Nothing Special   »   [go: up one dir, main page]

JP4047044B2 - Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil - Google Patents

Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil Download PDF

Info

Publication number
JP4047044B2
JP4047044B2 JP2002092686A JP2002092686A JP4047044B2 JP 4047044 B2 JP4047044 B2 JP 4047044B2 JP 2002092686 A JP2002092686 A JP 2002092686A JP 2002092686 A JP2002092686 A JP 2002092686A JP 4047044 B2 JP4047044 B2 JP 4047044B2
Authority
JP
Japan
Prior art keywords
catalyst
heavy oil
surface area
pore volume
hydrodesulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002092686A
Other languages
Japanese (ja)
Other versions
JP2003284958A (en
Inventor
伸昌 中嶋
敏之 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2002092686A priority Critical patent/JP4047044B2/en
Publication of JP2003284958A publication Critical patent/JP2003284958A/en
Application granted granted Critical
Publication of JP4047044B2 publication Critical patent/JP4047044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、重質油留分(すなわち、常圧残渣油又は減圧残渣油)中の硫黄化合物を長期間に渡って高い効率で除去することができる重質油の水素化脱硫触媒、その触媒の製造方法、及びその触媒を用いる重質油の水素化脱硫方法に関する。
【0002】
【技術背景】
原油を常圧蒸留装置により処理して得られる常圧残渣油(AR)や、ARをさらに減圧蒸留装置で処理することにより得られる減圧残渣油(VR)等の重質油には、多量の硫黄化合物が含有されている。これらの重質油を脱硫処理することなく燃料として用いる場合、硫黄酸化物(SOx)が大気中に排出される。
【0003】
そこで、従来、原油から種々の石油製品を製造する工程中に、直接脱硫装置による重質油留分の水素化脱硫処理工程が組み入れられ、硫黄化合物の除去が行われている。
この重質油中の硫黄化合物を除去することを目的とする水素化脱硫触媒は、周期律表第6族のモリブデン、タングステン、第8族のコバルト、ニッケルを活性発現成分とし、これらをアルミナ、マグネシア、シリカ、チタニア等の無機酸化物担体に担持させたものが開発されている。
【0004】
また、触媒の水素化脱硫性能を改善する技術として、幾つかの提案がなされている。例えば、特開昭58−146445号公報等では、アルミナ担体にゼオライトを加え、水素化脱硫性能の向上を図っている。
特許第2832033号公報では、活性金属化合物を含む溶液にクエン酸を添加し、担体に担持した後、焼成して水素化脱硫性能の向上を図っている。
特許第2900771号公報では、活性金属化合物を含む溶液にジオール又はエーテルを添加し、担体に担持した後、乾燥させることで水素化脱硫性能の向上を図っている。
【0005】
しかし、重質油中には水素化脱硫反応の障害となるアスファルテン、あるいは触媒活性を低下させる有機金属化合物や芳香族性に富む巨大分子が存在し、上記の触媒では、水素化脱硫活性を長期に渡って維持することが難しく、更なる技術の進歩が要求されている。
【0006】
【発明の目的】
本発明の目的は、直接脱硫装置による重質油の水素化脱硫処理において、重質油留分中の硫黄化合物を長期間に渡って高い効率で除去することができる水素化脱硫触媒と、この触媒の製造方法と、この触媒を用いた重質油の水素化脱硫法を提供することにある。
【0007】
【発明の概要】
上記目的を達成するために、本発明の触媒は、常圧残渣油又は減圧残渣油を水素化脱硫する触媒であって、〔1〕触媒基準、酸化物換算で、周期律表第6族から選ばれる少なくとも1種の金属8〜25質量%、周期律表第8族から選ばれる少なくとも1種の金属1〜8質量%、リン0.5〜6質量%と、触媒基準で、クエン酸由来の炭素1〜14質量%とを、比表面積が300〜500m/gのアルミナ担体に担持した後、200℃以下の温度で乾燥してなり、500℃で焼成した後の物理性状が、比表面積:180〜330m/g、細孔容積:0.4〜0.7m1/g、平均細孔直径:7〜12nmであることを特徴とする。また、この触媒は、500℃で焼成した後の物理性状が、〔〕比表面積:180〜300m/g、細孔容積:0.55〜0.7m1/g、平均細孔直径:10〜12nmであり、平均細孔直径±1.5nmの範囲にある細孔容積が全細孔容積の40〜75%であってもよいし、〔〕比表面積:220〜330m/g、細孔容積:0.4〜0.65m1/g、平均細孔直径:7nm以上10nm未満であり、平均細孔直径±1.5nmの範囲にある細孔容積が全細孔容積の50〜85%であってもよい。また、これらの触媒は、周期律表第6族の金属がモリブデン、タングステンの一方又は双方で、周期律表第8族の金属がコバルト、ニッケルの一方又は双方であることが好ましい。これら触媒の本発明に係る製造方法は、周期律表第8族金属から選ばれる少なくとも1種を含む化合物、周期律表第6族金属から選ばれる少なくとも1種を含む化合物、リン酸及びクエン酸を含有する溶液を、比表面積が300〜500m/gのアルミナ担体に担持させ、200℃以下で乾燥させることを特徴とする。更に、本発明に係る重質油の水素化脱硫方法は、水素分圧4〜18MPa、温度320〜410℃、液空間速度0.1〜4.0h−1で、硫黄化合物を含む常圧残渣油又は減圧残渣油を、本発明の触媒と接触させることを特徴とする。
【0008】
本発明における水素化脱硫の対象油は、原油を常圧蒸留装置により処理して得られる常圧残渣油(AR)や、ARを更に減圧蒸留装置で処理することにより得られる減圧残渣油(VR)の重質油留分である。
【0009】
本発明の触媒の担体となるアルミナは、種々の方法で製造することができる。具体的には、水溶性のアルミニウム化合物例えばアルミニウムの硫酸塩、硝酸塩あるいは塩化物をアンモニアのような塩基で中和するか、またはアルカリ金属アルミン酸塩を酸性アルミニウム塩または酸で中和する等して、生成したアルミニウムヒドロゲル又はヒドロゾルを洗浄、熟成、成形、乾燥、焼成等の一般的な処方を施して、製造することができる。
【0010】
本発明における触媒の担体として好適な構造物性を有するアルミナ担体を得るには、沈殿剤や中和剤等を添加してアルミナゲルを作る際のpH、これら薬剤の濃度、時間、温度等を適宜調整すればよく、例えば、ゲル生成の際のpHを酸性側で行えば、比表面積が大きくなる。本発明では、pH約4〜8、温度約15〜90℃とすることが好ましい。
【0011】
ゲル生成後に、熟成、不純物の洗浄除去、脱水乾燥を行う。熟成はpH4〜9、約15〜90℃で、約1〜25時間で行うことが好ましい。これらの範囲外では、熟成後にアルミナゲル中の不純物が除去し難くなるのみならず、アルミナゲルの表面積が小さくなる。
また脱水乾燥は、アルミナゲルにできるだけ熱を加えずに、含有水分量を調整することにより行う。例えば、約15〜90℃、約0. 01〜2MPaでの自然濾過、吸引濾過、加圧濾過等による方法で脱水乾燥し、脱水乾燥後の含有水分量が約60〜90質量%となるようにすることが好ましい。アルミナゲルに余分な熱を加えずに含有水分量を調整することで、アルミナの表面構造の制御が可能となり、触媒の水素化脱硫活性を向上させることができる。
【0012】
脱水乾燥後に担体の成形を行う。成形方法は特に限定せず、押出成形、打錠成形あるいは油中造粒等の一般的な方法を用いることができる。なお、成形時の圧力や速度を調整することによっても、アルミナの構造物性である細孔容積や細孔分布等を制御することができる。
【0013】
アルミナ担体の形状は、重質油留分の触媒層の流通を考慮し、円柱状、三葉柱状、四葉柱状、ダンベル柱状あるいはリング状のペレット形状であることが望ましく、これらの中から反応条件下で触媒層の圧力損失(圧力差)が小さい形状が選ばれる。
また、このペレット径は、反応条件下で触媒層の前後で圧力損失が大きくならないように、1/10〜1/36インチであることが望ましい。なお、ペレット径とは、ペレットの形状が円柱であるもの以外は、その最も太い部分の断面の長径を言う。
【0014】
成形後、常温〜約150℃で約3〜24時間乾燥し、引き続き約200〜600℃で約3〜24時間焼成することにより、アルミナ担体を得ることができる。
【0015】
本発明の触媒におけるアルミナ担体の比表面積は、300〜500m/gである
【0016】
本発明の触媒は、上記担体に第6族から選ばれる少なくとも1種の金属、第8族から選ばれる少なくとも1種の金属、リン化合物、クエン酸由来の炭素を担持させたものである。第6族金属、第8族金属は脱硫活性金属として作用する。脱硫活性点として第6族金属、第8族金属及び硫黄が配位したCoMoS相、NiMoS相が高活性を示すとされており、CoMoS相、NiMoS相の中でもType2とよばれる積層化した二硫化モリブデン層の2層目以上のエッジ部に存在するCo,Niに起因する活性点と、Type1とよばれる二硫化モリブデン層の1層目のエッジ部に存在するCo,Niに起因する活性点とが存在し、Type2の方がより高活性を示すとされている。炭素(クエン酸)、リンの添加は、特に高活性な脱硫活性点であるType2のCoMoS相、NiMoS相の形成を促進させると考えられる。
【0017】
第6族金属としては、クロム、モリブデン、タングステンが用いられるが、モリブデン、タングステンが好ましい。これら第6族金属は1種又は適宜の2種以上を組み合わせて用いることができる。
第6族金属の化合物としては、種々のものを用いることができ、モリブデン化合物の具体例として、酸化モリブデン、モリブデン酸アンモニウム、モリブデン縮合酸塩等が挙げられるが、酸化モリブデン、モリブデン酸アンモニウム、モリブドリン酸が好ましい。タングステン化合物の具体例として、酸化タングステン、タングステン酸アンモニウム、タングステン縮合酸塩等が挙げられるが、酸化タングステン、タングステン酸アンモニウム、タングストリン酸が好ましい。
これらの化合物は、1種又は2種以上を適宜組み合わせて用いることができる。勿論、モリブデン化合物とタングステン化合物を組み合わせて用いることもできる。
【0018】
第8族金属としては、ニッケル、コバルトの一方又は双方が好ましく用いられる。
第8族金属の化合物としても、種々のものを用いることができ、ニッケル化合物の具体例として、硝酸ニッケル、硫酸ニッケル、炭酸ニッケル、酢酸ニッケル、シュウ酸ニッケル、塩化ニッケル、クエン酸ニッケル等が挙げられるが、硝酸ニッケル、炭酸ニッケル、酢酸ニッケル、クエン酸ニッケルが好ましい。コバルト化合物の具体例として、硝酸コバルト、硫酸コバルト、炭酸コバルト、酢酸コバルト、シュウ酸コバルト、塩化コバルト、クエン酸等が挙げられるが、硝酸コバルト、炭酸コバルト、酢酸コバルト、クエン酸コバルトが好ましい。
これらの化合物は、1種又は2種以上を適宜組み合わせて用いることができる。勿論、ニッケル化合物とコバルト化合物を組み合わせて用いることもできる。
【0019】
本発明における炭素は、クエン酸由来のものであり(以下、このクエン酸由来の炭素を単に「炭素」と略称する)、このクエン酸としては、種々のものを用いることができる。具体例としては、クエン酸1水和物、無水クエン酸、イソクエン酸、アロイソクエン酸等が挙げられるが、無水クエン酸、イソクエン酸、クエン酸1水和物が好ましい。用いるクエン酸は、クエン酸単独でもよいし、上記したコバルトやニッケル(8族金属)とのクエン酸化合物であってもよい。
【0020】
リンとしても、種々の化合物を用いることができ、具体例として、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸が挙げられるが、オルトリン酸が好ましい。
【0021】
第6族金属の担持量は、触媒基準、酸化物換算で、8〜25質量%、好ましくは12〜22質量%、特に好ましくは12〜20質量%であり、第8族金属の担持量は、1〜8質量%、好ましくは2〜5質量%であり、リンの担持量は、0.5〜6質量%、好ましくは2〜5質量%であり、炭素の担持量は、触媒基準で、1〜14質量%、好ましくは1〜10質量%である。
リンの担持量が上記未満であると、脱硫活性点の高分散化が図れず、上記より多いと、触媒表面に過剰なリンが存在し、細孔容積の減少を生じ、触媒活性を低下させる。
炭素の担持量が上記未満であると、硫化工程において不活性なCo,NiSを形成し、上記より多いと、触媒表面に過剰な炭素が存在し、コーク劣化を引き起こすと考えられる。
【0022】
上記各成分の担持量に関し、「触媒基準、酸化物換算で」とは、触媒中に含まれる金属種の質量を金属それぞれの酸化物として算出し、炭素質量を含めたその合計質量を各金属の酸化物質量で割った値で表示することを意味する。
なお、本発明では、アルミニウムは3価、第6族金属は6価、第8族金属は2価、そしてリンは5価の金属として求めた。
【0023】
金属質量の測定方法は、触媒を混酸に溶解した後、ICP分光法(誘導結合高周波プラズマ分光法)により分析する方法とした。
炭素質量の測定方法は、触媒を乳鉢にて粉砕した後、950℃程度で燃焼させ、燃焼生成ガスを差動熱伝導度計で測定し、分析する方法とした。
【0024】
本発明の触媒は、以下の方法により製造することができる。
先ず、水を溶媒とし、上記各成分を溶解させ、含浸溶液を調製する。このときの温度は、0℃を超え100℃以下でよく、この範囲内の温度であれば、上記溶媒に上記各成分を良好に溶解させることができる。
【0025】
このようにして調製した含浸溶液を、次いで、上記のアルミナ担体に含浸担持させる。含浸条件は、種々の条件を採ることができるが、通常、含浸温度は、好ましくは0℃を超え100℃未満、より好ましくは10〜50℃、更に好ましくは15〜30℃であり、含浸時間は、好ましくは15分〜3時間、より好ましくは20分〜2時間、更に好ましくは30分〜1時間である。
温度が高すぎると、含浸中に乾燥が起こり、分散度が偏ってしまう。
含浸中は、攪拌することが好ましい。
【0026】
溶液含浸担持後、常温〜約80℃、窒素気流中、空気気流中、あるいは真空中で、水分をある程度(LOI《Loss on ignition》約50%以下となるように)除去し、この後、空気気流中、窒素気流中、あるいは真空中、200℃以下、好ましくは約80〜200℃、約10分〜24時間、好ましくは約100〜150℃で、約5〜20時間の乾燥を行う。乾燥を200℃より高い温度で行うと、金属と錯体化していると思われるクエン酸が触媒表面から離脱し、その結果、高活性点の形成が困難になる。
【0027】
本発明の触媒は、以下の物理性状を有する。なお、これらの物理性状は、製造後の触媒を予めマッフル炉中、空気流通下、500℃で4時間程度焼成したものを用いて測定したものである。500℃で焼成した触媒を用いる理由は、本発明の触媒には炭素が含まれており、触媒上に炭素が含まれていると、この炭素により物性が変化する。但し、この炭素は、物理性状測定前に行う一般的な前処理により一部除去されるものの、その除去量は前処理条件により影響を受ける。そこで、本発明では、500℃で焼成して、この炭素を除去した後に、物理性状を測定することとした。
【0028】
500℃での焼成後において、窒素吸着法で測定した比表面積は180〜330m/g、水銀圧入法で測定した細孔容積は0.4〜0.7ml/g、同じく水銀圧入法で測定した平均細孔径は7〜12nmである。
比表面積が上記より小さいと、脱硫活性点の高分散化が図れず、上記より大きいと細孔径が小さくなり、細孔内における反応基質(硫黄化合物)の拡散が十分でなくなる。
細孔容積が上記より小さいと、細孔内における反応基質の拡散が不十分となり、上記より大きいと、比表面積が極度に小さくなり、脱硫活性点の高分散化が図れなくなる。
平均細孔径が上記より少ないと、細孔内における反応基質の拡散が不十分であり、上記より大きいと、比表面積が極度に小さくなり、高活性が得られなくなる。
【0029】
ところで、重質油中には、アスファルテン、金属分(ニッケル、バナジウム等)等の巨大分子が含まれているため、硫黄分を含め、これらの巨大分子を効率良く除去するためには、数種の触媒を組み合わせて使用することが好ましい。例えば、脱硫触媒層を前段(上層部)、中段(中層部)、後段(下層部)に分割し、上層部に脱メタル機能を有する触媒、中層部と下層部に本発明のような脱硫触媒を充填する。
この場合、本発明の触媒のうち、平均細孔径が10〜12nmで、かつ平均細孔径±1.5nmの範囲にある細孔容積が全細孔容積の40〜75%の触媒(以下、第1の触媒と記す)は、中層部に充填する触媒として好ましく用いることができ、また平均細孔径7nm以上10nm未満で、かつ平均細孔径±1.5nmの範囲にある細孔容積が全細孔容積の50〜85%の触媒(以下、第2の触媒と記す)は、下層部に充填する触媒として好ましく用いることができる。
【0030】
すなわち、上層部で金属分が除去された重質油は、アスファルテン(n−ヘプタン不溶分)を多量に含むため、中層部では、アスファルテンや、アスファルテン中に含まれる硫黄分と金属分を除去することが重要となり、中層部に充填する第1の触媒の平均細孔径が上記より小さいと、細孔内におけるこれらの反応基質の拡散が不十分となる。そして、下層部では、アスファルテンが減少していることから、マルテン(n−ヘプタン可溶分)中に含まれる硫黄分を除去することが重要となるため、第2の触媒の平均細孔径が上記より大きいと、比表面積が低下して、マルテン中に含まれる硫黄分を効率良く除去することができなくなる。
【0031】
また、中層部に充填する第1の触媒は、500℃での焼成後の上記のような細孔径特性の他に、比表面積が180〜300m/gで、細孔容積が0.55〜0.7m1/gであることが好ましく、また下層部に充填する第2の触媒は、比表面積が220〜330m/gで、細孔容積が0.4〜0.65m1/gであることが好ましい。
これらの範囲から外れる物性を有する第1,第2の触媒を上記のように組み合わせて使用する場合、実際の脱硫操作の際に、上記のような作用・効果を得ることが困難となる。
【0032】
また、本発明の触媒は、硫化処理した後、透過型電子顕微鏡で観察した場合における二硫化モリブデン層の積層数の平均値が2.5〜5であるものが好ましい。
この二硫化モリブデンの積層は、アルミナ担体上に形成されて、反応基質との接触効率を向上させる役割をなすと共に、該層内にCoMoS相、NiMoS相等の活性点を形成させるが、積層数の平均値が2.5未満の触媒では、前述のType1のCoMoS相やNiMoS相の割合がType2に比べて多くなるため、高活性を発現せず、積層数の平均値が5より多い触媒では、Type2のCoMoS相やNiMoS相の割合が多くなるが、活性点の絶対数が少なくなるため、やはり高活性を発現しない。
【0033】
本発明の水素化脱硫触媒を用いて、重質油の接触水素化処理を行うには、例えば、本発明の触媒を直接脱硫装置等の反応器に充填し、反応器に原料油としての重質油、本発明では常圧残渣油(AR)又は減圧残渣油(VR)を導入し、高温・高圧の水素分圧の条件下で行う。
好ましい実施態様は、いわゆる固定床流通反応方式である。すなわち、触媒を固定床として反応器に維持し、原料油をこの固定床の上方から下方に通過させる。
触媒は、単独の反応器に充填してもよいし、直列に連結した複数の反応器のそれぞれに充填してもよい。特に、AR,VRには高濃度のニッケル、バナジウム等の金属分、アスファルテン分が含まれているので、硫黄分を含めこれらを効率良く除去するためには、脱硫触媒層の前段に(上層部に)脱メタル機能を有する触媒、中段に(中層部に)第1の触媒、後段に(下層部に)第2の触媒を組み合わせた多段反応器(多段反応層)を用いることが好ましい。
【0034】
なお、本発明の触媒(第1,第2の触媒を含む、単に触媒と記すときはこれを意味する)は、重質油の水素化脱硫を行う前に、反応装置中で硫化処理を施し、活性金属を酸化物から硫化物へと変換させておく。
この硫化処理は、約200〜400℃、好ましくは約250〜350℃、常圧あるいはそれ以上の水素分圧の水素雰囲気下で、硫黄化合物を含む石油蒸留物、それにジメチルジスルファイドや二硫化炭素等の硫化剤を加えたもの、あるいは硫化水素を流通させることにより実施する。
この硫化処理により、本発明の触媒は、前述したように、平均積層数で2.5〜5の二硫化モリブデンの層を形成し、この二硫化モリブデンのエッジ部分に、高活性なCoMoS相やNiMoS相の活性点を形成することとなる。
【0035】
AR留分やVR留分等を接触水素化脱硫する場合における反応条件は、水素分圧4〜18Mpa、原料油温度320〜410℃、液空間速度0.1〜4.0h−1とする。
この反応条件で上記の原料油の水素化処理を行うとき、本発明の触媒は、従来の触媒と比較し、非常に高活性であり、長期間に渡り、低硫黄重油を生産することができる。
【0036】
【実施例】
〔触媒の調製〕
実施例1
イオン交換水27gにモリブドリン酸7.8g、クエン酸ニッケル4.1g及びオルトリン酸1.5gを溶解させた。この水溶液の全てをナス型フラスコ中で、比表面積320m/gのアルミナペレット30gに滴下した後、室温で3時間浸漬した。この後、窒素気流中で風乾し、マッフル炉中120℃で約16時間乾燥させ、触媒Aを得た。
【0037】
実施例2
イオン交換水27gにモリブドリン酸7.8g、炭酸ニッケル1.9g、オルトリン酸1.5g及びクエン酸1水和物2.1gを溶解させた。この水溶液の全てをナス型フラスコ中で、比表面積320m/gのアルミナペレット30gに滴下した後、室温で3時間浸漬した。この後、窒素気流中で風乾し、マッフル炉中120℃で約16時間乾燥させ、触媒Bを得た。
【0038】
実施例3
イオン交換水27gにモリブドリン酸7.8g、クエン酸ニッケル4.1g及びオルトリン酸1.5gを溶解させた。この水溶液の全てをナス型フラスコ中で、比表面積358m/gのアルミナペレット30gに滴下した後、室温で3時間浸漬した。この後、窒素気流中で風乾し、マッフル炉中120℃で約16時間乾燥させ、触媒Cを得た。
【0039】
実施例4
イオン交換水27gにモリブドリン酸7.8g、クエン酸ニッケル4.1g及びオルトリン酸1.5gを溶解させた。この水溶液の全てをナス型フラスコ中で、比表面積305m/gのアルミナペレット30gに滴下した後、室温で3時間浸漬した。この後、窒素気流中で風乾し、マッフル炉中120℃で約16時間乾燥させ、触媒Dを得た。
【0040】
実施例5
イオン交換水27gにモリブドリン酸7.8g、クエン酸ニッケル4.1g及びオルトリン酸1.5gを溶解させた。この水溶液の全てをナス型フラスコ中で、比表面積338m/gのアルミナペレット30gに滴下した後、室温で3時間浸漬した。この後、窒素気流中で風乾し、マッフル炉中120℃で約16時間乾燥させ、触媒Eを得た。
【0041】
比較例1
イオン交換水27gにモリブドリン酸7.8g、クエン酸ニッケル4.1g及びオルトリン酸1.5gを溶解させた。この水溶液の全てをナス型フラスコ中で、比表面積320m/gのアルミナペレット30gに滴下した後、室温で3時間浸漬した。この後、窒素気流中で風乾し、マッフル炉中500℃で焼成を行い、触媒aを得た。
【0042】
比較例2
イオン交換水27gにモリブドリン酸7.8g、クエン酸ニッケル4.1g及びオルトリン酸1.5gを溶解させた。この水溶液の全てをナス型フラスコ中で、比表面積252m/gのアルミナペレット30gに滴下した後、室温で3時間浸漬した。この後、窒素気流中で風乾し、マッフル炉中120℃で約16時間乾燥させ、触媒bを得た。
【0043】
〔触媒の性状〕
実施例1〜5及び比較例1,2で得た触媒の化学性状を表1に、500℃で4時間焼成後の物理性状を表2に示す。
なお、これらの性状を分析する方法等を以下に示す。
【0044】
〔化学性状、物理性状の分析〕
・炭素質量は、触媒を乳鉢にて粉砕した後、(株)柳本株式会社製、CHN分析計(MT−5)を用い、950℃で燃焼させ、燃焼生成ガスを差動熱伝導度計で測定した。
・比表面積は、触媒を400℃で1時間真空脱気した後、日本ベル(株)製の表面積測定装置(ベルソープ28)を用い窒素吸着法(BET法)で測定し、細孔容積と平均細孔径は同様に処理した触媒につき(株)島津製作所製(AUTOPORE−9520)を用い水銀圧入法で測定した。
・二硫化モリブデン層の積層数は、透過型電子顕微鏡(TEM)(日本電子社製商品名“JEM−2010”)を用いて、次の要領で測定した。
1.触媒を流通式反応管に詰め、室温で窒素気流中に5分間保持し、雰囲気ガスをHS(5容量%)/Hに切替え、速度5℃/minで昇温し、400℃に達した後、1時間保持した。その後、同雰囲気下で200℃まで降温し、雰囲気ガスを窒素に切替え、常温まで降温し、硫化処理を終了した。
2.この硫化処理後の触媒をメノウ乳鉢で粉砕した。
3.粉砕した触媒の少量をアセトン中に分散させた。
4.得られた懸濁液をマイクログリッド上に滴下し、室温で乾燥して試料とした。
5.試料をTEMの測定部にセットし、加速電圧200kVで測定した。直接倍率は20万倍で、5視野を測定した。
6.写真を200万倍になるように引き延ばし(サイズ16.8cm×16.8cm)、写真上で目視できる二硫化モリブデン層の積層数を測り取った。
【0045】
【表1】

Figure 0004047044
【0046】
【表2】
Figure 0004047044
細孔分布:全細孔容積のうち、平均細孔径±1.5nmの範囲に有る細孔容積の割合
【0047】
以上の実施例1〜5及び比較例1,2で得た触媒の水素化脱硫活性を、原料油にARを用い、下記に示す方法で評価した。
(水素化脱硫活性の評価方法)
ライトガスオイルと減圧軽油で触媒を予備硫化処理した後、下記の運転条件下、初期劣化が落ち着いた700時間後の生成油に含まれる硫黄濃度を測定し、数1に示す計算式により反応速度定数を求めることで評価した。
原料油並びに生成油の硫黄濃度の分析はニューリー(株)社製、X線硫黄分析計(RX−610SA)で求めた。なお、反応速度定数が高い程、触媒の水素化脱硫活性が優れていることを示す。
触媒A、B、C、D、E、a及びbの評価結果を、触媒aにおける反応速度定数を100とした場合の相対値で表3に示す。
【0048】
<脱硫活性評価の条件>
〔原料油:常圧残油〕
原油:アラビアンライト
密度:0.9713g/cm(15℃)
硫黄分:3.42質量%
ニッケル、バナジウム分:計50質量ppm
蒸留性状:5容量%(留出温度367℃)、40容量%(留出温度506℃)、50容量%(留出温度537℃)
〔反応速度測定装置〕
固定床高圧流通式反応装置
〔反応条件〕
反応温度:380℃
液空間速度:0.4h−1
水素分圧:10.3MPa
水素/油比:1690Nm/kl
【0049】
【数1】
反応速度定数=〔(1/生成油の硫黄濃度)−(1/原料油の硫黄濃度)〕×液空間速度
【0050】
【表3】
Figure 0004047044
【0051】
表3に示される結果から、本発明の触媒は、水素化脱硫活性が高いことが判る。一方、活性金属及びクエン酸を含んだ含浸液をアルミナ担体に担持した後に、焼成を行うことで炭素を含まなくなった比較例1の触媒は、二硫化モリブデンの平均積層数が少なく、水素化脱硫活性が低く、また比表面積の小さい比較例2の触媒においても水素化脱硫活性が低いことが判る。
【0052】
実施例6
固定床高圧流通式反応装置の触媒層を前段・中段・後段の3層に分け、前段に比表面積130m/gの脱メタル触媒を全触媒量の10質量%、中段に触媒Dを45質量%、後段に触媒Cを45質量%となるように充填して多段触媒層を形成し、上記の「水素化脱硫活性の評価方法」と同様の評価を行った(実施例6)。
また、参考のために、中段と後段に充填する触媒を逆転させて、中段に触媒Cを45質量%、後段に触媒Dを45質量%充填させて多段触媒層を形成し、同様の評価を行った(参考例)。
なお、評価結果は、参考例における反応速度定数を100とした場合の相対値で表4に示す。
【0053】
【表4】
Figure 0004047044
【0054】
表4から明らかなように、触媒層の中段に第1の触媒、後段に第2の触媒を組み合わせて使用する場合(実施例6)、これとは逆に中段に第2の触媒、後段に第1の触媒を組み合わせて使用する場合(参考例)に比して、水素化脱硫活性が高いことが判る。
【0055】
【発明の効果】
以上のように、本発明の製造方法により得られた本発明の水素化脱硫触媒を用いて重質油留分の水素化脱硫反応を、本発明の処理方法で行うと、重質油留分中の硫黄化合物を長期間に渡り、高効率で除去することができる。
特に、脱硫触媒層を前・中・後段に分け、前段に脱メタル触媒、中段に本発明の第1の触媒、後段に本発明の第2の触媒を充填することにより、重質油の脱硫をより良好に行うことができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrodesulfurization catalyst for heavy oil that can remove a sulfur compound in a heavy oil fraction (that is, an atmospheric residue or a vacuum residue) with high efficiency over a long period of time, and the catalyst. And a method for hydrodesulfurization of heavy oil using the catalyst.
[0002]
[Technical background]
Heavy oils such as atmospheric residue oil (AR) obtained by treating crude oil with an atmospheric distillation device and vacuum residue oil (VR) obtained by further treating AR with a vacuum distillation device have a large amount. Contains sulfur compounds. When these heavy oils are used as fuel without being desulfurized, sulfur oxides (SOx) are discharged into the atmosphere.
[0003]
Therefore, conventionally, a hydrodesulfurization treatment process for heavy oil fractions by a direct desulfurization apparatus is incorporated into a process for producing various petroleum products from crude oil, and sulfur compounds are removed.
The hydrodesulfurization catalyst for the purpose of removing sulfur compounds in the heavy oil has molybdenum, tungsten, group 8 cobalt, and nickel as active active ingredients in the periodic table, group 6, molybdenum, tungsten, A material supported on an inorganic oxide carrier such as magnesia, silica or titania has been developed.
[0004]
Several proposals have been made as techniques for improving the hydrodesulfurization performance of the catalyst. For example, in Japanese Patent Laid-Open No. 58-146445, etc., zeolite is added to an alumina carrier to improve hydrodesulfurization performance.
In Japanese Patent No. 2832033, citric acid is added to a solution containing an active metal compound, supported on a carrier, and then calcined to improve hydrodesulfurization performance.
In Japanese Patent No. 2900771, diol or ether is added to a solution containing an active metal compound, supported on a support, and then dried to improve hydrodesulfurization performance.
[0005]
However, heavy oils contain asphaltenes that impede hydrodesulfurization reactions, organometallic compounds that reduce catalytic activity, and macromolecules rich in aromaticity, and the above catalysts have long-term hydrodesulfurization activity. It is difficult to maintain across the board and further technological advances are required.
[0006]
OBJECT OF THE INVENTION
An object of the present invention is to provide a hydrodesulfurization catalyst capable of removing sulfur compounds in a heavy oil fraction with high efficiency over a long period of time in a hydrodesulfurization treatment of heavy oil by a direct desulfurization apparatus. It is an object to provide a method for producing a catalyst and a hydrodesulfurization method for heavy oil using the catalyst.
[0007]
SUMMARY OF THE INVENTION
  In order to achieve the above object, the catalyst of the present invention is a catalyst for hydrodesulfurizing atmospheric residual oil or reduced pressure residual oil. [1] From the catalyst standard, in terms of oxide, from Group 6 of the Periodic Table 8-25% by mass of at least one metal selected, 1-8% by mass of at least one metal selected from Group 8 of the periodic table, 0.5-6% by mass of phosphorus, and based on catalyst, derived from citric acid The specific surface area of 300 to 500 m2/ G supported on alumina carrierAnd then dried at a temperature of 200 ° C or lowerThe physical properties after firing at 500 ° C. have a specific surface area of 180 to 330 m.2/ G, pore volume: 0.4 to 0.7 m1 / g, average pore diameter: 7 to 12 nm. MaIn addition, this catalyst has physical properties after firing at 500 ° C.2] Specific surface area: 180-300m2/ G, pore volume: 0.55 to 0.7 m1 / g, average pore diameter: 10 to 12 nm, and the pore volume in the range of average pore diameter ± 1.5 nm is 40 of the total pore volume. May be ~ 75%,3] Specific surface area: 220-330m2/ G, pore volume: 0.4 to 0.65 m1 / g, average pore diameter: 7 nm or more and less than 10 nm, and the pore volume in the range of average pore diameter ± 1.5 nm is the total pore volume. It may be 50 to 85%. In these catalysts, the Group 6 metal of the periodic table is preferably one or both of molybdenum and tungsten, and the Group 8 metal of the periodic table is preferably one or both of cobalt and nickel. The production method of these catalysts according to the present invention includes a compound containing at least one selected from Group 8 metals of the periodic table, a compound containing at least one selected from Group 6 metals of the periodic table, phosphoric acid and citric acid Specific surface area of 300-500 m2/ G of alumina support and dried at 200 ° C. or lower. Furthermore, the hydrodesulfurization method of heavy oil according to the present invention has a hydrogen partial pressure of 4 to 18 MPa, a temperature of 320 to 410 ° C., and a liquid space velocity of 0.1 to 4.0 h.-1The atmospheric pressure residue oil or the reduced pressure residue oil containing a sulfur compound is brought into contact with the catalyst of the present invention.
[0008]
The target oil for hydrodesulfurization in the present invention is an atmospheric residue oil (AR) obtained by treating crude oil with an atmospheric distillation device, or a vacuum residue oil (VR) obtained by further treating AR with a vacuum distillation device. ) Heavy oil fraction.
[0009]
Alumina serving as the carrier of the catalyst of the present invention can be produced by various methods. Specifically, a water-soluble aluminum compound such as aluminum sulfate, nitrate or chloride is neutralized with a base such as ammonia, or an alkali metal aluminate is neutralized with an acidic aluminum salt or acid. Then, the produced aluminum hydrogel or hydrosol can be produced by applying a general prescription such as washing, aging, molding, drying, baking and the like.
[0010]
In order to obtain an alumina carrier having structural properties suitable as a catalyst carrier in the present invention, the pH at the time of preparing an alumina gel by adding a precipitating agent, a neutralizing agent, etc., the concentration, time, temperature, etc. of these agents are appropriately selected. What is necessary is just to adjust, for example, if the pH in the case of gel production | generation is performed on the acidic side, a specific surface area will become large. In this invention, it is preferable to set it as pH about 4-8 and temperature about 15-90 degreeC.
[0011]
After the gel is formed, aging, cleaning and removing impurities, and dehydration drying are performed. The aging is preferably performed at a pH of 4 to 9 and about 15 to 90 ° C. for about 1 to 25 hours. Outside these ranges, not only is it difficult to remove impurities in the alumina gel after aging, but the surface area of the alumina gel is reduced.
The dehydration drying is performed by adjusting the water content without applying heat to the alumina gel as much as possible. For example, it is dehydrated and dried by a method such as natural filtration at about 15 to 90 ° C. and about 0.01 to 2 MPa, suction filtration, and pressure filtration, so that the water content after dehydration drying is about 60 to 90% by mass. It is preferable to make it. By adjusting the water content without applying extra heat to the alumina gel, the surface structure of the alumina can be controlled, and the hydrodesulfurization activity of the catalyst can be improved.
[0012]
The carrier is formed after dehydration and drying. The molding method is not particularly limited, and a general method such as extrusion molding, tableting molding or granulation in oil can be used. It should be noted that the pore volume and pore distribution, which are structural properties of alumina, can also be controlled by adjusting the pressure and speed during molding.
[0013]
The shape of the alumina support is preferably cylindrical, trilobal, quadrilobal, dumbbell, or ring-shaped pellets, taking into account the distribution of the heavy oil fraction catalyst layer. A shape having a small pressure loss (pressure difference) of the catalyst layer is selected below.
The pellet diameter is desirably 1/10 to 1/36 inch so that pressure loss does not increase before and after the catalyst layer under the reaction conditions. The pellet diameter means the major axis of the cross section of the thickest part except that the pellet has a cylindrical shape.
[0014]
After molding, the alumina support can be obtained by drying at room temperature to about 150 ° C. for about 3 to 24 hours, followed by firing at about 200 to 600 ° C. for about 3 to 24 hours.
[0015]
  Specific surface area of alumina support in the catalyst of the present inventionIs 300-500m2/ GIs.
[0016]
  The catalyst of the present invention comprises at least one metal selected from Group 6 for the carrier, at least one metal selected from Group 8, a phosphorus compound,Derived from citric acidCarbon is supported. Group 6 metal and Group 8 metal act as desulfurization active metals. CoMoS phase and NiMoS phase coordinated with Group 6 metal, Group 8 metal and sulfur as desulfurization active sites are said to show high activity. Among the CoMoS phase and NiMoS phase, laminated disulfide called Type 2 Active points due to Co and Ni existing at the edge portion of the second layer or more of the molybdenum layer, and active points due to Co and Ni existing at the edge portion of the first layer of the molybdenum disulfide layer called Type 1 It is said that Type 2 shows higher activity. carbon(QuenIt is considered that the addition of acid) and phosphorus promotes the formation of CoMoS phase and NiMoS phase of Type 2 which is a particularly highly active desulfurization active site.
[0017]
As the Group 6 metal, chromium, molybdenum and tungsten are used, but molybdenum and tungsten are preferable. These Group 6 metals can be used alone or in combination of two or more.
Various compounds can be used as the Group 6 metal compound. Specific examples of the molybdenum compound include molybdenum oxide, ammonium molybdate, molybdenum condensed acid salt, etc., but molybdenum oxide, ammonium molybdate, molybdoline Acid is preferred. Specific examples of the tungsten compound include tungsten oxide, ammonium tungstate, tungsten condensed acid salt, and the like, and tungsten oxide, ammonium tungstate, and tungstophosphoric acid are preferable.
These compounds can be used alone or in combination of two or more. Of course, a molybdenum compound and a tungsten compound can also be used in combination.
[0018]
As the Group 8 metal, one or both of nickel and cobalt is preferably used.
Various compounds of the Group 8 metal can be used. Specific examples of the nickel compound include nickel nitrate, nickel sulfate, nickel carbonate, nickel acetate, nickel oxalate, nickel chloride, nickel citrate and the like. Of these, nickel nitrate, nickel carbonate, nickel acetate, and nickel citrate are preferred. Specific examples of the cobalt compound include cobalt nitrate, cobalt sulfate, cobalt carbonate, cobalt acetate, cobalt oxalate, cobalt chloride, and citric acid, and cobalt nitrate, cobalt carbonate, cobalt acetate, and cobalt citrate are preferable.
These compounds can be used alone or in combination of two or more. Of course, a nickel compound and a cobalt compound may be used in combination.
[0019]
  Carbon in the present invention isQuenDerived from acid(Hereinafter, this carbon derived from citric acid is simply referred to as “carbon”),thisQuenVarious acids can be used as the acid. As a specific exampleTheEnoic acid monohydrate, anhydrous citric acid, isocitric acid, alloisocitrateAcid etc.Are preferred, but anhydrous citric acid, isocitric acid, and citric acid monohydrate are preferred.UseEnAcidCitric acid alone or a citric acid compound with cobalt or nickel (group 8 metal) described above may be used.
[0020]
Various compounds can also be used as phosphorus, and specific examples include orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, and tetraphosphoric acid, with orthophosphoric acid being preferred.
[0021]
The supported amount of the Group 6 metal is 8 to 25% by mass, preferably 12 to 22% by mass, particularly preferably 12 to 20% by mass in terms of catalyst and oxide, and the supported amount of the Group 8 metal is 1-8% by mass, preferably 2-5% by mass, the supported amount of phosphorus is 0.5-6% by mass, preferably 2-5% by mass, and the supported amount of carbon is based on the catalyst. 1-14 mass%, preferably 1-10 mass%.
If the supported amount of phosphorus is less than the above, desulfurization active sites cannot be highly dispersed. If the amount is more than the above, excessive phosphorus exists on the catalyst surface, resulting in a decrease in pore volume and a decrease in catalyst activity. .
If the amount of carbon supported is less than the above, Co is inactive in the sulfidation process.9S8, NiS is formed, and if it is more than the above, it is considered that excessive carbon exists on the catalyst surface and causes coke deterioration.
[0022]
Regarding the loading amount of each of the above components, “catalyst standard, in terms of oxide” means that the mass of the metal species contained in the catalyst is calculated as the oxide of each metal, and the total mass including the carbon mass is calculated for each metal. It means to display by the value divided by the oxide mass.
In the present invention, aluminum was determined as trivalent, group 6 metal as hexavalent, group 8 metal as divalent, and phosphorus as pentavalent metal.
[0023]
The metal mass was measured by dissolving the catalyst in a mixed acid and then analyzing the catalyst by ICP spectroscopy (inductively coupled high-frequency plasma spectroscopy).
The carbon mass was measured by pulverizing the catalyst in a mortar, burning it at about 950 ° C., and measuring and analyzing the combustion product gas with a differential thermal conductivity meter.
[0024]
The catalyst of the present invention can be produced by the following method.
First, the above-mentioned components are dissolved using water as a solvent to prepare an impregnation solution. The temperature at this time may be more than 0 ° C. and 100 ° C. or less, and if the temperature is within this range, the above components can be dissolved well in the solvent.
[0025]
The impregnating solution thus prepared is then impregnated and supported on the alumina carrier. Various conditions can be adopted as the impregnation conditions. Usually, the impregnation temperature is preferably more than 0 ° C. and less than 100 ° C., more preferably 10 to 50 ° C., still more preferably 15 to 30 ° C., and the impregnation time. Is preferably 15 minutes to 3 hours, more preferably 20 minutes to 2 hours, still more preferably 30 minutes to 1 hour.
If the temperature is too high, drying occurs during impregnation and the degree of dispersion is uneven.
It is preferable to stir during the impregnation.
[0026]
  After the solution impregnation is carried, water is removed to some extent (so that the LOI << Loss on ignition >> is about 50% or less) in a nitrogen stream, an air stream, or a vacuum at room temperature to about 80 ° C., and then air Drying is performed at 200 ° C. or less, preferably about 80 to 200 ° C., about 10 minutes to 24 hours, preferably about 100 to 150 ° C. for about 5 to 20 hours in an air stream, a nitrogen stream or in a vacuum. When drying is performed at a temperature higher than 200 ° C., it seems to be complexed with metal.QuenThe acid is detached from the catalyst surface, and as a result, it becomes difficult to form highly active sites.
[0027]
The catalyst of the present invention has the following physical properties. In addition, these physical properties are measured using a catalyst obtained after pre-baking in a muffle furnace for about 4 hours at 500 ° C. under air flow. The reason for using the catalyst calcined at 500 ° C. is that the catalyst of the present invention contains carbon, and when carbon is contained on the catalyst, the physical properties change due to this carbon. However, although this carbon is partially removed by a general pretreatment performed before the physical property measurement, the removal amount is affected by the pretreatment conditions. Therefore, in the present invention, the physical properties were measured after firing at 500 ° C. to remove the carbon.
[0028]
After firing at 500 ° C., the specific surface area measured by the nitrogen adsorption method is 180 to 330 m.2The pore volume measured by the mercury intrusion method is 0.4 to 0.7 ml / g, and the average pore diameter measured by the mercury intrusion method is 7 to 12 nm.
When the specific surface area is smaller than the above, desulfurization active sites cannot be highly dispersed. When the specific surface area is larger than the above, the pore diameter becomes small and the diffusion of the reaction substrate (sulfur compound) in the pores becomes insufficient.
When the pore volume is smaller than the above, the diffusion of the reaction substrate in the pores becomes insufficient. When the pore volume is larger than the above, the specific surface area becomes extremely small, and the desulfurization active sites cannot be highly dispersed.
When the average pore diameter is smaller than the above, the reaction substrate is not sufficiently diffused in the pores. When the average pore diameter is larger than the above, the specific surface area becomes extremely small and high activity cannot be obtained.
[0029]
By the way, since heavy oil contains macromolecules such as asphaltenes and metals (nickel, vanadium, etc.), in order to efficiently remove these macromolecules including sulfur, there are several types. These catalysts are preferably used in combination. For example, the desulfurization catalyst layer is divided into a front stage (upper layer part), a middle stage (middle layer part), and a rear stage (lower layer part), a catalyst having a demetallizing function in the upper layer part, and a desulfurization catalyst like the present invention in the middle layer part and the lower layer part Fill.
In this case, among the catalysts of the present invention, a catalyst having an average pore diameter of 10 to 12 nm and an average pore diameter in the range of ± 1.5 nm is 40 to 75% of the total pore volume (hereinafter referred to as No. 1). 1) can be preferably used as a catalyst for filling the middle layer portion, and the pore volume in the range of the average pore diameter of 7 nm or more and less than 10 nm and the average pore diameter of ± 1.5 nm is all pores. A catalyst having a volume of 50 to 85% (hereinafter referred to as a second catalyst) can be preferably used as a catalyst filled in the lower layer portion.
[0030]
That is, the heavy oil from which the metal content has been removed in the upper layer portion contains a large amount of asphaltenes (n-heptane insoluble), and therefore, in the middle layer portion, asphaltenes, sulfur content and metal content contained in the asphaltenes are removed. When the average pore diameter of the first catalyst filled in the middle layer portion is smaller than the above, the diffusion of these reaction substrates in the pores becomes insufficient. And since the asphaltene is decreasing in the lower layer part, it is important to remove the sulfur content contained in the marten (n-heptane soluble content), so the average pore diameter of the second catalyst is the above-mentioned value. If it is larger, the specific surface area is lowered, and the sulfur content contained in the marten cannot be removed efficiently.
[0031]
Further, the first catalyst filled in the middle layer portion has a specific surface area of 180 to 300 m in addition to the above pore diameter characteristics after firing at 500 ° C.2/ G and the pore volume is preferably 0.55 to 0.7 m1 / g, and the second catalyst filled in the lower layer has a specific surface area of 220 to 330 m.2It is preferable that the pore volume is 0.4 to 0.65 m1 / g.
When the first and second catalysts having physical properties that fall outside these ranges are used in combination as described above, it is difficult to obtain the above-described actions and effects during the actual desulfurization operation.
[0032]
In addition, the catalyst of the present invention preferably has an average value of the number of laminated molybdenum disulfide layers of 2.5 to 5 when observed with a transmission electron microscope after sulfiding.
This molybdenum disulfide laminate is formed on an alumina support and plays a role of improving the contact efficiency with the reaction substrate, and also forms active sites such as CoMoS phase and NiMoS phase in the layer. In the case of a catalyst having an average value of less than 2.5, the ratio of the CoMoS phase or NiMoS phase of Type 1 described above is larger than that of Type 2, so that high activity is not exhibited, and a catalyst having an average value of the number of stacks greater than 5 is Although the ratio of Type 2 CoMoS phase and NiMoS phase is increased, the absolute number of active sites is decreased, so that high activity is not exhibited.
[0033]
In order to perform the catalytic hydrotreating of heavy oil using the hydrodesulfurization catalyst of the present invention, for example, the catalyst of the present invention is directly charged into a reactor such as a desulfurization apparatus and the reactor is loaded with heavy oil as a feedstock oil. In the present invention, an atmospheric residue oil (AR) or a vacuum residue oil (VR) is introduced, and the reaction is carried out under conditions of high temperature and high pressure hydrogen partial pressure.
A preferred embodiment is a so-called fixed bed flow reaction system. That is, the catalyst is maintained in the reactor as a fixed bed, and the feedstock is passed downward from above the fixed bed.
The catalyst may be charged in a single reactor or in each of a plurality of reactors connected in series. In particular, since AR and VR contain high concentrations of metals such as nickel and vanadium, and asphaltenes, in order to efficiently remove them including sulfur, the upstream part of the desulfurization catalyst layer (upper layer part). It is preferable to use a multistage reactor (multistage reaction layer) in which a catalyst having a demetallizing function, a first catalyst (in the middle layer) and a second catalyst in the latter stage (in the lower layer) are combined.
[0034]
The catalyst of the present invention (including the first and second catalysts, simply referring to the catalyst) is subjected to sulfidation treatment in the reactor before hydrodesulfurization of heavy oil. The active metal is converted from oxide to sulfide.
This sulfidation treatment is conducted at about 200 to 400 ° C., preferably about 250 to 350 ° C. under a hydrogen atmosphere at normal pressure or higher, and a petroleum distillate containing sulfur compounds, dimethyl disulfide or disulfide. This is carried out by adding a sulfurizing agent such as carbon or by circulating hydrogen sulfide.
By this sulfidation treatment, the catalyst of the present invention forms a molybdenum disulfide layer having an average number of layers of 2.5 to 5 as described above, and a highly active CoMoS phase or the like is formed on the edge portion of the molybdenum disulfide. An active point of the NiMoS phase will be formed.
[0035]
The reaction conditions for catalytic hydrodesulfurization of AR fraction, VR fraction, etc. are as follows: hydrogen partial pressure 4-18 Mpa, feed oil temperature 320-410 ° C., liquid space velocity 0.1-4.0 h.-1And
When the above-mentioned feedstock is hydrotreated under these reaction conditions, the catalyst of the present invention is very highly active compared to conventional catalysts, and can produce low sulfur heavy oil over a long period of time. .
[0036]
【Example】
(Preparation of catalyst)
Example 1
7.8 g of molybdophosphoric acid, 4.1 g of nickel citrate and 1.5 g of orthophosphoric acid were dissolved in 27 g of ion-exchanged water. All of this aqueous solution was placed in an eggplant type flask with a specific surface area of 320 m.2/ G of alumina pellets was added dropwise to 30 g, followed by immersion at room temperature for 3 hours. Thereafter, it was air-dried in a nitrogen stream and dried in a muffle furnace at 120 ° C. for about 16 hours to obtain Catalyst A.
[0037]
Example 2
In 27 g of ion-exchanged water, 7.8 g of molybdophosphoric acid, 1.9 g of nickel carbonate, 1.5 g of orthophosphoric acid and 2.1 g of citric acid monohydrate were dissolved. All of this aqueous solution was placed in an eggplant type flask with a specific surface area of 320 m.2/ G of alumina pellets was added dropwise to 30 g, followed by immersion at room temperature for 3 hours. Then, it air-dried in nitrogen stream, and it was made to dry at 120 degreeC in a muffle furnace for about 16 hours, and the catalyst B was obtained.
[0038]
Example 3
7.8 g of molybdophosphoric acid, 4.1 g of nickel citrate and 1.5 g of orthophosphoric acid were dissolved in 27 g of ion-exchanged water. All of this aqueous solution was placed in a eggplant type flask with a specific surface area of 358 m.2/ G of alumina pellets was added dropwise to 30 g, followed by immersion at room temperature for 3 hours. Thereafter, it was air-dried in a nitrogen stream and dried at 120 ° C. for about 16 hours in a muffle furnace to obtain Catalyst C.
[0039]
Example 4
7.8 g of molybdophosphoric acid, 4.1 g of nickel citrate and 1.5 g of orthophosphoric acid were dissolved in 27 g of ion-exchanged water. All of this aqueous solution was 305 m in specific surface area in an eggplant type flask.2/ G of alumina pellets was added dropwise to 30 g, followed by immersion at room temperature for 3 hours. Thereafter, it was air-dried in a nitrogen stream and dried in a muffle furnace at 120 ° C. for about 16 hours to obtain catalyst D.
[0040]
Example 5
7.8 g of molybdophosphoric acid, 4.1 g of nickel citrate and 1.5 g of orthophosphoric acid were dissolved in 27 g of ion-exchanged water. All of this aqueous solution was placed in an eggplant type flask with a specific surface area of 338 m.2/ G of alumina pellets was added dropwise to 30 g, followed by immersion at room temperature for 3 hours. Thereafter, it was air-dried in a nitrogen stream and dried in a muffle furnace at 120 ° C. for about 16 hours to obtain Catalyst E.
[0041]
Comparative Example 1
7.8 g of molybdophosphoric acid, 4.1 g of nickel citrate and 1.5 g of orthophosphoric acid were dissolved in 27 g of ion-exchanged water. All of this aqueous solution was placed in an eggplant type flask with a specific surface area of 320 m.2/ G of alumina pellets was added dropwise to 30 g, followed by immersion at room temperature for 3 hours. Then, it air-dried in nitrogen stream, and baked at 500 degreeC in the muffle furnace, and obtained the catalyst a.
[0042]
Comparative Example 2
7.8 g of molybdophosphoric acid, 4.1 g of nickel citrate and 1.5 g of orthophosphoric acid were dissolved in 27 g of ion-exchanged water. All of this aqueous solution was placed in an eggplant type flask with a specific surface area of 252 m.2/ G of alumina pellets was added dropwise to 30 g, followed by immersion at room temperature for 3 hours. Thereafter, it was air-dried in a nitrogen stream and dried in a muffle furnace at 120 ° C. for about 16 hours to obtain catalyst b.
[0043]
[Catalyst properties]
Table 1 shows the chemical properties of the catalysts obtained in Examples 1 to 5 and Comparative Examples 1 and 2, and Table 2 shows the physical properties after calcination at 500 ° C. for 4 hours.
A method for analyzing these properties is shown below.
[0044]
[Analysis of chemical and physical properties]
-The carbon mass was combusted at 950 ° C using a CHN analyzer (MT-5) manufactured by Yanagimoto Co., Ltd. after grinding the catalyst in a mortar, and the combustion product gas was measured with a differential thermal conductivity meter. It was measured.
The specific surface area was measured by a nitrogen adsorption method (BET method) using a surface area measuring device (Bell Soap 28) manufactured by Nippon Bell Co., Ltd. after vacuum degassing of the catalyst at 400 ° C. for 1 hour. The pore diameter was measured by mercury porosimetry using the same treated catalyst (manufactured by Shimadzu Corp. (AUTOPORE-9520)).
-The lamination | stacking number of the molybdenum disulfide layer was measured in the following way using the transmission electron microscope (TEM) (JEOL company brand name "JEM-2010").
1. Pack the catalyst in a flow-type reaction tube and hold it in a nitrogen stream at room temperature for 5 minutes.2S (5% by volume) / H2The temperature was increased at a rate of 5 ° C./min, and after reaching 400 ° C., the temperature was maintained for 1 hour. Thereafter, the temperature was lowered to 200 ° C. under the same atmosphere, the atmosphere gas was switched to nitrogen, the temperature was lowered to room temperature, and the sulfiding treatment was completed.
2. The catalyst after the sulfurization treatment was pulverized in an agate mortar.
3. A small amount of the ground catalyst was dispersed in acetone.
4). The obtained suspension was dropped on a microgrid and dried at room temperature to prepare a sample.
5. The sample was set in the measurement part of TEM and measured at an acceleration voltage of 200 kV. The direct magnification was 200,000 times and 5 fields of view were measured.
6). The photograph was stretched to 2 million times (size: 16.8 cm × 16.8 cm), and the number of laminated molybdenum disulfide layers visible on the photograph was measured.
[0045]
[Table 1]
Figure 0004047044
[0046]
[Table 2]
Figure 0004047044
Pore distribution: Ratio of pore volume in the range of average pore diameter ± 1.5 nm out of total pore volume
[0047]
The hydrodesulfurization activity of the catalysts obtained in Examples 1 to 5 and Comparative Examples 1 and 2 was evaluated by the following method using AR as the feedstock.
(Method for evaluating hydrodesulfurization activity)
After presulfiding the catalyst with light gas oil and vacuum gas oil, the sulfur concentration contained in the product oil 700 hours after the initial deterioration settled was measured under the following operating conditions. It evaluated by calculating | requiring a constant.
Analysis of the sulfur concentration of the raw material oil and the product oil was obtained with an X-ray sulfur analyzer (RX-610SA) manufactured by Newly Corporation. In addition, it shows that the hydrodesulfurization activity of a catalyst is excellent, so that reaction rate constant is high.
The evaluation results of the catalysts A, B, C, D, E, a, and b are shown in Table 3 as relative values when the reaction rate constant in the catalyst a is 100.
[0048]
<Conditions for desulfurization activity evaluation>
[Raw material: Normal pressure residue]
Crude oil: Arabian light
Density: 0.9713g / cm3(15 ° C)
Sulfur content: 3.42 mass%
Nickel, vanadium content: 50 mass ppm in total
Distillation properties: 5% by volume (distillation temperature 367 ° C.), 40% by volume (distillation temperature 506 ° C.), 50% by volume (distillation temperature 537 ° C.)
(Reaction rate measuring device)
Fixed bed high pressure flow reactor
[Reaction conditions]
Reaction temperature: 380 ° C
Liquid space velocity: 0.4h-1
Hydrogen partial pressure: 10.3 MPa
Hydrogen / oil ratio: 1690 Nm3/ Kl
[0049]
[Expression 1]
Reaction rate constant = [(1 / sulfur concentration of produced oil) − (1 / sulfur concentration of raw material oil)] × liquid space velocity
[0050]
[Table 3]
Figure 0004047044
[0051]
  From the results shown in Table 3, it can be seen that the catalyst of the present invention has high hydrodesulfurization activity. On the other hand, active metals andQuenThe catalyst of Comparative Example 1 in which the impregnating solution containing an acid was supported on an alumina carrier and then calcined to contain no carbon had a low average number of laminated molybdenum disulfide, low hydrodesulfurization activity, It can be seen that the hydrodesulfurization activity is low in the catalyst of Comparative Example 2 having a small surface area.
[0052]
Example 6
The catalyst layer of the fixed bed high-pressure flow reactor is divided into three layers: the first, middle, and rear stages, with a specific surface area of 130 m in the first stage.2/ G of demetalized catalyst is filled to 10% by mass of the total catalyst amount, catalyst D to 45% by mass in the middle stage, and catalyst C to 45% by mass in the latter stage to form a multistage catalyst layer. Evaluation similar to "Evaluation method of hydrodesulfurization activity" (Example 6).
In addition, for reference, the catalyst filled in the middle stage and the latter stage is reversed, and the middle stage is filled with 45% by mass of catalyst C and the latter stage is filled with 45% by mass of catalyst D to form a multistage catalyst layer. (Reference example).
In addition, an evaluation result is shown in Table 4 by the relative value when the reaction rate constant in a reference example is set to 100.
[0053]
[Table 4]
Figure 0004047044
[0054]
As is apparent from Table 4, when the first catalyst is used in the middle stage of the catalyst layer and the second catalyst is used in the latter stage (Example 6), the second catalyst is used in the middle stage and the second catalyst in the latter stage. It can be seen that the hydrodesulfurization activity is higher than when the first catalyst is used in combination (reference example).
[0055]
【The invention's effect】
As described above, when the hydrodesulfurization reaction of the heavy oil fraction using the hydrodesulfurization catalyst of the present invention obtained by the production method of the present invention is performed by the treatment method of the present invention, the heavy oil fraction is obtained. The sulfur compound in it can be removed with high efficiency over a long period of time.
In particular, the desulfurization catalyst layer is divided into the front, middle, and rear stages, the demetallization catalyst is filled in the front stage, the first catalyst of the present invention is filled in the middle stage, and the second catalyst of the present invention is packed in the rear stage, thereby desulfurizing heavy oil. Can be performed better.

Claims (6)

常圧残渣油又は減圧残渣油を水素化脱硫する触媒であって、触媒基準、酸化物換算で、周期律表第6族から選ばれる少なくとも1種の金属8〜25質量%、周期律表第8族から選ばれる少なくとも1種の金属1〜8質量%、リン0.5〜6質量%と、触媒基準で、クエン酸由来の炭素1〜14質量%とを、比表面積が300〜500m/gのアルミナ担体に担持した後、200℃以下の温度で乾燥してなり、500℃で焼成した後の物理性状が、比表面積:180〜330m/g、細孔容積:0.4〜0.7m1/g、平均細孔直径:7〜12nmであることを特徴とする重質油の水素化脱硫触媒。A catalyst for hydrodesulfurizing normal pressure residue oil or reduced pressure residue oil, 8 to 25 mass% of at least one metal selected from Group 6 of the periodic table in terms of catalyst standard and oxide conversion. A specific surface area of 300 to 500 m 2 of 1 to 8% by mass of at least one metal selected from Group 8 and 0.5 to 6% by mass of phosphorus, and 1 to 14% by mass of carbon derived from citric acid based on the catalyst. After being supported on a / g alumina carrier and dried at a temperature of 200 ° C. or lower, the physical properties after firing at 500 ° C. are specific surface area: 180 to 330 m 2 / g, pore volume: 0.4 to A hydrodesulfurization catalyst for heavy oil, characterized in that it is 0.7 ml / g and average pore diameter is 7 to 12 nm. 500℃で焼成した後の物理性状が、比表面積:180〜300m/g、細孔容積:0.55〜0.7m1/g、平均細孔直径:10〜12nmであり、平均細孔直径±1.5nmの範囲にある細孔容積が全細孔容積の40〜75%であることを特徴とする請求項1に記載の重質油の水素化脱硫触媒。The physical properties after firing at 500 ° C. are specific surface area: 180 to 300 m 2 / g, pore volume: 0.55 to 0.7 m1 / g, average pore diameter: 10 to 12 nm, average pore diameter heavy oil hydrodesulfurization catalyst according to claim 1, pore volume in the range of ± 1.5 nm is characterized in that 40-75% of the total pore volume. 500℃で焼成した後の物理性状が、比表面積:220〜330m/g、細孔容積:0.4〜0.65m1/g、平均細孔直径:7nm以上10nm未満であり、平均細孔直径±1.5nmの範囲にある細孔容積が全細孔容積の50〜85%であることを特徴とする請求項1に記載の重質油の水素化脱硫触媒。Physical properties after firing at 500 ° C., a specific surface area: 220~330m 2 / g, pore volume: 0.4~0.65m1 / g, average pore diameter: less than 7nm more 10 nm, average pore heavy oil hydrodesulfurization catalyst according to claim 1, characterized in that the pore volume in the range of diameter ± 1.5 nm is 50 to 85% of the total pore volume. 周期律表第6族の金属がモリブデン、タングステンの一方又は双方で、周期律表第8族の金属がコバルト、ニッケルの一方又は双方であることを特徴とする請求項1〜の何れかに記載の重質油の水素化脱硫触媒。Periodic table group 6 metal is molybdenum, in one or both of tungsten, periodic table group VIII metal is cobalt, to any one of claims 1 to 3, characterized in that either or both of nickel The heavy oil hydrodesulfurization catalyst described. 請求項1〜の何れかに記載の水素化脱硫触媒の製造方法であって、周期律表第8族金属から選ばれる少なくとも1種を含む化合物、周期律表第6族金属から選ばれる少なくとも1種を含む化合物、リン酸及びクエン酸を含有する溶液を、比表面積が300〜500m/gのアルミナ担体に担持させ、200℃以下で乾燥させることを特徴とする重質油の水素化脱硫触媒の製造方法。The method for producing a hydrodesulfurization catalyst according to any one of claims 1 to 4 , wherein the compound includes at least one selected from Group 8 metals of the periodic table, and at least selected from Group 6 metals of the periodic table. Hydrogenation of heavy oil, characterized in that a solution containing a compound containing one kind, phosphoric acid and citric acid is supported on an alumina carrier having a specific surface area of 300 to 500 m 2 / g and dried at 200 ° C. or lower. A method for producing a desulfurization catalyst. 水素分圧4〜18MPa、温度320〜410℃、液空間速度0.1〜4.0h−1で、硫黄化合物を含む常圧残渣油又は減圧残渣油を請求項1〜の何れかに記載の触媒と接触させることを特徴とする重質油の水素化脱硫方法。Hydrogen partial pressure 4~18MPa, temperature three hundred twenty to four hundred and ten ° C., at a liquid hourly space velocity 0.1~4.0h -1, wherein the atmospheric residue or vacuum residue containing sulfur compounds in any of claims 1-4 A method for hydrodesulfurizing heavy oil, characterized by contacting with a catalyst.
JP2002092686A 2002-03-28 2002-03-28 Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil Expired - Fee Related JP4047044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002092686A JP4047044B2 (en) 2002-03-28 2002-03-28 Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002092686A JP4047044B2 (en) 2002-03-28 2002-03-28 Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil

Publications (2)

Publication Number Publication Date
JP2003284958A JP2003284958A (en) 2003-10-07
JP4047044B2 true JP4047044B2 (en) 2008-02-13

Family

ID=29237437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002092686A Expired - Fee Related JP4047044B2 (en) 2002-03-28 2002-03-28 Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil

Country Status (1)

Country Link
JP (1) JP4047044B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004018097A1 (en) * 2002-08-20 2004-03-04 National Institute Of Advanced Industrial Science And Technology Catalyst for hydrodesulfurization of hydrocarbon
JP4493997B2 (en) * 2003-12-10 2010-06-30 財団法人石油産業活性化センター Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same
JP4689198B2 (en) * 2004-06-16 2011-05-25 財団法人石油産業活性化センター Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
KR101281134B1 (en) 2005-04-21 2013-07-02 리서치 인스티튜트 오브 페트롤리움 프로세싱 시노펙 A hydrogenation catalyst and its application
JP2006342288A (en) * 2005-06-10 2006-12-21 Petroleum Energy Center Method for hydrogenation-treating hydrocarbon oil
JP4519719B2 (en) * 2005-06-10 2010-08-04 財団法人石油産業活性化センター Method for producing hydrotreating catalyst for hydrocarbon oil, and hydrotreating method for hydrocarbon oil
PL1960101T3 (en) 2005-12-14 2015-02-27 Advanced Refining Technologies Llc Method of making hydroprocessing catalyst
JP5690634B2 (en) * 2011-03-31 2015-03-25 独立行政法人石油天然ガス・金属鉱物資源機構 Hydrorefining catalyst and method for producing hydrocarbon oil

Also Published As

Publication number Publication date
JP2003284958A (en) 2003-10-07

Similar Documents

Publication Publication Date Title
JP4156859B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP4472556B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP5015818B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP5796871B2 (en) Regeneration method for hydroprocessing catalyst of hydrocarbon oil
JP6773384B2 (en) Hydrogenation treatment method for heavy hydrocarbon oil
KR102277834B1 (en) Process for preparing a hydrotreating catalyst
JP4864106B2 (en) Method for producing hydrocarbon oil hydrotreating catalyst
JP4047044B2 (en) Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil
JP4545328B2 (en) Method for producing hydrotreating catalyst for hydrocarbon oil and hydrotreating method for hydrocarbon oil
JP5439673B2 (en) Method for hydrotreating heavy hydrocarbon oil
JP4689198B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP2013027847A (en) Hydroprocessing catalyst for hydrocarbon oil, method for producing hydroprocessing catalyst for hydrocarbon oil and hydroprocessing method for hydrocarbon oil
JP4519719B2 (en) Method for producing hydrotreating catalyst for hydrocarbon oil, and hydrotreating method for hydrocarbon oil
JP4503327B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP4493997B2 (en) Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same
JP4954095B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP4916370B2 (en) Process for hydrotreating diesel oil
JPH04166231A (en) Production of catalyst for hydrogenation treatment
JP4519378B2 (en) Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil using the same
JP2006306974A (en) Catalyst for hydrotreating hydrocarbon oil, method for producing the same and method for hydrotreating hydrocarbon oil
JP2004290728A (en) Method for manufacturing hydrogenation catalyst for light oil and hydrogenation method for light oil
JP5337978B2 (en) Hydrotreating catalyst and hydrotreating method of vacuum gas oil
JP2001334150A (en) Hydrodesulfurization catalyst for gas oil fraction
JP5660672B2 (en) Regeneration method for hydroprocessing catalyst of hydrocarbon oil
JP2019177357A (en) Hydrotreating catalyst for heavy hydrocarbon oil, method for producing hydrotreating catalyst for heavy hydrocarbon oil, and hydrotreating method for heavy hydrocarbon oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040820

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061004

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4047044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees