Nothing Special   »   [go: up one dir, main page]

JP3938225B2 - Catalyst preparation method - Google Patents

Catalyst preparation method Download PDF

Info

Publication number
JP3938225B2
JP3938225B2 JP22204197A JP22204197A JP3938225B2 JP 3938225 B2 JP3938225 B2 JP 3938225B2 JP 22204197 A JP22204197 A JP 22204197A JP 22204197 A JP22204197 A JP 22204197A JP 3938225 B2 JP3938225 B2 JP 3938225B2
Authority
JP
Japan
Prior art keywords
catalyst
niobium
liquid
weight
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22204197A
Other languages
Japanese (ja)
Other versions
JPH1147598A (en
Inventor
悟 駒田
英範 日名子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP22204197A priority Critical patent/JP3938225B2/en
Priority to SA05260359A priority patent/SA05260359B1/en
Priority to EP98114580.8A priority patent/EP0895809B1/en
Priority to IDP981087A priority patent/ID20670A/en
Priority to IDP981084A priority patent/ID20720A/en
Priority to DE19835247.6A priority patent/DE19835247B4/en
Priority to US09/129,412 priority patent/US6036880A/en
Priority to US09/129,414 priority patent/US6063728A/en
Priority to SA98190389A priority patent/SA98190389B1/en
Priority to SA98190559A priority patent/SA98190559B1/en
Publication of JPH1147598A publication Critical patent/JPH1147598A/en
Priority to US09/453,698 priority patent/US6143916A/en
Priority to SA5260351A priority patent/SA05260351B1/en
Application granted granted Critical
Publication of JP3938225B2 publication Critical patent/JP3938225B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プロパンまたはイソブタンの気相接触酸化反応または気相接触アンモ酸化反応に用いる、テルルおよびアンチモンから選ばれる少なくとも1種類以上の元素とモリブデン、バナジウムおよびニオブを含有する触媒の調製方法において、ニオブとジカルボン酸を含有するニオブ原料液を用いる触媒の調製法に関するものである。
【0002】
【従来の技術】
テルルおよびアンチモンから選ばれる少なくとも1種類以上の元素とモリブデン、バナジウムおよびニオブを含有する金属酸化物触媒は、プロパンまたはイソブタンの気相接触酸化反応や気相接触アンモ酸化反応により各種の有機化合物の製造に用いられている。例えば、Mo−V−Nb−Te含有酸化物触媒としては特開平7−10801公報、特開平2−257公報、特開平5−148212公報、特開平5−208136公報、特開平6−285372公報、特開平7−144132号公報、特開平7−289907号公報、特開平8−57319公報および特開平8−141401号公報などが開示されている。これらの開示特許では、酸化物触媒の調製におけるニオブの原料としては、シュウ酸ニオブアンモニウム、NbCl、NbCl、Nb(C、Nb、ニオブ酸、Nb(OC、ハロゲン化物、ハロゲン化アンモニウム塩などが用いられており、好ましくはシュウ酸ニオブアンモニウムと教示している。Mo−V−Sb−Nb含有酸化物触媒としては特開昭63−295545公報、特開平2−95439公報、特開平5−213848公報などが開示されている。これらの開示特許では、Nbが用いられている。しかし、これらのニオブ原料によっては、良好な収率が得られず、さらなる調製方法の改善やより好ましい原料の選定が必要とされていた。
【0003】
【発明が解決しようとする課題】
プロパンまたはイソブタンの気相接触酸化反応や気相接触アンモ酸化反応の場合、反応熱の除去が容易で反応温度制御が簡単な流動床反応が好ましい。流動床反応用の触媒に要求される耐磨耗性を付与するために触媒を担体に担持する時、従来の触媒製造技術では担体成分の割合を増やすに従って担体と触媒成分との相互作用が生じ、担持することによって触媒性能が十分発揮され得ず収率が低下する問題があった。
【0004】
【課題を解決するための手段】
本発明者らはこの課題を解決するため、プロパンまたはイソブタンの気相接触酸化反応または気相接触アンモ酸化反応に用いる、テルルおよびアンチモンから選ばれる少なくとも1種類以上の元素とモリブデン、バナジウムおよびニオブを含有する触媒の調製方法について鋭意検討した結果、ニオブの原料となるニオブ含有液としてジカルボン酸/ニオブのモル比が1〜4.0、(NH+NH )/ニオブのモル比が2以下であるニオブ含有液を用いることによって、高収率の触媒を調製し、しかも担持触媒とした時にも触媒性能を十分発揮させ得ることを見出し、本発明をなすに至った。即ち、本発明は、
1.プロパンまたはイソブタンの気相接触酸化反応または気相接触アンモ酸化反応に用いられる担体に担持された触媒の調製方法において、テルルおよびアンチモンから選ばれる少なくとも1種類以上の元素とモリブデン及びバナジウムを含有する溶液と、ジカルボン酸/ニオブのモル比が1〜4であり、(NH 3 +NH 4 + )/ニオブのモル比が2以下であるニオブ含有液とを混合する工程を有することを特徴とする触媒調製方法、
2.(NH 3 +NH 4 + )/ニオブのモル比が1以下であることを特徴とする上記1に記載の方法、
3.ジカルボン酸がシュウ酸であることを特徴とする上記1又は上記2に記載の方法、
4.触媒が式(1)の一般式で示される化合物であることを特徴とする上記1〜3のいずれか1項に記載の方法、
Mo 1 a Nb b c d n (1)
(式中、XはTeおよびSbから選ばれる少なくとも1種以上の元素、ZはW、Cr、Ta、Ti、Zr、Hf、Mn、Re、Fe、Ru、Co、Rh、Ni、Pd、Pt、Cu、Ag、Zn、B、Al、Ga、In、Ge、Sn、Pb、P、Bi、Y、希土類元素、アルカリ金属およびアルカリ土類金属から選ばれる少なくとも一種以上の元素であり、a、b、c、d、nはMo1原子当たりの原子比を表し、0.1≦a≦1、0.01≦b≦1、0.01≦c≦1、0≦d≦1、そしてnは構成金属の酸化状態によって決まる数である。)
5.前記テルルおよびアンチモンから選ばれる少なくとも1種類以上の元素とモリブデン及びバナジウムを含有する溶液と、前記担体の成分とを混合した後、前記ニオブ含有液を混合することを特徴とする上記1〜4のいずれか1項に記載の方法、
6.シリカ、アルミナ、シリカアルミナ、チタニア、マグネシアおよびジルコニアから選ばれる1種類以上の触媒担体を用いることを特徴とする上記1〜5のいずれか1項に記載の方法、
7.触媒担体として全触媒重量に対して30重量%以上50重量%以下のシリカを含むことを特徴とする上記6に記載の方法、
である。
以下、本発明を詳細に説明する。
【0005】
本発明の方法は、プロパンまたはイソブタンの気相接触酸化反応または気相接触アンモ酸化反応に用いるテルルおよびアンチモンから選ばれる少なくとも1種類以上の元素とモリブデン、バナジウムおよびニオブを含有する触媒の調製方法において、ニオブの原料となるニオブ含有液としてジカルボン酸/ニオブのモル比が1〜4.0、(NH+NH )/ニオブのモル比が2以下であるニオブ含有液を用いることを特徴とする。ジカルボン酸/ニオブのモル比は通常1〜4.0でよいが、好ましくは1.5〜4.0であり、特に好ましくは2〜3.5である。(NH+NH )/ニオブのモル比は通常2以下でよいが、好ましくは1以下がよい。
【0006】
本発明に用いるジカルボン酸は、シュウ酸、マロン酸、コハク酸、フタル酸、酒石酸などである。好ましくはシュウ酸、酒石酸であり、特に好ましくはシュウ酸である。 本発明に用いる担体はシリカ、アルミナ、シリカアルミナ、チタニア、マグネシアおよびジルコニアであり、それらを同時に用いても良いが、特にシリカが好ましい。
【0007】
用いる担体成分の割合は全触媒重量中の担体の占める重量比として5重量%以上90重量%以下、好ましくは5重量%以上50重量%以下である。担体を用いることによって耐磨耗性が付与される。本発明によれば、触媒の耐磨耗性を得るため担体成分の割合を増やしても、収率の低下が小さいという特徴が認められる。 本発明に用いる触媒は下記式(1)の一般組成式で示される組成物を5〜50重量%のシリカに担持した触媒が好ましい。
【0008】
Mo1 a Nbb c d n (1)
(式中、XはTeおよびSbから選ばれる少なくとも1種以上の元素、ZはW、Cr、Ta、Ti、Zr、Hf、Mn、Re、Fe、Ru、Co、Rh、Ni、Pd、Pt、Cu、Ag、Zn、B、Al、Ga、In、Ge、Sn、Pb、P、Bi、Y、希土類元素、アルカリ金属およびアルカリ土類金属から選ばれる少なくとも一種以上の元素であり、a、b、c、d、nはMo1原子当たりの原子比を表し、0.1≦a≦1、好ましくは0.1≦a≦0.6であり、0.01≦b≦1、、好ましくは0.01≦b≦0.5であり、0.01≦c≦1、好ましくは0.05≦c≦0.5であり、0≦d≦1、そしてnは構成金属の酸化状態によって決まる数である。)
ニオブの原料はニオブ水酸化物、ニオブ酸、ニオブ酸塩、ニオブ酸化物などを用いることができ、ニオブ水酸化物、ニオブ酸が好ましい。これらのニオブ化合物はニオブのハロゲン化物、ニオブのアルコキシドなどを加水分解して得ることもできる。
【0009】
モリブデンの原料は、ヘプタモリブデン酸アンモニウム、モリブデン酸、モリブデン酸化物などを用いることができ、溶解度の面からヘプタモリブデン酸アンモニウムが好ましい。バナジウムの原料は、メタバナジン酸アンモニウム、バナジウム酸化物などを用いることができ、溶解度及び入手のしやすさの面からメタバナジン酸アンモニウムが好ましい。テルルの原料はテルル酸、テルル酸化物などを用いることができ、溶解度の面からテルル酸が好ましい。アンチモンの原料はアンチモン酸化物などを用いることができる。
【0010】
その他の元素の原料としては硝酸塩、酢酸塩、水酸化物、酸化物、塩化物などを用いることができる。
触媒担体、すなわちシリカ、アルミナ、シリカアルミナ、チタニア、マグネシアおよびマグネシアの原料としては、その成形体の他、酸化物、水酸化物の粉末あるいはゲル、ゾルなどを用いることができる。また、触媒調製工程の後に担体成分を生成する原料を用いることもできる。担体としてシリカを用いる場合、シリカ源としてシリカゾルが好ましい。
触媒を調製するための工程は原料調合工程、乾燥工程および焼成工程の大きく3つに分けられる。
【0011】
まず原料調合工程について説明する。ニオブ化合物、ジカルボン酸を調合する際、ジカルボン酸/ニオブのモル比が1〜4、(NH+NH )/ニオブのモル比が2以下、好ましくは1以下になるように溶媒中で混合させ、A液とする。テルルおよびアンチモンから選ばれる少なくとも1種類以上の元素とモリブデン化合物およびバナジウム化合物をニオブとは別の溶媒中に混合させ、B液とすることがよい。その他の化合物はこれらの液に適宜混合してかまわない。B液に攪拌下、担体成分を加え、さらにA液を添加して混合液Cとする。混合後のC液の状態は溶液、スラリーなど様々な状態をとり得るがどのような形態でも可能である。
【0012】
次に乾燥工程について説明する。原料調合工程で得られた液を通常用いられる噴霧乾燥法、蒸発乾固法または真空乾燥法等の方法で乾燥させ、固体物を得ることができる。触媒形状として微小球状の乾燥固体が得られる噴霧乾燥法が最も好ましい。液の噴霧化は通常工業的に実施される遠心方式、二流体ノズル方式および高圧ノズル方式などの方法で実施できる。乾燥熱源としては、スチーム、電気ヒーターなどによって加熱された空気を用いることができる。乾燥機入口温度は100〜400℃、好ましくは150〜300℃である。
【0013】
最後に焼成工程を説明する。乾燥工程で得られた乾燥粉体を焼成することによって酸化物触媒を得る。焼成は窒素、ヘリウム、COなどの不活性ガス雰囲気下、500〜700℃、好ましくは550〜650℃で実施する。焼成の前に大気雰囲気下、酸素雰囲気下または不活性ガス雰囲気下で200〜400℃で前処理を実施してもよい。
このようにして調製された触媒の存在下、プロパンまたはイソブタンを酸化またはアンモ酸化することによって、対応する不飽和のアルデヒド、カルボン酸またはニトリルを製造することができる。プロパンまたはイソブタンとアンモ酸化を行う場合のアンモニアは必ずしも高純度である必要はなく、工業グレードのものを使用できる。酸素源として通常は空気が使用されるが、純酸素または純酸素を空気と混合するなどして酸素濃度を高めたものを用いても良い。希釈ガスとして窒素、アルゴン、ヘリウム、二酸化炭素、水蒸気などを使用しても良い。
【0014】
本反応は減圧下、大気圧下、加圧下のいずれでも実施することができるが、0.1〜10atmの範囲内で行うことが好ましい。酸化反応の場合、反応温度は250℃〜500℃、好ましくは350℃〜470℃で実施することができる。アンモ酸化反応の場合、反応温度は350℃〜600℃、好ましくは350℃〜500℃、さらに好ましくは380℃〜470℃で実施することができる。
本反応の原料混合ガスと触媒との接触時間は通常0.1〜30(sec・g/cc)、好ましくは0.5〜10(sec・g/cc)である。反応器方式は、固定床、流動床、移動床などのいずれも採用できるが、反応熱の除去が容易で層内の温度がほぼ均一に保持できること、触媒を反応装置より連続的に抜き出したり添加することができるなど触媒の取り扱いが容易であることなどの理由から、流動床反応が最も好ましい。
【0015】
【実施例】
以下に本発明の方法を、プロパンを用い気相接触アンモ酸化反応を行ってアクリロニトリルを製造した場合の実施例を用いて説明するが、本発明はその要旨を越えない限りこれら実施例に限定されるものではない。すなわち、例えば触媒がテルルに替えてアンチモン、又はテルルとアンチモンの両方を含むものである場合、反応が気相接触酸化反応である場合、そして原料ガスがイソブタンである場合も次の実施例1〜8と同様の効果が奏せられる。
【0016】
(実施例1)
(触媒の調製法)30重量%のSiOに担持された、組成式がMo0.33Nb0.11Te0.22で示される触媒を次のようにして調製した。水170gにNbとして76.6重量%を含有するニオブ酸を17.64g、シュウ酸二水和物〔H・2HO〕を34.60g加え60℃に加熱し溶解させたのち、30℃まで冷却してA液を得た。このときH/Nb=2.7(モル比)である。水720gにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を164.31g、メタバナジン酸アンモニウム〔NHVO〕を36.05g、テルル酸〔HTeO〕を47.15g加え60℃に加熱、溶解してB液を得た。
【0017】
B液に攪拌下シリカ含有量30重量%のシリカゾルを300g添加して30℃まで冷却後、さらにA液を添加し、約10分間攪拌しながら混合した。この混合液を遠心式噴霧乾燥機にて入口温度が240℃、出口温度が145℃で乾燥し、微小球状の乾燥粉体を得た。得られた乾燥粉体を大気雰囲気下275℃で2時間焼成した後、窒素雰囲気下600℃で2時間焼成して触媒を得た。
(触媒の耐磨耗度試験)ここに得られた触媒の耐磨耗度試験を行った。触媒の磨耗度は通常FCC触媒の試験方法として行われている様に、底部に1/64インチの3つのオリフィスを有する孔開き円板を備え、上部に内径5インチの筒を設けた内径1.5インチの垂直チューブに触媒約50gを精秤し、孔開き円板の孔部分で音速となるように空気を流し触媒を激しく流動させた。触媒の磨耗度を次式で求めたところ、0.15%であった。
【0018】
触媒の磨耗度(%)=(5から20時間の間に微細化して垂直チューブ上部の5インチの筒上部から逸散した触媒重量)/(初期投入量−(0から5時間の間に垂直チューブ上部の5インチ筒上部から逸散した触媒重量))
(プロパンのアンモ酸化反応試験)内径25mmのバイコールガラス流動床型反応管に調製して得られた触媒を45g充填し、反応温度430℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1.2:3:12のモル比の混合ガスを毎秒5.83cc(NTP換算)の流量で通過させた。接触時間は3.0(sec・g/cc)であった。得られた結果を表1に示す。なお、プロパン転化率、アクリロニトリル選択率、アクリロニトリル収率、接触時間はそれぞれ次式で定義される。
【0019】
プロパン転化率(%)=(反応したプロパンのモル数)/(供給したプロパンのモル数)×100
アクリロニトリル選択率(%)=(生成したアクリロニトリルのモル数)/(反応したプロパンのモル数)×100
アクリロニトリル収率(%)=(生成したアクリロニトリルのモル数)/(供給したプロパンのモル数)×100
接触時間(sec・g/cc)=(W/F)×273/(273+T)
(ここでW=充填触媒量(g)、F=原料混合ガス流量(Ncc/sec)、T=反応温度(℃)である。)
【0020】
(実施例2)
(触媒の調製法)30重量%のSiOに担持された、組成式がMo0.33Nb0.11Te0.22で示される触媒を次のようにして調製した。水170gにNbとして76.6重量%を含有するニオブ酸を17.64g、シュウ酸二水和物〔H・2HO〕を38.45g加え60℃に加熱し溶解させたのち、30℃まで冷却してA液を得た。
【0021】
このときH/Nb=3.0(モル比)である。水720gにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を164.31g、メタバナジン酸アンモニウム〔NHVO〕36.05g、テルル酸〔HTeO〕を47.15g加え60℃に加熱、溶解してB液を得た。B液に攪拌下シリカ含有量30重量%のシリカゾルを300g添加して30℃まで冷却後、さらにA液を添加し、約10分間攪拌しながら混合した。この混合液を実施例1と同様に乾燥、焼成を行い、触媒を得た。
【0022】
(プロパンのアンモ酸化反応試験)ここに得られた触媒を実施例1と同様にしてプロパンのアンモ酸化反応試験を行った。得られた結果を表1に示す。
(実施例3)
(触媒の調製法)30重量%のSiOに担持された、組成式がMo0.33Nb0.11Te0.22で示される触媒を次のようにして調製した。水160gにNbとして76.6重量%を含有するニオブ酸を17.64g、シュウ酸二水和物〔H・2HO〕を38.45g、25%アンモニア水を6.9g加え、60℃に加熱し溶解させたのち、30℃まで冷却してA液を得た。このときH/Nb=3.0(モル比)、(NH+NH )/Nb=1.0(モル比)である。水720gにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を164.31g、メタバナジン酸アンモニウム〔NHVO〕を36.05g、テルル酸〔HTeO〕を47.15g加え60℃に加熱、溶解してB液を得た。B液に攪拌下シリカ含有量30重量%のシリカゾルを300g添加して30℃まで冷却後、さらにA液を添加し、約10分間攪拌しながら混合した。この混合液を実施例1と同様に乾燥、焼成を行い、触媒を得た。
(プロパンのアンモ酸化反応試験)ここに得られた触媒を実施例1と同様にしてプロパンのアンモ酸化反応試験を行った。得られた結果を表1に示す。
【0023】
(比較例1)
(触媒の調製法)30重量%のSiOに担持された、組成式がMo0.33Nb0.11Te0.22で示される触媒を次のようにして調製した。水150gにNbとして76.6重量%を含有するニオブ酸を17.64g、シュウ酸二水和物〔H・2HO〕を38.45g、25%アンモニア水を16.6g加え、60℃に加熱し溶解させたのち、30℃まで冷却してA液を得た。このときH/Nb=3.0(モル比)、(NH+NH )/Nb=2.4(モル比)である。水720gにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を164.31g、メタバナジン酸アンモニウム〔NHVO〕を36.05g、テルル酸〔HTeO〕を47.15g加え60℃に加熱、溶解してB液を得た。B液に攪拌下シリカ含有量30重量%のシリカゾルを300g添加して30℃まで冷却後、さらにA液を添加し、約10分間攪拌しながら混合した。この混合液を実施例1と同様に乾燥、焼成を行い、触媒を得た。
(プロパンのアンモ酸化反応試験)ここに得られた触媒を実施例1と同様にしてプロパンのアンモ酸化反応試験を行った。得られた結果を表1に示す。
【0024】
(実施例4)
(触媒の調製法)30重量%のSiOに担持された、組成式がMo0.33Nb0.11Te0.22で示される触媒を次のようにして調製した。水160gにNbとして76.6重量%を含有するニオブ酸を17.64g、シュウ酸二水和物〔H・2HO〕を44.85g加え60℃に加熱し溶解させたのち、30℃まで冷却してA液を得た。このときH/Nb=3.5(モル比)である。水720gにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を164.31g、メタバナジン酸アンモニウム〔NHVO〕を36.05g、テルル酸〔HTeO〕を47.15g加え60℃に加熱、溶解してB液を得た。B液に攪拌下シリカ含有量30重量%のシリカゾルを300g添加して30℃まで冷却後、さらにA液を添加し、約10分間攪拌しながら混合した。この混合液を実施例1と同様に乾燥、焼成を行い、触媒を得た。
(プロパンのアンモ酸化反応試験)ここに得られた触媒を実施例1と同様にしてプロパンのアンモ酸化反応試験を行った。得られた結果を表1に示す。
【0025】
(実施例5)
(触媒の調製法)30重量%のSiOに担持された、組成式がMo0.33Nb0.11Te0.22で示される触媒を次のようにして調製した。水160gにNbとして76.6重量%を含有するニオブ酸を17.64g、シュウ酸二水和物〔H・2HO〕を51.26g加え60℃に加熱し溶解させたのち、30℃まで冷却してA液を得た。このときH/Nb=4.0(モル比)である。水720gにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を164.31g、メタバナジン酸アンモニウム〔NHVO〕を36.05g、テルル酸〔HTeO〕を47.15g加え60℃に加熱、溶解してB液を得た。B液に攪拌下シリカ含有量30重量%のシリカゾルを300g添加して30℃まで冷却後、さらにA液を添加し、約10分間攪拌しながら混合した。この混合液を実施例1と同様に乾燥、焼成を行い、触媒を得た。
(プロパンのアンモ酸化反応試験)ここに得られた触媒を実施例1と同様にしてプロパンのアンモ酸化反応試験を行った。得られた結果を表1に示す。
【0026】
(比較例2)
(触媒の調製法)30重量%のSiOに担持された、組成式がMo0.33Nb0.11Te0.22で示される触媒を次のようにして調製した。水110gにNbとして76.6重量%を含有するニオブ酸を17.64g、シュウ酸二水和物〔H・2HO〕を96.11g加え60℃に加熱し溶解させたのち、30℃まで冷却してA液を得た。このときH/Nb=7.5(モル比)である。水720gにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を164.31g、メタバナジン酸アンモニウム〔NHVO〕を36.05g、テルル酸〔HTeO〕を47.15g加え60℃に加熱、溶解してB液を得た。B液に攪拌下シリカ含有量30重量%のシリカゾルを300g添加して30℃まで冷却後、さらにA液を添加し、約10分間攪拌しながら混合した。この混合液を実施例1と同様に乾燥、焼成を行い、触媒を得た。
(プロパンのアンモ酸化反応試験)ここに得られた触媒を実施例1と同様にしてプロパンのアンモ酸化反応試験を行った。得られた結果を表1に示す。
【0027】
(実施例6)
(触媒の調製法)50重量%のSiOに担持された、組成式がMo0.33Nb0.11Te0.22で示される触媒を次のようにして調製した。水120gにNbとして76.6重量%を含有するニオブ酸を12.60g、シュウ酸二水和物〔H・2HO〕を27.46g加え60℃に加熱し溶解させたのち、30℃まで冷却してA液を得た。このときH/Nb=3.0(モル比)である。水510gにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を117.36g、メタバナジン酸アンモニウム〔NHVO〕を25.75g、テルル酸〔HTeO〕を33.68g加え60℃に加熱、溶解してB液を得た。B液に攪拌下シリカ含有量30重量%のシリカゾルを500g添加して30℃まで冷却後、さらにA液を添加し、約10分間攪拌しながら混合した。この混合液を実施例1と同様に乾燥、焼成を行い、触媒を得た。
(プロパンのアンモ酸化反応試験)ここに得られた触媒を実施例1と同様にしてプロパンのアンモ酸化反応試験を行った。得られた結果を表1に示す。
【0028】
(比較例3)
(触媒の調製法)50重量%のSiOに担持された、組成式がMo0.33Nb .11Te0.22で示される触媒を次のようにして調製した。水80gにNbとして76.6重量%を含有するニオブ酸を12.60g、シュウ酸二水和物〔H・2HO〕を68.65g加え60℃に加熱し溶解させたのち、30℃まで冷却してA液を得た。このときH/Nb=7.5(モル比)である。水510gにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を117.36g、メタバナジン酸アンモニウム〔NHVO〕を25.75g、テルル酸〔HTeO〕を33.68g加え60℃に加熱、溶解してB液を得た。B液に攪拌下シリカ含有量30重量%のシリカゾルを500g添加して30℃まで冷却後、さらにA液を添加し、約10分間攪拌しながら混合した。この混合液を実施例1と同様に乾燥、焼成を行い、触媒を得た。
【0029】
(プロパンのアンモ酸化反応試験)ここに得られた触媒を実施例1と同様にしてプロパンのアンモ酸化反応試験を行った。得られた結果を表1に示す。
参考例1
(触媒の調製法)組成式がMo0.33Nb0.11Te0.22で示される触媒を次のようにして調製した。水250gにNbとして76.6重量%を含有するニオブ酸を25.20g、シュウ酸二水和物〔H・2HO〕を45.77g加え60℃に加熱し溶解させたのち、30℃まで冷却してA液を得た。このときH/Nb=2.5(モル比)である。水1030gにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を234.72g、メタバナジン酸アンモニウム〔NHVO〕を51.49g、テルル酸〔HTeO〕を67.35g加え60℃に加熱し溶解後、30℃まで冷却しB液を得た。
【0030】
B液にA液を添加し、約10分間攪拌しながら混合した。この混合液を実施例1と同様に乾燥、焼成を行い、触媒を得た。
(プロパンのアンモ酸化反応試験)触媒1gを内径10mmの固定床型反応管に充填し、反応温度430℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1.2:3:12のモル比の混合ガスを毎秒0.388cc(NTP換算)の流量で通過させた。接触時間は1.0(sec・g/cc)であった。得られた結果を表1に示す。
【0031】
参考例2
(触媒の調製法)組成式がMo0.33Nb0.11Te0.22で示される触媒を次のようにして調製した。水240gにNbとして76.6重量%を含有するニオブ酸を25.20g、シュウ酸二水和物〔H・2HO〕を45.77g、25%アンモニア水を9.9g加え、60℃に加熱し溶解させたのち、30℃まで冷却してA液を得た。このときH/Nb=2.5(モル比)、(NH+NH )/Nb=1.0(モル比)である。水1030gにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を234.72g、メタバナジン酸アンモニウム〔NHVO〕を51.49g、テルル酸〔HTeO〕を67.35g加え60℃に加熱し溶解後、30℃まで冷却しB液を得た。B液にA液を添加し、約10分間攪拌しながら混合した。この混合液を実施例1と同様に乾燥、焼成を行い触媒を得た。
(プロパンのアンモ酸化反応試験)ここに得られた触媒を参考例1と同様にしてプロパンのアンモ酸化反応試験を行った。得られた結果を表1に示す。
【0032】
(比較例4)
(触媒の調製法)組成式がMo0.33Nb0.11Te0.22で示される触媒を次のようにして調製した。水160gにNbとして76.6重量%を含有するニオブ酸を25.20g、シュウ酸二水和物〔H・2HO〕を137.31g加え、60℃に加熱し溶解させたのち、30℃まで冷却してA液を得た。このときH/Nb=7.5(モル比)である。水1030gにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を234.72g、メタバナジン酸アンモニウム〔NHVO〕を51.49g、テルル酸〔HTeO〕を67.35g加え60℃に加熱し溶解後、30℃まで冷却しB液を得た。B液にA液を添加し、約10分間攪拌しながら混合した。この混合液を実施例1と同様に乾燥、焼成を行い触媒を得た。
(プロパンのアンモ酸化反応試験)ここに得られた触媒を参考例1と同様にしてプロパンのアンモ酸化反応試験を行った。得られた結果を表1に示す。
【0033】
(比較例5)
(触媒の調製法)組成式がMo0.33Nb0.11Te0.22で示される触媒を次のようにして調製した。水110gにNbとして76.6重量%を含有するニオブ酸を25.20g、シュウ酸二水和物〔H・2HO〕を137.31g、25%アンモニア水を49.5g加え、60℃に加熱し溶解させたのち、30℃まで冷却してA液を得た。このときH/Nb=7.5(モル比)、(NH+NH )/Nb=5.0(モル比)である。水1030gにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を234.72g、メタバナジン酸アンモニウム〔NHVO〕を51.49g、テルル酸〔HTeO〕を67.35g加え60℃に加熱し溶解後、30℃まで冷却しB液を得た。B液にA液を添加し、約10分間攪拌しながら混合した。この混合液を実施例1と同様に乾燥、焼成を行い触媒を得た。
(プロパンのアンモ酸化反応試験)ここに得られた触媒を参考例1と同様にしてプロパンのアンモ酸化反応試験を行った。得られた結果を表1に示す。
【0034】
【表1】

Figure 0003938225
【0035】
【発明の効果】
本発明の触媒調製方法により、プロパンまたはイソブタンの気相接触酸化反応または気相接触アンモ酸化反応において、収率が高い触媒を製造することができる。特に耐磨耗性を高めるため工業的に用いられる担体を含む触媒において、従来技術に比べ担体の割合を増やしていっても収率の低下が小さく、工業的価値が高い触媒を得ることができる。[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a method for preparing a catalyst containing at least one element selected from tellurium and antimony and molybdenum, vanadium, and niobium, which are used for gas phase catalytic oxidation reaction or gas phase catalytic ammoxidation reaction of propane or isobutane. The present invention relates to a method for preparing a catalyst using a niobium raw material liquid containing niobium and dicarboxylic acid.
[0002]
[Prior art]
  A metal oxide catalyst containing at least one element selected from tellurium and antimony and molybdenum, vanadium and niobium is used to produce various organic compounds by gas phase catalytic oxidation reaction or gas phase catalytic ammoxidation reaction of propane or isobutane. It is used for. For example, as the Mo-V-Nb-Te-containing oxide catalyst, JP-A-7-10801, JP-A-2-257, JP-A-5-148212, JP-A-5-208136, JP-A-6-285372, JP-A-7-144132, JP-A-7-289907, JP-A-8-57319, JP-A-8-141401, and the like are disclosed. In these disclosure patents, niobium raw materials in the preparation of oxide catalysts include ammonium niobium oxalate, NbCl.3, NbCl5, Nb2(C2O4)5, Nb2O5, Niobic acid, Nb (OC2H5)5, Halides, ammonium halide salts, and the like are used, preferably teaching as niobium ammonium oxalate. As the Mo-V-Sb-Nb-containing oxide catalyst, JP-A 63-295545, JP-A 2-95439, JP-A 5-213848 and the like are disclosed. In these disclosed patents, Nb2O5Is used. However, depending on these niobium raw materials, a good yield could not be obtained, and further improvement of the preparation method and selection of more preferable raw materials were required.
[0003]
[Problems to be solved by the invention]
  In the case of a gas phase catalytic oxidation reaction or a gas phase catalytic ammoxidation reaction of propane or isobutane, a fluidized bed reaction in which reaction heat is easily removed and reaction temperature control is simple is preferable. When a catalyst is supported on a support in order to provide the wear resistance required for a catalyst for a fluidized bed reaction, the interaction between the support and the catalyst component occurs as the ratio of the support component increases in the conventional catalyst manufacturing technology. However, there is a problem in that the catalyst performance cannot be sufficiently exhibited by the loading and the yield is lowered.
[0004]
[Means for Solving the Problems]
  In order to solve this problem, the inventors of the present invention used at least one element selected from tellurium and antimony and molybdenum, vanadium and niobium used for gas phase catalytic oxidation reaction or gas phase catalytic ammoxidation reaction of propane or isobutane. As a result of intensive studies on the preparation method of the catalyst to be contained, as a niobium-containing liquid used as a niobium raw material, the dicarboxylic acid / niobium molar ratio is 1 to 4.0, (NH3+ NH4 +) / Niobium-containing liquid having a niobium molar ratio of 2 or less has been found to produce a high yield catalyst, and even when used as a supported catalyst, it has been found that the catalyst performance can be sufficiently exerted, thus forming the present invention. It came to.That is, the present invention
1. A solution containing at least one element selected from tellurium and antimony and molybdenum and vanadium in a method for preparing a catalyst supported on a carrier used for gas phase catalytic oxidation reaction or gas phase catalytic ammoxidation reaction of propane or isobutane And the dicarboxylic acid / niobium molar ratio is 1-4, and (NH Three + NH Four + And a niobium-containing liquid having a niobium molar ratio of 2 or less, and a catalyst preparation method,
2. (NH Three + NH Four + ) / Niobium molar ratio is 1 or less,
3. The method according to 1 or 2 above, wherein the dicarboxylic acid is oxalic acid,
4). The method according to any one of the above items 1 to 3, wherein the catalyst is a compound represented by the general formula of formula (1),
Mo 1 V a Nb b X c Z d O n (1)
(Wherein X is at least one element selected from Te and Sb, Z is W, Cr, Ta, Ti, Zr, Hf, Mn, Re, Fe, Ru, Co, Rh, Ni, Pd, Pt Cu, Ag, Zn, B, Al, Ga, In, Ge, Sn, Pb, P, Bi, Y, at least one element selected from rare earth elements, alkali metals and alkaline earth metals, a, b, c, d, n represent atomic ratios per Mo atom, 0.1 ≦ a ≦ 1, 0.01 ≦ b ≦ 1, 0.01 ≦ c ≦ 1, 0 ≦ d ≦ 1, and n is (The number depends on the oxidation state of the constituent metals.)
5. The above niobium-containing liquid is mixed after mixing at least one element selected from tellurium and antimony with a solution containing molybdenum and vanadium and a component of the carrier. The method according to any one of the above,
6). The method according to any one of the above 1 to 5, wherein one or more types of catalyst carriers selected from silica, alumina, silica alumina, titania, magnesia and zirconia are used.
7). The method according to 6 above, wherein the catalyst support contains 30% by weight or more and 50% by weight or less of silica based on the total catalyst weight,
It is.
  Hereinafter, the present invention will be described in detail.
[0005]
  The method of the present invention is a method for preparing a catalyst containing at least one element selected from tellurium and antimony and molybdenum, vanadium and niobium used for gas phase catalytic oxidation reaction or gas phase catalytic ammoxidation reaction of propane or isobutane. The niobium-containing liquid used as the niobium raw material has a dicarboxylic acid / niobium molar ratio of 1 to 4.0, (NH3+ NH4 +) / Niobium-containing liquid having a niobium molar ratio of 2 or less. The molar ratio of dicarboxylic acid / niobium may usually be 1 to 4.0, preferably 1.5 to 4.0, particularly preferably 2 to 3.5. (NH3+ NH4 +) / Niobium molar ratio is usually 2 or less, preferably 1 or less.
[0006]
  Examples of the dicarboxylic acid used in the present invention include oxalic acid, malonic acid, succinic acid, phthalic acid, and tartaric acid. Oxalic acid and tartaric acid are preferable, and oxalic acid is particularly preferable. The carrier used in the present invention is silica, alumina, silica alumina, titania, magnesia and zirconia, and these may be used simultaneously, but silica is particularly preferred.
[0007]
  The ratio of the carrier component to be used is 5% by weight or more and 90% by weight or less, preferably 5% by weight or more and 50% by weight or less as the weight ratio of the carrier to the total catalyst weight. Wear resistance is imparted by using a carrier. According to the present invention, it is recognized that even if the proportion of the carrier component is increased in order to obtain the wear resistance of the catalyst, the decrease in yield is small. The catalyst used in the present invention is preferably a catalyst in which a composition represented by the following general formula (1) is supported on 5 to 50% by weight of silica.
[0008]
    Mo1VaNbbXcZdOn(1)
(Wherein X is at least one element selected from Te and Sb, Z is W, Cr, Ta, Ti, Zr, Hf, Mn, Re, Fe, Ru, Co, Rh, Ni, Pd, Pt Cu, Ag, Zn, B, Al, Ga, In, Ge, Sn, Pb, P, Bi, Y, at least one element selected from rare earth elements, alkali metals and alkaline earth metals, a, b, c, d and n represent the atomic ratio per Mo atom, 0.1 ≦ a ≦ 1, preferably 0.1 ≦ a ≦ 0.6, 0.01 ≦ b ≦ 1, preferably 0.01 ≦ b ≦ 0.5, 0.01 ≦ c ≦ 1, preferably 0.05 ≦ c ≦ 0.5, 0 ≦ d ≦ 1, and n is determined by the oxidation state of the constituent metals Number.)
  As the raw material of niobium, niobium hydroxide, niobic acid, niobate, niobium oxide and the like can be used, and niobium hydroxide and niobic acid are preferable. These niobium compounds can also be obtained by hydrolyzing niobium halides, niobium alkoxides, and the like.
[0009]
  As the raw material of molybdenum, ammonium heptamolybdate, molybdic acid, molybdenum oxide, or the like can be used, and ammonium heptamolybdate is preferable from the viewpoint of solubility. As the vanadium raw material, ammonium metavanadate, vanadium oxide, or the like can be used, and ammonium metavanadate is preferable from the viewpoint of solubility and availability. Telluric acid, tellurium oxide, etc. can be used as the raw material for tellurium, and telluric acid is preferred from the viewpoint of solubility. Antimony oxide or the like can be used as the antimony raw material.
[0010]
  As raw materials for other elements, nitrates, acetates, hydroxides, oxides, chlorides and the like can be used.
  As the catalyst carrier, that is, the raw material of silica, alumina, silica alumina, titania, magnesia and magnesia, oxides, hydroxide powders, gels, sols, etc. can be used in addition to the shaped bodies. Moreover, the raw material which produces | generates a support component after a catalyst preparation process can also be used. When silica is used as the carrier, silica sol is preferred as the silica source.
  The process for preparing the catalyst is roughly divided into three steps: a raw material preparation process, a drying process, and a calcination process.
[0011]
  First, the raw material preparation step will be described. When preparing the niobium compound and dicarboxylic acid, the dicarboxylic acid / niobium molar ratio is 1 to 4, (NH3+ NH4 +) / Niobium molar ratio is 2 or less, preferably 1 or less. At least one element selected from tellurium and antimony, a molybdenum compound and a vanadium compoundDIt is good to mix in the solvent different from ob and make it B liquid. Other compounds may be appropriately mixed with these liquids. The carrier component is added to the B liquid with stirring, and the A liquid is further added to obtain a mixed liquid C. The state of the liquid C after mixing can be various states such as a solution and a slurry, but any form is possible.
[0012]
  Next, the drying process will be described. The liquid obtained in the raw material preparation step can be dried by a commonly used method such as spray drying, evaporation to dryness, or vacuum drying to obtain a solid product. Most preferred is a spray drying method in which a fine spherical dry solid is obtained as the catalyst shape. The atomization of the liquid can be carried out by a method such as a centrifugal method, a two-fluid nozzle method, and a high-pressure nozzle method which are usually carried out industrially. As the drying heat source, air heated by steam, an electric heater or the like can be used. The dryer inlet temperature is 100 to 400 ° C, preferably 150 to 300 ° C.
[0013]
  Finally, the firing process will be described. An oxide catalyst is obtained by firing the dry powder obtained in the drying step. Firing is nitrogen, helium, CO2In an inert gas atmosphere such as 500 to 700 ° C., preferably 550 to 650 ° C. You may implement pre-processing at 200-400 degreeC by air | atmosphere atmosphere, oxygen atmosphere, or inert gas atmosphere before baking.
  The corresponding unsaturated aldehyde, carboxylic acid or nitrile can be produced by oxidizing or ammoxidizing propane or isobutane in the presence of the catalyst thus prepared. Ammonia when ammoxidation with propane or isobutane does not necessarily have to be highly pure, and industrial grade can be used. Normally, air is used as the oxygen source. However, pure oxygen or a material in which oxygen concentration is increased by mixing pure oxygen with air may be used. Nitrogen, argon, helium, carbon dioxide, water vapor or the like may be used as a dilution gas.
[0014]
  This reaction can be carried out under reduced pressure, atmospheric pressure, or increased pressure, but is preferably performed within a range of 0.1 to 10 atm. In the case of an oxidation reaction, the reaction temperature can be 250 ° C to 500 ° C, preferably 350 ° C to 470 ° C. In the case of an ammoxidation reaction, the reaction temperature can be 350 to 600 ° C, preferably 350 to 500 ° C, more preferably 380 to 470 ° C.
  The contact time between the raw material mixed gas and the catalyst in this reaction is usually 0.1 to 30 (sec · g / cc), preferably 0.5 to 10 (sec · g / cc). The reactor system can be any of fixed bed, fluidized bed, moving bed, etc., but it can easily remove heat of reaction and keep the temperature in the bed almost uniform, and the catalyst can be continuously extracted and added from the reactor. The fluidized bed reaction is the most preferable because of easy handling of the catalyst and the like.
[0015]
【Example】
  Hereinafter, the method of the present invention will be described with reference to examples in which acrylonitrile is produced by carrying out a gas phase catalytic ammoxidation reaction using propane. However, the present invention is not limited to these examples as long as the gist thereof is not exceeded. It is not something. That is, for example, when the catalyst contains antimony or tellurium and antimony instead of tellurium, the reaction is a gas phase catalytic oxidation reaction, and the source gas is isobutane, the following Examples 1 to 8 Similar effects can be achieved.
[0016]
  Example 1
(Catalyst preparation method) 30 wt% SiO2The composition formula carried by1V0.33Nb0.11Te0.22OnThe catalyst represented by was prepared as follows. Nb in 170g of water2O517.64 g of niobic acid containing 76.6% by weight as oxalic acid dihydrate [H2C2O4・ 2H234.60 g of O] was added and heated to 60 ° C. for dissolution, and then cooled to 30 ° C. to obtain Liquid A. At this time H2C2O4/Nb=2.7 (molar ratio). Ammonium heptamolybdate [(NH4)6Mo7O24・ 4H2164.31 g of O], ammonium metavanadate [NH4VO3] 36.05 g, telluric acid [H6TeO6] Was added and heated to 60 ° C. and dissolved to obtain a liquid B.
[0017]
  300 g of a silica sol having a silica content of 30% by weight was added to the B liquid with stirring and cooled to 30 ° C., and then the A liquid was further added and mixed with stirring for about 10 minutes. This mixed solution was dried by a centrifugal spray dryer at an inlet temperature of 240 ° C. and an outlet temperature of 145 ° C. to obtain a fine spherical dry powder. The obtained dry powder was calcined at 275 ° C. for 2 hours in an air atmosphere, and then calcined at 600 ° C. for 2 hours in a nitrogen atmosphere to obtain a catalyst.
(Abrasion resistance test of catalyst) The abrasion resistance test of the catalyst obtained here was performed. As for the degree of wear of the catalyst, as is usually done as a test method for FCC catalysts, an inner diameter of 1 provided with a perforated disk having three 1/64 inch orifices at the bottom and a cylinder having an inner diameter of 5 inches at the top. About 50 g of the catalyst was precisely weighed in a 5-inch vertical tube, and air was passed through the hole portion of the perforated disk so that the speed of sound was made to flow vigorously. The degree of wear of the catalyst was determined by the following equation and found to be 0.15%.
[0018]
  Catalyst wear rate (%) = (catalyst weight dissipated from the top of the 5 inch cylinder at the top of the vertical tube after 5 to 20 hours) / (initial charge-(vertical between 0 and 5 hours) Catalyst weight dissipated from the top of the 5-inch tube at the top of the tube))
(Propane Ammoxidation Reaction Test) 45 g of the catalyst prepared in a Vycor glass fluidized bed reaction tube having an inner diameter of 25 mm was filled, and propane: ammonia: oxygen: helium = 1 at a reaction temperature of 430 ° C. and a normal pressure of reaction. : A mixed gas having a molar ratio of 1.2: 3: 12 was passed at a flow rate of 5.83 cc (converted to NTP) per second. The contact time was 3.0 (sec · g / cc). The obtained results are shown in Table 1. The propane conversion rate, acrylonitrile selectivity, acrylonitrile yield, and contact time are defined by the following equations, respectively.
[0019]
  Propane conversion (%) = (moles of propane reacted) / (moles of propane fed) × 100
  Acrylonitrile selectivity (%) = (number of moles of acrylonitrile produced) / (number of moles of reacted propane) × 100
  Acrylonitrile yield (%) = (Mole number of acrylonitrile produced) / (Mole number of supplied propane) × 100
  Contact time (sec · g / cc) = (W / F) × 273 / (273 + T)
(W = filled catalyst amount (g), F = raw material mixed gas flow rate (Ncc / sec), T = reaction temperature (° C.))
[0020]
  (Example 2)
(Catalyst preparation method) 30 wt% SiO2The composition formula carried by1V0.33Nb0.11Te0.22OnThe catalyst represented by was prepared as follows. Nb in 170g of water2O517.64 g of niobic acid containing 76.6% by weight as oxalic acid dihydrate [H2C2O4・ 2H238.45 g of O] was added and heated to 60 ° C. to dissolve, and then cooled to 30 ° C. to obtain Liquid A.
[0021]
  At this time H2C2O4/Nb=3.0 (molar ratio). Ammonium heptamolybdate [(NH4)6Mo7O24・ 4H2164.31 g of O], ammonium metavanadate [NH4VO3] 36.05 g, telluric acid [H6TeO6] Was added and heated to 60 ° C. and dissolved to obtain a liquid B. 300 g of a silica sol having a silica content of 30% by weight was added to the B liquid with stirring and cooled to 30 ° C., and then the A liquid was further added and mixed with stirring for about 10 minutes. This mixture was dried and calcined in the same manner as in Example 1 to obtain a catalyst.
[0022]
(Propane Ammoxidation Reaction Test) The propane ammoxidation reaction test was conducted in the same manner as in Example 1 for the catalyst obtained here. The obtained results are shown in Table 1.
  (Example 3)
(Catalyst preparation method) 30 wt% SiO2The composition formula carried by1V0.33Nb0.11Te0.22OnThe catalyst represented by was prepared as follows. Nb in 160g of water2O517.64 g of niobic acid containing 76.6% by weight as oxalic acid dihydrate [H2C2O4・ 2H238.45 g of O] and 6.9 g of 25% aqueous ammonia were added and dissolved by heating to 60 ° C., followed by cooling to 30 ° C. to obtain Liquid A. At this time H2C2O4/Nb=3.0 (molar ratio), (NH3+ NH4 +) /Nb=1.0 (molar ratio). Ammonium heptamolybdate [(NH4)6Mo7O24・ 4H2164.31 g of O], ammonium metavanadate [NH4VO3] 36.05 g, telluric acid [H6TeO6] Was added and heated to 60 ° C. and dissolved to obtain a liquid B. 300 g of a silica sol having a silica content of 30% by weight was added to the B liquid with stirring and cooled to 30 ° C., and then the A liquid was further added and mixed with stirring for about 10 minutes. This mixture was dried and calcined in the same manner as in Example 1 to obtain a catalyst.
(Propane Ammoxidation Reaction Test) The propane ammoxidation reaction test was conducted in the same manner as in Example 1 for the catalyst obtained here. The obtained results are shown in Table 1.
[0023]
  (Comparative Example 1)
(Catalyst preparation method) 30 wt% SiO2The composition formula carried by1V0.33Nb0.11Te0.22OnThe catalyst represented by was prepared as follows. Nb in 150g of water2O517.64 g of niobic acid containing 76.6% by weight as oxalic acid dihydrate [H2C2O4・ 2H2O] (38.45 g) and 25% aqueous ammonia (16.6 g) were added and dissolved by heating to 60 ° C., followed by cooling to 30 ° C. to obtain Liquid A. At this time H2C2O4/Nb=3.0 (molar ratio), (NH3+ NH4 +) /Nb=2.4 (molar ratio). Ammonium heptamolybdate [(NH4)6Mo7O24・ 4H2164.31 g of O], ammonium metavanadate [NH4VO3] 36.05 g, telluric acid [H6TeO6] Was added and heated to 60 ° C. and dissolved to obtain a liquid B. 300 g of a silica sol having a silica content of 30% by weight was added to the B liquid with stirring and cooled to 30 ° C., and then the A liquid was further added and mixed with stirring for about 10 minutes. This mixture was dried and calcined in the same manner as in Example 1 to obtain a catalyst.
(Propane Ammoxidation Reaction Test) The propane ammoxidation reaction test was conducted in the same manner as in Example 1 for the catalyst obtained here. The obtained results are shown in Table 1.
[0024]
  (Example 4)
(Catalyst preparation method) 30 wt% SiO2The composition formula carried by1V0.33Nb0.11Te0.22OnThe catalyst represented by was prepared as follows. Nb in 160g of water2O517.64 g of niobic acid containing 76.6% by weight as oxalic acid dihydrate [H2C2O4・ 2H244.85 g of O] was added and heated to 60 ° C. to dissolve, and then cooled to 30 ° C. to obtain Liquid A. At this time H2C2O4/Nb=3.5 (molar ratio). Ammonium heptamolybdate [(NH4)6Mo7O24・ 4H2164.31 g of O], ammonium metavanadate [NH4VO3] 36.05 g, telluric acid [H6TeO6] Was added and heated to 60 ° C. and dissolved to obtain a liquid B. 300 g of a silica sol having a silica content of 30% by weight was added to the B liquid with stirring and cooled to 30 ° C., and then the A liquid was further added and mixed with stirring for about 10 minutes. This mixture was dried and calcined in the same manner as in Example 1 to obtain a catalyst.
(Propane Ammoxidation Reaction Test) The propane ammoxidation reaction test was conducted in the same manner as in Example 1 for the catalyst obtained here. The obtained results are shown in Table 1.
[0025]
  (Example 5)
(Catalyst preparation method) 30 wt% SiO2The composition formula carried by1V0.33Nb0.11Te0.22OnThe catalyst represented by was prepared as follows. Nb in 160g of water2O517.64 g of niobic acid containing 76.6% by weight as oxalic acid dihydrate [H2C2O4・ 2H251.26 g of O] was added and heated to 60 ° C. to dissolve, and then cooled to 30 ° C. to obtain Liquid A. At this time H2C2O4/Nb=4.0 (molar ratio). Ammonium heptamolybdate [(NH4)6Mo7O24・ 4H2164.31 g of O], ammonium metavanadate [NH4VO3] 36.05 g, telluric acid [H6TeO6] Was added and heated to 60 ° C. and dissolved to obtain a liquid B. 300 g of a silica sol having a silica content of 30% by weight was added to the B liquid with stirring and cooled to 30 ° C., and then the A liquid was further added and mixed with stirring for about 10 minutes. This mixture was dried and calcined in the same manner as in Example 1 to obtain a catalyst.
(Propane Ammoxidation Reaction Test) The propane ammoxidation reaction test was conducted in the same manner as in Example 1 for the catalyst obtained here. The obtained results are shown in Table 1.
[0026]
  (Comparative Example 2)
(Catalyst preparation method) 30 wt% SiO2The composition formula carried by1V0.33Nb0.11Te0.22OnThe catalyst represented by was prepared as follows. 110g of water and Nb2O517.64 g of niobic acid containing 76.6% by weight as oxalic acid dihydrate [H2C2O4・ 2H296.11 g of O] was added and heated to 60 ° C. to dissolve, and then cooled to 30 ° C. to obtain Liquid A. At this time H2C2O4/Nb=7.5 (molar ratio). Ammonium heptamolybdate [(NH4)6Mo7O24・ 4H2164.31 g of O], ammonium metavanadate [NH4VO3] 36.05 g, telluric acid [H6TeO6] Was added and heated to 60 ° C. and dissolved to obtain a liquid B. 300 g of a silica sol having a silica content of 30% by weight was added to the B liquid with stirring and cooled to 30 ° C., and then the A liquid was further added and mixed with stirring for about 10 minutes. This mixture was dried and calcined in the same manner as in Example 1 to obtain a catalyst.
(Propane Ammoxidation Reaction Test) The propane ammoxidation reaction test was conducted in the same manner as in Example 1 for the catalyst obtained here. The obtained results are shown in Table 1.
[0027]
  (Example 6)
(Catalyst preparation method) 50 wt% SiO2The composition formula carried by1V0.33Nb0.11Te0.22OnThe catalyst represented by was prepared as follows. Nb in 120 g of water2O512.60 g of niobic acid containing 76.6% by weight as oxalic acid dihydrate [H2C2O4・ 2H227.46 g of O] was added and heated to 60 ° C. to dissolve, and then cooled to 30 ° C. to obtain Liquid A. At this time H2C2O4/Nb=3.0 (molar ratio). Ammonium heptamolybdate [(NH4)6Mo7O24・ 4H2117.36 g of O], ammonium metavanadate [NH4VO3], 25.75 g, telluric acid [H6TeO6] Was added and heated to 60 ° C. and dissolved to obtain Liquid B. 500 g of a silica sol having a silica content of 30% by weight was added to the B liquid with stirring and cooled to 30 ° C., then the A liquid was further added and mixed with stirring for about 10 minutes. This mixture was dried and calcined in the same manner as in Example 1 to obtain a catalyst.
(Propane Ammoxidation Reaction Test) The propane ammoxidation reaction test was conducted in the same manner as in Example 1 for the catalyst obtained here. The obtained results are shown in Table 1.
[0028]
  (Comparative Example 3)
(Catalyst preparation method) 50 wt% SiO2The composition formula carried by1V0.33Nb0 . 11Te0.22OnThe catalyst represented by was prepared as follows. Nb in 80g of water2O512.60 g of niobic acid containing 76.6% by weight as oxalic acid dihydrate [H2C2O4・ 2H268.65 g of O] was added and heated to 60 ° C. for dissolution, and then cooled to 30 ° C. to obtain Liquid A. At this time H2C2O4/Nb=7.5 (molar ratio). Ammonium heptamolybdate [(NH4)6Mo7O24・ 4H2117.36 g of O], ammonium metavanadate [NH4VO3], 25.75 g, telluric acid [H6TeO6] Was added and heated to 60 ° C. and dissolved to obtain Liquid B. 500 g of a silica sol having a silica content of 30% by weight was added to the B liquid with stirring and cooled to 30 ° C., then the A liquid was further added and mixed with stirring for about 10 minutes. This mixture was dried and calcined in the same manner as in Example 1 to obtain a catalyst.
[0029]
(Propane Ammoxidation Reaction Test) The propane ammoxidation reaction test was conducted in the same manner as in Example 1 for the catalyst obtained here. The obtained results are shown in Table 1.
  (Reference example 1)
(Catalyst preparation method) Composition formula is Mo1V0.33Nb0.11Te0.22OnThe catalyst represented by was prepared as follows. Nb in 250g of water2O525.20 g of niobic acid containing 76.6% by weight as oxalic acid dihydrate [H2C2O4・ 2H245.77 g of O] was added and heated to 60 ° C. to dissolve, and then cooled to 30 ° C. to obtain Liquid A. At this time H2C2O4/Nb=2.5 (molar ratio). Ammonium heptamolybdate [(NH4)6Mo7O24・ 4H223.72 g of O], ammonium metavanadate [NH4VO3] 51.49 g, telluric acid [H6TeO6] Was dissolved by heating to 60 ° C. and then cooled to 30 ° C. to obtain a liquid B.
[0030]
Liquid A was added to liquid B and mixed with stirring for about 10 minutes. This mixture was dried and calcined in the same manner as in Example 1 to obtain a catalyst.
(Propane Ammoxidation Reaction Test) 1 g of a catalyst was packed into a fixed bed type reaction tube having an inner diameter of 10 mm, and propane: ammonia: oxygen: helium = 1: 1.2: 3: 12 under a reaction temperature of 430 ° C. and a reaction pressure of normal pressure. A mixed gas having a molar ratio of 0.388 cc (converted to NTP) per second was passed. The contact time was 1.0 (sec · g / cc). The obtained results are shown in Table 1.
[0031]
  (Reference example 2)
(Catalyst preparation method) Composition formula is Mo1V0.33Nb0.11Te0.22OnThe catalyst represented by was prepared as follows. Nb in 240g of water2O525.20 g of niobic acid containing 76.6% by weight as oxalic acid dihydrate [H2C2O4・ 2H245.77 g of O] and 9.9 g of 25% aqueous ammonia were added and dissolved by heating to 60 ° C., followed by cooling to 30 ° C. to obtain Liquid A. At this time H2C2O4/Nb=2.5 (molar ratio), (NH3+ NH4 +) /Nb=1.0 (molar ratio). Ammonium heptamolybdate [(NH4)6Mo7O24・ 4H223.72 g of O], ammonium metavanadate [NH4VO3] 51.49 g, telluric acid [H6TeO6] Was dissolved by heating to 60 ° C. and then cooled to 30 ° C. to obtain a liquid B. Liquid A was added to liquid B and mixed with stirring for about 10 minutes. This mixture was dried and calcined in the same manner as in Example 1 to obtain a catalyst.
(Propane ammoxidation reaction test) The catalyst obtained hereReference example 1The propane ammoxidation test was conducted in the same manner as described above. The obtained results are shown in Table 1.
[0032]
  (Comparative Example 4)
(Catalyst preparation method) Composition formula is Mo1V0.33Nb0.11Te0.22OnThe catalyst represented by was prepared as follows. Nb in 160g of water2O525.20 g of niobic acid containing 76.6% by weight as oxalic acid dihydrate [H2C2O4・ 2H2137.31 g of O] was added and heated to 60 ° C. to dissolve, and then cooled to 30 ° C. to obtain Liquid A. At this time H2C2O4/Nb=7.5 (molar ratio). Ammonium heptamolybdate [(NH4)6Mo7O24・ 4H223.72 g of O], ammonium metavanadate [NH4VO3] 51.49 g, telluric acid [H6TeO6] Was dissolved by heating to 60 ° C. and then cooled to 30 ° C. to obtain a liquid B. Liquid A was added to liquid B and mixed with stirring for about 10 minutes. This mixture was dried and calcined in the same manner as in Example 1 to obtain a catalyst.
(Propane ammoxidation reaction test) The catalyst obtained hereReference example 1The propane ammoxidation test was conducted in the same manner as described above. The obtained results are shown in Table 1.
[0033]
  (Comparative Example 5)
(Catalyst preparation method) Composition formula is Mo1V0.33Nb0.11Te0.22OnThe catalyst represented by was prepared as follows. 110g of water and Nb2O525.20 g of niobic acid containing 76.6% by weight as oxalic acid dihydrate [H2C2O4・ 2H2After adding 137.31 g of O] and 49.5 g of 25% aqueous ammonia, the mixture was heated to 60 ° C. for dissolution, and then cooled to 30 ° C. to obtain Liquid A. At this time H2C2O4/Nb=7.5 (molar ratio), (NH3+ NH4 +) /Nb=5.0 (molar ratio). Ammonium heptamolybdate [(NH4)6Mo7O24・ 4H223.72 g of O], ammonium metavanadate [NH4VO3] 51.49 g, telluric acid [H6TeO6] Was dissolved by heating to 60 ° C. and then cooled to 30 ° C. to obtain a liquid B. Liquid A was added to liquid B and mixed with stirring for about 10 minutes. This mixture was dried and calcined in the same manner as in Example 1 to obtain a catalyst.
(Propane ammoxidation reaction test) The catalyst obtained hereReference example 1The propane ammoxidation test was conducted in the same manner as described above. The obtained results are shown in Table 1.
[0034]
[Table 1]
Figure 0003938225
[0035]
【The invention's effect】
  According to the catalyst preparation method of the present invention, a catalyst having a high yield can be produced in the gas phase catalytic oxidation reaction or gas phase catalytic ammoxidation reaction of propane or isobutane. In particular, in a catalyst containing a carrier used industrially to increase wear resistance, a catalyst with a high industrial value can be obtained even if the proportion of the carrier is increased as compared with the prior art with a small decrease in yield. .

Claims (7)

プロパンまたはイソブタンの気相接触酸化反応または気相接触アンモ酸化反応に用いられる担体に担持された触媒の調製方法において、テルルおよびアンチモンから選ばれる少なくとも1種類以上の元素とモリブデン及びバナジウムを含有する溶液と、ジカルボン酸/ニオブのモル比が1〜4であり、(NH3 +NH4 + )/ニオブのモル比が2以下であるニオブ含有液混合する工程を有することを特徴とする触媒調製方法。 A solution containing at least one element selected from tellurium and antimony and molybdenum and vanadium in a method for preparing a catalyst supported on a carrier used for gas phase catalytic oxidation reaction or gas phase catalytic ammoxidation reaction of propane or isobutane When the molar ratio of the dicarboxylic acid / niobium is 1 to 4, catalyst preparation characterized by having a step of mixing the niobium-containing liquid is (NH 3 + NH 4 +) / molar ratio of the niobium 2 or less Method. (NH3 +NH4 + )/ニオブのモル比が1以下であることを特徴とする請求項1に記載の方法。The method according to claim 1, wherein the molar ratio of (NH 3 + NH 4 + ) / niobium is 1 or less. ジカルボン酸がシュウ酸であることを特徴とする請求項1又は請求項2に記載の方法。  The method according to claim 1 or 2, wherein the dicarboxylic acid is oxalic acid. 触媒が式(1)の一般式で示される化合物であることを特徴とする請求項1〜3のいずれか1項に記載の方法。
Mo1 a Nbb c d n (1)
(式中、XはTeおよびSbから選ばれる少なくとも1種以上の元素、ZはW、Cr、Ta、Ti、Zr、Hf、Mn、Re、Fe、Ru、Co、Rh、Ni、Pd、Pt、Cu、Ag、Zn、B、Al、Ga、In、Ge、Sn、Pb、P、Bi、Y、希土類元素、アルカリ金属およびアルカリ土類金属から選ばれる少なくとも一種以上の元素であり、a、b、c、d、nはMo1原子当たりの原子比を表し、0.1≦a≦1、0.01≦b≦1、0.01≦c≦1、0≦d≦1、そしてnは構成金属の酸化状態によって決まる数である。)
The method according to any one of claims 1 to 3, wherein the catalyst is a compound represented by the general formula (1).
Mo 1 V a Nb b X c Z d O n (1)
(Wherein X is at least one element selected from Te and Sb, Z is W, Cr, Ta, Ti, Zr, Hf, Mn, Re, Fe, Ru, Co, Rh, Ni, Pd, Pt , Cu, Ag, Zn, B, Al, Ga, In, Ge, Sn, Pb, P, Bi, Y, at least one element selected from rare earth elements, alkali metals and alkaline earth metals, a, b, c, d, n represent atomic ratios per Mo atom, 0.1 ≦ a ≦ 1, 0.01 ≦ b ≦ 1, 0.01 ≦ c ≦ 1, 0 ≦ d ≦ 1, and n is (The number depends on the oxidation state of the constituent metals.)
前記テルルおよびアンチモンから選ばれる少なくとも1種類以上の元素とモリブデン及びバナジウムを含有する溶液と、前記担体の成分とを混合した後、前記ニオブ含有液を混合することを特徴とする請求項1〜4のいずれか1項に記載の方法。 5. The niobium-containing liquid is mixed after mixing at least one element selected from the tellurium and antimony, a solution containing molybdenum and vanadium, and a component of the carrier. The method of any one of these. シリカ、アルミナ、シリカアルミナ、チタニア、マグネシアおよびジルコニアから選ばれる1種類以上の触媒担体を用いることを特徴とする請求項1〜のいずれか1項に記載の方法。The method according to any one of claims 1 to 5 , wherein one or more kinds of catalyst carriers selected from silica, alumina, silica alumina, titania, magnesia and zirconia are used. 触媒担体として全触媒重量に対して30重量%以上50重量%以下のシリカを含むことを特徴とする請求項に記載の方法。The method according to claim 6 , wherein the catalyst support contains 30 % by weight or more and 50% by weight or less of silica based on the total catalyst weight .
JP22204197A 1997-08-05 1997-08-05 Catalyst preparation method Expired - Lifetime JP3938225B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP22204197A JP3938225B2 (en) 1997-08-05 1997-08-05 Catalyst preparation method
SA05260359A SA05260359B1 (en) 1997-08-05 1998-07-20 Process for the production of acrylonitrile or methacrylonitile from propane or isobutane by oxidation in the presence of ammonia
EP98114580.8A EP0895809B1 (en) 1997-08-05 1998-08-03 Process Using Niobium-containing Aqueous Solution in Producing Niobium-containing Oxide Catalyst
IDP981084A ID20720A (en) 1997-08-05 1998-08-04 WATER SOLUTIONS THAT CONTAIN NIOBIUMS FOR USE IN THE MAKING OF OXIDE CATALYSTS CONTAINING NIOBIUM
DE19835247.6A DE19835247B4 (en) 1997-08-05 1998-08-04 Ammoxidation catalyst and process for producing acrylonitrile or methacrylonitrile from propane or isobutane by ammoxidation
IDP981087A ID20670A (en) 1997-08-05 1998-08-04 AMOXICATION CATALYST FOR USE IN PRODUCING ACRYLONITRYL OR METACRYLONITRIL FROM PROPANA OR ISOBUTANA WITH AMOXICATION
US09/129,412 US6036880A (en) 1997-08-05 1998-08-05 Niobium-containing aqueous solution for use in producing niobium-containing oxide-catalyst
US09/129,414 US6063728A (en) 1997-08-05 1998-08-05 Ammoxidation catalyst for use in producing acrylonitrile or methacrylonitrile from propane or isobutane by ammoxidation
SA98190389A SA98190389B1 (en) 1997-08-05 1998-08-08 AMMOXIDATION CATALYST CATALYST FOR USE IN THE PRODUCTION OF ACRYLONITRILE OR METHACRYLONITRILE FROM PROPANE OR ISOBUTANE BY AMMOXIDATION
SA98190559A SA98190559B1 (en) 1997-08-05 1998-09-16 AQUEOUS WATER SOLUTION CONTAINING NIOBIUM Oxide Catalyst CONTAINING NIOBIUM
US09/453,698 US6143916A (en) 1997-08-05 1999-12-03 Ammoxidation catalyst for use in producing acrylonitrile or methacrylonitrile from propane or isobutane by ammoxidation
SA5260351A SA05260351B1 (en) 1997-08-05 2005-11-08 Ammoxidation catalyst for use in producing acrylonitrile or methacrylonitrile from propane or isobutane by Ammoxidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22204197A JP3938225B2 (en) 1997-08-05 1997-08-05 Catalyst preparation method

Publications (2)

Publication Number Publication Date
JPH1147598A JPH1147598A (en) 1999-02-23
JP3938225B2 true JP3938225B2 (en) 2007-06-27

Family

ID=16776169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22204197A Expired - Lifetime JP3938225B2 (en) 1997-08-05 1997-08-05 Catalyst preparation method

Country Status (2)

Country Link
JP (1) JP3938225B2 (en)
SA (2) SA05260359B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025774A1 (en) 2016-08-02 2018-02-08 旭化成株式会社 Process for producing oxide catalyst and process for producing unsaturated nitrile
WO2018051928A1 (en) * 2016-09-13 2018-03-22 旭化成株式会社 Method for producing oxide catalyst and method for producing unsaturated nitrile

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4182237B2 (en) * 1997-09-30 2008-11-19 住友化学株式会社 Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing alkene and / or oxygen-containing compound using the same
US6114278A (en) * 1998-11-16 2000-09-05 Saudi Basic Industries Corporation Catalysts for catalytic oxidation of propane to acrylic acid, methods of making and using the same
JP4696331B2 (en) * 1999-10-26 2011-06-08 三菱化学株式会社 Method for producing niobium-containing composite metal oxide
JP4809532B2 (en) * 1999-11-15 2011-11-09 サウディ ベーシック インダストリーズ コーポレイション Catalyst for catalytic oxidation of propane to acrylic acid, its production and use
JP4535611B2 (en) * 2000-12-27 2010-09-01 旭化成ケミカルズ株式会社 Catalyst and method for producing unsaturated nitrile using the same
JP4878684B2 (en) * 2001-01-24 2012-02-15 旭化成ケミカルズ株式会社 Low specific gravity silica supported catalyst
JP2007529294A (en) * 2003-12-18 2007-10-25 アヴァンティウム インターナショナル ベー.フェー. Catalysts for the oxidation and ammoxidation of alkanes or alkenes
JP4791203B2 (en) * 2006-02-14 2011-10-12 旭化成ケミカルズ株式会社 Method for producing oxide catalyst
JP5711274B2 (en) 2011-01-31 2015-04-30 旭化成ケミカルズ株式会社 Mixed liquid production apparatus, mixed liquid preparation method, catalyst preparation method, and unsaturated nitrile production method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025774A1 (en) 2016-08-02 2018-02-08 旭化成株式会社 Process for producing oxide catalyst and process for producing unsaturated nitrile
KR20180134948A (en) 2016-08-02 2018-12-19 아사히 가세이 가부시키가이샤 METHOD FOR PREPARING OXIDE CATALYST AND METHOD FOR PRODUCING UNSATURATED NITRILE
US10792643B2 (en) 2016-08-02 2020-10-06 Asahi Kasei Kabushiki Kaisha Method for producing oxide catalyst and method for producing unsaturated nitrile
WO2018051928A1 (en) * 2016-09-13 2018-03-22 旭化成株式会社 Method for producing oxide catalyst and method for producing unsaturated nitrile
KR20190017912A (en) 2016-09-13 2019-02-20 아사히 가세이 가부시키가이샤 METHOD FOR PREPARING OXIDE CATALYST AND METHOD FOR PRODUCING UNSATURATED NITRILE
KR20210060656A (en) 2016-09-13 2021-05-26 아사히 가세이 가부시키가이샤 Method for producing oxide catalyst and method for producing unsaturated nitrile
US11141722B2 (en) 2016-09-13 2021-10-12 Asahi Kasei Kabushiki Kaisha Method for producing oxide catalyst and method for producing unsaturated nitrile
US11806702B2 (en) 2016-09-13 2023-11-07 Asahi Kasei Kabushiki Kaisha Method for producing oxide catalyst and method for producing unsaturated nitrile

Also Published As

Publication number Publication date
JPH1147598A (en) 1999-02-23
SA05260351B1 (en) 2010-01-05
SA05260359B1 (en) 2006-10-31

Similar Documents

Publication Publication Date Title
JP4166334B2 (en) Method for preparing oxidation catalyst
JP2009504372A (en) Composite metal oxide catalyst with high selectivity for (meth) acrylic acid
JP3938225B2 (en) Catalyst preparation method
US4075127A (en) Catalyst for production of α,β-unsaturated carboxylic acids
JP5694727B2 (en) Method for producing unsaturated acid or unsaturated nitrile
JP4187837B2 (en) Method for producing catalyst for producing unsaturated nitrile
JP4081824B2 (en) Acrylic acid production method
JPH08141401A (en) Catalyst for production of nitrile
JPH09157241A (en) Production of nitrile
WO2002051542A1 (en) Alkane oxidation catalyst, process for producing the same, and process for producing oxygen-containing unsaturated compound
JP4179675B2 (en) Process for producing unsaturated nitriles
JPH11244702A (en) Catalyst for manufacture of acrylonitrile or methacrylonitrile
JP4049363B2 (en) Alkane oxidation catalyst, production method thereof, and production method of unsaturated oxygen-containing compound
JP4413368B2 (en) Oxidation or ammoxidation catalyst
JP4212139B2 (en) Method for preparing catalyst for ammoxidation
JP2002212139A (en) METHOD FOR PRODUCING alpha-KETO ACID ESTER
JP4535608B2 (en) Catalyst and method for producing unsaturated nitrile using the catalyst
JP4162915B2 (en) Preparation method of oxidation catalyst and production method of nitrile using the catalyst
JPH11246504A (en) Production of unsaturated nitrile
JP4318331B2 (en) Catalyst and method for producing unsaturated nitrile using the same
JP2001206870A (en) Method for oxidizing alkane
JP5078222B2 (en) Composite oxide catalyst
JP4187839B2 (en) Method for producing oxide catalyst and method for producing unsaturated nitrile using the catalyst
JP2004041839A (en) Manufacturing method of oxidation reaction catalyst
JP3313943B2 (en) Method for producing catalyst for synthesizing methacrolein and methacrylic acid

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term