyl-2-carboxymethylpropane, tetra (carboxymethyl) methane, 1,2,7 , 8-octanetetracarboxylic acid. Acid anhydrides and acid halides of these organic acids are also preferred acid components for synthesis.
[0037]
As the compound corresponding to the other acid component, a halogen compound can be used. As the halide, a polyhalogen compound is used. For example, cis-1,2-dichloroethene, trans-1,2-dichloroethene, 1,2-dichloropropene, 2,3-dichloropropene, 1,3- Dichloropropene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, o-dibromobenzene, m-dibromobenzene, p-dibromobenzene, o-chlorobromobenzene, dichlorocyclohexane, dichloroethane, 1,4-dichlorobutane 1,8-dichlorooctane, 1,7-dichlorooctane, dichloromethane, 4,4'-dibromovinylphenol, 1,2,4-tribromobenzene and the like.
[0038]
In the present invention, it is preferable to use a polyester resin that has at least an aromatic ring in one of the acid component and alcohol component listed above. In the present invention, the total amount of the acid component and the alcohol component, which are synthetic components of the polyester resin, is 1 to 30 parts by weight, preferably 1 to 1 part by weight of the polymer compound (resin fine particles) described above. It is preferably used in a range of 5 to 10 parts by weight.
[0039]
The ratio of the acid component to the alcohol component is 0.9 to 1.5 molar equivalents, preferably 1.0 to 1.3 molar equivalents of alcohol groups per 1 molar equivalent of carboxyl groups. preferable. The carboxyl group here includes halides which are compounds corresponding to the acid components listed above. As other additives, an amine component may be used. Specific examples include triethylamine, trimethylamine, N, N-dimethylaniline and the like. Moreover, you may react using another condensing agent, for example, dicyclohexyl carbodiimide etc.
[0040]
(Modified polyester capable of reacting with compounds having active hydrogen groups)
A reactive modified polyester resin (RMPE) that can react with a compound having an active hydrogen group (hereinafter, the polyester resin is also simply referred to as polyester) has, for example, a functional group that reacts with active hydrogen such as an isocyanate group. Polyester prepolymers and the like are included. The polyester prepolymer preferably used in the present invention is a polyester prepolymer (A) having an isocyanate group. The polyester prepolymer (A) having an isocyanate group is produced by reacting a polyester having an active hydrogen group with a polyisocyanate (PIC), which is a polycondensate of a polyol (PO) and a polycarboxylic acid (PC). . Examples of the active hydrogen group possessed by the polyester include hydroxyl groups (alcoholic hydroxyl groups and phenolic hydroxyl groups), amino groups, carboxyl groups, mercapto groups, and the like. Among these, alcoholic hydroxyl groups are preferred.
[0041]
Examples of the polyol include diol (DIO) and trivalent or higher polyol (TO), and DIO alone or a mixture of DIO and a small amount of TO is preferable. Examples of the diol include alkylene glycol (ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, etc.); alkylene ether glycol (diethylene glycol, triethylene glycol, Dipropylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, etc.); alicyclic diols (1,4-cyclohexanedimethanol, hydrogenated bisphenol A, etc.); bisphenols (bisphenol A, bisphenol F, bisphenol S, etc.) ); Adducts of alkylene oxides (ethylene oxide, propylene oxide, butylene oxide, etc.) of the above alicyclic diols; Alkylene oxide (ethylene oxide, propylene oxide, butylene oxide, etc.), etc. adducts. Among them, preferred are alkylene glycols having 2 to 12 carbon atoms and alkylene oxide adducts of bisphenols, and particularly preferred are alkylene oxide adducts of bisphenols and alkylene glycols having 2 to 12 carbon atoms. It is a combined use.
[0042]
Examples of the trihydric or higher polyol include 3 to 8 or higher polyhydric aliphatic alcohols (glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, sorbitol, etc.); trihydric or higher phenols (trisphenol PA, Phenol novolak, cresol novolak, etc.); alkylene oxide adducts of the above trivalent or higher polyphenols.
[0043]
Examples of the polycarboxylic acid (PC) include dicarboxylic acid (DIC) and trivalent or higher polycarboxylic acid (TC), and DIC alone or a mixture of DIC and a small amount of TC is preferable.
Dicarboxylic acids include alkylene dicarboxylic acids (succinic acid, adipic acid, sebacic acid, etc.); alkenylene dicarboxylic acids (maleic acid, fumaric acid, etc.); aromatic dicarboxylic acids (phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, etc.) ) And the like. Of these, preferred are alkenylene dicarboxylic acids having 4 to 20 carbon atoms and aromatic dicarboxylic acids having 8 to 20 carbon atoms.
[0044]
Examples of the trivalent or higher valent polycarboxylic acid include aromatic polycarboxylic acids having 9 to 20 carbon atoms (such as trimellitic acid and pyromellitic acid). In addition, as polycarboxylic acid, you may make it react with a polyol using the acid anhydride or lower alkyl ester (methyl ester, ethyl ester, isopropyl ester, etc.) of the above-mentioned thing.
[0045]
The ratio of the polyol and the polycarboxylic acid is usually 2/1 to 1/1, preferably 1.5 / 1 to 1/1 / as the equivalent ratio [OH] / [COOH] of the hydroxyl group [OH] and the carboxyl group [COOH]. 1, more preferably 1.3 / 1 to 1.02 / 1.
[0046]
As polyisocyanate (PIC), aliphatic polyisocyanate (tetramethylene diisocyanate, hexamethylene diisocyanate, 2,6-diisocyanatomethylcaproate, etc.); alicyclic polyisocyanate (isophorone diisocyanate, cyclohexylmethane diisocyanate, etc.); aromatic Diisocyanates (tolylene diisocyanate, diphenylmethane diisocyanate, etc.); araliphatic diisocyanates (α, α, α ′, α′-tetramethylxylylene diisocyanate, etc.); isocyanurates; And a combination of two or more of these.
[0047]
The ratio of the polyisocyanate is usually 5/1 to 1/1, preferably 4/1 to 1 as an equivalent ratio [NCO] / [OH] of the isocyanate group [NCO] and the hydroxyl group [OH] of the polyester having a hydroxyl group. .2 / 1, more preferably 2.5 / 1 to 1.5 / 1. When [NCO] / [OH] exceeds 5, low-temperature fixability deteriorates. If the molar ratio of [NCO] is less than 1, the urea content in the modified polyester will be low, and the hot offset resistance will deteriorate.
[0048]
The content of the polyisocyanate (PIC) component in the prepolymer (A) having an isocyanate group at the terminal is usually 0.5 to 40% by weight, preferably 1 to 30% by weight, more preferably 2 to 20% by weight. It is. If it is less than 0.5% by weight, the hot offset resistance deteriorates, and it is disadvantageous in terms of both heat-resistant storage stability and low-temperature fixability. On the other hand, if it exceeds 40% by weight, the low-temperature fixability deteriorates.
[0049]
The number of isocyanate groups contained per molecule in the polyester prepolymer (A) having an isocyanate group is usually 1 or more, preferably 1.5 to 3 on average, more preferably 1.8 to 2.5 on average. It is a piece. If it is less than 1 per molecule, the molecular weight of the urea-modified polyester will be low, and the hot offset resistance will deteriorate.
[0050]
From the polyester prepolymer (A) having an isocyanate group, a urea-modified polyester resin (UMPE) can be obtained by reacting this with an amine (B). This exhibits an excellent effect as a toner binder.
[0051]
As amines (B), diamine (B1), trivalent or higher polyamine (B2), aminoalcohol (B3), aminomercaptan (B4), amino acid (B5), and amino groups B1 to B5 blocked (B6). Examples of the diamine (B1) include aromatic diamines (phenylenediamine, diethyltoluenediamine, 4,4′-diaminodiphenylmethane, etc.); alicyclic diamines (4,4′-diamino-3,3′-dimethyldicyclohexylmethane, diamines). Cyclohexane, isophoronediamine, etc.); and aliphatic diamines (ethylenediamine, tetramethylenediamine, hexamethylenediamine, etc.) and the like. Examples of the trivalent or higher polyamine (B2) include diethylenetriamine and triethylenetetramine. Examples of amino alcohol (B3) include ethanolamine and hydroxyethylaniline. Examples of amino mercaptan (B4) include aminoethyl mercaptan and aminopropyl mercaptan. Examples of the amino acid (B5) include aminopropionic acid and aminocaproic acid. Examples of the compound (B6) obtained by blocking the amino group of B1 to B5 include ketimine compounds and oxazolidine compounds obtained from the amines of B1 to B5 and ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.). Among these amines (B), preferred are B1 and a mixture of B1 and a small amount of B2.
[0052]
Furthermore, if necessary, the molecular weight of a modified polyester such as urea-modified polyester can be adjusted using an elongation terminator. Examples of the elongation terminator include monoamines (diethylamine, dibutylamine, butylamine, laurylamine, etc.), and those obtained by blocking them (ketimine compounds).
[0053]
The ratio of amines (B) is the equivalent ratio [NCO] / [NHx] of isocyanate groups [NCO] in the prepolymer (A) having isocyanate groups and amino groups [NHx] in amines (B). The ratio is usually 1/2 to 2/1, preferably 1.5 / 1 to 1 / 1.5, more preferably 1.2 / 1 to 1 / 1.2. When [NCO] / [NHx] is more than 2 or less than 1/2, the molecular weight of the urea-modified polyester is lowered, and the hot offset resistance is deteriorated.
[0054]
In the present invention, the polyester modified with a urea bond may contain a urethane bond together with a urea bond. The molar ratio of the urea bond content to the urethane bond content is usually 100/0 to 10/90, preferably 80/20 to 20/80, and more preferably 60/40 to 30/70. When the molar ratio of the urea bond is less than 10%, the hot offset resistance is deteriorated.
[0055]
The amines (B) act as a crosslinking agent or an extender for the modified polyester that can react with a compound having an active hydrogen group.
[0056]
The urea-modified polyester used in the present invention is produced by a one-shot method or a prepolymer method. The weight average molecular weight of the modified polyester such as urea-modified polyester is usually 10,000 or more, preferably 20,000 to 10,000,000, and more preferably 30,000 to 1,000,000. If it is less than 10,000, the hot offset resistance deteriorates. The number average molecular weight of a modified polyester such as urea-modified polyester is not particularly limited when an unmodified polyester described later is used, and may be a number average molecular weight that can be easily obtained to obtain the weight average molecular weight. In the case of a modified polyester alone such as urea-modified polyester, the number average molecular weight is usually 20000 or less, preferably 1000 to 10000, and more preferably 2000 to 8000. When it exceeds 20000, the low-temperature fixability and the glossiness when used in a full-color apparatus are deteriorated.
[0057]
(Unmodified polyester)
In the present invention, not only a modified polyester (MPE) such as a polyester modified with a urea bond, but also a polyester (PE) which is not modified can be contained as a toner binder component. The combined use of PE improves low-temperature fixability and gloss when used in a full-color device, and is preferable to single use. Examples of PE include polycondensates of polyols and polycarboxylic acids similar to those of the polyester component of MPE, and preferred ones are also the same as MPE. In addition, PE may be modified with a chemical bond other than an unmodified polyester, and may be modified with a urethane bond, for example. It is preferable that MPE and PE are at least partially compatible in terms of low-temperature fixability and hot offset resistance. Therefore, a similar composition is preferable for the polyester component of MPE and PE.
[0058]
When PE is contained, the weight ratio of MPE to PE is usually 5/95 to 80/20, preferably 5/95 to 30/70, more preferably 5/95 to 25/75, and particularly preferably 7/93. ~ 20/80. If the weight ratio of MPE is less than 5%, the hot offset resistance deteriorates, and it is disadvantageous in terms of both heat-resistant storage stability and low-temperature fixability.
[0059]
The peak molecular weight of PE is usually 1000-30000, preferably 1500-10000, more preferably 2000-8000. If it is less than 1000, heat-resistant storage stability will deteriorate, and if it exceeds 10,000, low-temperature fixability will deteriorate. The hydroxyl value of PE is preferably 5 or more, more preferably 10 to 120, and particularly preferably 20 to 80. If it is less than 5, it is disadvantageous in terms of both heat-resistant storage stability and low-temperature fixability. The acid value of PE is usually 1-30, preferably 5-20. By having an acid value, it tends to be negatively charged.
[0060]
In the present invention, the glass transition point (Tg) of the binder (toner binder) in the toner is usually 50 to 70 ° C., preferably 55 to 65 ° C. If it is less than 50 ° C., the heat resistant storage stability of the toner is deteriorated, and if it exceeds 70 ° C., the low-temperature fixability becomes insufficient. Due to the coexistence of a modified polyester such as a urea-modified polyester resin, the dry toner of the present invention tends to have good heat storage stability even when the glass transition point is low, as compared with known polyester toners.
[0061]
The storage elastic modulus of the toner binder is 10,000 dyne / cm at a measurement frequency of 20 Hz. 2 The temperature (TG ′) at which the temperature becomes is usually 100 ° C. or higher, preferably 110 to 200 ° C. If it is less than 100 ° C., the resistance to hot offset deteriorates. As the viscosity of the toner binder, the temperature (Tη) at 1000 poise at a measurement frequency of 20 Hz is usually 180 ° C. or lower, preferably 90 to 160 ° C. If it exceeds 180 ° C., the low-temperature fixability deteriorates. That is, TG ′ is preferably higher than Tη from the viewpoint of achieving both low temperature fixability and hot offset resistance. In other words, the difference between TG ′ and Tη (TG′−Tη) is preferably 0 ° C. or more. More preferably, it is 10 degreeC or more, Most preferably, it is 20 degreeC or more. The upper limit of the difference is not particularly limited. Further, from the viewpoint of achieving both heat-resistant storage stability and low-temperature fixability, the difference between Tη and Tg is preferably 0 to 100 ° C. More preferably, it is 10-90 degreeC, Most preferably, it is 20-80 degreeC.
[0062]
(Coloring agent)
As the colorant used in the toner of the present invention, all known dyes and pigments can be used. For example, carbon black, nigrosine dye, iron black, naphthol yellow S, Hansa yellow (10G, 5G, G), cadmium yellow , Yellow iron oxide, ocher, yellow lead, titanium yellow, polyazo yellow, oil yellow, Hansa yellow (GR, A, RN, R), pigment yellow L, benzidine yellow (G, GR), permanent yellow (NCG), Vulcan Fast Yellow (5G, R), Tartrazine Lake, Quinoline Yellow Lake, Anthrazan Yellow BGL, Isoindolinone Yellow, Bengala, Red Tan, Lead Zhu, Cadmium Red, Cadmium Mercury Red, Antimon Zhu, Permanent Red 4R, Para Red, Faise Red, parachlor ortho nitroaniline red, risor fast scarlet G, brilliant fast scarlet, brilliant carmine BS, permanent red (F2R, F4R, FRL, FRLL, F4RH), fast scarlet VD, velkan fast rubin B, brilliant scarlet G , Risor Rubin GX, Permanent Red F5R, Brilliant Carmine 6B, Pogment Scarlet 3B, Bordeaux 5B, Tolujing Maroon, Permanent Bordeaux F2K, Helio Bordeaux BL, Bordeaux 10B, Bon Maroon Light, Bon Maroon Medium, Eosin Lake, Rhodamine Lake B, Rhodamine lake Y, alizarin lake, thioindigo red B, thioindigo maroon, oil red, quinacrid Red, pyrazolone red, polyazo red, chrome vermilion, benzidine orange, perinone orange, oil orange, cobalt blue, cerulean blue, alkaline blue rake, peacock blue rake, Victoria blue rake, metal-free phthalocyanine blue, phthalocyanine blue, fast sky blue , Indanthrene Blue (RS, BC), Indigo, Ultramarine, Bitumen, Anthraquinone Blue, Fast Violet B, Methyl Violet Lake, Cobalt Purple, Manganese Purple, Dioxane Violet, Anthraquinone Violet, Chrome Green, Zinc Green, Chrome Oxide, Pyridian , Emerald Green, Pigment Green B, Naphthol Green B, Green Gold, Acid Green Lake, Ma Lakite green lake, phthalocyanine green, anthraquinone green, titanium oxide, zinc white, litbon and mixtures thereof can be used.
The content of the colorant is usually 1 to 15% by weight, preferably 3 to 10% by weight, based on the toner.
[0063]
In the present invention, the colorant to be used can be used as a master batch combined with a resin. As the binder resin to be kneaded together with the production of the masterbatch or the masterbatch, in addition to the modified and unmodified polyester resins mentioned above, styrene such as polystyrene, poly p-chlorostyrene, polyvinyltoluene, and polymers of substituted products thereof; Styrene-p-chlorostyrene copolymer, styrene-propylene copolymer, styrene-vinyltoluene copolymer, styrene-vinylnaphthalene copolymer, styrene-methyl acrylate copolymer, styrene-ethyl acrylate copolymer Styrene-butyl acrylate copolymer, styrene-octyl acrylate copolymer, styrene-methyl methacrylate copolymer, styrene-ethyl methacrylate copolymer, styrene-butyl methacrylate copolymer, styrene-α- Chloromethyl methacrylate copolymer, Tylene-acrylonitrile copolymer, styrene-vinyl methyl ketone copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer, styrene-acrylonitrile-indene copolymer, styrene-maleic acid copolymer, styrene-malein Styrene copolymers such as acid ester copolymers; polymethyl methacrylate, polybutyl methacrylate, polyvinyl chloride, polyvinyl acetate, polyethylene, polypropylene, polyester, epoxy resin, epoxy polyol resin, polyurethane, polyamide, polyvinyl butyral, poly Acrylic resin, rosin, modified rosin, terpene resin, aliphatic or alicyclic hydrocarbon resin, aromatic petroleum resin, chlorinated paraffin, paraffin wax, etc. The
[0064]
This master batch can be obtained by mixing and kneading a resin for a master batch and a colorant under a high shear force to obtain a master batch. At this time, an organic solvent can be used to enhance the interaction between the colorant and the resin. In addition, a so-called flushing method called watering paste containing water of a colorant is mixed and kneaded together with a resin and an organic solvent, and the colorant is transferred to the resin side to remove moisture and organic solvent components. Since it can be used as it is, it does not need to be dried and is preferably used. For mixing and kneading, a high shear dispersion device such as a three-roll mill is preferably used.
[0065]
(Release agent)
In the toner of the present invention, the toner may contain a wax together with the toner binder and the colorant. Known waxes can be used, and examples thereof include polyolefin wax (polyethylene wax, polypropylene wax, etc.); long chain hydrocarbon (paraffin wax, sasol wax, etc.); carbonyl group-containing wax. Of these, carbonyl group-containing waxes are preferred. Examples of the carbonyl group-containing wax include polyalkanoic acid esters (carnauba wax, montan wax, trimethylolpropane tribehenate, pentaerythritol tetrabehenate, pentaerythritol diacetate dibehenate, glycerin tribehenate, 1,18. -Octadecanediol distearate, etc.); polyalkanol esters (tristearyl trimellitic acid, distearyl maleate, etc.); polyalkanoic acid amides (ethylene diamine dibehenyl amide, etc.); polyalkylamides (trimellitic acid tristearyl amide, etc.) And dialkyl ketones (such as distearyl ketone). Among these carbonyl group-containing waxes, polyalkanoic acid esters are preferred.
[0066]
The melting point of the wax of the present invention is usually 40 to 160 ° C, preferably 50 to 120 ° C, more preferably 60 to 90 ° C. A wax having a melting point of less than 40 ° C. has an adverse effect on heat-resistant storage stability, and a wax having a melting point of more than 160 ° C. tends to cause a cold offset when fixing at a low temperature. Further, the melt viscosity of the wax is preferably 5 to 1000 cps, more preferably 10 to 100 cps as a measured value at a
The content of the wax in the toner is usually 0 to 40% by weight, preferably 3 to 30% by weight.
[0067]
(Charge control agent)
The toner of the present invention may contain a charge control agent as necessary. All known charge control agents can be used, such as nigrosine dyes, triphenylmethane dyes, chromium-containing metal complex dyes, molybdate chelate pigments, rhodamine dyes, alkoxy amines, quaternary ammonium salts (fluorine-modified). Quaternary ammonium salts), alkylamides, phosphorus simple substances or compounds, tungsten simple substances or compounds, fluorine-based activators, salicylic acid metal salts, and metal salts of salicylic acid derivatives. Specifically, Nitronine-based dye Bontron 03, quaternary ammonium salt Bontron P-51, metal-containing azo dye Bontron S-34, oxynaphthoic acid metal complex E-82, salicylic acid metal complex E- 84, E-89 of phenol-based condensate (above, manufactured by Orient Chemical Industries), TP-302, TP-415 of quaternary ammonium salt molybdenum complex (above, manufactured by Hodogaya Chemical Co., Ltd.), quaternary ammonium Copy charge PSY VP2038 of salt, copy blue PR of triphenylmethane derivative, copy charge NEG VP2036 of quaternary ammonium salt, copy charge NX VP434 (above, manufactured by Hoechst), LRA-901, LR-147 which is a boron complex (Nippon Carlit), copper phthalocyanine, perylene, quinacridone, Zone-based pigment, a sulfonic acid group, a carboxyl group, and polymer compounds having a functional group such as a quaternary ammonium salt.
[0068]
In the present invention, the amount of charge control agent used is determined uniquely by the type of binder resin, the presence or absence of additives used as necessary, and the toner production method including the dispersion method, and is uniquely limited. However, it is preferably used in the range of 0.1 to 10 parts by weight with respect to 100 parts by weight of the binder resin. The range of 0.2 to 5 parts by weight is preferable. When the amount exceeds 10 parts by weight, the chargeability of the toner is too high, the effect of the main charge control agent is reduced, the electrostatic attractive force with the developing roller is increased, the flowability of the developer is reduced, and the image density is reduced. Incurs a decline. These charge control agents can be dissolved and dispersed after being melt-kneaded with a masterbatch and resin, and of course, they can be added directly when dissolved and dispersed in an organic solvent, or fixed on the toner surface after preparation of toner particles. May be.
[0069]
(External additive)
As the external additive for assisting the fluidity, developability and chargeability of the colored resin particles obtained in the present invention, inorganic fine particles can be preferably used. The primary particle diameter of the inorganic fine particles is preferably 5 mμ to 2 μm, and particularly preferably 5 mμ to 500 mμ. The specific surface area according to the BET method is 20 to 500 m. 2 / G is preferable.
The proportion of the inorganic fine particles used is preferably 0.01 to 5% by weight of the toner, and particularly preferably 0.01 to 2.0% by weight.
Specific examples of the inorganic fine particles include, for example, silica, alumina, titanium oxide, barium titanate, magnesium titanate, calcium titanate, strontium titanate, zinc oxide, tin oxide, quartz sand, clay, mica, wollastonite, diatomaceous earth. Examples include soil, chromium oxide, cerium oxide, pengala, antimony trioxide, magnesium oxide, zirconium oxide, barium sulfate, barium carbonate, calcium carbonate, silicon carbide, and silicon nitride.
[0070]
Other polymer fine particles such as polystyrene, methacrylic acid ester and acrylic acid ester copolymer obtained by soap-free emulsion polymerization, suspension polymerization, and dispersion polymerization, polycondensation systems such as silicone, benzoguanamine, and nylon, and thermosetting resins Examples include polymer particles.
[0071]
Such external additives can be surface treated to increase hydrophobicity and prevent deterioration of flow characteristics and charging characteristics even under high humidity. For example, silane coupling agents, silylating agents, silane coupling agents having a fluoroalkyl group, organic titanate coupling agents, aluminum coupling agents, silicone oils, modified silicone oils and the like are preferable surface treatment agents. .
[0072]
It is preferable to use a cleaning property improver for removing the developer after transfer remaining on the photoreceptor or the primary transfer medium. Examples of the cleaning property improver include fatty acid metals such as zinc stearate, calcium stearate, and stearic acid. Examples thereof include polymer fine particles produced by a salt-free emulsion polymerization such as polymethyl methacrylate fine particles and polystyrene fine particles. The polymer fine particles preferably have a relatively narrow particle size distribution and a volume average particle size of 0.01 to 1 μm.
[0073]
(Production method)
The toner binder can be produced by the following method. Polyester having a hydroxyl group by heating the polyol and polycarboxylic acid to 150-280 ° C. in the presence of a known esterification catalyst such as tetrabutoxy titanate, dibutyltin oxide, etc., and distilling off the water generated while reducing the pressure as necessary. Get. Next, this is reacted with polyisocyanate at 40 to 140 ° C. to obtain a prepolymer (A) having an isocyanate group. Further, this A is reacted with amines (B) at 0 to 140 ° C. to obtain a polyester modified with a urea bond. When the polyisocyanate is reacted and when A and B are reacted, a solvent can be used if necessary. Usable solvents include aromatic solvents (toluene, xylene, etc.); ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.); esters (ethyl acetate, etc.); amides (dimethylformamide, dimethylacetamide, etc.) and ethers And those inert to polyisocyanates (PIC) such as tetrahydrofuran (such as tetrahydrofuran). When using a polyester (PE) not modified with a urea bond, this PE is produced in the same manner as in the case of a polyester having a hydroxyl group, and this is dissolved in a solution after completion of the reaction of the urea-modified polyester. Mix.
[0074]
(Manufacture of toner)
The dry toner of the present invention can be produced by the following method, but is not limited thereto.
[0075]
(Toner production method in aqueous medium)
As an aqueous medium, water alone may be used, but a solvent miscible with water may be used in combination. Examples of the miscible solvent include alcohol (methanol, isopropanol, ethylene glycol, etc.), dimethylformamide, tetrahydrofuran, cellosolves (methyl cellosolve, etc.), lower ketones (acetone, methyl ethyl ketone, etc.), and the like.
[0076]
The toner particles can be formed by reacting a dispersion composed of a prepolymer (A) having an isocyanate group with an amine (B) in an aqueous medium. As a method for stably forming a dispersion composed of urea-modified polyester or prepolymer (A) in an aqueous medium, the composition of a toner raw material composed of urea-modified polyester or prepolymer (A) is added to the aqueous medium. And a method of dispersing by shearing force. The colorant, colorant masterbatch, release agent, charge control agent, unmodified polyester resin, etc. which are the prepolymer (A) and other toner components (hereinafter referred to as toner raw materials) are dispersed in an aqueous medium. It may be mixed at the time of formation, but it is more preferable to mix the toner raw materials in advance and then add and disperse the mixture in the aqueous medium. In the present invention, other toner materials such as a colorant, a release agent, and a charge control agent do not necessarily have to be mixed when forming particles in an aqueous medium, but after the particles are formed. , May be added. For example, after forming particles containing no colorant, the colorant can be added by a known dyeing method.
[0077]
The dispersion method is not particularly limited, and known equipment such as a low-speed shear method, a high-speed shear method, a friction method, a high-pressure jet method, and an ultrasonic wave can be applied. In order to make the particle size of the dispersion 2 to 20 μm, a high-speed shearing type is preferable. When a high-speed shearing disperser is used, the number of rotations is not particularly limited, but is usually 1000 to 30000 rpm, preferably 5000 to 20000 rpm. The dispersion time is not particularly limited, but in the case of a batch method, it is usually 0.1 to 5 minutes. The temperature during dispersion is usually 0 to 150 ° C. (under pressure), preferably 40 to 98 ° C. Higher temperatures are preferred in that the dispersion of the urea-modified polyester or prepolymer (A) has a low viscosity and is easy to disperse.
[0078]
The amount of the aqueous medium used is usually 50 to 2000 parts by weight, preferably 100 to 1000 parts by weight, based on 100 parts by weight of the toner composition (composition) containing urea-modified polyester and prepolymer (A). If the amount is less than 50 parts by weight, the dispersed state of the toner composition is poor and toner particles having a predetermined particle size cannot be obtained. If it exceeds 2000 parts by weight, it is not economical. Moreover, a dispersing agent can also be used as needed. It is preferable to use a dispersant because the particle size distribution becomes sharp and the dispersion is stable.
[0079]
In the step of synthesizing the urea-modified polyester from the prepolymer (A), the amines (B) may be added and reacted before the toner composition is dispersed in the aqueous medium, or the amines may be reacted after being dispersed in the aqueous medium. (B) may be added to cause a reaction from the particle interface. In this case, urea-modified polyester is preferentially generated on the surface of the toner to be produced, and a concentration gradient can be provided inside the particles.
[0080]
As a dispersant for emulsifying and dispersing the oily phase in which the toner composition is dispersed in a liquid containing water, an anionic surfactant such as alkylbenzene sulfonate, α-olefin sulfonate, and phosphate ester, Amine salt types such as alkylamine salts, amino alcohol fatty acid derivatives, polyamine fatty acid derivatives, imidazolines, alkyltrimethylammonium salts, dialkyldimethylammonium salts, alkyldimethylbenzylammonium salts, pyridinium salts, alkylisoquinolinium salts, benzethonium chloride Nonionic surfactants such as quaternary ammonium salt type cationic surfactants, fatty acid amide derivatives, polyhydric alcohol derivatives such as alanine, dodecyldi (aminoethyl) glycine, di (octylaminoethyl) glycine and N- Al Le -N, amphoteric surfactants such as N- dimethyl ammonium betaine and the like.
[0081]
Further, by using a surfactant having a fluoroalkyl group, the effect can be obtained in a very small amount. Preferred anionic surfactants having a fluoroalkyl group include fluoroalkyl carboxylic acids having 2 to 10 carbon atoms and metal salts thereof, disodium perfluorooctanesulfonyl glutamate, 3- [omega-fluoroalkyl (C6-C11 ) Oxy] -1-alkyl (C3-C4) sodium sulfonate, 3- [omega-fluoroalkanoyl (C6-C8) -N-ethylamino] -1-propanesulfonic acid sodium, fluoroalkyl (C11-C20) carvone Acids and metal salts, perfluoroalkylcarboxylic acids (C7 to C13) and metal salts thereof, perfluoroalkyl (C4 to C12) sulfonic acids and metal salts thereof, perfluorooctanesulfonic acid diethanolamide, N-propyl-N- ( 2-hydroxyethyl Perfluorooctanesulfonamide, perfluoroalkyl (C6-C10) sulfonamidopropyltrimethylammonium salt, perfluoroalkyl (C6-C10) -N-ethylsulfonylglycine salt, monoperfluoroalkyl (C6-C16) ethyl phosphate, etc. Is mentioned.
[0082]
Product names include Surflon S-111, S-112, S-113 (Asahi Glass Co., Ltd.), Florard FC-93, FC-95, FC-98, FC-129 (Sumitomo 3M Co., Ltd.), Unidyne DS-101. DS-102 (Daikin Kogyo Co., Ltd.), Mega-Fac F-l0, F-l20, F-113, F-191, F-812, F-833 (Dainippon Ink Co., Ltd.), Xtop EF-102 , 103, 104, 105, 112, 123A, 123B, 306A, 501, 201, 204 (manufactured by Tochem Products), and Fagento F-100, F150 (manufactured by Neos).
[0083]
Examples of cationic surfactants include aliphatic primary, secondary or secondary amine acids having a fluoroalkyl group, aliphatic quaternary ammonium salts such as perfluoroalkyl (C6-C10) sulfonamidopropyltrimethylammonium salt, benza Luconium salt, benzethonium chloride, pyridinium salt, imidazolinium salt, trade names include Surflon S-121 (manufactured by Asahi Glass), Florard FC-135 (manufactured by Sumitomo 3M), Unidyne DS-202 (manufactured by Daikin Industries) , Megafac F-150, F-824 (Dainippon Ink Co., Ltd.), Xtop EF-132 (Tochem Products Co., Ltd.), Footgent F-300 (Neos Co., Ltd.), and the like.
[0084]
Moreover, calcium phosphate, calcium carbonate, titanium oxide, colloidal silica, hydroxyapatite, etc. can be used as an inorganic compound dispersant which is hardly soluble in water.
[0085]
Further, the dispersed droplets may be stabilized by a polymer protective colloid. For example, acrylic acid, methacrylic acid, α-cyanoacrylic acid, α-cyanomethacrylic acid, itaconic acid, crotonic acid, fumaric acid, maleic acid or maleic anhydride and other (meth) acrylic monomers containing hydroxyl groups Bodies such as β-hydroxyethyl acrylate, β-hydroxyethyl methacrylate, β-hydroxypropyl acrylate, β-hydroxypropyl methacrylate, γ-hydroxypropyl acrylate, γ-hydroxypropyl methacrylate, 3-acrylate Chloro-2-hydroxypropyl, 3-chloro-2-hydroxypropyl methacrylate, diethylene glycol monoacrylate, diethylene glycol monomethacrylate, glycerol monoacrylate, glycerol monomethacrylate, N-methylol acrylamide, N-methylol methacrylamide, etc., vinyl alcohol or ethers with vinyl alcohol, such as vinyl methyl ether, vinyl ethyl ether, vinyl propyl ether, or esters of compounds containing vinyl alcohol and a carboxyl group, For example, vinyl acetate, vinyl propionate, vinyl butyrate, etc., acrylamide, methacrylamide, diacetone acrylamide or their methylol compounds, acid chlorides such as acrylic acid chloride, methacrylic acid chloride, vinyl pyridine, vinyl pyrrolidone, vinyl imidazole, ethyleneimine Homopolymers or copolymers such as those having a nitrogen atom, or a heterocyclic ring thereof, polyoxyethylene, polyoxypropylene, Reoxyethylene alkylamine, polyoxypropylene alkylamine, polyoxyethylene alkylamide, polyoxypropylene alkylamide, polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl phenyl ether, polyoxyethylene stearyl phenyl ester, polyoxyethylene nonylphenyl Polyoxyethylenes such as esters, celluloses such as methyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose can be used.
[0086]
In addition, when an acid such as calcium phosphate salt or an alkali-soluble substance is used as the dispersion stabilizer, the calcium phosphate salt is removed from the fine particles by a method such as dissolving the calcium phosphate salt with an acid such as hydrochloric acid and then washing with water. To do. It can also be removed by operations such as enzymatic degradation.
[0087]
When a dispersant is used, the dispersant can remain on the surface of the toner particles. However, it is preferable from the charged surface of the toner to wash away after the reaction.
[0088]
Further, in order to lower the viscosity of the liquid containing the toner composition, a solvent in which the urea-modified polyester or the prepolymer (A) is soluble can be used. The use of a solvent is preferable in that the particle size distribution becomes sharp. The solvent is preferably volatile with a boiling point of less than 100 ° C. from the viewpoint of easy removal. Examples of the solvent include toluene, xylene, benzene, carbon tetrachloride, methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, trichloroethylene, chloroform, monochlorobenzene, dichloroethylidene, methyl acetate, ethyl acetate, Methyl ethyl ketone, methyl isobutyl ketone and the like can be used alone or in combination of two or more. In particular, aromatic solvents such as toluene and xylene and halogenated hydrocarbons such as methylene chloride, 1,2-dichloroethane, chloroform, and carbon tetrachloride are preferable.
The usage-amount of the solvent with respect to 100 weight part of prepolymers (A) is 0-300 weight part normally, Preferably it is 0-100 weight part, More preferably, it is 25-70 part. When a solvent is used, it is removed by heating under normal pressure or reduced pressure after elongation and / or crosslinking reaction.
[0089]
When the amine (B) as a compound having an active hydrogen group is reacted with a modified polyester capable of reacting with a compound having an active hydrogen group, the elongation and / or cross-linking reaction time depends on the isocyanate group of the prepolymer (A). Although it is selected depending on the reactivity depending on the combination of the structure and the amines (B), it is usually 10 minutes to 40 hours, preferably 2 to 24 hours. The reaction temperature is usually 0 to 150 ° C., preferably 40 to 98 ° C. Moreover, a well-known catalyst can be used as needed. Specific examples include dibutyltin laurate and dioctyltin laurate.
[0090]
(Deformation process)
In order to obtain a desired shape, the obtained dispersion (reaction liquid) after the elongation and / or crosslinking reaction is subjected to solvent removal prior to solvent removal, and a homogenizer, an ebara milder, a stirring tank equipped with a stirrer, etc. The particles having a substantially spherical shape are deformed into a spindle shape by using a device that gives a shearing force of, and then the particles are immobilized by providing a step of removing the solvent from the dispersion at Tg or less of the binder resin. Thus, a toner having a desired shape can be produced.
Examples of the method for adjusting the shearing force include the treatment time and number of treatments of the apparatus, the temperature and viscosity of the dispersion, and the concentration of the organic solvent in the particles. Also, the particles themselves have different shapes depending on the coverage of the resin fine particles on the surface of the particles, the degree of reactivity with the compound having an active hydrogen group, etc., and the degree of deformation due to the shearing force varies.
[0091]
In order to remove the organic solvent from the obtained emulsified dispersion, a method in which the temperature of the entire system is gradually raised to completely evaporate and remove the organic solvent in the droplets can be employed. Alternatively, the emulsified dispersion can be sprayed into a dry atmosphere to completely remove the water-insoluble organic solvent in the droplets to form toner fine particles, and the aqueous dispersant can be removed by evaporation together. . As a dry atmosphere in which the emulsified dispersion is sprayed, a gas obtained by heating air, nitrogen, carbon dioxide gas, combustion gas, or the like, in particular, various air currents heated to a temperature equal to or higher than the boiling point of the highest boiling solvent used is generally used. Sufficient quality can be obtained with a short treatment such as spray dryer, belt dryer or rotary kiln.
[0092]
When the particle size distribution at the time of emulsification dispersion is wide and washing and drying processes are performed while maintaining the particle size distribution, the particle size distribution can be adjusted by classifying into a desired particle size distribution.
In the classification operation, the fine particle portion can be removed in the liquid by a cyclone, a decanter, centrifugation, or the like. Of course, the classification operation may be performed after obtaining the powder as a powder after drying. The unnecessary fine particles or coarse particles obtained can be returned to the kneading step and used for the formation of particles. At that time, fine particles or coarse particles may be wet.
Further, it is preferable to remove the organic solvent at a dispersion temperature of 10 to 50 ° C. Since there are sufficient cases where the carbon agglomerates or WAX melts at a temperature higher than 50 ° C., solvent removal at 50 ° C. or lower is desirable.
[0093]
The dispersant used is preferably removed from the obtained dispersion as much as possible, but it is preferable to carry out it simultaneously with the classification operation described above.
[0094]
By mixing the resulting dried toner powder with dissimilar particles such as release agent fine particles, charge control fine particles, fluidizing agent fine particles, and colorant fine particles, or by giving mechanical impact force to the mixed powder By immobilizing and fusing on the surface, it is possible to prevent detachment of the foreign particles from the surface of the resulting composite particle.
[0095]
Specific means include a method of applying an impact force to the mixture by blades rotating at high speed, a method of injecting and accelerating the mixture in a high-speed air stream, and causing particles or composite particles to collide with an appropriate collision plate, etc. is there. As equipment, Ong mill (manufactured by Hosokawa Micron Co., Ltd.), I-type mill (manufactured by Nippon Pneumatic Co., Ltd.) is modified to reduce the grinding air pressure, hybridization system (manufactured by Nara Machinery Co., Ltd.), kryptron system (Made by Kawasaki Heavy Industries, Ltd.), automatic mortar and the like.
[0096]
(Carrier for two components)
When the toner of the present invention is used for a two-component developer, it may be used by mixing with a magnetic carrier, and the content ratio of the carrier and the toner in the developer is 1 to 10 weights of toner with respect to 100 parts by weight of the carrier. Part is preferred. As the magnetic carrier, conventionally known ones such as iron powder, ferrite powder, magnetite powder, magnetic resin carrier having a particle diameter of about 20 to 200 μm can be used.
The carrier may cover the surface. Examples of the coating material include amino resins such as urea-formaldehyde resin, melamine resin, benzoguanamine resin, urea resin, polyamide resin, and epoxy resin. Polyvinyl and polyvinylidene resins such as acrylic resins, polymethyl methacrylate resins, polyacrylonitrile resins, polyvinyl acetate resins, polyvinyl alcohol resins, polyvinyl butyral resins, polystyrene resins and styrene acrylic copolymer resins, Halogenated olefin resins such as vinyl, polyester resins such as polyethylene terephthalate resin and polybutylene terephthalate resin, polycarbonate resins, polyethylene resins, polyvinyl fluoride resins, polyvinylidene fluoride resins, polytrifluoroethylene resins, polyhexafluoro Propylene resin, copolymer of vinylidene fluoride and acrylic monomer, copolymer of vinylidene fluoride and vinyl fluoride, tetrafluoroethylene and vinylidene fluoride And fluoro such as terpolymers of non-fluoride monomers including, and silicone resins.
Moreover, you may contain electrically conductive powder etc. in coating resin as needed. As the conductive powder, metal powder, carbon black, titanium oxide, tin oxide, zinc oxide or the like can be used. These conductive powders preferably have an average particle diameter of 1 μm or less. When the average particle diameter is larger than 1 μm, it becomes difficult to control electric resistance.
[0097]
The toner of the present invention can also be used as a one-component magnetic toner that does not use a carrier or a non-magnetic toner.
[0098]
An embodiment of an image forming apparatus provided with a developing device according to the present invention will be described below with reference to FIG.
First, the configuration of an image forming apparatus using the developing device according to the present invention will be described.
FIG. 2 shows a cross section of the image forming apparatus. A charging roller 2 that charges a uniform charge on the photosensitive drum 1 in proximity to or in contact with the periphery of the photosensitive drum 1 serving as an image carrier. An exposure device 3 that is an exposure means for forming an electrostatic latent image on the photosensitive drum 1, a developing device 4 that visualizes the electrostatic latent image to form a toner image, and transfers the toner image to transfer paper. In order to control the transfer belt 6, the cleaning device 8 for removing the residual toner on the photosensitive drum 1, the neutralizing lamp 9 for neutralizing the residual charge on the photosensitive drum 1, the charging roller applied voltage and the developing toner density. The
[0099]
The photosensitive member 1 rotates counterclockwise. The photoreceptor 1 is neutralized by the neutralizing light 9, and the surface potential is averaged to a reference potential of 0 to -150V. Next, it is charged by the charging roller 2 and the surface potential becomes around -1000V. Next, the surface potential of the portion (image portion) that is exposed by the exposure device 3 and irradiated with light is 0 to −200V. The toner on the sleeve adheres to the image portion by the developing device 4. The photosensitive member 1 on which the toner image is formed rotates and moves, and the transfer paper is fed from the paper supply unit 5 at a timing such that the leading end portion of the paper and the leading end portion of the image coincide with each other on the transfer belt 6. The toner image on the surface is transferred to the transfer paper. Thereafter, the transfer paper is sent to the fixing unit 7, and the toner is fused to the transfer paper by heat and pressure and discharged as a copy. The residual toner remaining on the photosensitive member 1 is scraped off by the cleaning blade 8 and the toner is recycled through the toner supply port (not shown). Thereafter, the remaining charge is removed from the photosensitive member 1 by the charge removal light 9 to be in an initial state without toner, and the process proceeds to the next image forming process again.
[0100]
In the present invention, if the cleaning blade 8 is provided with a process of cleaning with an elastic rubber blade that is in contact with the rotational direction of the photosensitive pair 1 in the counter direction, paper dust and filming can be more effectively removed. It is preferable because it is possible. The elastic rubber blade is preferably configured to have a free end on the support member, but is not limited thereto. The hardness of the elastic rubber blade is JIS A 60-70 °, the rebound resilience is 30-70%, and the Young's modulus is 30-60 kgf / cm. 2 The thickness is 1.5 to 3.0 mm, the free length is 7 to 12 mm, the pressing force to the photosensitive pair is 15 g / cm or less, the contact angle of the elastic rubber blade to the photosensitive pair 1 is 5 ° to 50 °, Preferably, the thing of 10 degrees-30 degrees is preferable.
[0101]
【Example】
EXAMPLES The present invention will be further described below with reference to examples, but the present invention is not limited thereto.
[0102]
Example 1
(Synthesis of organic fine particle emulsion)
Production Example 1
In a reaction vessel equipped with a stirrer and a thermometer, 683 parts of water, 11 parts of sodium salt of ethylene oxide methacrylate adduct sulfate (Eleminol RS-30, manufactured by Sanyo Chemical Industries), 83 parts of styrene, 83 parts of methacrylic acid, When 110 parts of butyl acrylate and 1 part of ammonium persulfate were added and stirred at 400 rpm for 15 minutes, a white emulsion was obtained. The system was heated to raise the system temperature to 75 ° C. and reacted for 5 hours. Further, 30 parts of a 1% ammonium persulfate aqueous solution was added, and the mixture was aged at 75 ° C. for 5 hours, and an aqueous vinyl resin (a copolymer of styrene-methacrylic acid-butyl acrylate-methacrylic acid ethylene oxide adduct sulfate sodium salt). A dispersion [fine particle dispersion 1] was obtained. The volume average particle diameter of [Fine Particle Dispersion 1] measured with LA-920 was 0.10 μm. A portion of [Fine Particle Dispersion 1] was dried to isolate the resin component. The resin content Tg was 57 ° C.
[0103]
(Preparation of aqueous phase)
Production Example 2
990 parts of water, 80 parts of [fine particle dispersion 1], 40 parts of 48.5% aqueous solution of sodium dodecyl diphenyl ether disulfonate (Eleminol MON-7: Sanyo Chemical Industries) and 90 parts of ethyl acetate are mixed and stirred to give a milky white liquid. Got. This is designated as [Aqueous Phase 1].
[0104]
(Synthesis of low molecular weight polyester)
Production Example 3
In a reaction vessel equipped with a condenser, a stirrer and a nitrogen inlet tube, 220 parts of bisphenol A ethylene oxide 2-mole adduct, 561 parts of bisphenol A propylene oxide 3-mole adduct, 218 parts of terephthalic acid, 48 parts of adipic acid and dibutyl Add 2 parts of tin oxide, react for 8 hours at 230 ° C. under normal pressure, and further react for 5 hours under reduced pressure of 10-15 mmHg, then add 45 parts of trimellitic anhydride into the reaction vessel and add 2 parts at 180 ° C. under normal pressure. The reaction was performed for a while to obtain [Low molecular polyester 1]. [Low molecular polyester 1] had a number average molecular weight of 2500, a weight average molecular weight of 6700, a Tg of 43 ° C., and an acid value of 25.
[0105]
(Prepolymer synthesis)
Production Example 4
In a reaction vessel equipped with a condenser, a stirrer, and a nitrogen introduction pipe, 682 parts of bisphenol A ethylene oxide 2-mole adduct, 81 parts of bisphenol A propylene oxide 2-mole adduct, 283 parts of terephthalic acid, 22 parts of trimellitic anhydride And 2 parts of dibutyltin oxide were added, reacted at 230 ° C. under normal pressure for 8 hours, and further reacted for 5 hours at a reduced pressure of 10 to 15 mmHg to obtain [Intermediate Polyester 1]. [Intermediate Polyester 1] had a number average molecular weight of 2,100, a weight average molecular weight of 9,500, Tg of 55 ° C., an acid value of 0.5, and a hydroxyl value of 49.
Next, 411 parts of [Intermediate polyester 1], 89 parts of isophorone diisocyanate and 500 parts of ethyl acetate are placed in a reaction vessel equipped with a cooling pipe, a stirrer and a nitrogen introduction pipe, and reacted at 100 ° C. for 5 hours. Polymer 1] was obtained. [Prepolymer 1] had a free isocyanate weight% of 1.53%.
[0106]
(Synthesis of ketimine)
Production Example 5
In a reaction vessel equipped with a stirrer and a thermometer, 170 parts of isophoronediamine and 75 parts of methyl ethyl ketone were charged and reacted at 50 ° C. for 5 hours to obtain [ketimine compound 1]. The amine value of [ketimine compound 1] was 418.
[0107]
(Synthesis of master batch)
Production Example 6
Carbon black (Cabot Corporation Legal 400R): 40 parts, Binder resin: Polyester resin (Sanyo Kasei RS-801,
[0108]
(Create oil phase)
Production Example 7
In a container equipped with a stirrer and a thermometer, 378 parts of [Low molecular weight polyester 1], 110 parts of Carnauba WAX, 22 parts of CCA (salicylic acid metal complex E-84: Orient Chemical Industry), and 947 parts of ethyl acetate were charged with stirring. The temperature was raised to 0 ° C., kept at 80 ° C. for 5 hours, and then cooled to 30 ° C. in 1 hour. Next, 500 parts of [Masterbatch 1] and 500 parts of ethyl acetate were charged in a container and mixed for 1 hour to obtain [Raw material solution 1].
[Raw material solution 1] 1324 parts are transferred to a container, and using a bead mill (Ultra Visco Mill, manufactured by Imex Co., Ltd.), a liquid feeding speed of 1 kg / hr, a disk peripheral speed of 6 m / sec, and 0.5 mm zirconia beads are 80% by volume. Carbon black and WAX were dispersed under conditions of filling and 3 passes. Next, 1324 parts of a 65% ethyl acetate solution of [low molecular weight polyester 1] was added, followed by one pass with a bead mill under the above conditions to obtain [Pigment / WAX Dispersion 1]. The solid content concentration of [Pigment / WAX Dispersion 1] (130 ° C., 30 minutes) was 50%.
[0109]
(Emulsification)
Production Example 8
[Pigment / WAX Dispersion 1] 648 parts, [Prepolymer 1] 154 parts, [Ketimine Compound 1] 6.6 parts in a container, and TK homomixer (made by Tokushu Kika) at 5,000 rpm for 1 minute After mixing, 1200 parts of [Aqueous phase 1] was added to the container, and mixed with a TK homomixer at 13,000 rpm for 20 minutes to obtain [Emulsion slurry 1].
[0110]
(Variation)
Production Example 9
1365 parts of ion-exchanged water, 35 parts of carboxymethylcellulose (CMC Daicel-1280: manufactured by Daicel Chemical Industries, Ltd.) in an aqueous solution stirred and mixed with 1000 parts of [Emulsified slurry 1], and a TK homomixer (special machine) The mixture was mixed at 2,000 rpm for 1 hour to obtain [Deformed slurry 1].
[0111]
(Solvent removal)
Production Example 10
[Deformed slurry 1] was put into a container equipped with a stirrer and a thermometer, and after removing the solvent at 30 ° C for 8 hours, aging was performed at 45 ° C for 4 hours to obtain [Dispersed slurry 1].
[0112]
(Washing ⇒ drying)
[Dispersion Slurry 1] After filtering 100 parts under reduced pressure,
{Circle around (1)} 100 parts of ion-exchanged water was added to the filter cake, mixed with a TK homomixer (rotation speed: 12,000 rpm for 10 minutes), and then filtered.
(2): Add 100 parts of 10% aqueous sodium hydroxide to the filter cake of (1), apply ultrasonic vibration, mix with TK homomixer (30 minutes at 12,000 rpm), and then filter under reduced pressure. . This ultrasonic alkali cleaning was performed again (two ultrasonic alkali cleanings).
(3): 100 parts of 10% hydrochloric acid was added to the filter cake of (2), mixed with a TK homomixer (10 minutes at 12,000 rpm), and then filtered.
(4): Add 300 parts of deionized water to the filter cake of (3), mix with a TK homomixer (10 minutes at 12,000 rpm), and filter twice to obtain [Filter cake 1]. It was.
[Filtration cake 1] was dried at 45 ° C. for 48 hours with a circulating drier, and sieved with a mesh having an opening of 75 μm, whereby toner base 1 was obtained.
[0113]
Example 2
In Example 1 (Production Example 9), the number of revolutions of the TK homomixer (manufactured by Special Machine) was changed from 2,000 rpm for 1 hour to 2,500 rpm for 1 hour. Except for the above, a toner base 2 was obtained in the same manner as in Example 1.
[0114]
Example 3
The toner was the same as in Example 1 except that the TK homomixer (manufactured by Special Machine) of Example 1 (Production Example 9) was changed from 1 hour mixing at 2,000 rpm to 2 hours mixing at 1,500 rpm. Mother 3 was obtained.
[0115]
Example 4
A toner base 4 was obtained in the same manner as in Example 1 except that 80 parts of [Fine Particle Dispersion 1] in Example 1 (Production Example 2) was changed to 60 parts.
[0116]
Example 5
A toner base 5 was obtained in the same manner as in Example 1 except that 80 parts of [Fine Particle Dispersion 1] in Example 1 (Production Example 2) was changed to 100 parts.
[0117]
Comparative Example 1
A toner base 6 was obtained in the same manner as in Example 1 except that the deforming step in Example 1 (Production Example 9) was not performed.
[0118]
Comparative Example 2
The toner is the same as in Example 1 except that the TK homomixer (manufactured by Special Machine) in Example 1 (Production Example 9) is changed to 2,000 rpm for 1 hour and 6,000 rpm for 1 hour. A mother body 7 was obtained.
[0119]
Comparative Example 3
The toner was the same as in Example 1 except that the TK homomixer (manufactured by Special Machine) of Example 1 (Production Example 9) was changed from 2,000 rpm for 1 hour to 4,000 rpm for 1 hour. A mother body 8 was obtained.
[0120]
Comparative Example 4
The toner is the same as in Example 1 except that the TK homomixer (manufactured by Special Machine) of Example 1 (Production Example 9) is changed to 1 hour mixing at 2,000 rpm and 2 hours mixing at 1,000 rpm. A mother body 9 was obtained.
[0121]
Comparative Example 5
The toner is the same as in Example 1 except that the TK homomixer (manufactured by Special Machine) of Example 1 (Production Example 9) is changed to 1 hour mixing at 2,000 rpm and 3 hours mixing at 1,000 rpm. A
[0122]
Comparative Example 6
A toner base 11 was obtained in the same manner as in Example 1 except that 80 parts of [Fine Particle Dispersion 1] in Example 1 (Production Example 2) were changed to 50 parts.
[0123]
Comparative Example 7
A toner base 12 was obtained in the same manner as in Example 1 except that 80 parts of [Fine Particle Dispersion 1] in Example 1 (Production Example 2) were changed to 110 parts.
[0124]
To each 100 parts of the toner bases 1 to 12 obtained as described above, 0.7 part of hydrophobic silica and 0.3 part of hydrophobic titanium oxide were mixed with a Henschel mixer. The obtained toner physical property values are shown in Table 1.
A developer composed of 5% by weight of toner subjected to external additive treatment and 95% by weight of a copper-zinc ferrite carrier coated with a silicone resin and having an average particle diameter of 40 μm can be prepared, and 45 sheets of A4 size paper can be printed per minute. Using Ricoh's imagio Neo 450, continuous printing was performed and the following criteria were evaluated. Table 2 shows the evaluation results.
[0125]
(Evaluation item)
(Fine line reproducibility)
Using a Ricoh Co., Ltd. copier Imagio Neo 450, the vertical and horizontal lines are 2.0, 2.2, 2.5, 2.8, 3.2, 3.6, 4.0, A line image in which 4.5, 5.0, 5.6, 6.3, and 7.1 lines are arranged at equal intervals was output, and the copied image was evaluated for the line spacing.
[0126]
(Cleanability)
Using the image Neo Neo 450 configured with the image forming apparatus, the transfer residual toner on the photosensitive member that has passed the cleaning process is transferred to a white paper with a scotch tape (manufactured by Sumitomo 3M Co., Ltd.), and it is transferred to a Macbeth reflection densitometer RD514. Measurement was performed with a mold, and evaluation was made with ○ (good) for those with a difference from the blank of 0.01 or less, and x (defect) for those exceeding the difference.
[0127]
(Filming)
The presence or absence of toner filming on the developing roller or the photoreceptor was observed. ○ indicates no filming, Δ indicates filming on streaks, and × indicates filming as a whole.
[0128]
(Image density)
After outputting the solid image, the image density was measured by X-Rite (manufactured by X-Rite). This was measured 5 points independently and the average was obtained.
[0129]
(Skin dirt)
The blank image was stopped during development, the developer on the developed photoreceptor was tape transferred, and the difference from the image density of the untransferred tape was measured with a 938 spectrocytometer (manufactured by X-Rite).
[0130]
(Fixability)
Using a RICOH Imagio Neo 450, a solid image of 1.0 ± 0.1 mg / cm on a thick paper transfer paper (NBS Ricoh Copied Printing Paper <135>) 2 The toner was developed so that the toner was developed, and the temperature of the fixing belt was adjusted to be variable, and the temperature at which no offset occurred on plain paper and the fixing lower limit temperature on thick paper were measured. The lower limit fixing temperature was determined as the fixing lower limit temperature at the fixing roll temperature at which the residual ratio of the image density after rubbing the obtained fixed image with a pad was 70% or more.
[0131]
[Table 1]
[0132]
[Table 2]
[0133]
【The invention's effect】
The toner for developing an electrostatic charge image of the present invention is excellent in fine dot reproducibility and excellent in low-temperature fixability, offset resistance, and filming resistance while maintaining excellent cleaning properties over a long period of time.
Further, according to the present invention, there are provided a developer containing the toner, a method of developing with the developing device having the toner recycling mechanism using the toner, a toner container containing the toner, and a developing device equipped with the container. be able to.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a toner shape;
FIG. 2 is a schematic view of an image forming apparatus provided with the developing device of the present invention.
FIG. 3 shows the toners of Examples and Comparative Examples, in which the equivalent circle diameter is 3 to 10 μm and the degree of circularity is in the range of 0.95 and less than 0.97, and the flow type particle image analyzer. It is a graph which shows the relationship with the number% of the measured fine powder with a circle equivalent diameter of 2 micrometers or less.
[Explanation of symbols]
(Figure 1)
r 1 Toner long axis
r 2 Toner short axis
r 3 Toner thickness
(Figure 2)
1 Photosensitive drum
2 Charging roller
3 Exposure equipment
4 Development device
5 Paper feeder
6 Transfer belt
7 Fixing part
8 Cleaning device (cleaning blade)
9 Static elimination lamp (static elimination light)
10 Optical sensor
Claims (10)
A<30個数%
B<30個数%
C=100−A−B≧40個数%
(A:円相当径3〜10μmで、且つ円形度0.97以上粒子の個数%
B:円相当径3〜10μmで、且つ円形度0.95以下粒子の個数%)An electrostatic charge image developing toner for use in an electrostatic charge image developing device comprising at least a binder resin and a colorant, and having at least a means for cleaning by contacting untransferred toner remaining on the electrostatic charge image carrier, The toner has a volume average particle diameter (Dv) of 4 to 8 μm, particles having an equivalent circle diameter of 2 μm or less measured by a flow type particle image analyzer is 25% by number or less, and the number distribution of circularity is represented by the following formula: An electrostatic charge image developing toner characterized by satisfying
A <30%
B <30%
C = 100−A−B ≧ 40% by number
(A: Number% of particles having an equivalent circle diameter of 3 to 10 μm and a circularity of 0.97 or more.
B: Number of particles having an equivalent circle diameter of 3 to 10 μm and a circularity of 0.95 or less)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002364426A JP4056377B2 (en) | 2002-12-16 | 2002-12-16 | Toner for electrostatic image development |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002364426A JP4056377B2 (en) | 2002-12-16 | 2002-12-16 | Toner for electrostatic image development |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004198554A JP2004198554A (en) | 2004-07-15 |
JP4056377B2 true JP4056377B2 (en) | 2008-03-05 |
Family
ID=32762287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002364426A Expired - Lifetime JP4056377B2 (en) | 2002-12-16 | 2002-12-16 | Toner for electrostatic image development |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4056377B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4401914B2 (en) * | 2004-09-17 | 2010-01-20 | 株式会社リコー | Toner, method for producing the same, and image forming method |
JP4494317B2 (en) * | 2004-09-21 | 2010-06-30 | 株式会社リコー | Toner, method for producing the same, and image forming method |
JP3987065B2 (en) | 2004-10-19 | 2007-10-03 | シャープ株式会社 | Two-component developer and image forming method |
JP5085246B2 (en) * | 2006-09-15 | 2012-11-28 | 株式会社リコー | Toner for developing electrostatic image, method for producing the same, and image forming method using the toner |
JP4607228B2 (en) * | 2009-12-08 | 2011-01-05 | 株式会社リコー | Toner, method for producing the same, and image forming method |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001013732A (en) * | 1998-06-05 | 2001-01-19 | Canon Inc | Toner, its production and image forming method |
JP3943785B2 (en) * | 1999-12-24 | 2007-07-11 | キヤノン株式会社 | Dry toner, method for producing the toner, and image forming method using the toner |
JP3455523B2 (en) * | 2000-02-16 | 2003-10-14 | 三洋化成工業株式会社 | Resin particles having a uniform particle size and method for producing the same |
JP3941413B2 (en) * | 2000-04-12 | 2007-07-04 | 三菱化学株式会社 | Image forming method and image forming apparatus |
JP4573962B2 (en) * | 2000-08-02 | 2010-11-04 | キヤノン株式会社 | Image forming apparatus, open-cell foam roller, and process cartridge |
JP3912649B2 (en) * | 2000-11-30 | 2007-05-09 | 株式会社リコー | Image forming toner, image forming method, and image forming apparatus |
US6824945B2 (en) * | 2001-01-05 | 2004-11-30 | Ricoh Company, Ltd. | Electrophotographic toner |
JP2002221812A (en) * | 2001-01-25 | 2002-08-09 | Konica Corp | Electrophotographic toner particles, image processing method, image forming method and image forming device |
JP2002287400A (en) * | 2001-03-27 | 2002-10-03 | Ricoh Co Ltd | Dry toner, manufacturing method for the toner and image forming apparatus using the toner |
JP4075328B2 (en) * | 2001-05-31 | 2008-04-16 | コニカミノルタホールディングス株式会社 | Toner for electrostatic latent image development and image forming method |
-
2002
- 2002-12-16 JP JP2002364426A patent/JP4056377B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004198554A (en) | 2004-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3984152B2 (en) | Toner and developer for developing electrostatic image | |
JP4047734B2 (en) | Toner for electrostatic image development | |
JP4298966B2 (en) | Toner for electrostatic image development | |
JP3571703B2 (en) | Electrostatic image developing toner and developer, image forming method and image forming apparatus | |
JP3640918B2 (en) | Toner for electrostatic image development and production method | |
JP4213067B2 (en) | Image forming toner and developer, method for producing the same, image forming method using the same, and image forming apparatus | |
JP2004191890A (en) | Negative charge type toner, developer, image forming method, and image forming apparatus | |
JP5434344B2 (en) | Toner and manufacturing method thereof, developer, developer container and image forming method | |
JP2007233030A (en) | Toner for electrostatic charge image development | |
JP4056377B2 (en) | Toner for electrostatic image development | |
JP4307857B2 (en) | Toner for electrostatic image development | |
JP4027290B2 (en) | Toner for developing electrostatic image, process cartridge using the same, image forming apparatus, and method for producing toner for developing electrostatic image | |
JP4009204B2 (en) | Toner for electrostatic image development | |
JP4009205B2 (en) | Toner for electrostatic image development | |
JP3964779B2 (en) | Developing toner, process cartridge, and image forming apparatus | |
JP4084666B2 (en) | Toner for electrostatic image development | |
JP4145107B2 (en) | Toner for electrostatic image development | |
JP3730186B2 (en) | Toner and developer for developing electrostatic image, image forming method and image forming apparatus | |
JP4049679B2 (en) | Toner and developer for developing electrostatic image, image forming method and image forming apparatus using them | |
JP2005010208A (en) | Dry toner | |
JP4852117B2 (en) | Toner for developing electrostatic image, developer, developing method and toner container | |
JP3764954B2 (en) | Toner for electrostatic image development | |
JP4052575B2 (en) | Method for producing toner for electrophotography | |
JP2004286820A (en) | Electrostatic charge image developing toner | |
JP2004177656A (en) | Electrophotographic toner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050223 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050225 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20050714 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20060223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070717 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070914 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071211 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4056377 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101221 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101221 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111221 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111221 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121221 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131221 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |