Nothing Special   »   [go: up one dir, main page]

JP4054783B2 - Germination improvement method and seed - Google Patents

Germination improvement method and seed Download PDF

Info

Publication number
JP4054783B2
JP4054783B2 JP2004201059A JP2004201059A JP4054783B2 JP 4054783 B2 JP4054783 B2 JP 4054783B2 JP 2004201059 A JP2004201059 A JP 2004201059A JP 2004201059 A JP2004201059 A JP 2004201059A JP 4054783 B2 JP4054783 B2 JP 4054783B2
Authority
JP
Japan
Prior art keywords
germination
seeds
seed
betaine
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004201059A
Other languages
Japanese (ja)
Other versions
JP2006020558A (en
Inventor
晴夫 猿山
貢 堀田
行雄 西野目
明彦 長谷川
一郎 筒井
秀一 鷹田
幹夫 高橋
秀昭 中里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuren Federation of Agricultural Cooperative Associations
Original Assignee
Hokuren Federation of Agricultural Cooperative Associations
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuren Federation of Agricultural Cooperative Associations filed Critical Hokuren Federation of Agricultural Cooperative Associations
Priority to JP2004201059A priority Critical patent/JP4054783B2/en
Publication of JP2006020558A publication Critical patent/JP2006020558A/en
Application granted granted Critical
Publication of JP4054783B2 publication Critical patent/JP4054783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pretreatment Of Seeds And Plants (AREA)

Description

本発明は、播種後の種子の迅速且つ斉一な発芽や不良環境下での発芽率の改善などを目的とした、播種前の種子に施す種子の発芽改善方法及び該方法により得られた種子に関する。   The present invention relates to a method for improving germination of seeds applied to seeds before sowing for the purpose of rapid and uniform germination of seeds after sowing and improvement of germination rate in a poor environment, and the seeds obtained by the method .

種子は、播種後、水分・湿度・酸素・光等の環境条件が適当な状態に揃った場合、一定の期間を経て発芽に至る。この播種から発芽に至るまでの発芽準備期間に、種子内部では様々な代謝が行われている。その期間の長さは、種子個々の登熟度や作物の種類によって、また温度や水分等の環境要因によって異なる。この発芽準備期間を短縮し、迅速且つ斉一な発芽をもたらすことにより、栽培期間の短縮や発芽後の栽培管理が容易となり、大規模な営利栽培においては生産コストの削減や省力化などの利点が得られる。   After sowing, seeds germinate after a certain period of time when environmental conditions such as moisture, humidity, oxygen, and light are in an appropriate state. During the germination preparation period from sowing to germination, various metabolisms are carried out inside the seed. The length of the period varies depending on the ripening level of individual seeds, the type of crop, and environmental factors such as temperature and moisture. By shortening the germination preparation period and bringing quick and uniform germination, shortening of the cultivation period and easy cultivation management after germination are facilitated, and there are advantages such as reduction of production cost and labor saving in large-scale commercial cultivation. can get.

このような目的で播種前の種子に施される処理として、従来よりプライミング、オスモコンディショニング(非電解質溶液処理)あるいはマトリコンディショニング(多孔質資材処理)などの種子水和処理技術が開発されており、発芽の迅速化や不良環境下での発芽率改善などの効果があることが確認されている。   For such purposes, seed hydration technology such as priming, osmo conditioning (non-electrolyte solution treatment) or matri conditioning (porous material treatment) has been developed as a treatment applied to seeds before sowing. It has been confirmed that there are effects such as speeding up germination and improving germination rate in a poor environment.

プライミング等の種子水和処理技術の原理は、種蒔前の種子に給水し、種子の活力を増進するには充分であるが種子発芽をおこさせるには不充分な時間と温度で種子を処理することにより、播種後の発芽を早めることにある。現在、様々な種子水和処理技術の研究・開発の報告がなされているが、その中で主なものとして、以下の4方法が挙げられる。   The principle of seed hydration technology, such as priming, is to supply seeds before seeding and to treat the seeds for a time and temperature that is sufficient to increase seed vitality but insufficient for seed germination. This is to accelerate germination after sowing. Currently, there are reports on research and development of various seed hydration treatment techniques. Among them, the following four methods are listed as main ones.

A.プライミング(Priming)
1974年にハイディッカー(W.Heydecker)らが開発した技術で、水溶性ポリマー(ポリエチレングリコール、ソジウム・ポリプロペネイト(Sodium Polypropenate)など)水溶液もしくは塩類水溶液を媒体として、浸透圧によって種子への水分供給を制御する種子水和処理技術である(非特許文献1、非特許文献2、非特許文献3)。
A. Priming
A technology developed by W. Heydecker et al. In 1974, using water-soluble polymer (polyethylene glycol, sodium polypropenate, etc.) aqueous solution or salt aqueous solution as a medium to osmotic pressure to seed This is a seed hydration treatment technique for controlling supply (Non-patent Document 1, Non-patent Document 2, Non-patent Document 3).

B.ドラム・プライミング(Drum Priming)
1987年にローズ(H.R.Rowse)らが開発した技術で、媒体を使用せず、回転するドラム内で噴霧状に水分を与え、種子への水分供給を直接重量制御する種子水和処理技術である(特許文献5)。
B. Drum Priming
Developed by HR Rowse et al. In 1987, seed hydration process that does not use a medium, sprays moisture in a rotating drum, and directly controls the weight of moisture supplied to seeds. Technology (Patent Document 5).

C.ソリッド・マトリクス・プライミング(Solid Matrix Priming)
1988年にテイラー(A.G.Tailor)らが開発した技術で、レオナルダイト頁岩(leonardite shale)粉末資材(アグロ・リグ、Agro−Lige)を媒体として、種子への水分補給を制御する種子水和処理技術である(非特許文献4、特許文献6)。
C. Solid Matrix Priming
Seed hydration is a technology developed by AG Taylor et al. In 1988 to control hydration of seeds using leonardite shale powder material (Agro-Lig) as a medium. This is a processing technique (Non-Patent Document 4, Patent Document 6).

D.マトリコンディショニング(Matriconditioning)
1990年にカーン(A.A..Khan)らが開発した技術で、水に不溶性な多孔質素材(Micro−Gel E.Zonolite)を媒体として、種子への水分供給を制御する種子水和処理技術である(非特許文献5)。
D. Matriconditioning
A technology developed by A.A.Khan et al. In 1990, using a water-insoluble porous material (Micro-Gel E. Zonolite) as a medium to control moisture supply to seeds Technology (Non-patent Document 5).

前記従来の4つの種子水和処理技術は、何れも播種前の種子に対して施す種子水和処理方法であり、種子へ供給する水分を制御することによって、発芽準備期間に種子内部で行われる様々な代謝のみを播種前に人為的に完了させてしまう点で共通する。   The conventional four seed hydration techniques are all seed hydration methods applied to the seeds before sowing, and are performed inside the seed during the germination preparation period by controlling the moisture supplied to the seeds. It is common in that only various metabolisms are artificially completed before sowing.

前記従来の4つの種子水和処理技術の差異は、水分制御方法の原理にある。即ち、前記A.においては液体を媒体として使用し、液体の有する浸透圧(Osmotic Potential)によって種子への水分供給の制御を行っている。前記B.においては媒体を使用せず、種子への水分供給を直接重量で水分制御を行っている。前記C.およびD.においては水に不溶性の固体媒体を使用し,浸透圧材料(osmoticum)および/または毛管力(Matric Potential)によって水分の制御を行っている。   The difference between the conventional four seed hydration techniques is in the principle of moisture control method. That is, the A. Uses a liquid as a medium, and controls the water supply to seeds by the osmotic potential of the liquid. B. above. In the method, moisture is controlled by weight directly to the seed without supplying a medium. C. above. And D. Uses a solid medium that is insoluble in water, and controls moisture by osmotic material and / or capillary potential.

特開昭63−304926号公報JP-A-63-304926 特開平4−99403号公報JP-A-4-99403 特開平8−51809号公報JP-A-8-51809 特表平1ー503437号公報Japanese National Publication No. 1-503437 英国特許2192781号明細書British Patent No. 2192781 米国特許4912874号明細書US Pat. No. 4,912,874 ヨーロッパ特許039551号明細書European Patent 039551 Specification 特表平1−503437号公報JP-T-1-503437 W. Heydecker,J. Higgins and R.L.Gulliver、1973、Nature(London)246:42−44W. Heydecker, J. Higgins and R.M. L. Gulliver, 1973, Nature (London) 246: 42-44. W. Heydecker、1974,Univ.Nottinghamsch,Agr.Rep.1973/1974:50―67W. Heydecker, 1974, Univ. Nottinghamsch, Agr. Rep. 1973/1974: 50-67 Zuo Weineg et.al. 1987、Chinese Science Bulletin 32:1438Zuo Weineg et. al. 1987, Chinese Science Bulletin 32: 1438. A.G.Taylor、D.E.Klein and T.H.Whitlow、1988、Scientia Horticulturae 37(1988)1−11A. G. Taylor, D.C. E. Klein and T.W. H. Whitlow, 1988, Scientia Horticulturae 37 (1988) 1-11 A.A.Khan,H.Miura,J.Prusinski and S.Ilyas,Proceedings of the Symposium on Stand Establishament of Horucultural Crops/Minneapolis.Minnesota,April 4‐6,1990A. A. Khan, H .; Miura, J. et al. Prussinki and S.M. Ilyas, Proceedings of the Symposium on Stand Establishment of Historical Crops / Minneapolis. Minnesota, April 4-6, 1990

前記A.〜D.の従来の種子水和処理技術は、いずれも発芽改善には同等の効果が認められるが、それぞれ次のような欠点を有している。   A. ~ D. All of these conventional seed hydration techniques have the same effects in improving germination, but each has the following drawbacks.

前記A.のプライミング法は、使用するポリエチレングリコール溶液などの粘度が高く、且つその液は酸素の溶解度が低いため酸素供給を充分に行うことが困難であるため、種子の発芽率が低く、さらに処理後の種子の乾燥に時間がかかるなど、工業的な大量処理には無理がある。   A. In this priming method, the viscosity of the polyethylene glycol solution to be used is high, and since the solution has low oxygen solubility, it is difficult to sufficiently supply oxygen. For example, it takes a long time to dry seeds, making it impossible for industrial mass treatment.

前記B.のドラムプライミング法は、単純明快な方法であるが、実際に水量のコントロールを行うためには精密な機械制御が必要となり、機械設備や操作が実質的には複雑化するため実施困難である。   B. above. The drum priming method is a simple and clear method. However, in order to actually control the amount of water, precise machine control is required, and mechanical equipment and operations are substantially complicated, so that it is difficult to implement.

前記C.およびD.の水不溶性の固体媒体の持つ毛管力などを利用する方法は、簡単な設備で処理が行え、酸素供給の問題も解決している。   C. above. And D. The method using the capillary force of the water-insoluble solid medium can be processed with simple equipment and solves the problem of oxygen supply.

しかしながら、前記A.〜D.の何れの水分制御の方法も、水分供給に用いられる水は、他の溶解成分を含まない水が用いられており、これらの処理方法で得られた乾燥された種子は、発芽改善効果が種子の一部において消失又は低減し、種子全体で一様に発芽しないという発芽揃いが悪いことが問題である。このため乾燥後も発芽揃いを一様に維持するためには、処理と乾燥を複数回繰り返さなくてはならず、多くの手間とコストを要するという問題があった。   However, said A.I. ~ D. In any of the water control methods, water used for water supply is water that does not contain other dissolved components, and the dried seeds obtained by these treatment methods are effective in improving germination. The problem is that the germination alignment is poor because it disappears or decreases in part of the seed and does not germinate uniformly throughout the seed. For this reason, in order to maintain uniform germination even after drying, there is a problem that treatment and drying must be repeated a plurality of times, which requires a lot of labor and cost.

そこで本発明は、種子水和処理技術を適用した種子の乾燥処理後に発芽改善効果が種子の一部において消失又は低減し、発芽揃いが低下することを防止し、乾燥処理によっても発芽改善効果が維持できる種子の発芽改善方法及び該方法により得られた種子を提供することを目的とする。   Therefore, the present invention prevents the germination improvement effect from disappearing or reducing in a part of the seed after drying treatment of the seed to which the seed hydration treatment technology is applied, and preventing the germination alignment from being lowered. An object is to provide a seed germination improvement method that can be maintained and a seed obtained by the method.

本発明者等は、種子水和処理技術を適用した種子の乾燥処理後も発芽改善効果の消失又は低減せずに発芽揃いが向上した、種子の処理技術を検討した結果、ベタイン水溶液を種子の水和処理に用いることにより、種子の乾燥後でも発芽改善効果を維持可能で、発芽揃いに優れ、種子への水和処理が容易に行え、工業化しやすく、自然環境の汚染に無縁で且つ人体に安全な、種子水和処理技術を見出し、本発明を完成した。   As a result of studying seed treatment technology that improved germination alignment without loss or reduction of germination improvement effect even after drying treatment of seed to which seed hydration treatment technology was applied, the present inventors found that an aqueous solution of betaine was added to seeds. By using for hydration treatment, germination improvement effect can be maintained even after seed drying, excellent germination uniformity, easy hydration treatment to seeds, easy to industrialize, free from pollution of natural environment and human body The present invention has been completed by finding a safe seed hydration treatment technique.

すなわち本発明は、水及びベタイン水溶液から選ばれた液体に種子を予め浸漬処理し、前記浸漬処理により得られた種子とベタイン水溶液を保持している粒状の溶液保持材料とを容器内で混合し、種子の活力を増進するには充分であるが発芽を起こさせるには不充分な時間と温度にて、該溶液保持材料と種子を接触させることを特徴とする種子の発芽改善方法である。 That is, the present invention provides seed previously dipped into a liquid selected from water and an aqueous betaine solution, and a solution holding materials granular holding seeds and betaine aqueous solution obtained by the immersion treatment in the vessel A seed germination improving method comprising mixing and bringing the solution-holding material into contact with a seed at a time and temperature sufficient to enhance seed vitality but insufficient to cause germination. is there.

本発明において、発芽改善効果とは、種蒔前の種子に前記水和処理をし、播種後の発芽を早めて発芽揃いを高める効果をいう。 In the present invention, the germination improving effect, and the hydration process to sowing before the seed means the effect of Ru enhances the germination hastening germination after sowing.

本発明の種子の発芽改善方法によれば、種子の水和処理後に行う乾燥処理により発芽改善効果が種子の一部において消失又は低減するといった発芽揃いが低下することを防止でき、素早く均一に発芽する種子が得られる。   According to the seed germination improvement method of the present invention, it is possible to prevent the germination evenness of the germination improvement effect from being lost or reduced in a part of the seed due to the drying treatment performed after the seed hydration treatment, and to germinate quickly and uniformly. Seeds are obtained.

本発明によれば、前記水和処理することにより、乾燥処理後に発芽改善効果が種子の一部において消失又は低減するといった発芽揃いが低下することを防止でき、素早く均一に発芽する種子を、安価に工業的に製造することができる。 According to the present invention, by the hydration process, uniformity of germination such germination improvement after drying process is lost or reduced in some seeds can be prevented from being lowered, quickly uniformly germinating seeds, inexpensive Can be industrially manufactured.

本発明における種子水和処理に用いるベタインは、発芽を阻止する物質を不純物として含んでいなければ、不純物を含んだ状態で用いてもよい。   The betaine used for the seed hydration treatment in the present invention may be used in a state containing impurities as long as it does not contain substances that inhibit germination as impurities.

本発明に使用する粒状の溶液保持材料には、ベタイン水溶液を保持し、且つ保持したベタイン水溶液を種子に供給する粒状の媒体であればどのような材料でもよい。このような粒状の溶液保持材料には、例えば、ゼオライト、火山灰、砂、バーミキュライト、鹿沼土、吸収性ポリマー等の粒状の吸水性資材を用いる。 The granular solution holding material used in the present invention may be any material as long as it is a granular medium that holds a betaine aqueous solution and supplies the held betaine aqueous solution to seeds. Such granular solution retaining material, for example, zeolites, volcanic ash, sand, vermiculite, Kanuma soil, Ru with absorbent material particulate such absorbent polymers.

タイン水溶液を保持している粒状の溶液保持材料と種子とを容器内で混合することにより、種子をベタイン水溶液と接触させることができる。 By mixing the solution holding material and seed granular holding the betaine solution in the vessel can be contacted seeds with betaine solution.

これらの何れのベタイン水溶液と種子との接触方法において、種子を収容している容器を回転させることにより、空気を巻き込むと共に種子をベタイン水溶液に効率良く接触させることができる。回転する容器の内壁及び/又は容器内に設けた中心軸に翼を設けると撹拌効果が高まるので望ましい。或いは、容器を回転させずに固定しておき、内部に回転する撹拌翼、スクリュー等の空気を巻き込んで撹拌する機能を有する撹拌手段で撹拌することにより、ベタイン水溶液と種子を接触させることもできる。   In any of these methods for contacting a betaine aqueous solution with seeds, by rotating a container containing seeds, air can be entrained and the seeds can be efficiently brought into contact with the betaine aqueous solution. It is desirable to provide a blade on the inner wall of the rotating container and / or the central shaft provided in the container because the stirring effect is enhanced. Alternatively, the aqueous solution of betaine and the seed can be brought into contact with each other by stirring the container with a stirring means having a function of entraining and agitating air such as a stirring blade or a screw that rotates inside without rotating the container. .

このような種子とベタイン水溶液とを接触させる際に空気を巻き込んで行うことにより、空気を積極的に種子に触れさせ、該処理により発芽改善効果が高まる。容器の回転、或いは撹拌手段による撹拌を、間欠的或いは連続的に行ってもよい。   When such seeds are brought into contact with the betaine aqueous solution, the air is actively brought into contact with the seeds and the germination improvement effect is enhanced by the treatment. The rotation of the container or the stirring by the stirring means may be performed intermittently or continuously.

種子をベタイン水溶液と接触させる際の雰囲気は、加湿した酸素含有気体雰囲気、即ち、加湿した空気、であることが望ましく、該雰囲気下では、発芽改善効果が高まる。 The atmosphere when the seed is brought into contact with the aqueous betaine solution is preferably a humidified oxygen-containing gas atmosphere , that is, humidified air. Under this atmosphere, the germination improving effect is enhanced.

溶液保持材料として粒状のゼオライトを使用した場合の本発明の一般的な実施方法の好ましい例は次のように行うことができる。0.1〜2M、好ましくは0.2〜1.0M、最も好ましくは0.2〜0.8Mのベタイン水溶液に種子を8〜24時間浸漬しておく。一方、粒径が種子の粒径範囲とは異なる粒径範囲の粒状のゼオライト(一般的には、粒径範囲が0.1から1.5mmのゼオライト)に、0.01〜1.0倍容量、好ましくは0.05〜0.5倍容量の0.1〜2M、好ましくは0.2〜1.0M、最も好ましくは0.2〜0.8Mのベタイン水溶液を添加することにより、ゼオライトにベタイン水溶液を保持させる。次いで、このゼオライトとベタイン水溶液混合物にゼオライトの粒径範囲とは異なる粒径範囲の種子を、該溶液混合物の重量の20〜200%重量を加え混合する。混合には、中心軸で回転可能な円筒型容器(ドラム型容器)であって、内壁に撹拌のための翼を設けたものを中心軸をほぼ水平にして回転させて混合を行う。混合に際しては、空気、好ましくは加湿空気を送風して、空気を積極的に種子に触れさせる条件にて行う。 A preferred example of the general method of carrying out the present invention when granular zeolite is used as the solution holding material can be performed as follows. The seeds are immersed in an aqueous betaine solution of 0.1 to 2M, preferably 0.2 to 1.0M, most preferably 0.2 to 0.8M for 8 to 24 hours. On the other hand, it is 0.01 to 1.0 times the granular zeolite (generally, zeolite having a particle size range of 0.1 to 1.5 mm) having a particle size range different from the seed particle size range. By adding a betaine aqueous solution having a volume, preferably 0.05-0.5 times the volume of 0.1-2M, preferably 0.2-1.0M, most preferably 0.2-0.8M. To hold an aqueous solution of betaine. Next, seeds having a particle size range different from the particle size range of the zeolite are added to the zeolite and betaine aqueous solution mixture, and 20 to 200% by weight of the weight of the solution mixture is added and mixed. The mixing is performed by rotating a cylindrical container (drum-type container) that can be rotated about a central axis, with an inner wall provided with blades for stirring, and rotating the central axis substantially horizontally. In mixing, air, preferably humidified air is blown, and the air is actively contacted with the seeds.

その後、得られた混合物を処理種子の発芽温度で(一般的には、10〜15℃程度で)、且つ種子内部で行われる代謝活動が進行するのに要する時間であって、発芽に至る前迄の時間(通常は、1日〜5日間)保持する。   Thereafter, the obtained mixture is treated at the germination temperature of the treated seed (generally at about 10 to 15 ° C.), and is the time required for the metabolic activity to take place inside the seed, before germination. Until the time (usually 1 to 5 days).

なお、本発明の発芽改善方法に適用できる種子は、タマネギ、人参などの野菜種子、テンサイ、デントコーン、牧草種子など、粒径が種々の範囲のどのような種子でも適用できる。   In addition, the seed applicable to the germination improvement method of the present invention can be any seed having a particle size in various ranges, such as vegetable seeds such as onion and carrot, sugar beet, dent corn, and grass seed.

また、ベタイン処理前後に殺菌剤などで種子を処理してもよく、ベタイン処理後にフィルムコーティングや造粒コーティングしてその種子表面にコーティング層を形成させることも可能である。   In addition, the seed may be treated with a bactericide before and after the betaine treatment, and after the betaine treatment, a coating layer can be formed on the seed surface by film coating or granulation coating.

次に本発明の実施例を説明するが、本発明はこれらに限定されるものではない。   Next, examples of the present invention will be described, but the present invention is not limited thereto.

〔実施例1〕
(ゼオライトを用いたにんじん種子の水和処理−ベタイン水溶液の各種濃度比較)
直径10.5cm、長さ10cmの円筒型容器(容積0.87L)を水平にして配置し、予め蒸留水に16時間浸漬した、粒径範囲が1.0〜2.0mmのにんじん種子1.0gを該容器内に入れ、さらに、粒径範囲0.1〜0.5mmに篩ったゼオライト120mlに0.1M、0.5M、1.0Mの3種類の濃度のベタイン水溶液を12cc添加して得たベタイン水溶液を保持させたゼオライトを加え、15℃で5日間回転させることにより、ゼオライトに保持されているベタイン水溶液ににんじん種子を接触させて水和処理を行った。
[Example 1]
(Hydrotherapy of carrot seeds using zeolite-Comparison of various concentrations of betaine aqueous solution)
1. Carrot seeds having a particle size range of 1.0 to 2.0 mm, which was placed horizontally in a cylindrical container (volume 0.87 L) having a diameter of 10.5 cm and a length of 10 cm and previously immersed in distilled water for 16 hours. 0 g was put in the container, and 12 cc of betaine aqueous solution having three concentrations of 0.1 M, 0.5 M and 1.0 M was added to 120 ml of zeolite sieved to a particle size range of 0.1 to 0.5 mm. The zeolite in which the aqueous solution of betaine obtained above was retained was added and rotated at 15 ° C. for 5 days to bring the carrot seeds into contact with the aqueous solution of betaine retained in the zeolite for hydration.

5日後ゼオライトとにんじん種子を篩いで分離し、2時間35℃で乾燥させた後、得られたにんじん種子(ベタイン処理区)、及び上記の水和処理を行わないにんじん種子(無処理区)についてそれぞれ発芽試験を行った。発芽試験は、発芽温度20℃で、発芽試験用ケースに置床して行った(各種子につき、100粒×1ケース)。1日目〜3日目に発芽した個数/100粒の結果を下記の表1に示す。   After 5 days, the zeolite and carrot seeds were separated by sieving and dried at 35 ° C. for 2 hours, and then the carrot seeds obtained (betaine-treated section) and the carrot seeds not subjected to the hydration treatment (untreated section) were obtained. Each germination test was performed. The germination test was conducted by placing it in a germination test case at a germination temperature of 20 ° C. (100 grains × 1 case for each child). Table 1 below shows the results of the number of germinated on the first day to the third day / 100 grains.

Figure 0004054783
Figure 0004054783

表1によれば、ベタイン水溶液により水和処理したにんじん種子は、水和処理しない種子に比べ、ベタイン水溶液のどの濃度においても発芽揃いがよく、発芽速度が速いことが分かる。   According to Table 1, it can be seen that the carrot seeds hydrated with the betaine aqueous solution have better germination alignment and faster germination rate at any concentration of the betaine aqueous solution than the seeds not hydrated.

〔実施例2〕
(ゼオライトを用いたにんじん種子の水和処理−スケールアップ化)
直径28.5cm、長さ26cmの円筒容器(容積16.6L)を水平にして配置し、該容器内に予め0.4Mベタイン水溶液に16時間浸漬した、粒径範囲が1.0〜2.0mmのにんじん種子100gを入れ、粒径範囲0.1〜0.5mmに篩ったゼオライト2400mlに0.4Mベタイン水溶液を190cc添加して得たベタイン水溶液を保持させたゼオライトを加え、15℃で4日間回転させることにより、ゼオライトに保持されているベタイン水溶液ににんじん種子を接触させて水和処理を行った。
[Example 2]
(Carrot seed hydration using zeolite-scale-up)
A cylindrical container (volume: 16.6 L) having a diameter of 28.5 cm and a length of 26 cm was placed horizontally and previously immersed in a 0.4 M betaine aqueous solution for 16 hours in the container. Add 100 g of 0 mm carrot seeds, add zeolite containing 190 cc of 0.4 M betaine aqueous solution to 2400 ml of zeolite sieved to a particle size range of 0.1 to 0.5 mm, and add at 15 ° C. By rotating for 4 days, the carrot seeds were brought into contact with the betaine aqueous solution retained in the zeolite for hydration treatment.

4日後ゼオライトと種子を篩いで分離し、24時間25℃で風燥した後、得られたにんじん種子(ベタイン処理区)、及び上記水和処理を行わないにんじん種子(無処理区)についてそれぞれ発芽試験を行った。発芽試験は、発芽温度20℃で、発芽試験用ケースに置床して行った(各種子につき、100粒×3ケース)。1日目〜5日目に発芽した個数/100粒の結果を下記の表2に示す。   Four days later, the zeolite and seeds were separated by sieving and dried at 25 ° C. for 24 hours, and then the carrot seeds (betaine-treated group) and the carrot seeds not subjected to the hydration treatment (non-treated group) were germinated. A test was conducted. The germination test was performed by placing it in a germination test case at a germination temperature of 20 ° C. (100 grains × 3 cases for each child). Table 2 below shows the results of the number of germinated on the first day to the fifth day / 100 grains.

Figure 0004054783
Figure 0004054783

表2によれば、ベタイン処理した種子は無処理の種子に比べ発芽揃いがよく発芽速度も早いことが分かる。   According to Table 2, it can be seen that the seeds treated with betaine have better germination and faster germination speed than untreated seeds.

〔実施例3〕
(ゼオライトを用いたたまねぎ種子の水和処理−蒸留水とベタイン水溶液の水和処理の比較)
直径10.5cm、長さ10cmの円筒型容器(容積0.87L)を水平にして配置し、粒径範囲が1.5〜2.4mmのたまねぎ種子1.0gを該容器内に入れ、さらに、粒径範囲0.5〜1.5mmに篩ったゼオライト120mlに0.4Mのベタイン水溶液を12cc添加して得たベタイン水溶液を保持させたゼオライトを加え、15℃で5日間回転させることにより、ゼオライトに保持されているベタイン水溶液にたまねぎ種子を接触させて水和処理した(ベタイン処理区)。一方、対照としてゼオライト120mlに蒸留水12ccを添加して得た蒸留水を保持させたゼオライトを加え、上記と同様にしてゼオライトに保持されている蒸留水にたまねぎ種子を接触させて水和処理した(蒸留水処理区)。ベタイン処理区は5日間、蒸留水処理区では3日間回転させて各水和処理を行った。
Example 3
(Hydration treatment of onion seed using zeolite-Comparison of hydration treatment of distilled water and betaine aqueous solution)
A cylindrical container (volume 0.87 L) having a diameter of 10.5 cm and a length of 10 cm is placed horizontally, 1.0 g of onion seed having a particle size range of 1.5 to 2.4 mm is placed in the container, and By adding 12 cc of a 0.4M betaine aqueous solution to 120 ml of zeolite sieved to a particle size range of 0.5 to 1.5 mm, the zeolite holding the betaine aqueous solution obtained is added, and rotated at 15 ° C. for 5 days. Then, the onion seed was brought into contact with the betaine aqueous solution retained in the zeolite and hydrated (betaine treatment section). On the other hand, as a control, a zeolite holding distilled water obtained by adding 12 cc of distilled water to 120 ml of zeolite was added, and an onion seed was brought into contact with distilled water held in the zeolite in the same manner as described above to perform hydration treatment. (Distilled water treatment zone). The betaine treatment section was rotated for 5 days, and the distilled water treatment section was rotated for 3 days for each hydration treatment.

ベタイン処理区では5日後、蒸留水処理区では3日後に、ゼオライトとたまねぎ種子を篩いで分離し、2時間35℃で乾燥させた後、得られた各たまねぎ種子についてそれぞれ発芽粒率を計測した。発芽粒率は、100粒中の発芽粒数を計測した。その結果を表3に示す。   After 5 days in the betaine treatment zone and 3 days in the distilled water treatment zone, the zeolite and onion seed were separated by sieving and dried at 35 ° C. for 2 hours, and then the germination rate of each obtained onion seed was measured. . The germination rate was determined by measuring the number of germination grains in 100 grains. The results are shown in Table 3.

Figure 0004054783
Figure 0004054783

表3によれば、蒸留水による水和処理中に10%のたまねぎ種子が発芽してしまったが、ベタイン水溶液による水和処理中には、発芽は認められなかった。   According to Table 3, 10% onion seeds germinated during the hydration treatment with distilled water, but no germination was observed during the hydration treatment with the aqueous betaine solution.

次いで、上記工程で得られた蒸留水処理区の未発芽のたまねぎ種子100粒と、ベタイン処理区の未発芽のたまねぎ種子100粒について、発芽試験を行った。発芽試験は、発芽温度20℃で、発芽試験用ケースに置床して行った(各種子につき、100粒×1ケース)。1日目〜3日目に発芽した個数/100粒の結果を下記の表4に示す。   Next, a germination test was conducted on 100 ungerminated onion seeds in the distilled water-treated section obtained in the above step and 100 ungerminated onion seeds in the betaine-treated section. The germination test was conducted by placing it in a germination test case at a germination temperature of 20 ° C. (100 grains × 1 case for each child). The results of the number of germinated on the first day to the third day / 100 grains are shown in Table 4 below.

Figure 0004054783
Figure 0004054783

表4によれば、蒸留水による水和処理に比べてベタイン水溶液による水和処理を行った方が、ベタイン水溶液のどの濃度においても発芽揃いが良く、発芽速度も速いことが分かる。   According to Table 4, it can be seen that the hydration treatment with the aqueous betaine solution is better in germination alignment and the germination rate is faster at any concentration of the aqueous betaine solution compared to the hydration treatment with distilled water.

〔実施例4〕
(ベタイン水溶液による水和処理前のたまねぎ種子の浸漬処理の効果)
0.4Mのベタイン水溶液に8時間浸漬したたまねぎ種子と、浸漬処理を行わなかったたまねぎ種子を各々100gを、直径28.5cm、長さ26cmの水平にして配置した各円筒型容器(容積16.6L)内に入れ、さらに、粒径範囲1.0〜1.5mmの範囲に篩ったゼオライト2400mlに0.4Mベタイン水溶液を240cc添加して得たベタイン水溶液を保持させたゼオライトを加え、15℃で5日間回転させることにより、ゼオライトに保持されているベタイン水溶液に種子を接触させた。
Example 4
(Effect of soaking treatment of onion seed before hydration treatment with betaine aqueous solution)
Each cylindrical container (volume: 16.5 cm) of onion seeds soaked in 0.4 M betaine aqueous solution for 8 hours and onion seeds not soaked in a horizontal manner having a diameter of 28.5 cm and a length of 26 cm. 6L), and a zeolite holding a betaine aqueous solution obtained by adding 240 cc of a 0.4M betaine aqueous solution to 2400 ml of zeolite sieved to a particle size range of 1.0 to 1.5 mm was added, and 15 By rotating at 5 ° C. for 5 days, the seed was brought into contact with the betaine aqueous solution retained in the zeolite.

5日後ゼオライトと種子を篩いで分離し、24時間25℃で風燥した後、得られた、浸漬処理とベタイン水溶液による水和処理を行った区分(浸漬+ベタイン処理区)と、浸漬処理を行わずにベタイン水溶液による水和処理を行った区分(ベタイン処理単独区)と、比較のために、浸漬処理とベタイン水溶液による水和処理の両方の処理を行わなかった区分(無処理区)のたまねぎ種子についてそれぞれ発芽試験を行った。発芽試験は、発芽温度20℃で、発芽試験用ケースに置床して行った(各種子につき、100粒×3ケース)。1日目〜5日目に発芽した個数/100粒の結果を下記の表5に示す。   After 5 days, the zeolite and seeds were separated by sieving and dried at 25 ° C. for 24 hours, and then the obtained sections were subjected to a dip treatment and a hydration treatment with an aqueous solution of betaine (immersion + betaine treatment section), and a dip treatment. For the purpose of comparison, the classification in which the hydration treatment with the betaine aqueous solution was not carried out (betaine treatment alone) and the division in which both the immersion treatment and the hydration treatment with the betaine aqueous solution were not carried out (non-treatment zone) were performed. Each onion seed was subjected to a germination test. The germination test was carried out by placing it in a germination test case at a germination temperature of 20 ° C. (100 grains × 3 cases for each child). The results of the number of germinated on the first day to the fifth day / 100 grains are shown in Table 5 below.

Figure 0004054783
Figure 0004054783

表5によれば、ベタイン水溶液中に浸漬処理した後にベタイン水溶液による水和処理したたまねぎ種子は、浸漬処理せずにベタイン水溶液による水和処理した種子に比べて発芽速度が早まることが分かる。   According to Table 5, it can be seen that onion seeds that have been soaked in an aqueous solution of betaine and then hydrated with an aqueous solution of betaine have a faster germination rate than seeds that have been hydrated with an aqueous solution of betaine without being soaked.

〔実施例5〕
(ベタイン水溶液によるたまねぎ種子の水和処理時に湿った空気を送風する方法)
直径28.5cm、長さ26cmの円筒容器(容積16.6L)を水平にして配置し、該容器内に予め0.4Mベタイン水溶液に16時間浸漬した、粒径範囲が1.5〜2.4mmのたまねぎ種子300gを入れ、粒径範囲0.5〜1.0mmに篩ったゼオライト2400mlに0.4Mベタイン水溶液を220cc添加して得たベタイン水溶液を保持させたゼオライトを加え、湿った空気を該容器内に送り込みながら15℃で7日間回転させることにより、ゼオライトに保持されているベタイン水溶液にたまねぎ種子を接触させて水和処理を行い、7日後ゼオライトと種子を篩いで分離し、24時間25℃で風燥した後、たまねぎ種子(送風処理区)を得た。また、湿った空気の送風を行わないことを除き、他の条件を同一にしてたまねぎ種子(無送風処理区)を得た。また、対照としてベタイン水溶液による水和処理、及び送風処理を行わないで他の条件を同一にしてたまねぎ種子(無処理区)を得た。
Example 5
(Method of blowing moist air during onion seed hydration with betaine aqueous solution)
A cylindrical container (volume: 16.6 L) having a diameter of 28.5 cm and a length of 26 cm was placed horizontally and previously immersed in a 0.4 M betaine aqueous solution for 16 hours in the container, and the particle size range was 1.5-2. Add 300g of 4mm onion seeds, add 2Occ of 0.4M betaine aqueous solution to 2400ml of zeolite sieved to particle size range 0.5-1.0mm, add zeolite holding the betaine aqueous solution and add moist air Is rotated at 15 ° C. for 7 days while being fed into the container to bring the onion seeds into contact with the betaine aqueous solution retained in the zeolite for hydration treatment, and after 7 days, the zeolite and seeds are separated by sieving. After air-drying at 25 ° C. for hours, onion seeds (blast treatment section) were obtained. Moreover, the onion seed (non-blast treatment area) was obtained by making the other conditions the same, except not performing the ventilation of moist air. Moreover, the onion seed (untreated section) which made the other conditions the same without performing the hydration process by betaine aqueous solution and a ventilation process as a control | contrast was obtained.

7日後ゼオライトと種子を篩いで分離し、24時間25℃で風燥した後、得られた各々の処理のたまねぎ種子についてそれぞれ発芽試験を行った。発芽試験は、発芽温度20℃で、発芽試験用ケースに置床して行った(各種子につき、100粒×3ケース)。発芽試験の結果を表6に示す。   Seven days later, the zeolite and seeds were separated by sieving and dried at 25 ° C. for 24 hours, and then the onion seeds obtained for each treatment were subjected to a germination test. The germination test was carried out by placing it in a germination test case at a germination temperature of 20 ° C. (100 grains × 3 cases for each child). The results of the germination test are shown in Table 6.

Figure 0004054783
Figure 0004054783

表6によれば、本実施例の送風処理区の種子のベタイン水溶液による水和処理において、処理される種子は前記実施例5に比べて3倍量であるが、前記実施例4と同一の容器でこのように種子量を多くしても、本実施例5の送風処理を行えば、無送風処理区のベタイン水溶液処理に比べて、種子揃いがよく、発芽速度も速いことから、大量の種子の水和処理が可能であることが分かる。   According to Table 6, in the hydration treatment of the seeds in the blast treatment zone of the present example with the betaine aqueous solution, the seeds to be treated are three times as much as in Example 5, but the same as in Example 4 above. Even if the amount of seeds is increased in this manner, if the air blowing treatment of Example 5 is performed, the seeds are aligned better and the germination rate is higher than the betaine aqueous solution treatment in the non-air blowing treatment section. It can be seen that the seed can be hydrated.

〔実施例6〕
(ゼオライトを用いたてん菜種子の水和処理)
直径28.5cm長さ26cmの円筒容器(容積16.61)を水平にして配置し、該容器内に予め0.4Mベタイン水溶液に16時間浸漬した、粒径範囲が2.7〜3.0mmのてん菜種子100gを入れ、粒径範囲0.5〜1.0mmに篩ったゼオライト2400mlに0.4Mベタイン水溶液を190cc添加して得たベタイン水溶液を保持させたゼオライトを加え、15℃で4日間回転させることにより、ゼオライトに保持されているベタイン水溶液にてん菜種子を接触させて水和処理を行った。4日後ゼオライトと種子を篩いで分離し、24時間25℃で風燥し、発芽試験を行った。比較のため水和処理を行わなかったてん菜種子(無処理区)についても発芽試験を行った。発芽試験は、発芽温度20℃で、発芽試験用ケースに置床して行った(各種子につき、100粒×3ケース)。1日目〜5日目に発芽した個数/100粒の結果を下記の表7に示す。
Example 6
(Hydration of sugar beet seeds using zeolite)
A cylindrical container (volume: 16.61) having a diameter of 28.5 cm and a length of 26 cm was placed horizontally and previously immersed in a 0.4 M betaine aqueous solution for 16 hours in the container, and the particle size range was 2.7 to 3.0 mm. 100 g of sugar beet seeds were added, and 2400 ml of zeolite sieved to a particle size range of 0.5 to 1.0 mm was added with zeolite containing 190 cc of 0.4 M betaine aqueous solution and the resulting betaine aqueous solution was retained. By rotating for a day, the beet seeds were brought into contact with the betaine aqueous solution retained in the zeolite for hydration. Four days later, the zeolite and seeds were separated by sieving, dried at 25 ° C. for 24 hours, and a germination test was performed. For comparison, a germination test was also conducted on sugar beet seeds that had not been hydrated (untreated). The germination test was performed by placing it in a germination test case at a germination temperature of 20 ° C. (100 grains × 3 cases for each child). The results of the number of germinated on the first day to the fifth day / 100 grains are shown in Table 7 below.

Figure 0004054783
Figure 0004054783

ベタイン処理した種子は無処理の種子に比べ発芽揃いがよく発芽速度も速いことが分かる。   It can be seen that seeds treated with betaine have better germination and faster germination speed than untreated seeds.

本発明の発芽改善方法を播種前の種子に施すことにより、得られた種子は、播種後の種子の迅速且つ斉一な発芽や、不良環境下での発芽率が改善される。   By applying the germination improving method of the present invention to seeds before sowing, the obtained seeds are improved in quick and uniform germination of seeds after sowing and germination rate in a poor environment.

Claims (6)

水及びベタイン水溶液から選ばれた液体に種子を予め浸漬処理し、
前記浸漬処理により得られた種子とベタイン水溶液を保持している粒状の溶液保持材料とを容器内で混合し、種子の活力を増進するには充分であるが発芽を起こさせるには不充分な時間と温度にて、該溶液保持材料と種子を接触させることを特徴とする種子の発芽改善方法。
Pre-soaking seeds in a liquid selected from water and betaine aqueous solution,
Wherein the immersion treatment by the resulting seeds and betaine aqueous solution holding materials granular holding the mixture in the vessel, insufficient to is sufficient to cause germination to promote the vitality of seeds A method for improving seed germination, comprising bringing the solution-holding material into contact with a seed at a proper time and temperature.
前記容器を回転させることにより行う請求項1に記載の種子の発芽改善方法。 The seed germination improving method according to claim 1, wherein the method is performed by rotating the container. 前記容器内に空気を送風することにより行う請求項1又は2に記載の種子の発芽改善方法。 The seed germination improvement method according to claim 1, wherein the method is performed by blowing air into the container. 前記空気が加湿した空気である請求項3に記載の種子の発芽改善方法。 The seed germination improving method according to claim 3, wherein the air is humidified air. 前記粒状の溶液保持材料の粒径範囲は、種子の粒径範囲と異なることを特徴とする請求項1に記載の種子の発芽改善方法。The seed germination improvement method according to claim 1, wherein the particle size range of the granular solution holding material is different from the particle size range of the seed. 前記粒状の溶液保持材料が吸水性資材であることを特徴とする請求項1に記載の種子の発芽改善方法。The seed germination improving method according to claim 1, wherein the granular solution holding material is a water-absorbing material.
JP2004201059A 2004-07-07 2004-07-07 Germination improvement method and seed Expired - Fee Related JP4054783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004201059A JP4054783B2 (en) 2004-07-07 2004-07-07 Germination improvement method and seed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004201059A JP4054783B2 (en) 2004-07-07 2004-07-07 Germination improvement method and seed

Publications (2)

Publication Number Publication Date
JP2006020558A JP2006020558A (en) 2006-01-26
JP4054783B2 true JP4054783B2 (en) 2008-03-05

Family

ID=35794271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004201059A Expired - Fee Related JP4054783B2 (en) 2004-07-07 2004-07-07 Germination improvement method and seed

Country Status (1)

Country Link
JP (1) JP4054783B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2394507A3 (en) 2006-10-18 2012-03-07 Seminis Vegetable Seeds, Inc. Carrots having increased lycopene content
KR20120124385A (en) * 2009-09-04 2012-11-13 인코텍 인터내셔날 비.브이. Controlled seed wetting

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734681B2 (en) * 1991-04-24 1995-04-19 三浦工業株式会社 Seed germination method
JP3151471B2 (en) * 1994-06-10 2001-04-03 株式会社テイエス植物研究所 How to improve seed germination
JP3205896B2 (en) * 1995-11-20 2001-09-04 株式会社テイエス植物研究所 How to improve seed germination
JP3680403B2 (en) * 1996-02-16 2005-08-10 株式会社テイエス植物研究所 Seed germination improvement method
JP3196817B2 (en) * 1996-04-02 2001-08-06 矢崎総業株式会社 Seed germination promotion method
JP4035324B2 (en) * 2000-02-10 2008-01-23 株式会社サカタのタネ Seed treatment method
JP2003040720A (en) * 2001-07-30 2003-02-13 Tokachi Nogyo Kyodo Kumiai Rengokai Material for inoculating leguminous bacteria, inoculation method and seed inoculated leguminous bacteria

Also Published As

Publication number Publication date
JP2006020558A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
CA1282609C (en) Method for the preparation of hydrated, pregerminated seeds in gel capsules
EP0686340B1 (en) Method of improving seed germination
JP2001526906A (en) Method and apparatus for activating seeds
CA2910462C (en) Improved method for seed priming
JP2007020529A (en) Method for improving germination of plant seed
JPH10506009A (en) Seed treatment
JP2001523475A (en) Solid matrix conditioning of seeds
US20140100111A1 (en) Seed Coating Hydrogels
KR102299294B1 (en) Improved method for seed priming
JP4054783B2 (en) Germination improvement method and seed
KR20140006193A (en) Method of germination induction in pruns yedoensis seeds
JP3151471B2 (en) How to improve seed germination
JP3680403B2 (en) Seed germination improvement method
Ota Promotion of emergence and establishment of rice seedlings by using calcium peroxide-coated seeds in direct sowing on flooded paddy field
JP3205896B2 (en) How to improve seed germination
RU2183394C1 (en) Method for promoting seed emergency
CN115500359B (en) Watermelon seed initiator and use method and application thereof
JP3680448B2 (en) Production method of germination seed
CN103797933A (en) Flaxseed germination device
KR102245447B1 (en) Method of promoting germination of tomato seed
KR102056626B1 (en) Method of promoting germination of foxtail millet seed
RU2464759C1 (en) Method of grain treatment prior to sowing
RU2676732C1 (en) Method of germination of seeds of hard-growing plant species
CN117561834A (en) Initiation method for efficiently improving vigor of melon seeds
JPH0782401A (en) Water-retaining porous material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees