JP4043928B2 - デジタルカメラ - Google Patents
デジタルカメラ Download PDFInfo
- Publication number
- JP4043928B2 JP4043928B2 JP2002349870A JP2002349870A JP4043928B2 JP 4043928 B2 JP4043928 B2 JP 4043928B2 JP 2002349870 A JP2002349870 A JP 2002349870A JP 2002349870 A JP2002349870 A JP 2002349870A JP 4043928 B2 JP4043928 B2 JP 4043928B2
- Authority
- JP
- Japan
- Prior art keywords
- sensitivity
- value
- gain
- light
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000011156 evaluation Methods 0.000 claims description 70
- 230000035945 sensitivity Effects 0.000 claims description 50
- 238000001514 detection method Methods 0.000 claims description 46
- 238000012545 processing Methods 0.000 claims description 40
- 230000002194 synthesizing effect Effects 0.000 claims description 7
- 238000003384 imaging method Methods 0.000 claims description 5
- 230000006870 function Effects 0.000 description 43
- 238000012546 transfer Methods 0.000 description 33
- 238000012937 correction Methods 0.000 description 26
- 238000010586 diagram Methods 0.000 description 16
- 230000000875 corresponding effect Effects 0.000 description 15
- 230000007613 environmental effect Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000002131 composite material Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 239000004973 liquid crystal related substance Substances 0.000 description 5
- SPCMQFLNOVTUBM-UHFFFAOYSA-N [7-(dimethylazaniumyl)-10h-phenothiazin-3-yl]-dimethylazanium;methanesulfonate Chemical compound CS([O-])(=O)=O.CS([O-])(=O)=O.C1=C([NH+](C)C)C=C2SC3=CC([NH+](C)C)=CC=C3NC2=C1 SPCMQFLNOVTUBM-UHFFFAOYSA-N 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000006837 decompression Effects 0.000 description 3
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 241000593989 Scardinius erythrophthalmus Species 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 201000005111 ocular hyperemia Diseases 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000013643 reference control Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Studio Devices (AREA)
Description
【発明の属する技術分野】
本発明はデジタルカメラに係り、特に、感度の異なる画像信号を合成することによりダイナミックレンジを拡大することができるデジタルカメラに関する。
【0002】
【従来の技術】
現在広く普及しているデジタルカメラにおけるCCD等の撮像素子のダイナミックレンジは、写真フィルムに比べると一般的に狭い。このため、ハイコントラストの被写体を撮影する場合には、受光量がダイナミックレンジを超え、撮像素子出力が飽和してしまい、被写体の情報が欠落してしまう場合があった。このような問題を解決するため、異なる感度で撮影した撮影画像を合成することにより、ダイナミックレンジの拡大を図る技術が提案されている(例えば特許文献1参照)。
【0003】
この技術では、異なる感度で撮影した撮影画像毎にホワイトバランス補正値を算出し、各々の撮影画像でホワイトバランス調整を行っている。
【0004】
ハイコントラストな撮影環境で非常に明るい被写体を撮影する場合には、このように異なる感度で撮影した撮影画像を合成することは、ダイナミックレンジの拡大につながり、明るい部分(ハイライト部分)のディテール再現などに効果的である。
【0005】
【特許文献1】
特開2001−94999号公報(第3頁、図9)
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来技術では、曇天や室内等のローコントラストな撮影環境で撮影した場合には、ダイナミックレンジを広くすることでハイライト部の階調が軟調(ねむくなる)になり、却ってハイライト部の再現が悪化する場合がある、という問題があった。
【0007】
本発明は、上記事実を考慮してなされたものであり、異なる感度で撮影した画像を合成する場合において、ハイコントラストシーンを撮影した場合でもハイライト部を適正に再現することができるデジタルカメラを提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、請求項1記載の発明は、被写体を第1の感度及び前記第1の感度よりも低い第2の感度で撮像する撮像素子と、前記第1の感度で撮像した第1の撮像画像及び前記第2の感度で撮像した第2の撮像画像の少なくとも一方に基づいて、前記被写体の輝度レベルを検出する輝度レベル検出手段と、前記第1の撮像画像のヒストグラムを算出するヒストグラム算出手段と、前記ヒストグラムの予め定めたハイライト側のハイライトデータと前記輝度レベルとに基づいてハイコントラストらしさを表す評価値を求め、該求めた評価値に基づいて前記撮像素子のダイナミックレンジを調整するための調整ゲインを算出するゲイン算出手段と、前記調整ゲインに基づいて前記第1の撮像画像と前記第2の撮像画像とを合成する合成手段と、を備えたことを特徴とする。
【0009】
撮像素子は、被写体を第1の感度で撮像すると共に、第1の感度よりも低い第2の感度でも撮像する。これにより、第1の感度で撮像した第1の撮像画像と、第2の感度で撮像した第2の撮像画像と、の感度の異なる2つの撮像画像が得られる。
【0010】
このように、異なる感度で撮像することができる撮像素子は、例えば、被写体からの光を第1の感度で受光し、受光した光量に応じた信号を出力する複数の第1受光素子と、被写体からの光を前記第1の感度より低い第2の感度で受光し、受光した光量に応じた信号を出力する複数の第2受光素子とが設けられた構成とすることができる。この場合、第2受光素子は、第1受光素子間に位置するよう設けられていてもよいし、チャネルストッパ等の受光量の混合を防止する手段を備えた第1受光素子上に設けられていてもよい。
【0011】
輝度レベル検出手段は、第1の撮像画像及び第2の撮像画像の少なくとも一方に基づいて、被写体の輝度レベルを検出する。輝度レベルは、例えば撮像画像のR,G,Bの各色データから求めることができるが、専用のセンサで検出してもよい。
【0012】
ヒストグラム算出手段は、第1の撮像画像のヒストグラムを算出する。ゲイン算出手段は、ヒストグラムの予め定めたハイライト側のハイライトデータと輝度レベル検出手段により検出した輝度レベルとに基づいてハイコントラストらしさを表す評価値を求める。
【0013】
そして、求めた評価値に基づいて撮像素子のダイナミックレンジを調整するための調整ゲインを算出する。
【0014】
合成手段は、調整ゲインに基づいて第1の撮像画像と第2の撮像画像とを合成する。
【0015】
このように、第1の撮像画像からヒストグラムを求め、このヒストグラムの予め定めたハイライト側のハイライトデータと輝度レベル検出手段により検出した輝度レベルとに基づいてハイコントラストらしさを表す評価値を求めるため、適正に撮影シーンのハイコントラストらしさを検出することができる。
【0016】
そして、このハイコントラストらしさに基づいてダイナミックレンジを調整するため、感度の異なる第1の撮像画像と第2の撮像画像とを合成した場合であっても、撮影シーンに応じて適正にダイナミックレンジを調整し、より適正に階調処理を行うことが可能となる。
【0017】
具体的には、ハイライトデータ及び輝度レベルの少なくとも一方が高い場合には、ハイコントラストの度合いが高くなると考えられるので、請求項2に記載したように、ゲイン算出手段は、ハイコントラストらしさを表す評価値がが高くなるに従って合成手段による合成画像のダイナミックレンジが広くなるように作用するメンバシップ関数により調整ゲインを算出する。
【0018】
すなわち、ハイコントラストらしさを表す評価値が高くなるに従ってダイナミックレンジが広くなり、ハイコントラストらしさを表す評価値が低くなるに従ってダイナミックレンジが狭くなるように調整ゲインが定められる。
【0019】
これにより、ハイコントラストシーンを撮影した場合において高感度と低感度の画像を合成した場合でも、どのような撮影シーンにおいても同じように高感度と低感度の画像を合成する場合と比較してハイライト部を適正に再現することができ、ロバスト性のある階調制御が可能となる。
【0020】
また、請求項3に記載したように、前記ヒストグラム算出手段及び前記ゲイン算出手段による処理と前記第2の撮像画像に関する処理とを並列して行うことが好ましい。これにより、処理の高速化を図ることができる。
【0021】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態の一例について詳細に説明する。
【0022】
図1は本発明に係るデジタルカメラの背面図であり、図2はカメラ上面に設けられたモードダイヤルの平面図である。
【0023】
図2に示すようにモードダイヤル1は、ダイヤル上のアイコン1A〜1FがマークMに合うように回転させることにより、複数段階の露出で撮影する連写/ブラケティングモード1A、絞りやシャッタースピードを各々設定可能なマニュアル撮影モード1B、様々な被写体の撮影に適したオート撮影モード1C、人物を撮影する場合に適した人物モード1D、風景を撮影する場合に適した風景モード1E、及び夜景を撮影する場合に適した夜景モード1F等の撮影モードに設定できるようになっている。なお、図2上では、風景モード1Eが設定されている。
【0024】
また、これらの撮影モードの他に、絞り及びシャッタスピードの組み合わせを選択できるP(プログラム)モード、絞りを選択でき、シャッタースピードが自動的に選択されるA(絞り優先)モード、シャッタースピードを選択でき、絞りが自動的に選択されるS(シャッタースピード優先)モード等の撮影モードを設定することができる。さらに、各撮影モードについて、自動的にストロボ発光するオートモード、人物を撮影した場合に赤目になるのを軽減するための赤目軽減モード、ストロボ光を強制発光させるストロボ強制発光モード、ストロボ光を発光すると共にシャッタースピードを長めにして人物と夜景とをバランスよく撮影するためのスローシンクロモード等のストロボモードを設定することができる。
【0025】
また、モードダイヤル1の中央には、半押し時にONするスイッチS1と、全押し時にONするスイッチS2とを有するシャッタボタン2が設けられている。
【0026】
このデジタルカメラの背面には、図1に示すようにファインダ接眼部3、シフトキー4、表示キー5、撮影モード/再生モード切替えレバー6、キャンセルキー7、実行キー8、マルチファンクションの十字キー9、及び液晶モニタ52が設けられている。
【0027】
図3は、図1に示したデジタルカメラの内部構成を示すブロック図である。
【0028】
本実施の形態に係るデジタルカメラには、撮影レンズ10、撮影レンズ10を通過する光の光量を調整する絞り12、撮影レンズ10、絞り12を通過した被写体からの光を高感度及び低感度のそれぞれの受光素子により受光して被写体像を示すR、G、B3色のカラーアナログ画像信号を出力するCCD(Charge Coupled Device)14が設けられている。
【0029】
ここで、本実施の形態に係るCCD14の構造について説明する。CCD14には、図4に示すようなハニカムCCDを採用することができる。
【0030】
このCCD14の撮像部は、図4に示すように、1画素の1色について1つずつ割り当てられると共に、所定の配列ピッチ(水平配列ピッチ=Ph(μm)、垂直配列ピッチ=Pv(μm))で、かつ隣接する受光素子PD1が垂直方向及び水平方向にずらされて2次元配置された複数の受光素子PD1と、この受光素子PD1の前面に形成された開口部APを迂回するように配置され、かつ受光素子PD1からの信号(電荷)を取り出して垂直方向に転送する垂直転送電極VELと、垂直方向最下に位置する垂直転送電極VELの垂直方向下側に配置され、垂直転送電極VELから転送されてきた信号を外部へ転送する水平転送電極HELと、を備えている。なお、同図に示す例では、開口部APを八角形のハニカム形状に形成している。
【0031】
ここで、水平方向に直線状に並んで配置された複数の垂直転送電極VELにより構成される垂直転送電極群には、各々垂直転送駆動信号V1、V2、・・・、V8の何れか1つを同時に印加することができるように構成されている。なお、同図に示す例では、1段目の垂直転送電極群に対して垂直転送駆動信号V3が、2段目の垂直転送電極群に対して垂直転送駆動信号V4が、3段目の垂直転送電極群に対して垂直転送駆動信号V5が、4段目の垂直転送電極群に対して垂直転送駆動信号V6が、5段目の垂直転送電極群に対して垂直転送駆動信号V7が、6段目の垂直転送電極群に対して垂直転送駆動信号V8が、7段目の垂直転送電極群に対して垂直転送駆動信号V1が、8段目の垂直転送電極群に対して垂直転送駆動信号V2が、各々印加できるように構成されている。
【0032】
一方、各受光素子PD1は隣接する1つの垂直転送電極VELに対し転送ゲートTGを介して電気的に接続されるように構成されている。同図に示す例では、各受光素子PD1が右下に隣接する垂直転送電極VELに転送ゲートTGを介して接続されるように構成されている。
【0033】
なお、同図において‘R’が記入された受光素子PD1の前面に形成された開口部APは赤色の光を透過する色分離フィルタ(カラーフィルタ)で覆われており、‘G’が記入された受光素子PD1の前面に形成された開口部APは緑色の光を透過する色分離フィルタで覆われており、‘B’が記入された受光素子PD1の前面に形成された開口部APは青色の光を透過する色分離フィルタで覆われている。すなわち、‘R’が記入された受光素子PD1は赤色光を、‘G’が記入された受光素子PD1は緑色光を、‘B’が記入された受光素子PD1は青色光を、各々受光し、受光した光量に応じたアナログ信号を各々出力する。
【0034】
CCD14は、更に、上述の受光素子PD1に比して低感度な受光素子PD2を備えている。受光素子PD2は図4に示される如く、複数の受光素子PD1間に設けられている。この受光素子PD2も受光素子PD1と同様に、その前面に受光素子PD1の開口部より面積が小さい開口部APが形成され、隣接する1つの垂直転送電極VELに対して転送ゲートTGにより電気的に接続されている。また、この受光素子PD2には、その前面に形成された開口部APに、受光素子PD1と同様にRGBいずれかのカラーフィルタが装着されている。このように、受光素子PD2の受光面積を受光素子PD1の受光面積より小さくしているので、受光素子PD1に比して低感度なRGB信号が得られる。
【0035】
なお、受光素子PD2の転送ゲートTGが接続される電極は、隣接する受光素子PD1の転送ゲートTGが接続される電極とは異ならせて設けられている。
【0036】
撮影レンズ10及び絞り12を介してCCD14の受光面に結像された被写体像は、各受光素子PD1、PD2で光の入射光量に応じた量の信号電荷に各々変換される。このようにして蓄積された高感度又は低感度の信号電荷の各々は、CCD駆動回路16から加えられるリードゲートパルスによってシフトレジスタに読み出され、レジスタ転送パルスによって信号電荷に応じた電圧信号として順次読み出される。尚、このCCD14は、蓄積した信号電荷をシャッタゲートパルスによって掃き出すことができ、これにより電荷の蓄積時間(シャッタスピード)を制御する、いわゆる電子シャッタ機能を有している。
【0037】
また、詳細は後述するが、本実施の形態においては、先に受光素子PD1の電荷を読み出してから受光素子PD2の電荷を読み出す。すなわち、高感度の信号電荷を読み出した後に、低感度の信号電荷を読み出す。
【0038】
CCD14から順次読み出された高感度又は低感度の電圧信号は、相関二重サンプリング回路(CDS回路)18に加えられ、ここで各画素ごとのR、G、B信号がサンプリングホールドされ、A/D変換器20に加えられる。A/D変換器20は、CDS回路18から順次加えられる高感度のR、G、B信号及び低感度のR、G、B信号を例えば12ビットの高感度のデジタルのR、G、B信号(第1の撮像画像)及び低感度のデジタルのR、G、B信号(第2の撮像画像)に変換して出力する。尚、CCD駆動回路16、CDS回路18及びA/D変換器20は、タイミング発生回路(TG)22から加えられるタイミング信号によって同期して駆動されるようになっている。
【0039】
A/D変換器20から出力された高感度又は低感度のR、G、B信号は、一旦メモリ24に格納され、その後、メモリ24に格納されたR、G、B信号は、デジタル信号処理回路26に加えられる。デジタル信号処理回路26は、合成処理部30、同時化回路32、YC信号作成回路34、及びメモリ36から構成されている。
【0040】
合成処理部30は、図5に示すように、OB処理部70A、70B、LMTX72A、72B、WB調整部74A、74B、ガンマ補正部76A、76B、ヒストグラム算出部78、ゲイン算出部80、乗算器82A、82B,加算器84、及びリミッタ86で構成されている。OB処理部70Aには、高感度で撮影された撮影画像のR,G,Bデータが入力され、OB処理部70Bには、低感度で撮影された撮影画像のR,G,Bデータが入力される。
【0041】
OB処理部70A、70Bは、黒レベルを補正する処理を行う。すなわち、元の画像データからCCD14の遮光エリアのデータを減算することによりオフセット調整し、黒レベルを補正する。
【0042】
LMTX72A、72Bは、例えば3×3マトリクス回路で構成され、色相又は彩度を調整することにより色補正する。
【0043】
WB調整部74A、74Bは、CPU38によって指定されたホワイトバランス補正用のゲイン値Rg,Gg,BgをR,G,Bデータに各々乗算することにより、ホワイトバランスの調整を行う。
【0044】
ガンマ補正部76A、76Bは、ホワイトバランス調整されたR、G、Bデータが所望のガンマ特性となるように入出力特性を変更する。
【0045】
ヒストグラム算出部78は、詳細は後述するが、例えばGデータのヒストグラムを算出する。
【0046】
ゲイン算出部80は、ヒストグラム算出部78で算出されたヒストグラムのうち、予め定めたハイライト側のハイライトデータと、後述するCPU38によって演算された撮影画像の輝度レベルを表す撮影EV値とに基づいて、CCD14のダイナミックレンジを調整するための調整ゲインを算出する。そして、この調整ゲインに基づく高感度のR,G,Bデータに乗算するためのh_gain及び低感度のR,G,Bデータに乗算するためのl_gainを算出する。このh_gain及びl_gainの算出については後述する。
【0047】
乗算器82Aは、ガンマ補正された高感度のR,G,Bデータにh_gainを乗算して加算器84に出力する。乗算器82Bは、ガンマ補正された低感度のR,G,Bデータにl_gainを乗算して加算器84に出力する。
【0048】
加算器84は、h_gainが乗算された高感度のR,G,Bデータにl_gainが乗算された低感度のR,G,Bデータを加算することにより両者を合成し、リミッタ86へ出力する。リミッタ86は、R,G,Bデータが予め定めたビット数(例えば8ビット)で表現できる範囲に収まるようにする。
【0049】
同時化回路32は、メモリ24から読み出された点順次のR、G、B信号を同時式に変換してYC信号作成回路34へ出力する。
【0050】
YC信号作成回路34は、合成されたR、G、B信号から輝度信号Yとクロマ信号Cr、Cbとを作成する。これらの輝度信号Yとクロマ信号Cr、Cb(YC信号)は、メモリ36に格納される。
【0051】
ここで、メモリ36内のYC信号を読み出し、液晶モニタ52に出力することにより動画又は静止画を液晶モニタ52に表示させることができる。また、撮影後のYC信号は、圧縮/伸長回路54によって所定のフォーマットに圧縮されたのち、記録部56にてメモリカードなどの記録媒体に記録される。更に、再生モード時にはメモリカードなどに記録されている画像データが圧縮/伸長回路54によって伸長処理された後、液晶モニタ52に出力され、液晶モニタ52に再生画像が表示されるようになっている。
【0052】
なお、CCD14は本発明の撮像素子に相当し、ヒストグラム算出部78は本発明のヒストグラム算出手段に相当し、ゲイン算出部80は本発明のゲイン算出手段に相当し、加算器86は本発明の合成手段に相当する。
【0053】
CPU38は、図1に示したモードダイヤル1、シャッタボタン2等を含むカメラ操作部40からの入力に基づいて各回路を統括制御するとともに、オートフォーカス、自動露光制御、オートホワイトバランス等の制御を行う。このオートフォーカス制御は、例えばG信号の高周波成分が最大になるように撮影レンズ10を移動させるコントラストAFであり、シャッタボタン2の半押し時にG信号の高周波成分が最大になるように駆動部42を介して撮影レンズ10を合焦位置に移動させる。
【0054】
自動露光制御では、図6に示すように予め決めた露出▲1▼〜▲4▼にて最大4回R、G、B信号を取り込み、これらのR、G、B信号を積算した積算値に基づいて被写体輝度(撮影EV値)を求める。これは、シャッタボタン2の半押し時に実行される。なお、撮影EV値を求める処理は、本発明の輝度レベル検出手段に相当する。
【0055】
また、CPU38には、撮影EV値などの各種データを記憶するためのメモリ39、ストロボ光を発光するためのストロボ60及びストロボ調光センサ62を駆動するための駆動部64が接続されており、これらを制御する。
【0056】
ストロボ60は、例えば撮影EV値が予め定めた所定値以下の場合、すなわち被写体が暗く、十分なコントラストが得られない撮影状況の場合に発光し、被写体にストロボ光を照射する。
【0057】
ストロボ調光センサ62は、ストロボ60で発光したストロボ光を検出し、その光量に応じた検出電圧を駆動部64へ出力する。駆動部64では、ストロボ調光センサ62から出力された検出電圧が予め定めた所定値になった場合、すなわち、十分なコントラストが得られる程度に被写体にストロボ光が照射された場合にストロボ60によるストロボ光の発光を停止させる。これにより、適正な光量に調光される。
【0058】
次に、撮影EV値の測定の詳細について説明する。
【0059】
図7に示すように、1画面を複数のエリア(8×8)に分割し、各分割エリアごとに例えば高感度のR、G、B信号から求めた輝度信号を積算し、その積算値に基づいて各分割エリアのEV値(EVi)を求める。続いて、図7に示すように撮影モードに対応して各分割エリアのEV値に重み付けを行い、画面全体のEV’値を次式によって算出する。
【0060】
【数1】
【0061】
但し、iは、分割エリアの各々を示す添え字であり、上記の場合、0〜63の値を取り得る。Nは、分割エリア数を示し、上記の場合は8×8=64である。
ΔEVisoは、所定の感度(例えばISO200)を基準としてEV値補正量であり、感度が変更されても、EV’が一定となるように調整するための値である。Wiは、各分割エリアごとの重み係数であり、例えば図7に示すように中央重点測光方式の重み係数を用いる。
【0062】
上記のように算出したEV’に対し、更に、次式に示すように撮影モードに応じた露出補正ΔEVを行って撮影EV値を求める。求めた撮影EV値は、メモリ39に記憶される。
【0063】
EV=EV’−ΔEV …(2)
なお、ΔEVは、例えば、人物モードの場合にはΔEV=0、風景モード、夜景モードの場合にはΔEV=0.3とする。
【0064】
上記のようにして求めた撮影EV値に基づいて撮影時の絞り値とシャッタスピードを最終的に決定する。
【0065】
そして、シャッタボタンの全押し時に前記決定した絞り値になるように絞り駆動部44を介して絞り12を駆動し、また、決定したシャッタスピードとなるように電子シャッタによって電荷の蓄積時間を制御する。
【0066】
次に、本実施の形態の作用として、デジタルカメラ11で実行される処理ルーチンについて図8に示すフローチャートを参照して説明する。なお、図8に示す処理ルーチンは、シャッタボタン2が全押しされた場合に実行される。
【0067】
まず、シャッタボタン2が半押しされると、CPU38は、高感度の画像信号の取り込みをTG22及びCCD駆動回路16を介してCCD14に指示する。これにより、CCD14から高感度の画像データがメモリ24に一旦取り込まれ、CPU38によって前述したオートフォーカス制御及び自動露光制御が行われる。これにより、撮影EV値、シャッタスピード、絞り値が決定され、駆動部42及び駆動部44が制御される。
【0068】
そして、シャッタボタン2が全押しされると、ステップ100において、CPU38は、高感度の画像信号の取り込みをTG22及びCCD駆動回路16を介してCCD14に指示する。これにより、CCD14から高感度の画像データがメモリ24に一旦取り込まれる。
【0069】
次に、ステップ102では、ホワイトバランスを調整するためのゲイン値Rg,Gg,Bgの算出が行われる。
【0070】
次に、ホワイトバランス調整用のゲイン値の算出について、図9に示すフローチャートを参照して説明する。
【0071】
なお、ストロボ発光しない撮影の場合には、図9に示したホワイトバランス制御は、撮影モードが夜景モード以外の場合に実行され、その他の撮影モードの場合には通常のホワイトバランス制御によりゲイン値Rg,Gg,Bgが算出される。
【0072】
また、ストロボ発光する撮影の場合には、予め定めた撮影モード及びストロボモードの場合で、かつストロボ発光すると判断した場合に図9に示すホワイトバランス制御が実行される。
【0073】
以下の表に、ストロボ発光する撮影の場合に、図9に示したホワイトバランス制御が実行される撮影モード及びストロボモードの組み合わせを示す。例えば撮影モード及びストロボモードが共にオートモードで、EV値が所定閾値以下の場合には、以下のホワイトバランス制御が実行され、その他の場合、例えば撮影モードが風景モードでストロボモードが強制発光モードの場合には、通常のホワイトバランス制御が行われる。
【0074】
【表1】
【0075】
まず、EV値や撮影モード及びストロボモードからストロボ発光するか否かが判断され、撮影モードが夜景モードの場合で、かつストロボ発光しないと判断された場合には、周知の方法によりデーライト光を光源としたストロボ発光しない場合に適したホワイトバランス制御を行うためのホワイトバランス補正値Rg、Gg、Bgが設定され、WB調整部74A、74Bに出力される。
【0076】
また、ストロボ発光すると判断された場合は、撮影モード及びストロボモードが上記の表1の○で示される組み合わせであるか否かが判断される。そして、ストロボ発光すると判断し、かつ撮影モード及びストロボモードが上記の表1の○で示される組み合わせでないと判断された場合には、周知の方法により通常のストロボ発光時のホワイトバランス制御を行うためのホワイトバランス補正値Rg、Gg、Bgが設定され、WB調整部74A、74Bに出力される。
【0077】
そして、撮影モードが夜景モード以外で、かつストロボ発光しないと判断した場合又は撮影モード及びストロボモードが上記の表1の○で示される組み合わせであるか場合には、CPU38は、シャッタボタンの半押し時に求めた撮影EV値をメモリ39から読み込む(ステップ200)。
【0078】
シャッタボタンの全押し時に撮像された高感度の画像のR、G、B信号は一旦メモリ24に格納されているが、この画像を複数のエリア(例えば8×8)に分割し、各分割エリアごとにR、G、B信号の色別の積算値を積算回路48によって求める(ステップ202)。
【0079】
R,G,B信号の積算値Rt,Gt,Btは、積算回路48とCPU38との間に設けられた乗算器(乗算手段)50R、50G、50Bに出力され、乗算器50R、50G、50Bによって予め定められた基準WB(ホワイトバランス)ゲイン値(基準制御値)Rc,Gc、Bcが掛けられる(ステップ204)。なお、基準WBゲイン値Rc,Gc、Bcは、予めメモリ39に記憶されている。
【0080】
基準WBゲイン値Rc,Gc,Bcが掛けられたR,G,B信号の積算値Rt’,Gt’,Bt’は、CPU38に入力される。
【0081】
この基準WBゲイン値Rc,Gc,Bcは、ストロボ発光しない撮影の場合には、天気が晴れの場合のように、光源がデーライト光の場合にホワイトバランスが適正となるように調整するためのゲイン値Rd,Gd,Bdが設定される。また、ストロボ発光して撮影する場合には、ストロボ光が被写体に十分に到達した場合のように、光源としてストロボ光が支配的な場合にホワイトバランスが適正となるように調整するためのゲイン値Rst,Gst,Bstが設定される。
【0082】
そして、CPU38は、入力されたR信号の積算値Rt’とG信号の積算値Gt’との比Rt’/Gt’、及びB信号の積算値とG信号の積算値との比Bt’/Gt’を求める(ステップ206)。
【0083】
上記のようにして各分割エリアごとに求められるRt’/Gt’、Bt’/Gt’は、その分割エリアが、図10に示すグラフ上に表された検出枠のうちの、どの検出枠内に入るかを判別するために使用される。なお、図10における各検出枠は、環境光源などの色分布の範囲を規定するものである。
【0084】
図10に示すように、検出枠には、青空検出枠、日陰検出枠、昼光色(蛍光灯)検出枠、昼白色(蛍光灯)検出枠、白色(蛍光灯)検出枠、デーライト検出枠、電球色蛍光灯検出枠、電球(タングステン電球)検出枠がある。なお、デーライト検出枠は、ストロボ発光しない撮影の場合の検出枠であり、ストロボ撮影する場合には、ストロボ検出枠となる。
【0085】
そして、CPU38は、Rt’/Gt’=X’、Bt’/Gt’=Y’として、各分割エリアごとに求められたRt’/Gt’、Bt’/Gt’で表される(Xi’、Yi’)が、これらの検出枠のうちのどの検出枠内に入るかを判別し、その個数をカウントする(ステップ208)。このとき、ストロボ発光しない撮影の場合には、日陰検出枠内の個数は、分割エリアのEV値が所定値以下のものについてのみカウントし、青空検出枠内の個数は、EV値が所定値以上のものだけについてカウントする。
【0086】
次に、各検出枠内に存在する(Xi’、Yi’)の平均値(Xaj’Yaj’)を求める(ステップ210)。ここで、jは、各検出枠の各々を示す添え字である。なお、平均値でなく、重心値でもよい。
【0087】
次に、各検出枠に対応して設けられたメンバシップ関数により、色に関する光源らしさ(日陰らしさ等)を表す評価値Fc()を算出する(ステップ212)。メンバシップ関数は、検出枠内の個数を変数として色に関する光源らしさを表す評価値Fc()を出力する関数である。すなわち、評価値が高ければ、その検出枠に対応する光源(環境光源)の可能性が高くなる。
【0088】
Fc(CLD)は、図11に示すように、日陰検出枠内に入る分割エリアの個数を変数とした日陰らしさを表すメンバシップ関数の値である。
【0089】
Fc(SKY)は、図12に示すように、青空検出枠内に入る分割エリアの個数を変数とした青空らしさを表すメンバシップ関数の値である。
【0090】
Fc(EXD)、Fc(EXN)、Fc(W)、Fc(EXL)、Fc(TNG)は、図11に示したFc(CLD)と同様のメンバシップ関数である。ここで、Fc(EXD)は、昼光色検出枠内に入る分割エリアの個数を変数とした昼光色の蛍光灯らしさを表すメンバシップ関数であり、Fc(EXN)は、昼白色検出枠内に入る分割エリアの個数を変数とした昼白色の蛍光灯らしさを表すメンバシップ関数の値であり、Fc(W)は、白色検出枠内に入る分割エリアの個数を変数とした白色の蛍光灯らしさを表すメンバシップ関数であり、Fc(EXL)は、電球色蛍光灯検出枠内に入る分割エリアの個数を変数とした電球色の蛍光灯らしさを表すメンバシップ関数であり、Fc(TNG)は、電球検出枠内に入る分割エリアの個数を変数とした電球らしさを表すメンバシップ関数の値である。
【0091】
Fc(DAY)は、デーライト検出枠内に入る分割エリアの個数を変数とした晴れらしさを表すメンバシップ関数の値であり、このメンバシップ関数は、図11に示す日陰らしさを表すメンバシップ関数と同様である。
【0092】
Fc(TYP)は、ストロボ検出枠内に入る分割エリアの個数を変数としたストロボらしさ、すなわちストロボ光が支配的であるか否かを表すメンバシップ関数の値であり、このメンバシップ関数は、図11に示す日陰らしさを表すメンバシップ関数と同様である。
【0093】
次に、各検出枠に対応して設けられたメンバシップ関数により、輝度に関する光源らしさ(屋内らしさ、屋外らしさ)を表す評価値Fy()を算出する(ステップ214)。メンバシップ関数は、ステップ200で取得したEV値を変数として輝度に関する光源らしさを表す評価値を出力する関数である。
【0094】
Fy(屋外らしさDAY)は、図13に示すように、EV値を変数としたデーライトの屋外らしさを表すメンバシップ関数の値である。
【0095】
Fy(屋外らしさCLD)は、図14に示すように、EV値を変数とした日陰の屋外らしさを表すメンバシップ関数の値である。
【0096】
Fy(屋内らしさEXD)、Fy(屋内らしさEXN)、Fy(屋内らしさTNG)は、図15に示すように、それぞれEV値を変数とした昼光色の蛍光灯の屋内らしさ又は昼白色の蛍光灯の屋内らしさ又はタングステン電球の屋内らしさを表すメンバシップ関数の値である。また、Fy(屋内らしさW)は、EV値を変数とした白色の蛍光灯の屋内らしさを表すメンバシップ関数の値であり、Fy(屋内らしさEXN)と同様である。また、Fy(屋内らしさEXL)は、EV値を変数とした電球色の蛍光灯の屋内らしさを表すメンバシップ関数の値であり、Fy(屋内らしさTNG)と同様である。
【0097】
次に、色に関する光源らしさを表す評価値及び輝度に関する評価値を表す評価値から各検出枠について総合的な光源らしさの評価値Hjを求める(ステップ216)。なお、ストロボ発光しない場合で、撮影モードが風景モードの場合には、H1〜H2、H7についてのみ行う。これは、風景モードの場合は、通常屋外で撮影されるが、屋外の場合に光源がタングステン電球等である場合は考えられないからである。
【0098】
評価値H1〜H7は、以下の式によって求められる。
【0099】
H1(日陰らしさの評価値)=Fc(CLD)×Fy(屋外らしさ)×Fc(SKY) …(3)
H2(昼光色の蛍光灯らしさの評価値)=Fc(EXD)×Fy(屋内らしさEXD) …(4)
H3(昼白色の蛍光灯らしさの評価値)=Fc(EXN)×Fy(屋内らしさEXN) …(5)
H4(白色の蛍光灯らしさの評価値)=Fc(W)×Fy(屋内らしさW)
…(6)
H5(電球色蛍光灯らしさの評価値)=Fc(EXL)×Fy(屋内らしさEXL) …(7)
H6(電球らしさの評価値)=Fc(TNG)×Fy(屋内らしさTNG)
…(8)
H7(晴れらしさの評価値)=Fc(DAY)×Fy(屋外らしさDAY)
…(9)
なお、ストロボ撮影する場合には、H7は次式となる。
【0100】
H7(ストロボらしさの評価値)=Fc(TYP)×Fy(屋外らしさDAY) …(10)
ここで、0≦Fc()、Fy()≦1であるため、0≦Hj≦1である。なお、Fc(SKY)は、図12に示すように、青空検出枠内に入る分割エリアの個数が多い程、日陰らしさの評価値を下げる方向に作用する値をとる。
【0101】
また、Fy(屋内らしさ)は、図15に示すように、EV値が高い程、それらの検出枠の評価値を下げる方向に作用する値をとる。このように、光源らしさの評価値Hjは、色分布だけでなく輝度も考慮して決定されるため、適正に光源を特定することが可能となる。例えば、蛍光灯が点灯した室内と室外とで同じ色の被写体を撮影した場合に、色分布のみで光源を特定した場合には、光源の特定を誤ってしまい、カラーフェリアが発生してしまう場合がある。
【0102】
しかしながら、本実施の形態では、輝度が低い場合、すなわち室内で撮影されたような場合には、Fy(室内らしさ)が高くなり、輝度が高い場合、すなわち室外で撮影されたような場合には、Fy(室内らしさ)が低くなるため、光源を正確に特定することができ、カラーフェリアが発生するのを防ぐことができる。
【0103】
そして、上記のように各検出枠に対応した光源らしさの評価値が算出されると、これらの評価値のうち予め定めた所定閾値以上の(例えば0.4以上)か否かを判別する(ステップ218)。そして、評価値が所定閾値以上のものが存在する場合には、評価値が所定閾値以上のものを環境光源の候補として選択する。
【0104】
次に、選択された環境光源の各々について、以下の式に従って環境光源又はストロボ光と環境光源とが混合された混合光源の色が白色となるようにホワイトバランス制御を行うための制御値(ゲイン値)GR、GB、GGを算出する(ステップ220)。
【0105】
GR={Σ(grj×Hj)/ΣHj}×{Σ(Gj×Hj)/ΣHj}
…(11)
GB={Σ(gbj×Hj)/ΣHj}×{Σ(Gj×Hj)/ΣHj}
…(12)
GG=Σ(Gj×Hj)/ΣHj …(13)
ここで、上記(11)〜(13)式は、評価値が所定閾値以上のものについて算出され、例えば所定閾値以上の評価値がH2〜H5である場合には、H2〜H5の光源についてgrj,gbjが算出され、算出されたgrj,gbj、H2〜H5を用いて各Σ内の計算が行われる。また、grj,gbjは、各検出枠における光源の色を所定色とするために必要なゲインであり、次式で示される。
【0106】
grj=Xc/Xaj’×Txj …(14)
gbj=Yc/Yaj’×Tyj …(15)
ここで、Xc=Rc/Gc、Yc=Bc/Gcである。また、Txj、Tyjは、基準WBゲイン値が掛けられていない元の画像データのR,G,Bの積算値について求めたXi、Yiの平均値をXaj(=Xaj’/Xc)、Yaj(=Yaj’/Yc)とした場合における、Xaj、Yajの目標値であり、所定色に対応する。すなわち、grj,gbjは、元の画像データのR,G,Bの積算値についてXaj、Yajを求めた場合に、このXaj、Yajで示される光源(環境光源又はストロボ光と環境光源との混合光源)の色を所定色とするために必要なゲインである。なお、Txj、Tyjは、例えば1である。
【0107】
従って、上記(11)、(12)式の第1項は、評価値Hjを重みとしたgrj,gbjの加重平均値をそれぞれ表している。また、第2項は、明るさを補正するための項であり、ストロボ光を発光しない撮影の場合におけるGjは次式で表される。
【0108】
Gj=gj×(露出補正ゲイン/128) …(16)
ここで、gjは、光源が晴れの場合に適したホワイトバランス制御を行うために必要なG(グリーン)のゲインである。露出補正ゲインは、以下の表のようになる。
【0109】
【表2】
【0110】
このように明るさを補正するのは、ストロボ光が発光しない場合は周囲の光源だけであるため、明るさが足りなくなる場合があるためである。
【0111】
また、ストロボ光を発光する撮影の場合には、GjはGstであり、固定値となるため、明るさは補正されない。
【0112】
なお、デーライト検出枠(又はストロボ検出枠)の評価値H7が所定閾値以上であるとして選択されている場合には、gr7=Xc、gb7=Ycとする。
【0113】
このようにして、環境光源又は混合光源の色を所定色にするための制御値GRRGB、GGが算出されると、これらの制御値が、基準WBゲイン値との間の値で、かつ環境光源又は混合光源に適した値となるように、環境光源に応じて調整される(ステップ222)。調整後の制御値は、ホワイトバランス補正値Rg、Gg、Bgとして表され、次式により得られる。
【0114】
Rg=(GR−Rd)×Hmax×Lj+Rd …(17)
Gg=(GG−Gd)×Hmax×Lj+Gd …(18)
Bg=(GB−Bd)×Hmax×Lj+Bd …(19)
ここで、Hmaxは、Hjの最大値であり、Hmaxに対応する光源を撮影時の光源として特定することができる。例えばHmaxがH2であれば、光源は、昼光色の蛍光灯であると判断することができる。また、Ljはローワードコレクション係数であり、各光源に対応して予め定められた値であり、各々の光源下での撮影においてホワイトバランスが適正となるように実験等によって決定された値である。ローワードコレクション係数は、予めメモリ39に記憶されている。なお、Ljは光源に拘わらず固定値としてもよい。
【0115】
また、0≦Lj≦1であり、Lj=0の場合は、Rg=Rc、Gg=Gc、Bg=Bcとなり、基準WBゲイン値でのホワイトバランス制御が行われる。また、Lj=1及びHmax=1の場合には、Rg=GR、Gg=GG、Bg=GGとなる。
このように、ホワイトバランス補正値Rg、Gg、Bgは、基準WBゲイン値から環境光源の色を所定色にするための制御値GR、GB、GGとの間の値で、かつHmaxで特定された環境光源に適したホワイトバランス制御を行うことができる値となる。
【0116】
このように算出されたホワイトバランス補正値Rg、Gg、Bgは、WB調整部74A、74Bへ出力され(ステップ224)、元の高感度及び低感度の画像データのR、G、Bの各信号がホワイトバランス調整される。補正後の信号をR’、G’、B’とすると、R’、G’、B’は、次式で表される。
【0117】
R’=Rg×R …(20)
G’=Gg×G …(21)
B’=Bg×B …(22)
一方、所定閾値以上の評価値Hjが1つもない場合には、ホワイトバランス補正値Rg、Gg、BgをそれぞれRc、Gc、Bcに設定して(ステップ226)、WB調整部74A、74Bへ出力する(ステップ224)。
【0118】
このように、本実施形態では、環境光源の色だけでなくEV値をも考慮して環境光源を定めるため、環境光源を正確に定めることができる。また、環境光源の色は、本撮影での撮像画像の画像データから求めているため、撮像シーケンスを複雑にすることなく環境光源を正確に定めることができる。
【0119】
そして、ホワイトバランス補正値Rg、Gg、Bgは、基準WBゲイン値から環境光源の色を所定色にするための制御値GR、GB、GGとの間の値で、かつHmaxで特定された環境光源に適したホワイトバランス制御を行うことができる値となるため、各々の環境光源に対して適正にホワイトバランス制御することができ、カラーフェリアの発生を抑えることができる。
【0120】
ステップ104では、OB処理部70Aにより、高感度の画像データに対して黒補正処理が行われる。
【0121】
ステップ106では、LMTX72Aにより、高感度の画像データに対して3×3マトリクスによる色補正処理が行われる。
【0122】
ステップ108では、WB調整部74により、ステップ102で算出されたホワイトバランス補正用のゲイン値Rg,Gg,Bgが高感度のR,G,Bデータに各々乗算されホワイトバランスの調整が行われる。なお、Gのデータは、予め定めた1より大きい所定値(例えば1.375)を乗算するようにしてもよい。これは、例えば光源が電球のような赤みの多い光源の場合には、GよりもRのゲインを下げたい場合があり、このような場合にはGのゲインを1より大きい所定値とすることにより、相対的にRのゲインを下げることができるからである。
【0123】
ステップ110では、高感度の画像データに対してガンマ補正処理が行われる。
【0124】
また、上記のステップ102〜110の処理と並行して、ステップ112において、低感度の画像信号処理が行われる。すなわち、CPU38が、低感度の画像信号の取り込みをTG22及びCCD駆動回路16を介してCCD14に指示する。これにより、CCD14から低感度の画像データがメモリ24に取り込まれる。
【0125】
そして、高感度の画像データと同様に、低感度の画像データに対して、OB処理部70B、LMTX72B、WB調整部74B、ガンマ補正部76Bによってそれぞれ黒補正処理、色補正処理、ホワイトバランス調整、ガンマ補正が行われる。
【0126】
このように、高感度の画像データに基づいてホワイトバランス調整用のゲイン値を算出する処理等と並行して低感度の画像データの処理を行うため、処理の高速化を図ることができる。
【0127】
また、ステップ108の高感度の画像データに対するホワイトバランス調整処理及びステップ110のガンマ補正処理と並行して、ステップ114において、ヒストグラム算出部78により画像データのヒストグラム算出処理が行われ、ステップ116において、算出したヒストグラムに基づいてダイナミックレンジを調整するためのゲインを算出するゲイン算出処理が行われる。
【0128】
ヒストグラム算出部78では、高感度の画像データのうち例えばGデータのヒストグラムを算出する。まず、12ビットのGデータを例えば6ビットシフトして6ビット換算のデータとしてヒストグラムを求める。このようなヒストグラムの一例を図16に示す。
【0129】
そして、予め定めたハイライト側、すなわちGデータの累積頻度100%からX%(例えば0.1%)下がった位置のデータをハイライト側の最大値とし(図16では‘52’)、これを6ビットシフト(26倍)した値をハイライトデータとする。このハイライトデータは、ホワイトバランス調整用のゲインを掛けたときにハイライト側のデータが飽和するか否かを表す情報として用いられる。
【0130】
ゲイン算出部80では、このハイライトデータと、撮影EV値とに基づいて、CCD14のダイナミックレンジを調整するための調整ゲインを算出する。そして、この調整ゲインに基づく高感度のR,G,Bデータに乗算するためのh_gain及び低感度のR,G,Bデータに乗算するためのl_gainを算出する。
【0131】
まず、ストロボ発光しない撮影の場合には、図17(A)に示すようなハイライトデータと評価値1との関係を表すメンバシップ関数により、ハイライトデータに対応する評価値1を求め、図17(B)に示すような撮影EV値と評価値2との対応関係を表すメンバシップ関数により、撮影EV値に対応する評価値2を求める。
【0132】
評価値1を算出するメンバシップ関数は、図17(A)に示すように、ホワイトバランス調整用のゲイン(例えば1.375)を掛けたときにハイライト側のデータが飽和する所定値(図17(A)では3000)までは、ハイライトデータが大きくなるに従って評価値1も徐々に大きくなり、ハイライトデータが所定値以上の場合には一定値‘1’となるような関数である。
【0133】
また、評価値2を算出するメンバシップ関数は、図17(B)に示すように、撮影EV値が晴天の場合のEV値(図17(B)では13.5)までは、撮影EV値が大きくなるに従って評価値2も徐々に大きくなり、撮影EV値が晴天の場合のEV値以上の場合には一定値‘1’となるような関数である。
【0134】
そして、評価値1に評価値2を乗算する。この評価値1に評価値2を乗算した値は、撮影シーンのハイコントラストの度合い、すなわち撮影シーンのハイコントラストらしさを表す評価値であり、値が大きいほどハイコントラストシーンらしく、値が小さいほどハイコントラストシーンらしくなく、ローコントラストシーンらしくなる。このように、ヒストグラムを用いてハイライト側の最大値を求め、これと被写体輝度とにより精度よくハイコントラストシーンの検出が可能となる。
【0135】
次に、ダイナミックレンジを調整するためのトータルゲインp(調整ゲイン)を図17(C)に示すようなトータルゲインpと評価値1×評価値2との関係を表すメンバシップ関数により求める。
【0136】
トータルゲインpを算出するメンバシップ関数は、図17(C)に示すように、評価値1×評価値2が大きくなるに従ってトータルゲインpが徐々に小さくなるような関数である。トータルゲインpは1未満の値であり、例えば図17(C)に示すように、0.8〜0.9の範囲の値となる。
【0137】
なお、ストロボ発光する撮影の場合には、被写体の輝度とハイコントラストシーンとの関係が薄いと考えられるため、撮影EV値に基づく評価値2は算出せず、図18(A)に示すメンバシップ関数により、ハイライトデータに基づく評価値1を求め、図18(C)に示すメンバシップ関数により評価値1に基づくトータルゲインpを求める。
【0138】
そして、このトータルゲインpを用いた高感度の画像データと低感度の画像データの合成式から高感度の画像データに乗算するh_gain及び低感度の画像データに乗算するl_gainを算出する。
【0139】
合成式は、合成データをdata、高感度のデータをhigh、低感度のデータをlowとして次式で表される。
【0140】
data = [high+Min(high/th,1)×low] × Max(1-S×high/th,p) …(23)
ここで、thは閾値であり、Sは、高感度の画像データと低感度の画像データとの飽和比をSh:Slとした場合に、S=1−{Sh/(Sh+Sl)}で表される値である。例えば、飽和比Sh:Slを4:1とした場合、S=0.2である。
【0141】
(23)式より、合成データdataは、高感度の画像データhighに重みMin(high/th,1)が乗算された低感度の画像データを加算し、これに重みMax(-0.2×high/th+1,p)が乗算されたものである。
【0142】
重みMin(high/th,1)は、図19に示すように、高感度の画像データhighがthよりも小さい区間では、highが大きくなるに従って傾き(high/th)で大きくなる値を出力し、highがth以上の場合には‘1’を出力する関数である。
【0143】
また、重みMax(1-S×high/th+1,p)は、図20に示すように、高感度の画像データhighがthよりも小さい区間では、highが大きくなるに従って傾き(1−S×high/th)で小さくなる値を出力し、highがth以上の場合にはSを出力する関数である。なお、図20では、S=0.2、p=0.8の場合について示した。
【0144】
図21には、高感度の画像データhigh、低感度の画像データlow、及び上記(23)式の第1項までの合成画像データdataにおける輝度−階調値(階調値は8ビット換算値)の特性を示した。図21に示すように、上記(23)式の第1項は、高感度の画像データhighに図19に示すような特性の重みMin(high/th,1)が乗算された低感度の画像データlowが加えられた値となる。
【0145】
従って、輝度がE1の範囲(高感度の画像データhighが閾値th以下の範囲)では、高感度の画像データhighに、high/thの重みが乗算された低感度の画像データlowが加えられた値となり、輝度がE2の範囲では、高感度の画像データhighと低感度の画像データlowが1対1で加算された値となる。
【0146】
また、図22には、高感度の画像データhigh、低感度の画像データlow、及び上記(23)式の合成画像データdataにおける輝度−階調値の特性を示した。合成画像データdataは、高感度の画像データhighに図19に示すような特性の重みMin(high/th,1)が乗算された低感度の画像データlowが加えられた値に、さらに図20に示すような特性の重みMax(1-S×high/th+1,p)が乗算された値である。
【0147】
従って、輝度がE1の範囲では、合成データdataは、上記(23)式の第1項の値に(1-S×high/th)の重みが乗算された値となり、輝度がE2の範囲では、上記(23)式の第1項の値にトータルゲインpが乗算された値となる。
【0148】
ここで、トータルゲインpは、0.8〜0.9の範囲に設定されるため、図22に示すように、合成データdataの特性を表すラインは、高感度の画像データhighの特性を表すラインよりも全体的に下側に下がると共に、上昇の仕方が緩やかとなる。すなわち、合成データdataのダイナミックレンジは、高感度の画像データhighと比較して広くなる。
【0149】
ダイナミックレンジは、トータルゲインpが小さくなるに従って、すなわちハイコントラストシーンらしさが高いほど広くなり、トータルゲインpが大きくするに従って、すなわちハイコントラストシーンらしさが低いほど狭くなる。
【0150】
これにより、ハイコントラストの度合いが高いときにダイナミックレンジが広くなるため、ハイコントラストシーンを撮影した場合において高感度と低感度の画像データを合成した場合でもハイライト部を適正に再現することができ、ロバスト性のある階調制御が可能となる。
【0151】
ところで、上記(23)式は、以下のように変形することができる。
【0152】
ここで、wl=Min(high/th,1)、wt= Max(1-S×high/th+1,p)である。
【0153】
上記(24)式より、h_gain=wt、l_gain=wl・wtとなる。
従って、h_gain、l_gainは、wl、wt、すなわちMin(high/th,1)、Max(1-S×high/th+1,p)を求めることにより定める。そして、合成データは、h_gainで重み付けした高感度の画像データとl_gainで重み付けした低感度の画像データとを加算することにより得られる。
【0154】
ステップ112では、乗算器82Aにより、ガンマ補正された高感度のR,G,Bデータにステップ116で算出したh_gainを乗算して加算器84に出力すると共に、乗算器82Bにより、ガンマ補正された低感度のR,G,Bデータにステップ116で算出したl_gainを乗算して加算器84に出力する。
【0155】
ステップ120では、加算器84により、h_gainが乗算された高感度のR,G,Bデータにl_gainが乗算された低感度のR,G,Bデータが加算され、各色の合成データdataが生成される。
【0156】
ステップ122では、リミッタ86により、各色の合成データdataが予め定めたビット数(例えば8ビット)で表現できる範囲に収まるように調整される。
【0157】
ステップ124では、同時化回路32により、メモリ24から読み出された点順次のR、G、B信号が同時式に変換され、YC信号作成回路34へ出力される。
【0158】
ステップ126では、YC信号作成回路34により、合成されたR、G、B信号から輝度信号Yとクロマ信号Cr、Cbとが作成される。これらの輝度信号Yとクロマ信号Cr、Cb(YC信号)は、メモリ36に格納される。
【0159】
ステップ128では、圧縮/伸長回路54により、YC信号が所定のフォーマットに圧縮される。
【0160】
ステップ130では、記録部56により、圧縮された画像データがメモリカードなどの記録媒体に記録される。
【0161】
このように、本実施の形態では、画像データのヒストグラムを用いてハイライト側の最大値を求め、これと被写体輝度とにより精度よくハイコントラストらしさを表す評価値を求め、この評価値からダイナミックレンジを調整するトータルゲインpを求めて高感度と低感度の画像データの特性を変化させている。
【0162】
これにより、撮影シーンに応じて適正にダイナミックレンジをコントロールすることができる。例えばハイコントラストらしさの評価値が高いときにのみダイナミックレンジが広くなるため、ハイコントラストシーンを撮影した場合には、どのような撮影シーンにおいても同じように高感度と低感度の画像データを合成する場合と比較して、ハイライト部を適正に再現することができ、ロバスト性のある階調制御が可能となる。
【0163】
また、本実施の形態では、高感度の画像データに基づいてホワイトバランス調整用のゲイン値を算出する処理等と並行して低感度の画像データの処理を行うため、処理の高速化を図ることができる。
【0164】
なお、本実施の形態では、高感度の受光素子PD1と低感度の受光素子PD2の各々を設け、高感度信号及び低感度信号を得る例について説明したが、図23に示されるように、1つの受光素子PDの受光領域をチャネルストッパ94により高感度の受光を行う受光面積が広い高感度受光領域92と低感度の受光を行う受光面積が狭い低感度受光領域90とに分割し、それぞれの領域により高感度信号及び低感度信号が得られるような構成としてもよい。なお、受光素子PDにはチャネルストッパ94が設けられているため、高感度で受光された信号と低感度で受光された信号とが混合されずに、双方の信号を別々に受光することができる。
【0165】
【発明の効果】
以上説明したように本発明によれば、異なる感度で撮影した画像を合成する場合において、ハイコントラストシーンを撮影した場合でもハイライト部を適正に再現することができる、という効果を有する。
【図面の簡単な説明】
【図1】 本発明に係るデジタルカメラの背面図である。
【図2】 デジタルカメラの上面に設けられたモードダイヤルの平面図である。
【図3】 デジタルカメラの内部構成を示すブロック図である。
【図4】 CCDの概略構成図である。
【図5】 デジタル信号処理回路のブロック図である。
【図6】 EV値の求め方について説明するための図である。
【図7】 測光方式について説明するための図である。
【図8】 デジタルカメラの処理の流れを示すフローチャートである。
【図9】 ホワイトバランス調整用のゲイン算出処理の流れを示すフローチャートである。
【図10】 光源の色分布の範囲としての検出枠を示すグラフである。
【図11】 日陰らしさを表すメンバシップ関数を示すグラフである。
【図12】 青空のメンバシップ関数を示すグラフである。
【図13】 デーライトの屋外らしさを表すメンバシップ関数を示すグラフである。
【図14】 屋外らしさを表すメンバシップ関数を示すグラフである。
【図15】 屋内らしさを表すメンバシップ関数を示すグラフである。
【図16】 画像データのヒストグラムである。
【図17】 (A)はハイライトデータと評価値1との関係を示す線図、(B)は被写体輝度と評価値2との関係を示す線図、(C)は評価値1×評価値2とトータルゲインpとの関係を示す線図である。
【図18】 (A)はハイライトデータと評価値1との関係を示す線図、(B)は被写体輝度と評価値2との関係を示す線図である。
【図19】 高感度の画像データと重みとの関係を示す線図である。
【図20】 高感度の画像データと重みとの関係を示す線図である。
【図21】 高感度画像、低感度画像、及び合成画像の輝度−階調特性を示す線図である。
【図22】 高感度画像、低感度画像、及び合成画像の輝度−階調特性を示す線図である。
【図23】 CCDの他の形態の概略構成図である。
【符号の説明】
10 撮影レンズ
11 デジタルカメラ
12 CCD
18 CDS回路
20 A/D変換器
26 デジタル信号処理回路
30 合成処理部
32 同時化回路
34 YC信号作成回路
40 カメラ操作部
52 液晶モニタ
54 伸長回路
56 記録部
Claims (3)
- 被写体を第1の感度及び前記第1の感度よりも低い第2の感度で撮像する撮像素子と、
前記第1の感度で撮像した第1の撮像画像及び前記第2の感度で撮像した第2の撮像画像の少なくとも一方に基づいて、前記被写体の輝度レベルを検出する輝度レベル検出手段と、
前記第1の撮像画像のヒストグラムを算出するヒストグラム算出手段と、
前記ヒストグラムの予め定めたハイライト側のハイライトデータと前記輝度レベルとに基づいてハイコントラストらしさを表す評価値を求め、該求めた評価値に基づいて前記撮像素子のダイナミックレンジを調整するための調整ゲインを算出するゲイン算出手段と、
前記調整ゲインに基づいて前記第1の撮像画像と前記第2の撮像画像とを合成する合成手段と、
を備えたデジタルカメラ。 - 前記ゲイン算出手段は、前記ハイコントラストらしさを表す評価値が高くなるに従って前記合成手段による合成画像のダイナミックレンジが広くなるように作用するメンバシップ関数により前記調整ゲインを算出することを特徴とする請求項1記載のデジタルカメラ。
- 前記ヒストグラム算出手段及び前記ゲイン算出手段による処理と前記第2の撮像画像に関する処理とを並列して行うことを特徴とする請求項1又は請求項2記載のデジタルカメラ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002349870A JP4043928B2 (ja) | 2002-12-02 | 2002-12-02 | デジタルカメラ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002349870A JP4043928B2 (ja) | 2002-12-02 | 2002-12-02 | デジタルカメラ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004186876A JP2004186876A (ja) | 2004-07-02 |
JP4043928B2 true JP4043928B2 (ja) | 2008-02-06 |
Family
ID=32752281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002349870A Expired - Fee Related JP4043928B2 (ja) | 2002-12-02 | 2002-12-02 | デジタルカメラ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4043928B2 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4814749B2 (ja) * | 2006-09-29 | 2011-11-16 | 富士フイルム株式会社 | 固体撮像装置 |
JP4306750B2 (ja) | 2007-03-14 | 2009-08-05 | ソニー株式会社 | 撮像装置、撮像方法、露光制御方法、プログラム |
JP5120021B2 (ja) * | 2008-03-31 | 2013-01-16 | 富士通セミコンダクター株式会社 | 画像処理装置 |
US9077905B2 (en) | 2009-02-06 | 2015-07-07 | Canon Kabushiki Kaisha | Image capturing apparatus and control method thereof |
US8355059B2 (en) | 2009-02-06 | 2013-01-15 | Canon Kabushiki Kaisha | Image capturing apparatus and control method thereof |
US8947555B2 (en) * | 2011-04-18 | 2015-02-03 | Qualcomm Incorporated | White balance optimization with high dynamic range images |
JP6786273B2 (ja) * | 2016-06-24 | 2020-11-18 | キヤノン株式会社 | 画像処理装置、画像処理方法、及びプログラム |
-
2002
- 2002-12-02 JP JP2002349870A patent/JP4043928B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004186876A (ja) | 2004-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4679685B2 (ja) | デジタルカメラの構図補助フレーム選択方法及びデジタルカメラ | |
JP3849834B2 (ja) | オートホワイトバランス制御方法 | |
JP4004943B2 (ja) | 画像合成方法および撮像装置 | |
JP6521776B2 (ja) | 画像処理装置、画像処理方法 | |
JP4717720B2 (ja) | 画像処理装置および方法並びにプログラム | |
JP4043928B2 (ja) | デジタルカメラ | |
JP3821729B2 (ja) | デジタルカメラ | |
JP2004297650A (ja) | ホワイトバランスの制御方法及びデジタルカメラ | |
JP3967510B2 (ja) | ディジタルカメラ | |
JP3831934B2 (ja) | カメラの自動露出装置 | |
JP4150599B2 (ja) | 露出補正機能付きデジタルカメラ | |
JP2004349930A (ja) | デジタルカメラ | |
JP3958700B2 (ja) | デジタルカメラ | |
JP3903095B2 (ja) | ホワイトバランス制御方法及びデジタルカメラ | |
JP4385240B2 (ja) | デジタルカメラのオートホワイトバランス制御方法及びデジタルカメラ | |
JP3903093B2 (ja) | ホワイトバランス制御方法及びデジタルカメラ | |
JP4277258B2 (ja) | ホワイトバランス制御方法及び撮像装置 | |
JP4054263B2 (ja) | 撮像装置及び撮像装置の撮影条件設定方法 | |
JP4422353B2 (ja) | 電子カメラ | |
JP4396225B2 (ja) | ホワイトバランス制御装置及び電子機器 | |
JP3903094B2 (ja) | ホワイトバランス制御方法及びデジタルカメラ | |
JP2004229154A (ja) | ホワイトバランス制御方法及び撮像装置 | |
JP2004349931A (ja) | デジタルカメラ | |
JP2002218478A (ja) | デジタルカメラのオートホワイトバランス制御方法及びデジタルカメラ | |
JP3701172B2 (ja) | カメラの露出制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050224 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20061218 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071113 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071114 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101122 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111122 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121122 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121122 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131122 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |