JP3938442B2 - Non-aqueous secondary battery - Google Patents
Non-aqueous secondary battery Download PDFInfo
- Publication number
- JP3938442B2 JP3938442B2 JP29766998A JP29766998A JP3938442B2 JP 3938442 B2 JP3938442 B2 JP 3938442B2 JP 29766998 A JP29766998 A JP 29766998A JP 29766998 A JP29766998 A JP 29766998A JP 3938442 B2 JP3938442 B2 JP 3938442B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- peak
- positive electrode
- secondary battery
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、非水二次電池に関し、さらに詳しくは、高容量で、かつサイクル特性が優れた非水二次電池に関する。
【0002】
【従来の技術】
リチウムイオン二次電池に代表される非水二次電池は、容量が大きく、かつ高電圧、高エネルギー密度、高出力であることから、ますます需要が増える傾向にある。
【0003】
しかしながら、この非水二次電池について、本発明者らは、さらなる高機能化を目指して検討を進めていくうちに、電池の容量が増加するにつれ、負極の負極合剤層の密度を高くする必要があり、負極合剤層の密度が1.45g/cm3 以上になると、所望のサイクル特性が得られにくくなることが判明した。
【0004】
【発明が解決しようとする課題】
本発明は、上記のような従来の非水二次電池の問題点を解決し、負極合剤層の密度が1.45g/cm3 以上の高容量の非水二次電池において、サイクル特性を向上させることを目的とする。
【0005】
【課題を解決するための手段】
本発明は、正極、負極および電解質を有し、正極に4V級の活物質を用い、負極に炭素材料を用い、その負極の負極合剤層の密度が1.45g/cm3 以上である非水二次電池において、負極の表面上にXPS分析で55.0eVにピークを有する物質(リチウムイオウ化合物、以下同じ)を存在させることを特徴とする。
【0006】
【発明の実施の形態】
また、本発明においては、電極積層体の単位体積当たりの放電容量が130mAh/cm3以上で、上記炭素材料の(002)面の面間距離d002が3.5Å以下で、かつc軸方向の結晶子の大きさLcが30Å以上である場合を好ましい形態としている。さらにまた、本発明においては、負極の表面上にXPS分析で55.0eVにピークを有する物質が存在すると共に55.8eVにピークを有する物質(LiFを含む化合物、以下同じ)が存在し、かつXPS分析でLiスペクトルのピーク分割を行い各ピークを原子%で表した場合に、55.0eVにピークを有する物質が2〜9原子%で、55.8eVにピークを有する物質が2〜10原子%であることを好ましい形態としている。
【0007】
本発明において、XPS分析(XPS分析とはX線光電子分光分析のことでESCA分析とも言われる)は、VG社製ESCA LAB MARK2でMgKα線を用い12KV−10mA、25℃の条件下で行い、スペクトルの分離を行って、各成分の原子%(at%)を算出するが、これと同等の測定条件でも良い。
【0008】
そして、上記XPS分析にあたっては、電池をあらかじめ2.75Vまで1C(1時間でその電池を放電できる電流値)で放電し、露点−75℃のアルゴンドライボックス中で分解し、負極を一定の大きさに切り出し、メチルエチルカーボネート(MEC)で洗浄して真空乾燥を1日行ったものを測定試料として用いる。
【0009】
本発明で言う、XPS分析で検出される55.0eVのピークはリチウムイオウ化合物に基づくピークであり、さらに55.8eVにLiFに基づくピークを有することが好ましい。また、この比率はXPS分析でLiスペクトルのピーク分割を行い各ピークを原子%で表した場合に、55.0eVにピークを有する物質が2原子%以上であることが好ましく、より好ましくは4原子%以上であり、また、9原子%以下であることが好ましく、より好ましくは7原子%以下であって、55.8eVにピークを有する物質が2原子%以上であることが好ましく、より好ましくは4原子%以上であり、また、10原子%以下であることが好ましく、より好ましくは8原子%以下である。
【0010】
また、168.6eVにピークを有する物質(SO2結合を有する物質、以下同じ)が存在する場合にはSO2結合を有する被膜が形成されていて、そのSO2結合を有する被膜は、安定な被膜であるがイオン伝導性を保持していて、負極表面における電解液の分解を抑制する作用があるので、特に好ましい。
【0011】
負極の表面状態については、竹原や金村らが、負極の表面にはLi2 OやLiOH、Li2 CO3 などの被膜が形成され、さらにLiPF6 を電解質塩とする電解液を用いた場合には負極の表面にLiFの被膜が形成されることを報告している〔JOURNAL OF POWER SOURCES 68,P82−86(1997)〕。また、AURBACHらもLi負極やLiの挿入された炭素負極の表面状態について検討していて、アルキルカーボネートを用いた電解液と負極とが反応して負極の表面上にLi2 CO3 や有機炭酸塩、LiOR(Rはアルキル基)の被膜が形成されていることをIR(赤外分光分析)で確認しており、Li2 O、LiFなどの被膜が形成されている可能性も示唆している〔JOURNAL OF POWER SOURCES 68,P91−98(1997)〕。
【0012】
負極の表面被膜はサイクル特性の良否などに係わることから重要であり、その被膜が求められる性質としては、薄くてイオン伝導性が高くかつ電解液の内部への進入を抑制できることなどである。しかし、リチウムイオン二次電池の電解液溶媒としてエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)などのエステルが主に用いられ、電解質塩としてLiPF6 が主に用いられている現状では、負極の表面に上記のLi2 CO3 や有機炭酸塩、LiOR(Rはアルキル基)、Li2 O、LiFなどで被膜を形成するしかなく、それによって、ある程度のイオン伝導性や電解液の電極内部への進入抑制効果が期待できるものの、電池をサイクル(充放電)するにつれて被膜が厚くなったり、イオン移動がスムーズに行われなくなり、電池の容量が低下しやすい。この現象は負極に炭素材料を用いている場合、その炭素材料1g当たりの充放電容量が290mAh以上になると顕著に現れるようになる。
【0013】
そこで、本発明者らは、負極の表面被膜を改良するためにリチウムイオウ(硫黄)化合物を所定量混入させた被膜とし、サイクル時の容量劣化を低減したのである。
【0014】
負極の表面被膜にリチウムイオウ化合物を混入させることによって、サイクル時の容量劣化が軽減できるメカニズムについては、いまだ充分に解明されていないが、おおむね次のように考えられる。従来の被膜成分として主に用いられてきた、LiFやLi2 CO3 は絶縁体であり、被膜が厚くなるに従ってイオン伝導が起こりにくくなる。また、たとえ有機炭酸塩が形成されたとしても被膜中に取り込まれたリチウムをイオンの状態に解離させる能力が低い。本発明者らは、有機カルボン酸塩(CF3 CO2 Li)と有機スルホン酸塩(CF3 SO3 Li)を用いて電解液を調製し、それらのイオン伝導性を比較して、イオウ化合物のスルホン酸塩の方がカルボン酸塩より約5倍高いイオン伝導性を示すことを既に報告してきた〔JOURNAL OF POWER SOURCES 68,P91−98(1997)〕。
【0015】
以上のことから、負極の表面被膜にリチウムイオウ化合物を混入させることにより、被膜内部のイオン伝導性が増し、イオン輸送がスムーズに行われるようになり、それによってサイクルに伴う容量低下が少なくなるものと考えられる。
【0016】
また、LiFに基づく55.8eVのピークを含むことを好ましい形態としているのは、LiFが電解液と反応しにくい強固な被膜を形成しやすく、リチウムイオウ化合物とLiFとが共存して形成される被膜はイオン伝導性と負極の電解液との反応抑制の効果がバランス良く発現するからである。
【0017】
負極の表面にリチウムイオウ化合物を含む被膜の作り方としては、被膜中に前記のようなCF3 SO3 Liを混入させることも考えられるが、CF3 SO3 Liは電解液中に溶解してしまうので、ハロゲン元素が1個以下の電解液に溶解しにくい有機スルホン酸塩を形成できる化合物を電解質(本発明において、この「電解質」という用語の中には、一般に電解液と呼ばれている液状電解質はもとより、ゲル状電解質なども含まれる)中に添加して被膜を形成させることが好ましい。
【0018】
本発明において、上記のような負極の表面被膜形成のために用いる化合物としては、−OS(=O)2 −結合を有するスルトン化合物またはその誘導体が好ましく、その具体例としては、例えば、1,3−プロパンスルトン、1,4−ブタンスルトン、2,3−ジメチルブテンスルトン、2−エトキシペンタフルオロプロパン−1,2−スルトン、ジメチルサルフェート、ジエチルサルフェート、エチルメタンスルフォネートなどが挙げられる。
【0019】
スルトン化合物以外の−S(=O)2 −結合を有するスルホランなども用いることができるが、多少初期容量が低下する傾向にあるので多くは添加できず、−OS(=O)2 −結合を有するスルトン化合物またはその誘導体の方が適している。
【0020】
−OS(=O)2 −結合を有するスルトン化合物またはその誘導体の場合、添加量は電解質の溶媒成分中0.5体積%以上が好ましく、より好ましくは1体積%以上、さらに好ましくは1.5体積%以上である。これは添加量が少なすぎる場合にはその効果が発現しにくくなる傾向があるからである。また、添加量が多くなりすぎると電池の容量が小さくなる傾向があることから、−OS(=O)2 −結合を有するスルトン化合物またはその誘導体の添加量は電解質の溶媒成分中5体積%以下が好ましく、より好ましくは3体積%以下、さらに好ましくは2.5体積%以下である。
【0021】
スルトン化合物以外の−S(=O)2 −結合を有する化合物の場合、その添加量は電解質の溶媒成分中0.2体積%以上が好ましく、より好ましくは0.5体積%以上、さらに好ましくは0.8体積%以上である。これは添加量が少なくなりすぎると効果が発現しにくくなる傾向があるからである。また、添加量が多くなりすぎると電池の容量が小さくなる傾向があることから、上記スルトン化合物以外の−S(=O)2 −結合を有する化合物の添加量は電解質の溶媒成分中2体積%以下が好ましく、より好ましくは1.5体積%以下、さらに好ましくは1体積%以下である。なお、上記の添加量はあくまでも初期の量であって、被膜の形成量に応じて電解質中に存在する量は減少する。
【0022】
本発明において、電解質としては、液状電解質、ゲル状電解質、固体電解質のいずれであってもよいが、本発明においては、特に液状電解質を用いることが多いことから、以下、この液状電解質に関して当業者間で慣用されている「電解液」という表現を用い、それを中心に詳細に説明する。
【0023】
本発明において、電解液の溶媒としてはエステルが好適に用いられる。特に鎖状エステルは、電解液の粘度を下げ、イオン伝導度を高めることから好適に用いられる。このような鎖状エステルとしては、例えば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、プロピオン酸メチルなどの鎖状のCOO−結合を有する有機溶媒、リン酸トリメチルなどの鎖状リン酸トリエステルなどが挙げられ、それらの中でも特に鎖状のカーボネート類が好ましい。
【0024】
また、上記鎖状エステルなどに下記の誘電率が高いエステル(誘電率30以上)を混合して用いると負荷特性などが向上するので好ましい。このような誘電率が高いエステルとしては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ガンマーブチロラクトン(γ−BL)、エチレングリコールサルファイト(EGS)などが挙げられる。特に環状構造のものが好ましく、とりわけ環状のカーボネートが好ましく、エチレンカーボネート(EC)が最も好ましい。
【0025】
上記高誘電率エステルは電解液の全溶媒中の50体積%未満が好ましく、より好ましくは40体積%以下、さらに好ましくは35体積%以下である。そして、これらの誘電率の高いエステルによる特性の向上は、上記エステルが電解液の全溶媒中で10体積%以上になると顕著になり、20体積%に達するとより顕著になる。また、これと混合する鎖状エステルは、電解液の全溶媒中の50体積%以上が好ましく、より好ましくは60体積%以上、さらに好ましくは65体積%以上である。
【0026】
上記エステル以外に併用可能な溶媒としては、例えば、1,2−ジメトキシエタン(DME)、1,3−ジオキソラン(DO)、テトラヒドロフラン(THF)、2−メチル−テトラヒドロフラン(2Me−THF)、ジエチルエーテル(DEE)などが挙げられる。そのほか、アミン系またはイミド系有機溶媒や、含イオウ系または含フッ素系有機溶媒なども用いることができる。また、ポリエチレンオキサイドやポリメタクリル酸メチルなどのポリマーを含んでゲル状になっていてもよい。
【0027】
電解液の溶質としては、例えば、LiClO4 、LiPF6 、LiBF4 、LiAsF6 、LiSbF6 、LiCF3 SO3 、LiC4 F9 SO3 、LiCF3 CO2 、Li2 C2 F4 (SO3 )2 、LiN(CF3 SO2 )2 、LiC(CF3 SO2 )3 、LiCn F2n+1SO3 (n≧2)、LiN(RfOSO2 )2 〔ここでRfはフルオロアルキル基〕などが単独でまたは2種以上混合して用いられるが、特にFを含有するリチウム塩が好ましく、なかでもLiPF6 が好ましい。電解液中における溶質の濃度は、特に限定されるものではないが、濃度を1mol/l以上の多めにすると安全性がよくなるので好ましい。1.2mol/l以上がより好ましい。また、1.7mol/lより少ないと電気特性が良くなるので好ましく、1.5mol/lより少ないとさらに好ましい。
【0028】
本発明においては、−OS(=O)2 −結合を有するスルトン化合物またはその誘導体などの電解質中の含有量を、電解質の溶媒成分中において上記−OS(=O)2 −結合を有するスルトン化合物またはその誘導体などが占める体積%で規定するが、上記溶媒成分はその構成成分のすべてが常温で液体であることは要求されない。例えば、上記−OS(=O)2 −結合を有するスルトン化合物またはその誘導体などの中には1,3−プロパンスルトンなどのように常温で固体のものもあるが、それを溶媒に溶かすと溶液になるので、本発明では、それを溶媒成分ということにする。言い換えると、電解質をリチウム塩でイオン伝導に直接関与する溶質とそれ以外のものとに分けた場合に溶質以外のものを溶媒成分という。
【0029】
上記−OS(=O)2 −結合を有するスルトン化合物またはその誘導体などを含有する電解液の調製は、例えば、溶媒と上記−OS(=O)2 −結合を有するスルトン化合物またはその誘導体を混合し、そこに溶質を溶解させればよい。ただし、調製方法は上記例示の方法に限られることなく、他の方法によってもよい。
【0030】
本発明において、正極に4V級の活物質を用いるのは、高電圧でエネルギー密度の高い高出力の電池を実現でき、近年需要の増大している携帯型電子機器の電源として適しているという理由によるものであり、このような4V級の活物質としては、例えば、コバルト酸リチウム(LiCoO2 )、ニッケル酸リチウム(LiNiO2 )、コバルト酸リチウムとニッケル酸リチウムとの固溶体、スピネル型マンガン酸リチウム(LiMn2 O4 )などや、それらに他の金属(Li、Co、Ni、Feなど)を適宜固溶させたものなどが挙げられる。
【0031】
正極は、例えば、上記正極活物質に、必要に応じて、例えば鱗片状黒鉛などの導電助剤やポリフッ化ビニリデン、ポリテトラフルオロエチレンなどのバインダを加え、混合して正極合剤を調製し、それを溶剤で分散させてペーストにし(バインダはあらかじめ溶剤に溶解させてから正極活物質などと混合してもよい)、その正極合剤ペーストを金属箔などからなる正極集電材に塗布し、乾燥して、正極集電材の少なくとも一部に正極合剤層を形成することによって作製される。ただし、正極の作製方法は、上記例示の方法に限られることなく、他の方法によってもよい。
【0032】
正極に用いる正極集電材は、アルミニウムを主成分とする金属箔が好ましく、そのアルミニウムの純度は98重量%以上99.9重量%未満が好ましい。通常のリチウムイオン二次電池では純度が99.9重量%以上のアルミニウム箔が正極集電材として用いられているが、本発明においては高容量化やサイクル特性の向上を図るため厚さが15μm以下の薄い金属箔を用いることが好ましい。そのため、薄くても使用に耐え得る強度にしておくことが好ましく、そのような強度を確保するためには純度が99.9重量%未満であることが好ましい。アルミニウムに添加する金属として特に好ましいのは、鉄とシリコンである。鉄は0.5重量%以上が好ましく、さらに好ましくは0.7重量%以上であり、また、2重量%以下が好ましく、より好ましくは1.3重量%以下である。シリコンは0.1重量%以上が好ましく、より好ましく0.2重量%以上であり、また、1.0重量%以下が好ましく、より好ましくは0.3重量%以下である。これらの鉄やシリコンはアルミニウムと合金化していることが必要であり、アルミニウム中に不純物として存在するものではない。
【0033】
そして、正極集電材の引張り強度としては150N/mm2 以上が好ましく、より好ましくは180N/mm2 以上である。また、本発明において用いる正極集電材は、伸びが2%以上であることが好ましく、より好ましくは3%以上である。これは電極積層体の単位体積当たりの放電容量が大きくなるにつれて電極合剤層の充電時の膨張が大きくなるため、その膨張によって正極集電材に応力が発生し、それによって、正極集電材に亀裂や切断などが発生しやすくなるが、正極集電材の伸びを大きくしておくと、その伸びによって応力を緩和し、正極集電材の亀裂や切断などを防止できるようになるからである。
【0034】
本発明においては、上記のように、正極集電材として厚みが15μm以下のアルミニウムを主成分とする金属箔を用いることが好ましいとしているが、これは厚みが薄いほど電池の高容量化に好都合であるという理由によるものである。しかし、あまりにも薄くなりすぎると、正極の作製時や巻回構造の電極体の作製時などに正極集電材の強度不足による切断などが生じるおそれがあるため、正極集電材の厚みとしては、上記のように15μm以下であって、5μm以上、特に8μm以上が実用上適している。
【0035】
また、正極集電材の表面は片面が粗面化していることが好ましい。そして、その粗な面が巻回体において外周側の面にあることが好ましい。これは、巻回体の場合、外周側の面が巻回中心部に近くなるほど対向する負極が多く存在しているので正極が劣化しやすいため、外周側に粗な面を用いて接着性を高めることにより正極の劣化を低減できるからである。粗な面の好ましい平均粗度はRaで0.1〜0.5μmであり、より好ましくは0.2〜0.3μmである。そして、光沢面の好ましい平均粗度はRaで0.2μm以下で、より好ましくは0.1μm以下である。
【0036】
また、正極集電材の濡れ性が悪い場合、電池をサイクル(充放電)させた場合にサイクル特性の低下が生じやすい傾向にある。そのような場合には正極集電材の濡れ性を37dyne/cm以上にすることが好ましい。
【0037】
負極に用いる材料は、リチウムイオンをドープ、脱ドープできるものであればよく、本発明においては、それを負極活物質と呼んでいるが、そのような負極活物質として、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などの炭素材料を用いる。特に2500℃以上で焼成したメソカーボンマイクロビーズは、負極合剤層を高密度に作製してもサイクル特性が良好であることから好ましい。
【0038】
負極活物質として負極に用いる炭素材料は下記の特性を持つものが好ましい。すなわち、その(002)面の面間距離d002 に関しては、3.5Å以下が好ましく、より好ましくは3.45Å以下、さらに好ましくは3.4Å以下である。またc軸方向の結晶子の大きさLcは30Å以上が好ましく、より好ましくは80Å以上、さらに好ましくは250Å以上である。そして、上記炭素材料の平均粒径は8〜20μm、特に10〜15μmが好ましく、純度は99.9重量%以上が好ましい。
【0039】
負極は、例えば、上記負極活物質として炭素材料に、必要に応じ、正極の場合と同様の導電助剤やバインダなどを加え、混合して負極合剤を調製し、それを溶剤に分散させてペーストにし(バインダはあらかじめ溶剤に溶解させておいてから負極活物質などと混合してもよい)、その負極合剤ペーストを銅箔などからなる負極集電材に塗布し、乾燥して、負極集電材の少なくとも一部に負極合剤層を形成することによって作製される。ただし、負極の作製方法は上記例示の方法に限られることなく、他の方法によってもよい。
【0040】
上記負極集電材としては、例えば、銅箔、アルミニウム箔、ニッケル箔、ステンレス鋼箔などの金属箔や、それらの金属を網状にしたものなどが用いられるが、特に銅箔が適している。
【0041】
負極に炭素材料を用いるに際して、高容量化を図るために、その負極の負極合剤層の密度を1.45g/cm3 以上にするが、特に負極合剤層の密度を1.5g/cm3 以上にすることが好ましい。通常、負極を高密度にすると、高容量は得られやすくなるが、電解液の浸透が遅くなり、また活物質の利用度も不均一になりやすいため、サイクル特性が低下しやすくなる。そのような場合には、本発明において用いる−OS(=O)2 −結合を有するスルトン化合物またはその誘導体などの効果がより顕著に発現するようになる。
【0042】
セパレータとしては、特に限定されることなく従来と同様のものが使用できるが、特に厚みが10〜20μm程度の微孔性ポリエチレンフィルム、微孔性ポリプロピレンフィルム、微孔性エチレン−プロピレンコポリマーフィルムなどのポリオレフィン系セパレータは、薄くても充分な強度を有しているので、正極活物質や負極活物質などの充填量を高めることができるとともに熱伝導性が改善され、電池内部の発熱に対しても放熱を促進するので、本発明において好適に使用される。特に電極積層体と電池ケースとの間にセパレータが介在する場合は電極内部の熱を放熱する効果が大きい。
【0043】
本発明は、電極積層体の単位体積当たりの放電容量が130mAh/cm3 以上の非水二次電池を対象とすることを好ましいとしているが、これは高容量化を図るという理由に基づいている。本発明において、電極積層体の体積とは、正極、負極およびセパレータを積層したものまたは正極、負極およびセパレータを巻回したものの電池内における嵩体積であって、後者のように巻回したものにあっては、巻回に際して使用した巻き軸に基づく巻回体中心部の透孔などは体積として含まない。要は正極、負極、セパレータが占める嵩体積を合計したものである。これら正極、負極、セパレータの3つの体積は電池の容量を決定する重要な因子であり、電池の大きさにかかわらず、電極積層体の単位体積当たりの放電容量(放電容量/電極積層体の体積)を計算することによって、電池の容量密度を比較することができる。また、ここでいう放電容量とは、その電池の標準使用条件で充放電させた場合の放電容量である。なお、本発明において、標準使用条件とは、1C(その電池を1時間で放電できる電流)で25℃で4.2Vまで充電し、4.2Vに達した後は、定電圧充電を行い、充電を2時間半で終了し、0.2Cで2.75Vまで放電することを言い、その標準使用条件で充放電させて放電容量を測定し、電極積層体の単位体積当たりの放電容量を求める。そして、より高容量化を図るという観点からは、電極積層体の単位体積当たりの放電容量は140mAh/cm3 以上がより好ましく、150mAh/cm3 以上がさらに好ましい。
【0044】
【実施例】
つぎに、実施例をあげて本発明をより具体的に説明する。ただし、本発明はそれらの実施例のみに限定されるものではない。
【0045】
実施例1
メチルエチルカーボネートとエチレンカーボネートと1,3−プロパンスルトンとを体積比65:33:2で混合し、この混合溶媒にLiPF6 を1.4mol/l溶解させて、組成が1.4mol/lLiPF6 /EC:MEC:PS(33:65:2体積比)で示される電解液を調製した。
【0046】
上記電解液における、ECはエチレンカーボネートの略称であり、MECはメチルエチルカーボネートの略称であり、PSは1,3−プロパンスルトンの略称である。従って、上記電解液を示す1.4mol/l LiPF6 /EC:MEC:PS(33:65:2体積比)は、メチルエチルカーボネート65体積%とエチレンカーボネート33体積%と1,3−プロパンスルトン2体積%との混合溶媒にLiPF6 を1.4mol/l相当を溶解させたものであることを示している。
【0047】
上記とは別に、LiCoO2 に導電助剤として鱗片状黒鉛を重量比100:6で加えて混合し、この混合物と、ポリフッ化ビニリデンをN−メチルピロリドンに溶解させた溶液とを混合してペースト状にした。この正極合剤ペーストを70メッシュの網を通過させて大きなものを取り除いた後、厚さ15μmのアルミニウムを主成分とする金属箔からなる正極集電材の両面に塗布量が24.6mg/cm2 (ただし、乾燥後の正極合剤量)となるように均一に塗布し、乾燥して正極合剤層を形成し、その後、ローラプレス機により圧縮成形した後、切断し、リード体を溶接して、帯状の正極を作製した。
【0048】
上記正極集電材として用いたアルミニウムを主成分とする金属箔は、鉄を1重量%、シリコンを0.15重量%含んでおり、アルミニウムの純度は98重量%以上であった。また、正極集電材として用いたアルミニウムを主成分とする金属箔の引張り強度は185N/mm2 であり、粗面の平均粗度Raは0.2μmで、光沢面の平均粗度Raは0.04μmであった。そして、上記正極集電材として用いたアルミニウムを主成分とする金属箔は、濡れ性が38dyne/cmで、伸びが3%であった。
【0049】
つぎに、メソカーボンマイクロビーズの黒鉛系炭素材料〔ただし、(002)面の面間距離d002 が3.37Å、c軸方向の結晶子の大きさLcが950Å、平均粒径15μm、純度99.9重量%以上という特性を持つ黒鉛系炭素材料〕を、ポリフッ化ビニリデンをN−メチルピロリドンに溶解させた溶液と混合してペーストにした。この負極合剤ペーストを70メッシュの網を通過させて大きなものを取り除いた後、厚さ10μmの帯状の銅箔からなる負極集電材の両面に塗布量が12.0mg/cm2 (ただし、乾燥後の負極合剤量)となるように均一に塗布して乾燥し、負極合剤層を形成し、その後、ローラプレス機により圧縮成形し、切断した後、乾燥し、リード体を溶接して、帯状の負極を作製した。なお、負極の負極合剤層の密度は1.5g/cm3 であった。
【0050】
前記帯状の正極を厚さ20μmの微孔性ポリエチレンフィルムを介して上記帯状の負極に重ね、渦巻状に巻回して渦巻状巻回構造の積層電極体とした。その際、正極集電材の粗面側が外周側になるようにして巻回した。上記積層電極体の体積は11.4cm3 であった。その後、この電極体を外径18mmの有底円筒状の電池ケース内に充填し、正極および負極のリード体の溶接を行った。
【0051】
つぎに、上記電解液を電池ケース内に注入し、電解液がセパレータなどに充分に浸透した後、封口し、予備充電、エイジングを行い、図1の模式図に示すような構造の筒形の非水二次電池を作製した。
【0052】
この電池を2.75Vまで1Cで放電し、露点−75℃のアルゴンドライボックス中で分解し、負極を一定の大きさに切り出し、メチルエチルカーボネートで洗浄して真空乾燥を1日行った後、負極の表面被膜をXPS分析したところ、55.0eVにピークを有する物質が5.1原子%、55.8eVにピークを有する物質が6.4原子%、168.6eVにピークを有する物質が0.4原子%検出された。
【0053】
ここで、図1に示す電池について説明しておくと、1は前記の正極で、2は前記の負極である。ただし、図1では、繁雑化を避けるため、正極1や負極2の作製にあたって使用された集電体などは図示していない。そして、これらの正極1と負極2はセパレータ3を介して渦巻状に巻回され、渦巻状巻回構造の電極積層体にして、上記の特定電解液からなる電解質4と共に電池ケース5内に収容されている。
【0054】
電池ケース5は前記のようにステンレス鋼製で、その底部には上記渦巻状巻回構造の電極積層体の挿入に先立って、ポリプロピレンからなる絶縁体6が配置されている。封口板7は、アルミニウム製で円板状をしていて、その中央部に薄肉部7aを設け、かつ上記薄肉部7aの周囲に電池内圧を防爆弁9に作用させるための圧力導入口7bとしての孔が設けられている。そして、この薄肉部7aの上面に防爆弁9の突出部9aが溶接され、溶接部分11を構成している。なお、上記の封口板7に設けた薄肉部7aや防爆弁9の突出部9aなどは、図面上での理解がしやすいように、切断面のみを図示しており、切断面後方の輪郭線は図示を省略している。また、封口板7の薄肉部7aと防爆弁9の突出部9aの溶接部分11も、図面上での理解が容易なように、実際よりは誇張した状態に図示している。
【0055】
端子板8は、圧延鋼製で表面にニッケルメッキが施され、周縁部が鍔状になった帽子状をしており、この端子板8にはガス排出口8aが設けられる。防爆弁9は、アルミニウム製で円板状をしており、その中央部には発電要素側(図1では、下側)に先端部を有する突出部9aが設けられ、かつ薄肉部9bが設けられ、上記突出部9aの下面が、前記したように、封口板7の薄肉部7aの上面に溶接され、溶接部分11を構成している。絶縁パッキング10は、ポリプロピレン製で環状をしており、封口板7の周縁部の上部に配置され、その上部に防爆弁9が配置していて、封口板7と防爆弁9とを絶縁するとともに、両者の間から液状の電解質が漏れないように両者の間隙を封止している。環状ガスケット12はポリプロピレン製で、リード体13はアルミニウム製で、前記封口板7と正極1とを接続し、渦巻状巻回構造の電極積層体の上部には絶縁体14が配置され、負極2と電池ケース5の底部とはニッケル製のリード体15で接続されている。
【0056】
実施例2
正極合剤ペーストの塗布量を23.6mg/cm2 (ただし、乾燥後の正極合剤量)とし、負極合剤ペーストの塗布量を11.49mg/cm2 (ただし、乾燥後の負極合剤量)とし、セパレータとして従来から汎用されている厚さ25μmの微孔性ポリエチレンフィルムを用いた以外は、実施例1と同様に筒形の非水二次電池を作製した。
【0057】
この実施例2の電池を実施例1と同様に放電し処理した後、負極の表面被膜をXPS分析したところ、55.0eVにピークを有する物質が5.1原子%、55.8eVのピークを有する物質が6.4原子%、168.6eVにピークを有する物質が0.4原子%検出された。
【0058】
比較例1
1,3−プロパンスルトンを添加せず、そのぶんメチルエチルカーボネートを増量した以外は、実施例1と同様に筒形の非水二次電池を作製した。
【0059】
この比較例1の電池を実施例1と同様に放電し処理した後、負極の表面被膜をXPS分析したところ、55.8eVにピークを有する物質が6.7原子%検出された。しかし、55.0eVにピークを有する物質や168.6eVにピークを有する物質は検出されなかった。その代わりに54.5eVにピークを有する物質が検出された。
【0060】
比較例2
1,3−プロパンスルトンを添加せず、そのぶんメチルエチルカーボネートを増量し、負極合剤量を減らして負極の負極合剤層の密度を1.4g/cm3 にした以外は、実施例1と同様に筒形の非水二次電池を作製した。
【0061】
この比較例2の電池を実施例1と同様に放電し処理した後、負極の表面被膜をXPS分析したところ、55.8eVにピークを有する物質が6.8原子%検出された。しかし、55.0eVにピークを有する物質や168.6eVにピークを有する物質は検出されなかった。その代わりに54.5eVにピークを有する物質が検出された。
【0062】
比較例3
1,3−プロパンスルトンを添加せず、そのぶんメチルエチルカーボネートを増量し、正極集電材として従来から汎用されている厚さ20μmのアルミニウムを主成分とする箔を用いた。このアルミニウムを主成分とする箔には鉄が0.03重量%、シリコンが0.02重量%含まれており、純度は99.94重量%であった。引張り強度は140N/mm2 (15μm換算値)であり、両面光沢面で平均粗度Raは0.04μmであった。また、濡れ性は36dyne/cmで、伸びは3%であった。この正極集電材の両面に実施例1と同様の正極合剤ペーストを塗布量が23.9mg/cm2 (ただし、乾燥後の正極合剤量)となるように均一に塗布し、乾燥して正極合剤層を形成し、その後、ローラプレス機により圧縮成形した後、切断し、リード体を溶接して、帯状の正極を作製した。また、負極は実施例1と同様の厚さ10μmの銅箔からなる負極集電材の両面に実施例1と同様の負極合剤ペーストを塗布量が11.0mg/cm2 (ただし、乾燥後の負極合剤量)となるように均一に塗布し、乾燥して負極合剤層を形成し、セパレータとして実施例2と同様に厚さ25μmの微孔性ポリエチレンフィルムを用い、それら以外は実施例1と同様に筒形の非水二次電池を作製した。
【0063】
この比較例3の電池を実施例1と同様に放電した後、負極の表面被膜をXPS分析したところ、55.8eVにピークを有する物質が6.7原子%検出された。しかし、55eVにピークを有する物質や168.6eVにピークを有する物質は検出されなかった。その代わりに54.5eVにピークを有する物質が検出された。
【0064】
比較例4
正極合剤ペーストの塗布量を20.0mg/cm2 (ただし、乾燥後の正極合剤量)とし、負極合剤ペーストの塗布量を12.0mg/cm2 (ただし、乾燥後の負極合剤量)とした以外は、比較例3と同様に筒形の非水二次電池を作製し
【0065】
この比較例4の電池を実施例1と同様に放電し処理した後、負極の表面被膜をXPS分析したところ、55.8eVにピークを有する物質が6.7原子%検出された。しかし、55.0eVにピークを有する物質や168.6eVにピークを有する物質は検出されなかった。その代わりに54.5eVにピークを有する物質が検出された。
【0066】
上記実施例1〜2および比較例1〜4の電池を、1700mA(1C)で2.75Vまで放電した後1700mAで充電し、4.2Vに達した後は、4.2Vの定電圧に保つ条件で2時間半の充電を行った。その後、電池を1700mAで2.75Vまで放電する充放電を繰り返し、1サイクル目の放電容量および100サイクル目の放電容量を測定し、それに基づき、100サイクル目での1サイクル目に対する容量保持率〔(100サイクル目の放電容量)/(1サイクル目の放電容量)×100〕を測定した。その結果を電極積層体の単位体積当たりの放電容量および1サイクル目の放電容量と共に表1に示す。なお、いずれの電池も電極積層体の体積は11.4cm3 であった。
【0067】
【表1】
【0068】
表1に示すように、比較例1の電池では、100サイクル目での容量保持率が78%にまで低下したのに対し、実施例1〜2の電池は容量保持率が92%であって、サイクル特性が優れていた。また、実施例1〜2に電池は、放電容量が大きく、高容量であり、特に薄いセパレータを用いた実施例1の電池は放電容量が大きかった。なお、比較例4の電池は、100サイクル目での容量保持率が高く、サイクル特性は優れていたが、放電容量が小さく、電極積層体の単位体積当たりの放電容量が130mAh/cm3 に満たなかった。
【0069】
【発明の効果】
以上説明したように、本発明では、正極に4V級の活物質を用い、電極積層体の単位体積当たりの放電容量が130mAh/cm3 以上の高容量の非水二次電池において、サイクル特性を向上させ、サイクル特性の優れた非水二次電池を提供することができた。
【図面の簡単な説明】
【図1】本発明の非水二次電池の一例を模式的に示す断面図である。
【符号の説明】
1 正極
2 負極
3 セパレータ
4 電解質[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous secondary battery, and more particularly, to a non-aqueous secondary battery having high capacity and excellent cycle characteristics.
[0002]
[Prior art]
Non-aqueous secondary batteries typified by lithium ion secondary batteries have a large capacity, high voltage, high energy density, and high output, and therefore there is an increasing demand.
[0003]
However, the inventors of this non-aqueous secondary battery will increase the density of the negative electrode mixture layer of the negative electrode as the capacity of the battery increases while studying for further enhancement of functionality. The density of the negative electrode mixture layer is 1.45 g / cm Three When it became above, it turned out that it became difficult to obtain desired cycling characteristics.
[0004]
[Problems to be solved by the invention]
The present invention solves the problems of the conventional non-aqueous secondary battery as described above, and the density of the negative electrode mixture layer is 1.45 g / cm. Three An object of the present invention is to improve cycle characteristics in the high capacity non-aqueous secondary battery.
[0005]
[Means for Solving the Problems]
The present invention has a positive electrode, a negative electrode, and an electrolyte, a 4V class active material is used for the positive electrode, a carbon material is used for the negative electrode, and the density of the negative electrode mixture layer of the negative electrode is 1.45 g / cm. Three The non-aqueous secondary battery as described above is characterized in that a substance having a peak at 55.0 eV by XPS analysis (lithium sulfur compound, the same applies hereinafter) is present on the surface of the negative electrode.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the discharge capacity per unit volume of the electrode laminate is 130 mAh / cm. 3 Thus, the distance d between the (002) planes of the carbon material. 002 Is 3.5 mm or less and the crystallite size Lc in the c-axis direction is 30 mm or more. Furthermore, in the present invention, a substance having a peak at 55.0 eV by XPS analysis and a substance having a peak at 55.8 eV (compound containing LiF, the same applies hereinafter) exist on the surface of the negative electrode, and When the peak of the Li spectrum is divided by XPS analysis and each peak is expressed in atomic%, the substance having a peak at 55.0 eV is 2 to 9 atomic%, and the substance having a peak at 55.8 eV is 2 to 10 atoms. % Is a preferred form.
[0007]
In the present invention, XPS analysis (XPS analysis is also referred to as ESCA analysis by X-ray photoelectron spectroscopic analysis) is carried out under the conditions of 12 KV-10 mA, 25 ° C. using MgKα rays in VG ESCA LAB MARK2. Although the spectrum is separated and the atomic% (at%) of each component is calculated, measurement conditions equivalent to this may be used.
[0008]
In the XPS analysis, the battery was previously discharged to 2.75 V at 1 C (current value that can discharge the battery in 1 hour), decomposed in an argon dry box with a dew point of -75 ° C., and the negative electrode was fixed to a certain size. A sample that has been cut out and washed with methyl ethyl carbonate (MEC) and vacuum-dried for one day is used as a measurement sample.
[0009]
The 55.0 eV peak detected by XPS analysis referred to in the present invention is a peak based on a lithium-sulfur compound, and preferably has a peak based on LiF at 55.8 eV. Further, this ratio is preferably such that the substance having a peak at 55.0 eV is 2 atomic% or more, more preferably 4 atoms when the peak of Li spectrum is divided by XPS analysis and each peak is expressed in atomic%. % Or more, preferably 9 atomic% or less, more preferably 7 atomic% or less, and the substance having a peak at 55.8 eV is preferably 2 atomic% or more, more preferably It is preferably 4 atom% or more, and preferably 10 atom% or less, more preferably 8 atom% or less.
[0010]
In addition, a substance having a peak at 168.6 eV (SO 2 SO in the presence of a substance having a bond, the same applies hereinafter 2 A film having a bond is formed and the SO 2 A film having a bond is particularly preferable because it is a stable film but retains ionic conductivity and suppresses the decomposition of the electrolytic solution on the negative electrode surface.
[0011]
Regarding the surface state of the negative electrode, Takehara and Kanamura et al. 2 O, LiOH, Li 2 CO Three And a LiPF film is formed. 6 It has been reported that a LiF film is formed on the surface of the negative electrode when an electrolytic solution containing an electrolyte salt is used [JOURNAL OF POWER SOURCES 68, P82-86 (1997)]. AURBACH et al. Have also studied the surface state of a Li negative electrode and a carbon negative electrode with Li inserted therein, and an electrolyte using an alkyl carbonate reacts with the negative electrode to form Li on the surface of the negative electrode. 2 CO Three It is confirmed by IR (infrared spectroscopy) that a film of organic carbonate, LiOR (R is an alkyl group) is formed, and Li 2 It is also suggested that a film of O, LiF or the like may be formed [JOURNAL OF POWER SOURCES 68, P91-98 (1997)].
[0012]
The surface coating of the negative electrode is important because it is related to the quality of cycle characteristics, and the properties required for the coating are that it is thin, has high ionic conductivity, and can suppress entry into the electrolyte. However, esters such as ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC) are mainly used as electrolyte solvents for lithium ion secondary batteries. LiPF as electrolyte salt 6 Currently, the above Li is formed on the negative electrode surface. 2 CO Three And organic carbonates, LiOR (R is an alkyl group), Li 2 A film can only be formed with O, LiF, etc., and thereby a certain degree of ionic conductivity and the effect of suppressing the entry of electrolyte into the electrode can be expected, but the film becomes thicker as the battery is cycled (charge / discharge). , Ion movement is not performed smoothly, and the battery capacity tends to decrease. When a carbon material is used for the negative electrode, this phenomenon becomes prominent when the charge / discharge capacity per 1 g of the carbon material is 290 mAh or more.
[0013]
Therefore, the present inventors reduced the capacity deterioration during the cycle by using a coating in which a predetermined amount of a lithium sulfur (sulfur) compound was mixed in order to improve the surface coating of the negative electrode.
[0014]
Although the mechanism by which the lithium-sulfur compound is mixed into the negative electrode surface coating to reduce the capacity deterioration during the cycle has not yet been fully elucidated, it is considered as follows. LiF and Li which have been mainly used as conventional film components 2 CO Three Is an insulator, and ion conduction is less likely to occur as the coating becomes thicker. Moreover, even if an organic carbonate is formed, the ability to dissociate lithium taken into the film into an ionic state is low. We have developed organic carboxylates (CF Three CO 2 Li) and organic sulfonate (CF Three SO Three Li) was used to prepare electrolytes and their ionic conductivities were compared, and it has already been reported that the sulfonates of sulfur compounds exhibit an ionic conductivity approximately 5 times higher than the carboxylates [ JOURNAL OF POWER SOURCES 68, P91-98 (1997)].
[0015]
From the above, by mixing a lithium sulfur compound into the surface coating of the negative electrode, the ionic conductivity inside the coating is increased and ion transport is performed smoothly, thereby reducing the capacity loss associated with the cycle. it is conceivable that.
[0016]
In addition, it is preferable to include a peak of 55.8 eV based on LiF because LiF is easy to form a strong film that hardly reacts with the electrolyte, and is formed by coexistence of a lithium-sulfur compound and LiF. This is because the coating exhibits a well-balanced effect of suppressing the ion conductivity and the reaction between the negative electrode electrolyte.
[0017]
As a method of making a film containing a lithium sulfur compound on the surface of the negative electrode, Three SO Three It is possible to mix Li, but CF Three SO Three Since Li dissolves in the electrolytic solution, a compound capable of forming an organic sulfonate that is difficult to dissolve in an electrolytic solution containing one or less halogen elements is an electrolyte (in the present invention, the term “electrolyte” includes In addition to liquid electrolytes generally called electrolytes, gel electrolytes and the like are also preferably added to form a film.
[0018]
In the present invention, the compound used for forming the surface film of the negative electrode as described above is -OS (= O) 2 -A sultone compound having a bond or a derivative thereof is preferable, and specific examples thereof include, for example, 1,3-propane sultone, 1,4-butane sultone, 2,3-dimethylbutene sultone, 2-ethoxypentafluoropropane-1, Examples include 2-sultone, dimethyl sulfate, diethyl sulfate, and ethyl methanesulfonate.
[0019]
-S (= O) other than sultone compounds 2 -Sulfolane having a bond can also be used, but since the initial capacity tends to decrease to some extent, many cannot be added, and -OS (= O) 2 A sultone compound having a bond or a derivative thereof is more suitable.
[0020]
-OS (= O) 2 In the case of a sultone compound having a bond or a derivative thereof, the addition amount is preferably 0.5% by volume or more, more preferably 1% by volume or more, and further preferably 1.5% by volume or more in the solvent component of the electrolyte. This is because if the amount added is too small, the effect tends to be difficult to develop. Moreover, since the capacity of the battery tends to decrease when the amount added is too large, -OS (= O) 2 -The addition amount of the sultone compound having a bond or a derivative thereof is preferably 5% by volume or less, more preferably 3% by volume or less, and further preferably 2.5% by volume or less in the solvent component of the electrolyte.
[0021]
-S (= O) other than sultone compounds 2 In the case of a compound having a bond, the amount added is preferably 0.2% by volume or more, more preferably 0.5% by volume or more, and still more preferably 0.8% by volume or more in the solvent component of the electrolyte. This is because if the amount added is too small, the effect tends to be difficult to express. Moreover, since the capacity of the battery tends to decrease when the amount added is too large, -S (= O) other than the sultone compound described above. 2 -The addition amount of the compound having a bond is preferably 2% by volume or less in the solvent component of the electrolyte, more preferably 1.5% by volume or less, and further preferably 1% by volume or less. Note that the amount added is only an initial amount, and the amount present in the electrolyte decreases according to the amount of coating formed.
[0022]
In the present invention, the electrolyte may be any of a liquid electrolyte, a gel electrolyte, and a solid electrolyte. However, in the present invention, a liquid electrolyte is often used. The expression “electrolyte” that is commonly used in between will be used and will be described in detail.
[0023]
In the present invention, an ester is preferably used as the solvent of the electrolytic solution. In particular, chain esters are preferably used because they lower the viscosity of the electrolyte and increase the ionic conductivity. Examples of such chain esters include organic solvents having a chain COO-bond such as dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, and methyl propionate, chain phosphate triesters such as trimethyl phosphate, and the like. Among them, chain carbonates are particularly preferable.
[0024]
In addition, it is preferable to mix and use the following ester having a high dielectric constant (dielectric constant of 30 or more) with the chain ester because load characteristics and the like are improved. Examples of the ester having a high dielectric constant include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), gamma-butyrolactone (γ-BL), ethylene glycol sulfite (EGS), and the like. . In particular, those having a cyclic structure are preferred, cyclic carbonates are particularly preferred, and ethylene carbonate (EC) is most preferred.
[0025]
The high dielectric constant ester is preferably less than 50% by volume in the total solvent of the electrolytic solution, more preferably 40% by volume or less, and still more preferably 35% by volume or less. And the improvement of the characteristic by these ester with a high dielectric constant becomes remarkable when the said ester becomes 10 volume% or more in all the solvents of electrolyte solution, and becomes more remarkable when it reaches 20 volume%. Further, the chain ester mixed with this is preferably 50% by volume or more, more preferably 60% by volume or more, and still more preferably 65% by volume or more in the total solvent of the electrolytic solution.
[0026]
Examples of solvents that can be used in addition to the ester include 1,2-dimethoxyethane (DME), 1,3-dioxolane (DO), tetrahydrofuran (THF), 2-methyl-tetrahydrofuran (2Me-THF), diethyl ether. (DEE). In addition, amine-based or imide-based organic solvents, sulfur-containing or fluorine-containing organic solvents, and the like can also be used. Moreover, it may be gelatinous including polymers, such as polyethylene oxide and polymethyl methacrylate.
[0027]
As the solute of the electrolytic solution, for example, LiClO Four , LiPF 6 , LiBF Four , LiAsF 6 , LiSbF 6 , LiCF Three SO Three , LiC Four F 9 SO Three , LiCF Three CO 2 , Li 2 C 2 F Four (SO Three ) 2 , LiN (CF Three SO 2 ) 2 , LiC (CF Three SO 2 ) Three , LiC n F 2n + 1 SO Three (N ≧ 2), LiN (RfOSO 2 ) 2 [Wherein Rf is a fluoroalkyl group] or the like may be used alone or in combination of two or more, but lithium salts containing F are particularly preferred, and in particular LiPF 6 Is preferred. The concentration of the solute in the electrolytic solution is not particularly limited, but it is preferable to increase the concentration by 1 mol / l or more because safety is improved. 1.2 mol / l or more is more preferable. Moreover, when it is less than 1.7 mol / l, electrical characteristics are improved, which is preferable, and when it is less than 1.5 mol / l, it is more preferable.
[0028]
In the present invention, -OS (= O) 2 -The content of an electrolyte such as a sultone compound having a bond or a derivative thereof in the electrolyte component in the solvent component of the electrolyte-OS (= O) 2 -It is defined by the volume% occupied by a sultone compound having a bond or a derivative thereof, but the solvent component is not required to be liquid at room temperature. For example, the above-OS (= O) 2 -Some sultone compounds having a bond or a derivative thereof, such as 1,3-propane sultone, are solid at room temperature, but when dissolved in a solvent, a solution is formed. It will be called a solvent component. In other words, when the electrolyte is divided into a solute that directly participates in ion conduction with a lithium salt and a solute other than the solute, the electrolyte other than the solute is referred to as a solvent component.
[0029]
-OS (= O) 2 -Preparation of an electrolytic solution containing a sultone compound having a bond or a derivative thereof is, for example, a solvent and the -OS (= O) 2 -A sultone compound having a bond or a derivative thereof may be mixed and a solute dissolved therein. However, the preparation method is not limited to the method exemplified above, and other methods may be used.
[0030]
In the present invention, the use of a 4V-class active material for the positive electrode can realize a high-power battery with a high voltage and a high energy density, and is suitable as a power source for portable electronic devices whose demand has been increasing in recent years. As such a 4V class active material, for example, lithium cobaltate (LiCoO 2 ), Lithium nickelate (LiNiO) 2 ), Solid solution of lithium cobaltate and lithium nickelate, spinel type lithium manganate (LiMn) 2 O Four ) And the like, and those in which other metals (Li, Co, Ni, Fe, etc.) are appropriately dissolved.
[0031]
The positive electrode, for example, to the positive electrode active material, if necessary, for example, a conductive auxiliary such as flaky graphite and a binder such as polyvinylidene fluoride and polytetrafluoroethylene are added and mixed to prepare a positive electrode mixture, Disperse it with a solvent to make a paste (the binder may be dissolved in a solvent in advance and then mixed with the positive electrode active material, etc.), apply the positive electrode mixture paste to a positive electrode current collector made of metal foil, etc. and dry And it produces by forming a positive mix layer in at least one part of a positive electrode electrical power collector. However, the method for manufacturing the positive electrode is not limited to the above-described method, and other methods may be used.
[0032]
The positive electrode current collector used for the positive electrode is preferably a metal foil mainly composed of aluminum, and the purity of the aluminum is preferably 98% by weight or more and less than 99.9% by weight. In an ordinary lithium ion secondary battery, an aluminum foil having a purity of 99.9% by weight or more is used as a positive electrode current collector. In the present invention, however, the thickness is 15 μm or less in order to increase the capacity and improve cycle characteristics. It is preferable to use a thin metal foil. Therefore, it is preferable to have a strength that can be used even if it is thin. In order to ensure such strength, the purity is preferably less than 99.9% by weight. Particularly preferred as metals to be added to aluminum are iron and silicon. Iron is preferably 0.5% by weight or more, more preferably 0.7% by weight or more, and preferably 2% by weight or less, more preferably 1.3% by weight or less. Silicon is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, and preferably 1.0% by weight or less, more preferably 0.3% by weight or less. These iron and silicon need to be alloyed with aluminum and do not exist as impurities in aluminum.
[0033]
The tensile strength of the positive electrode current collector is 150 N / mm. 2 Or more, more preferably 180 N / mm 2 That's it. The positive electrode current collector used in the present invention preferably has an elongation of 2% or more, more preferably 3% or more. This is because, as the discharge capacity per unit volume of the electrode laminate increases, the electrode mixture layer expands during charging, and this expansion causes stress in the positive electrode current collector, thereby cracking the positive electrode current collector. This is because, if the elongation of the positive electrode current collector is increased, the stress is relieved by the elongation, and cracking or cutting of the positive electrode current collector can be prevented.
[0034]
In the present invention, as described above, it is preferable to use a metal foil whose main component is aluminum having a thickness of 15 μm or less as the positive electrode current collector. However, the thinner the thickness, the better the capacity of the battery. It is because there is. However, if the thickness is too thin, there is a risk of cutting due to insufficient strength of the positive electrode current collector during production of the positive electrode or a wound structure electrode body. Thus, it is 15 μm or less, and 5 μm or more, particularly 8 μm or more is suitable for practical use.
[0035]
Moreover, it is preferable that the surface of the positive electrode current collector is roughened on one side. And it is preferable that the rough surface exists in the surface of the outer peripheral side in a wound body. This is because in the case of a wound body, the more the negative electrode facing the closer the outer peripheral surface is to the center of the winding, the more the positive electrode tends to deteriorate. It is because deterioration of a positive electrode can be reduced by raising. The preferable average roughness of the rough surface is 0.1 to 0.5 μm in Ra, and more preferably 0.2 to 0.3 μm. And the preferable average roughness of a glossy surface is Ra of 0.2 micrometer or less, More preferably, it is 0.1 micrometer or less.
[0036]
Moreover, when the wettability of the positive electrode current collector is poor, the cycle characteristics tend to deteriorate when the battery is cycled (charged / discharged). In such a case, the wettability of the positive electrode current collector is preferably 37 dyne / cm or more.
[0037]
The material used for the negative electrode may be any material that can be doped or dedoped with lithium ions. In the present invention, it is called a negative electrode active material. Examples of such a negative electrode active material include graphite, pyrolysis, and the like. Carbon materials such as carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads, carbon fibers, and activated carbon are used. In particular, mesocarbon microbeads fired at 2500 ° C. or higher are preferable because the cycle characteristics are good even when the negative electrode mixture layer is formed at a high density.
[0038]
The carbon material used for the negative electrode as the negative electrode active material preferably has the following characteristics. That is, the distance d between the (002) planes. 002 Is preferably 3.5 mm or less, more preferably 3.45 mm or less, and still more preferably 3.4 mm or less. The crystallite size Lc in the c-axis direction is preferably 30 mm or more, more preferably 80 mm or more, and further preferably 250 mm or more. And the average particle diameter of the said carbon material is 8-20 micrometers, especially 10-15 micrometers is preferable, and purity is preferable 99.9 weight% or more.
[0039]
The negative electrode is, for example, a carbon material as the negative electrode active material, and if necessary, the same conductive additive or binder as in the case of the positive electrode is added and mixed to prepare a negative electrode mixture, which is dispersed in a solvent. A paste (the binder may be dissolved in a solvent in advance and then mixed with the negative electrode active material, etc.), and the negative electrode mixture paste is applied to a negative electrode current collector made of copper foil, dried, and dried. It is produced by forming a negative electrode mixture layer on at least a part of the electric material. However, the manufacturing method of the negative electrode is not limited to the above-described method, and other methods may be used.
[0040]
Examples of the negative electrode current collector include metal foils such as copper foil, aluminum foil, nickel foil, and stainless steel foil, and those made of these metals in a net shape. Copper foil is particularly suitable.
[0041]
When using a carbon material for the negative electrode, in order to increase the capacity, the density of the negative electrode mixture layer of the negative electrode is 1.45 g / cm. Three In particular, the density of the negative electrode mixture layer is 1.5 g / cm. Three It is preferable to make it above. Usually, when the negative electrode has a high density, a high capacity is easily obtained, but the penetration of the electrolytic solution is slowed, and the utilization of the active material is likely to be uneven, so that the cycle characteristics are liable to deteriorate. In such a case, -OS (= O) used in the present invention is used. 2 -The effect of a sultone compound having a bond or a derivative thereof becomes more prominent.
[0042]
The separator is not particularly limited and can be the same as the conventional one, but in particular, a microporous polyethylene film having a thickness of about 10 to 20 μm, a microporous polypropylene film, a microporous ethylene-propylene copolymer film, etc. Polyolefin-based separators have sufficient strength even if they are thin, so that the filling amount of the positive electrode active material and the negative electrode active material can be increased and the thermal conductivity is improved, and the heat generation inside the battery is also improved. Since heat dissipation is promoted, it is preferably used in the present invention. In particular, when a separator is interposed between the electrode laminate and the battery case, the effect of radiating heat inside the electrode is great.
[0043]
In the present invention, the discharge capacity per unit volume of the electrode laminate is 130 mAh / cm. Three Although it is preferable to target the above non-aqueous secondary battery, this is based on the reason for increasing the capacity. In the present invention, the volume of the electrode laminate is the volume of the positive electrode, the negative electrode and the separator laminated or the positive electrode, the negative electrode and the separator wound in the battery, and the volume wound like the latter. In this case, the through hole in the center of the wound body based on the winding shaft used for winding is not included as a volume. In short, the total volume occupied by the positive electrode, the negative electrode, and the separator. These three volumes of the positive electrode, the negative electrode, and the separator are important factors that determine the capacity of the battery. Regardless of the size of the battery, the discharge capacity per unit volume of the electrode stack (discharge capacity / volume of the electrode stack) ) Can be compared to compare the capacity densities of the batteries. The discharge capacity here is the discharge capacity when charging and discharging under the standard use conditions of the battery. In the present invention, the standard use conditions are 1C (current that can discharge the battery in 1 hour) at 25 ° C. to 4.2 V, and after reaching 4.2 V, constant voltage charging is performed. Charging is completed in two and a half hours, and discharging to 2.75 V at 0.2 C is performed. The charging capacity is measured by charging and discharging under the standard use conditions, and the discharging capacity per unit volume of the electrode laminate is obtained. . From the viewpoint of increasing the capacity, the discharge capacity per unit volume of the electrode laminate is 140 mAh / cm. Three More preferably, 150 mAh / cm Three The above is more preferable.
[0044]
【Example】
Next, the present invention will be described more specifically with reference to examples. However, this invention is not limited only to those Examples.
[0045]
Example 1
Methyl ethyl carbonate, ethylene carbonate, and 1,3-propane sultone are mixed at a volume ratio of 65: 33: 2, and LiPF is added to the mixed solvent. 6 Is dissolved in 1.4 mol / l, and the composition is 1.4 mol / l LiPF. 6 An electrolytic solution represented by / EC: MEC: PS (33: 65: 2 volume ratio) was prepared.
[0046]
In the electrolytic solution, EC is an abbreviation for ethylene carbonate, MEC is an abbreviation for methyl ethyl carbonate, and PS is an abbreviation for 1,3-propane sultone. Therefore, 1.4 mol / l LiPF indicating the above electrolyte 6 / EC: MEC: PS (33: 65: 2 volume ratio) is LiPF in a mixed solvent of 65% by volume of methyl ethyl carbonate, 33% by volume of ethylene carbonate, and 2% by volume of 1,3-propane sultone. 6 Is dissolved in an amount equivalent to 1.4 mol / l.
[0047]
Apart from the above, LiCoO 2 In addition, scaly graphite as a conductive assistant was added at a weight ratio of 100: 6 and mixed, and this mixture was mixed with a solution of polyvinylidene fluoride dissolved in N-methylpyrrolidone to obtain a paste. This positive electrode mixture paste was passed through a 70-mesh net to remove a large one, and then the coating amount was 24.6 mg / cm on both surfaces of a positive electrode current collector made of a metal foil whose main component was aluminum having a thickness of 15 μm. 2 (However, the amount of the positive electrode mixture after drying) is uniformly applied and dried to form a positive electrode mixture layer, and then compression-molded with a roller press, cut and welded to the lead body. Thus, a belt-like positive electrode was produced.
[0048]
The metal foil mainly composed of aluminum used as the positive electrode current collector contained 1% by weight of iron and 0.15% by weight of silicon, and the purity of aluminum was 98% by weight or more. The tensile strength of the metal foil mainly composed of aluminum used as the positive electrode current collector is 185 N / mm. 2 The average roughness Ra of the rough surface was 0.2 μm, and the average roughness Ra of the glossy surface was 0.04 μm. The metal foil mainly composed of aluminum used as the positive electrode current collector had a wettability of 38 dyne / cm and an elongation of 3%.
[0049]
Next, the mesocarbon microbead graphite-based carbon material [however, the distance d between (002) planes 002 Is a graphite-based carbon material having the characteristics that the crystallite size in the c-axis direction is Lc is 950 mm, the average particle diameter is 15 μm, and the purity is 99.9% by weight or more. It was mixed with the dissolved solution to make a paste. The negative electrode mixture paste was passed through a 70-mesh net to remove a large one, and then the coating amount was 12.0 mg / cm on both sides of a negative electrode current collector made of a strip-shaped copper foil having a thickness of 10 μm. 2 (However, the amount of the negative electrode mixture after drying) is uniformly applied and dried to form a negative electrode mixture layer, then compression molded with a roller press, cut, dried, and lead body Were welded to produce a strip-shaped negative electrode. The density of the negative electrode mixture layer of the negative electrode is 1.5 g / cm. Three Met.
[0050]
The belt-like positive electrode was overlapped on the belt-like negative electrode with a microporous polyethylene film having a thickness of 20 μm and wound in a spiral shape to obtain a laminated electrode body having a spiral winding structure. In that case, it wound so that the rough surface side of the positive electrode current collector could be the outer peripheral side. The volume of the laminated electrode body is 11.4 cm Three Met. Thereafter, the electrode body was filled in a bottomed cylindrical battery case having an outer diameter of 18 mm, and the positive and negative lead bodies were welded.
[0051]
Next, the electrolyte solution is poured into the battery case, and after the electrolyte solution has sufficiently penetrated into the separator and the like, it is sealed, precharged, and subjected to aging, and has a cylindrical shape as shown in the schematic diagram of FIG. A non-aqueous secondary battery was produced.
[0052]
This battery was discharged at 1 C to 2.75 V, decomposed in an argon dry box with a dew point of -75 ° C., the negative electrode was cut into a certain size, washed with methyl ethyl carbonate, and vacuum-dried for 1 day. When the surface coating of the negative electrode was analyzed by XPS, the substance having a peak at 55.0 eV was 5.1 atomic%, the substance having a peak at 55.8 eV was 6.4 atomic%, and the substance having a peak at 168.6 eV was 0. .4 atomic% was detected.
[0053]
Here, the battery shown in FIG. 1 will be described. 1 is the positive electrode and 2 is the negative electrode. However, in FIG. 1, in order to avoid complication, the current collector used in the production of the
[0054]
The
[0055]
The terminal plate 8 is made of rolled steel, has a nickel plating on the surface, and has a hat shape with a peripheral edge portion having a hook shape. The terminal plate 8 is provided with a
[0056]
Example 2
The coating amount of the positive electrode mixture paste is 23.6 mg / cm 2 (However, the amount of the positive electrode mixture after drying) and the coating amount of the negative electrode mixture paste was 11.49 mg / cm 2 (However, the amount of the negative electrode mixture after drying) and a cylindrical non-aqueous secondary battery as in Example 1 except that a conventionally used microporous polyethylene film having a thickness of 25 μm was used as a separator. Was made.
[0057]
After the battery of Example 2 was discharged and treated in the same manner as in Example 1, the surface coating of the negative electrode was analyzed by XPS. As a result, the substance having a peak at 55.0 eV showed a peak of 5.1 atomic% and 55.8 eV. A substance having a peak at 6.4 atomic% and 168.6 eV was detected at 0.4 atomic%.
[0058]
Comparative Example 1
A cylindrical non-aqueous secondary battery was produced in the same manner as in Example 1 except that 1,3-propane sultone was not added and the amount of methyl ethyl carbonate was increased.
[0059]
After the battery of Comparative Example 1 was discharged and treated in the same manner as in Example 1, XPS analysis of the surface coating of the negative electrode revealed that 6.7 atomic% of a substance having a peak at 55.8 eV was detected. However, a substance having a peak at 55.0 eV and a substance having a peak at 168.6 eV were not detected. Instead, a substance having a peak at 54.5 eV was detected.
[0060]
Comparative Example 2
Without adding 1,3-propane sultone, the amount of methyl ethyl carbonate is increased, the amount of negative electrode mixture is decreased, and the density of the negative electrode mixture layer of the negative electrode is 1.4 g /
[0061]
After the battery of Comparative Example 2 was discharged and treated in the same manner as in Example 1, XPS analysis of the negative electrode surface coating revealed that 6.8 atomic% of a substance having a peak at 55.8 eV was detected. However, a substance having a peak at 55.0 eV and a substance having a peak at 168.6 eV were not detected. Instead, a substance having a peak at 54.5 eV was detected.
[0062]
Comparative Example 3
Without adding 1,3-propane sultone, the amount of methyl ethyl carbonate was increased, and a foil mainly composed of aluminum having a thickness of 20 μm, which has been conventionally used as a positive electrode current collector, was used. This aluminum-based foil contained 0.03% by weight of iron and 0.02% by weight of silicon, and the purity was 99.94% by weight. Tensile strength is 140 N / mm 2 The average roughness Ra on the double-sided glossy surface was 0.04 μm. The wettability was 36 dyne / cm and the elongation was 3%. A coating amount of the positive electrode mixture paste similar to that of Example 1 was applied to both surfaces of the positive electrode current collector in an amount of 23.9 mg /
[0063]
After discharging the battery of Comparative Example 3 in the same manner as in Example 1, XPS analysis of the surface coating of the negative electrode revealed that 6.7 atomic% of a substance having a peak at 55.8 eV was detected. However, a substance having a peak at 55 eV and a substance having a peak at 168.6 eV were not detected. Instead, a substance having a peak at 54.5 eV was detected.
[0064]
Comparative Example 4
The coating amount of the positive electrode mixture paste is 20.0 mg / cm 2 (However, the amount of the positive electrode mixture after drying) and the coating amount of the negative electrode mixture paste was 12.0 mg / cm 2 A cylindrical non-aqueous secondary battery was prepared in the same manner as in Comparative Example 3 except that the amount of the negative electrode mixture after drying was changed.
[0065]
After the battery of Comparative Example 4 was discharged and treated in the same manner as in Example 1, XPS analysis of the negative electrode surface coating revealed that 6.7 atomic% of a substance having a peak at 55.8 eV was detected. However, a substance having a peak at 55.0 eV and a substance having a peak at 168.6 eV were not detected. Instead, a substance having a peak at 54.5 eV was detected.
[0066]
The batteries of Examples 1-2 and Comparative Examples 1-4 were discharged at 1700 mA (1C) to 2.75 V, charged at 1700 mA, and after reaching 4.2 V, maintained at a constant voltage of 4.2 V. The battery was charged for 2.5 hours under the conditions. Thereafter, the battery was repeatedly charged and discharged at 1.700 mA up to 2.75 V, the discharge capacity at the first cycle and the discharge capacity at the 100th cycle were measured, and based on this, the capacity retention rate for the first cycle at the 100th cycle [ (Discharge capacity at 100th cycle) / (Discharge capacity at 1st cycle) × 100] was measured. The results are shown in Table 1 together with the discharge capacity per unit volume of the electrode laminate and the discharge capacity at the first cycle. In all batteries, the volume of the electrode laminate is 11.4 cm. Three Met.
[0067]
[Table 1]
[0068]
As shown in Table 1, in the battery of Comparative Example 1, the capacity retention rate at the 100th cycle decreased to 78%, whereas in the batteries of Examples 1 and 2, the capacity retention rate was 92%. The cycle characteristics were excellent. Further, the batteries of Examples 1 and 2 had a large discharge capacity and a high capacity, and the battery of Example 1 using a particularly thin separator had a large discharge capacity. The battery of Comparative Example 4 had a high capacity retention rate at the 100th cycle and excellent cycle characteristics, but the discharge capacity was small, and the discharge capacity per unit volume of the electrode laminate was 130 mAh / cm. Three It was less than.
[0069]
【The invention's effect】
As described above, in the present invention, a 4V class active material is used for the positive electrode, and the discharge capacity per unit volume of the electrode laminate is 130 mAh / cm. Three In the above high capacity non-aqueous secondary battery, the cycle characteristics were improved, and a non-aqueous secondary battery having excellent cycle characteristics could be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing an example of a nonaqueous secondary battery of the present invention.
[Explanation of symbols]
1 Positive electrode
2 Negative electrode
3 Separator
4 electrolyte
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29766998A JP3938442B2 (en) | 1998-10-20 | 1998-10-20 | Non-aqueous secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29766998A JP3938442B2 (en) | 1998-10-20 | 1998-10-20 | Non-aqueous secondary battery |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2000123880A JP2000123880A (en) | 2000-04-28 |
JP2000123880A5 JP2000123880A5 (en) | 2004-09-30 |
JP3938442B2 true JP3938442B2 (en) | 2007-06-27 |
Family
ID=17849609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29766998A Expired - Lifetime JP3938442B2 (en) | 1998-10-20 | 1998-10-20 | Non-aqueous secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3938442B2 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000323171A (en) * | 1999-05-14 | 2000-11-24 | Gs Melcotec Kk | Nonaqueous electrolyte secondary battery |
JP4974404B2 (en) * | 2000-07-10 | 2012-07-11 | 日立マクセルエナジー株式会社 | Non-aqueous secondary battery |
JP2002025613A (en) * | 2000-07-10 | 2002-01-25 | Hitachi Maxell Ltd | Nonaqueous secondary battery |
US7662519B2 (en) | 2003-09-16 | 2010-02-16 | Nec Corporation | Non-aqueous electrolyte secondary battery |
JP4697382B2 (en) * | 2003-11-11 | 2011-06-08 | 日本電気株式会社 | Nonaqueous electrolyte secondary battery |
JP4449447B2 (en) | 2003-12-22 | 2010-04-14 | 日産自動車株式会社 | Method for producing solid electrolyte battery |
JP4836415B2 (en) * | 2004-06-18 | 2011-12-14 | 株式会社東芝 | Nonaqueous electrolyte secondary battery |
JP2007095402A (en) * | 2005-09-28 | 2007-04-12 | Hitachi Maxell Ltd | Lithium secondary battery |
JP4967321B2 (en) * | 2005-11-21 | 2012-07-04 | ソニー株式会社 | Lithium ion secondary battery |
KR101114122B1 (en) | 2006-06-27 | 2012-03-13 | 닛산 지도우샤 가부시키가이샤 | Composite positive electrode material for lithium ion battery and battery using the same |
JP5636149B2 (en) * | 2007-04-27 | 2014-12-03 | 日立化成株式会社 | A negative electrode material for a non-aqueous electrolyte secondary battery, a manufacturing method thereof, a negative electrode for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery. |
JP5219303B2 (en) * | 2010-04-14 | 2013-06-26 | 日立マクセル株式会社 | Non-aqueous secondary battery |
KR101569976B1 (en) * | 2012-02-29 | 2015-11-17 | 신코베덴키 가부시키가이샤 | Lithium ion battery |
KR20150044904A (en) * | 2012-07-31 | 2015-04-27 | 콜로라도 스테이트 유니버시티 리써치 파운데이션 | Lithium-ion battery having organic-inorganic hybrid solid electrolyte |
JP6319089B2 (en) | 2012-10-30 | 2018-05-09 | 日本電気株式会社 | Lithium secondary battery |
JP6056955B2 (en) | 2013-03-05 | 2017-01-11 | 日本電気株式会社 | Lithium secondary battery |
-
1998
- 1998-10-20 JP JP29766998A patent/JP3938442B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000123880A (en) | 2000-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3957415B2 (en) | Non-aqueous secondary battery | |
US7695854B2 (en) | Lithium secondary battery | |
JP5910627B2 (en) | Secondary battery | |
JP3938442B2 (en) | Non-aqueous secondary battery | |
WO2015037451A1 (en) | Lithium ion secondary battery | |
US10044072B2 (en) | Lithium secondary battery pack, as well as electronic device, charging system, and charging method using said pack | |
CN102487151B (en) | Lithium ion secondary battery | |
US20070141471A1 (en) | Lithium ion secondary cell | |
JP3953207B2 (en) | Non-aqueous secondary battery | |
JP3916116B2 (en) | Non-aqueous secondary battery | |
JP3928756B2 (en) | Non-aqueous secondary battery | |
JP4530289B2 (en) | Non-aqueous secondary battery | |
JP4159005B2 (en) | Non-aqueous secondary battery | |
JP4439070B2 (en) | Non-aqueous secondary battery and charging method thereof | |
JP7264899B2 (en) | Non-aqueous electrolyte for batteries and lithium secondary batteries | |
JP3368446B2 (en) | Lithium secondary battery | |
JP2000200609A (en) | Nonaqueous secondary battery | |
JP4215263B2 (en) | Non-aqueous secondary battery | |
JP5004217B2 (en) | Non-aqueous secondary battery | |
JP4165677B2 (en) | Non-aqueous secondary battery | |
KR100614368B1 (en) | Lithium secondary battery | |
JP3969551B2 (en) | Non-aqueous secondary battery | |
JP2000243439A (en) | Nonaqueous secondary battery | |
JP2007087963A (en) | Nonaqueous secondary battery | |
JP2014220074A (en) | Positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and method of manufacturing nonaqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060915 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070123 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070320 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070322 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110406 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120406 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120406 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120406 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130406 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130406 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130406 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140406 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |