JP3933773B2 - Insulating agent for active matrix liquid crystal display elements - Google Patents
Insulating agent for active matrix liquid crystal display elements Download PDFInfo
- Publication number
- JP3933773B2 JP3933773B2 JP33567597A JP33567597A JP3933773B2 JP 3933773 B2 JP3933773 B2 JP 3933773B2 JP 33567597 A JP33567597 A JP 33567597A JP 33567597 A JP33567597 A JP 33567597A JP 3933773 B2 JP3933773 B2 JP 3933773B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- polyimide
- temperature
- active matrix
- crystal display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Liquid Crystal (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Description
【0001】
【発明の属する技術分野】
本発明はアクティブマトリクス液晶表示素子用絶縁膜を得る材料であり、さらに詳しくは極めて低い誘電率を有し、高い透過率を得ることができるアクティブマトリクス液晶表示素子用絶縁剤に関するものである。
【0002】
【従来の技術】
液晶ディスプレイ(LCD)は薄型低消費電力のディスプレイとして広く用いられている。特に、高精細な表示が必要とされる用途には薄膜トランジスタ(TFT)を用いたアクティブマトリクスLCDであるTFT液晶ディスプレイ(TFT−LCD)が多く用いられている。
【0003】
TFT−LCDを構成する透明電極付き基板の一方であるTFTが形成された基板(TFT基板)には、透明電極に表示信号を送る配線とTFTのスイッチングを行うための配線が縦横に直交して編目状に設けられており、表示部位である透明電極はこれらの配線に周囲を囲まれている。そのため、透明電極の周辺部では、液晶が上記配線による電界の影響により中央部と異なる方向に配向することによって配向欠陥を生じ、この部分を遮光する必要があるためパネルの光を透過する部位(開口部)を十分に大きくすることができなかった。
【0004】
これに対し、TFT基板上の配線およびTFTと表示用の透明導電膜の間に透明な層間絶縁膜を設ける方法が検討されている。層間絶縁膜により透明電極と配線は厚さ方向に充分な距離がとれるため前記のような配向欠陥は発生せず、開口部を広くとることができる。
【0005】
絶縁膜形成後、その上に透明電極を形成する必要性から、もとの基板のTFTなどの凸凹を十分に平坦化する必要がある。そこで、耐熱性、平滑性および絶縁性が優れていることから、半導体で絶縁体として用いられているポリイミド系樹脂を適用することが考えられる。
【0006】
一方、TFT−LCD用絶縁膜のその他の要求特性として、▲1▼高い透過率、▲2▼1MHzでの誘電率が3以下、▲3▼カラーフィルターの耐熱温度である250℃以下の低温焼成、等が挙げられる。
【0007】
これに対し、従来のポリイミド系樹脂の焼成後の被膜は一般に濃色に着色しており、400nm前後の短波長域の光の透過率に優れたものは少ない。誘電率に優れたものはいくつかあるが、焼成温度は一般的に350℃以上である。以上の理由により、TFT−LCD用絶縁膜に適用することが困難であった。
【0008】
【発明が解決しようとする課題】
本発明は、上記のようなポリイミド樹脂組成物の問題点を解決し、250℃以下の低い焼成温度での絶縁性に優れ、かつ、高い透過率を有する、液晶表示素子用絶縁剤を提供するものである。
【0009】
【課題を解決するための手段】
本発明は、
[1] 式中のXおよび/またはYが少なくとも一つのフッ素を有する有機基である一般式(1)で表される繰り返し単位を有するポリイミドを樹脂成分とするアクティブマトリクス液晶表示素子用絶縁剤であり、
【0010】
【化1】
(式中、Xは4価の有機基を表し、Yは2価の有機基を表す。)
【0011】
[2]Xが式(2),(3),(4),(5),(6),(7),(8),(9),(10)および/または(11)である[1]記載のポリイミドを樹脂成分とするアクティブマトリクス液晶表示素子用絶縁剤であり、
【0012】
【化2】
【0013】
【化3】
【0014】
【化4】
【0015】
【化5】
【0016】
【化6】
【0017】
【化7】
【0018】
【化8】
【0019】
【化9】
【0020】
【化10】
【0021】
【化11】
【0022】
[3]Yが式(12),(13),および/または(14)である[1]記載のポリイミドを樹脂成分とするアクティブマトリクス液晶表示素子用絶縁剤である。
【0023】
【化12】
【0024】
【化13】
【0025】
【化14】
【0026】
本発明のアクティブマトリクス表示素子用絶縁剤は、一般式(1)と、極性有機溶媒を成分とする樹脂組成物である。
【0027】
一般式(1)の溶剤としては、N−メチル−2−ピロリドン、γ−ブチロラクトン、ジメチルアセトアミド、N−ビニル−2−ピロリドン、ジメチルスルホキシド等が挙げられるがこれらに限定されるものではない。
【0028】
本発明中の樹脂成分はポリイミド前駆体であるポリアミド酸、ポリアミド酸エステル、および溶剤可溶なポリイミド等のポリイミド系樹脂であるが、エポキシ樹脂等を混合したり、無機物フィラーを添加してもよい。
【0029】
【実施例】
以下、実施例により詳細を説明するが、本発明はこれらの実施例によって何等限定されるものではない。
【0030】
(合成例1)温度計、攪拌機、原料投入口、乾燥窒素ガス導入管を備えた四つ口セパラブルフラスコ中、2,2−ビス(3−アミノ−4−メチルフェニル)ヘキサフルオロプロパン33.8g(0.10モル)をN−メチル−2−ピロリドン(NMP)256.9g中に溶解させる。この系に、原料投入口からブタンテトラカルボン酸二無水物19.8g(0.10モル)を投入し、系の温度を10℃に保ちながら窒素流入下、5時間攪拌を続けた。系の温度を室温に戻してさらに3時間攪拌を続け、ポリアミド酸のNMP溶液を得た。系にトルエンを60gを加え、滴下ロートを取り外して代わりにディーンスターチ還流冷却管を取り付けて系の温度を上昇させる。トルエンを還流させ脱水・イミド化反応を行い、水分の発生が終了したら系の温度を室温に戻し、20倍量のメタノール中に滴下してポリイミドの固形分を回収する。固形分を真空乾燥機により24時間乾燥した後、樹脂成分濃度が10%になるようにγ−ブチロラクトンに溶解し、ポリイミド溶液(1)を得た。
【0031】
(合成例2)温度計、攪拌機、原料投入口、乾燥窒素ガス導入管を備えた四つ口セパラブルフラスコ中、2,2−ビス(3−アミノ−4−メチルフェニル)ヘキサフルオロプロパン33.8g(0.10モル)をN−メチル−2−ピロリドン(NMP)312.8g中に溶解させる。この系に、原料投入口から2,2−ビス(3,4−アンハイドロジカルボキシフェニル)ヘキサフルオロプロパン44.4g(0.10モル)を投入し、系の温度を10℃に保ちながら窒素流入下、5時間攪拌を続けた。系の温度を室温に戻してさらに3時間攪拌を続け、ポリアミド酸のNMP溶液を得た。系にトルエンを60gを加え、滴下ロートを取り外して代わりにディーンスターチ還流冷却管を取り付けて系の温度を上昇させる。トルエンを還流させ脱水・イミド化反応を行い、水分の発生が終了したら系の温度を室温に戻し、20倍量のメタノール中に滴下してポリイミドの固形分を回収する。固形分を真空乾燥機により24時間乾燥した後、樹脂成分濃度が10%になるようにγ−ブチロラクトンに溶解し、ポリイミド溶液(2)を得た。
【0032】
(合成例3)温度計、攪拌機、原料投入口、乾燥窒素ガス導入管を備えた四つ口セパラブルフラスコ中、2,2−ビス(3−アミノ−4−メチルフェニル)ヘキサフルオロプロパン44.4g(0.10モル)をN−メチル−2−ピロリドン(NMP)240.9g中に溶解させる。この系に、原料投入口から5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物26.4g(0.10モル)を投入し、系の温度を10℃に保ちながら窒素流入下、5時間攪拌を続けた。系の温度を室温に戻してさらに3時間攪拌を続け、ポリアミド酸のNMP溶液を得た。系にトルエンを60gを加え、滴下ロートを取り外して代わりにディーンスターチ還流冷却管を取り付けて系の温度を上昇させる。トルエンを還流させ脱水・イミド化反応を行い、水分の発生が終了したら系の温度を室温に戻し、20倍量のメタノール中に滴下してポリイミドの固形分を回収する。固形分を真空乾燥機により24時間乾燥した後、樹脂成分濃度が10%になるようにγ−ブチロラクトンに溶解し、ポリイミド溶液(3)を得た。
【0033】
(合成例4)温度計、攪拌機、原料投入口、乾燥窒素ガス導入管を備えた四つ口セパラブルフラスコ中、2,2’−ビス(トリフルオロメチル)ベンジジン32.0g(0.10モル)をN−メチル−2−ピロリドン(NMP)305.6g中に溶解させる。この系に、原料投入口から2,2−ビス(3,4−アンハイドロジカルボキシフェニル)ヘキサフルオロプロパン44.4g(0.10モル)を投入し、系の温度を10℃に保ちながら窒素流入下、5時間攪拌を続けた。系の温度を室温に戻してさらに3時間攪拌を続け、ポリアミド酸のNMP溶液を得た。系にトルエンを60gを加え、滴下ロートを取り外して代わりにディーンスターチ還流冷却管を取り付けて系の温度を上昇させる。トルエンを還流させ脱水・イミド化反応を行い、水分の発生が終了したら系の温度を室温に戻し、20倍量のメタノール中に滴下してポリイミドの固形分を回収する。固形分を真空乾燥機により24時間乾燥した後、樹脂成分濃度が10%になるようにγ−ブチロラクトンに溶解し、ポリイミド溶液(4)を得た。
【0034】
(合成例5)温度計、攪拌機、原料投入口、乾燥窒素ガス導入管を備えた四つ口セパラブルフラスコ中、5−(2,5−ジオキソテトラヒドロ−3−フラニル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物26.42g(0.10モル)をN−メチル−2−ピロリドン(NMP)300g中に分散させる。この系に、原料投入口から2,2−ビス[4,4’−(4−アミノフェノキシ)フェニル]プロパン41.05g(0.10モル)を投入し、系の温度を10℃に保ちながら窒素流入下、5時間攪拌を続けた。系の温度を室温に戻してさらに3時間攪拌を続け、ポリアミド酸のNMP溶液を得た。系にトルエンを60gを加え、滴下ロートを取り外して代わりにディーンスターチ還流冷却管を取り付けて系の温度を上昇させる。トルエンを還流させ脱水・イミド化反応を行い、水分の発生が終了したら系の温度を室温に戻し、20倍量のメタノール中に滴下してポリイミドの固形分を回収する。固形分を真空乾燥機により24時間乾燥した後、樹脂成分濃度が10%になるようにγ−ブチロラクトンに溶解し、ポリイミド溶液(5)を得た。
【0035】
(実施例1)合成例1で得たポリイミド溶液を、厚さ100μmのアルミ板にスピンコートで塗布、250℃で焼成し10μmのポリイミド膜を形成した。その後このアルミ板を、JIS−K6911に従い、誘電率の測定を行った。結果、1MHzでの誘電率は2.91であり、400nmでの透過率は90%であった。
【0036】
(実施例2)合成例2で得たポリイミド溶液を、厚さ100μmのアルミ板にスピンコートで塗布、250℃で焼成し10μmのポリイミド膜を形成した。その後このアルミ板を、JIS−K6911に従い、誘電率の測定を行った。結果、1MHzでの誘電率は2.68であり、400nmでの透過率は88%であった。
【0037】
(比較例1)合成例3で得たポリイミド溶液を、厚さ100μmのアルミ板にスピンコートで塗布、250℃で焼成し10μmのポリイミド膜を形成した。その後このアルミ板を、JIS−K6911に従い、誘電率の測定を行った。結果、1MHzでの誘電率は3.40であり、400nmでの透過率は36%であった。
【0038】
(比較例2)合成例4で得たポリイミド溶液を、厚さ100μmのアルミ板にスピンコートで塗布、250℃で焼成し10μmのポリイミド膜を形成した。その後このアルミ板を、JIS−K6911に従い、誘電率の測定を行った。結果、1MHzでの誘電率は3.10であり、400nmでの透過率は95%であった。
【0039】
(比較例3)合成例5で得たポリイミド溶液を、厚さ100μmのアルミ板にスピンコートで塗布、250℃で焼成し10μmのポリイミド膜を形成した。その後このアルミ板を、JIS−K6911に従い、誘電率の測定を行った。結果、1MHzでの誘電率は3.4であり、400nmでの透過率は26.6%であった。
【0040】
実施例1、2では、1MHzでの誘電率は低く、400nmでの透過率は高かった。
【0041】
比較例1では、酸無水物にフッ素を導入していないため、1MHzでの誘電率が高かった。また、焼成した膜が濃色に着色しており、400nmでの透過率が低かった。
比較例2では、焼成温度が低すぎたため、1MHzでの誘電率が高かった。
比較例3では、酸無水物、ジアミンともにフッ素を導入していないため、誘電率が高かった。また、焼成した膜が濃色に着色しており、400nmでの透過率が低かった。
【0042】
【発明の効果】
本発明のポリイミド樹脂組成物は、250℃以下の低い焼成温度での絶縁性に優れ、かつ、高い透過率を有する、アクティブマトリクス液晶表示素子用絶縁剤である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a material for obtaining an insulating film for an active matrix liquid crystal display element, and more particularly to an insulating material for an active matrix liquid crystal display element having an extremely low dielectric constant and a high transmittance.
[0002]
[Prior art]
Liquid crystal displays (LCDs) are widely used as thin and low power consumption displays. In particular, TFT liquid crystal displays (TFT-LCDs), which are active matrix LCDs using thin film transistors (TFTs), are often used for applications that require high-definition display.
[0003]
On the substrate (TFT substrate) on which the TFT, which is one of the substrates with a transparent electrode constituting the TFT-LCD, is formed, wiring for sending a display signal to the transparent electrode and wiring for switching the TFT are orthogonally crossed vertically and horizontally. The transparent electrode which is provided in a stitch shape and is a display part is surrounded by these wirings. Therefore, in the peripheral part of the transparent electrode, the liquid crystal is aligned in a different direction from the central part due to the influence of the electric field by the wiring, and it is necessary to shield this part. The opening) could not be made sufficiently large.
[0004]
On the other hand, a method of providing a transparent interlayer insulating film between the wiring on the TFT substrate and between the TFT and the transparent conductive film for display has been studied. Since the transparent electrode and the wiring can have a sufficient distance in the thickness direction due to the interlayer insulating film, the alignment defect as described above does not occur and the opening can be widened.
[0005]
After forming the insulating film, it is necessary to sufficiently flatten the unevenness of the original substrate, such as TFT, because of the need to form a transparent electrode thereon. Therefore, since heat resistance, smoothness, and insulation are excellent, it is considered to apply a polyimide resin used as an insulator in a semiconductor.
[0006]
On the other hand, other required characteristics of the TFT-LCD insulating film are as follows: (1) High transmittance, (2) Dielectric constant at 1 MHz is 3 or less, (3) Low temperature firing at 250 ° C. or less which is the heat resistance temperature of the color filter , Etc.
[0007]
On the other hand, the film after baking of the conventional polyimide-type resin is generally colored in dark color, and there are few things which were excellent in the light transmittance of the short wavelength range around 400 nm. Although there are several excellent dielectric constants, the firing temperature is generally 350 ° C. or higher. For the above reasons, it has been difficult to apply to an insulating film for TFT-LCD.
[0008]
[Problems to be solved by the invention]
The present invention solves the problems of the polyimide resin composition as described above, and provides an insulating agent for a liquid crystal display element that has excellent insulation at a low baking temperature of 250 ° C. or less and has high transmittance. Is.
[0009]
[Means for Solving the Problems]
The present invention
[1] An insulating material for an active matrix liquid crystal display element comprising, as a resin component, a polyimide having a repeating unit represented by the general formula (1), wherein X and / or Y in the formula is an organic group having at least one fluorine. Yes,
[0010]
[Chemical 1]
(In the formula, X represents a tetravalent organic group, and Y represents a divalent organic group.)
[0011]
[2] X is the formula (2), (3), (4), (5), (6), (7), (8), (9), (10) and / or (11) [ 1] An insulating material for an active matrix liquid crystal display element comprising the polyimide described in [1] as a resin component,
[0012]
[Chemical 2]
[0013]
[Chemical 3]
[0014]
[Formula 4]
[0015]
[Chemical formula 5]
[0016]
[Chemical 6]
[0017]
[Chemical 7]
[0018]
[Chemical 8]
[0019]
[Chemical 9]
[0020]
[Chemical Formula 10]
[0021]
Embedded image
[0022]
[3] An insulating material for an active matrix liquid crystal display element comprising a polyimide as a resin component according to [1], wherein Y is a formula (12), (13) and / or (14).
[0023]
Embedded image
[0024]
Embedded image
[0025]
Embedded image
[0026]
The insulating agent for an active matrix display element of the present invention is a resin composition containing the general formula (1) and a polar organic solvent as components.
[0027]
Examples of the solvent of the general formula (1) include, but are not limited to, N-methyl-2-pyrrolidone, γ-butyrolactone, dimethylacetamide, N-vinyl-2-pyrrolidone, dimethyl sulfoxide and the like.
[0028]
The resin component in the present invention is a polyimide resin such as polyamic acid, polyamic acid ester which is a polyimide precursor, and solvent-soluble polyimide, but an epoxy resin or the like may be mixed or an inorganic filler may be added. .
[0029]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates a detail, this invention is not limited at all by these Examples.
[0030]
(Synthesis Example 1) 2,2-bis (3-amino-4-methylphenyl) hexafluoropropane in a four-necked separable flask equipped with a thermometer, a stirrer, a raw material inlet, and a dry nitrogen gas inlet tube 8 g (0.10 mol) is dissolved in 256.9 g N-methyl-2-pyrrolidone (NMP). To this system, 19.8 g (0.10 mol) of butanetetracarboxylic dianhydride was charged from the raw material charging port, and stirring was continued for 5 hours under flowing nitrogen while keeping the temperature of the system at 10 ° C. The temperature of the system was returned to room temperature, and stirring was further continued for 3 hours to obtain an NMP solution of polyamic acid. Add 60 g of toluene to the system, remove the dropping funnel and replace it with a Dean starch reflux condenser to raise the temperature of the system. Toluene is refluxed to carry out dehydration and imidization reaction. When the generation of moisture is completed, the temperature of the system is returned to room temperature, and dropped into 20 times amount of methanol to recover the solid content of polyimide. The solid content was dried with a vacuum dryer for 24 hours, and then dissolved in γ-butyrolactone so that the resin component concentration was 10% to obtain a polyimide solution (1).
[0031]
Synthesis Example 2 2,2-bis (3-amino-4-methylphenyl) hexafluoropropane in a four-necked separable flask equipped with a thermometer, stirrer, raw material inlet, and dry nitrogen gas inlet tube 8 g (0.10 mol) is dissolved in 312.8 g of N-methyl-2-pyrrolidone (NMP). To this system, 44.4 g (0.10 mol) of 2,2-bis (3,4-anhydrodicarboxyphenyl) hexafluoropropane was introduced from the raw material inlet, and nitrogen was maintained while maintaining the temperature of the system at 10 ° C. Stirring was continued for 5 hours under inflow. The temperature of the system was returned to room temperature, and stirring was further continued for 3 hours to obtain an NMP solution of polyamic acid. Add 60 g of toluene to the system, remove the dropping funnel and replace it with a Dean starch reflux condenser to raise the temperature of the system. Toluene is refluxed to carry out dehydration and imidization reaction. When the generation of moisture is completed, the temperature of the system is returned to room temperature, and dropped into 20 times amount of methanol to recover the solid content of polyimide. The solid content was dried with a vacuum dryer for 24 hours, and then dissolved in γ-butyrolactone so that the resin component concentration was 10% to obtain a polyimide solution (2).
[0032]
Synthesis Example 3 2,2-bis (3-amino-4-methylphenyl) hexafluoropropane 44. in a four-necked separable flask equipped with a thermometer, stirrer, raw material inlet, and dry nitrogen gas inlet tube. 4 g (0.10 mol) is dissolved in 240.9 g N-methyl-2-pyrrolidone (NMP). To this system, 26.4 g (0.10 mol) of 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride was charged from the raw material charging port, While maintaining the temperature of the system at 10 ° C., stirring was continued for 5 hours under nitrogen flow. The temperature of the system was returned to room temperature, and stirring was further continued for 3 hours to obtain an NMP solution of polyamic acid. Add 60 g of toluene to the system, remove the dropping funnel and replace it with a Dean starch reflux condenser to raise the temperature of the system. Toluene is refluxed to carry out dehydration and imidization reaction. When the generation of moisture is completed, the temperature of the system is returned to room temperature, and dropped into 20 times amount of methanol to recover the solid content of polyimide. The solid content was dried by a vacuum dryer for 24 hours, and then dissolved in γ-butyrolactone so that the resin component concentration was 10% to obtain a polyimide solution (3).
[0033]
(Synthesis Example 4) In a four-necked separable flask equipped with a thermometer, a stirrer, a raw material inlet, and a dry nitrogen gas inlet tube, 32.0 g (0.10 mol) of 2,2′-bis (trifluoromethyl) benzidine Is dissolved in 305.6 g of N-methyl-2-pyrrolidone (NMP). To this system, 44.4 g (0.10 mol) of 2,2-bis (3,4-anhydrodicarboxyphenyl) hexafluoropropane was introduced from the raw material inlet, and nitrogen was maintained while maintaining the temperature of the system at 10 ° C. Stirring was continued for 5 hours under inflow. The temperature of the system was returned to room temperature, and stirring was further continued for 3 hours to obtain an NMP solution of polyamic acid. Add 60 g of toluene to the system, remove the dropping funnel and replace it with a Dean starch reflux condenser to raise the temperature of the system. Toluene is refluxed to carry out dehydration and imidization reaction. When the generation of moisture is completed, the temperature of the system is returned to room temperature, and dropped into 20 times amount of methanol to recover the solid content of polyimide. The solid content was dried with a vacuum dryer for 24 hours, and then dissolved in γ-butyrolactone so that the resin component concentration was 10% to obtain a polyimide solution (4).
[0034]
(Synthesis Example 5) 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl- in a four-necked separable flask equipped with a thermometer, a stirrer, a raw material inlet, and a dry nitrogen gas inlet tube 26.42 g (0.10 mol) of 3-cyclohexene-1,2-dicarboxylic anhydride is dispersed in 300 g of N-methyl-2-pyrrolidone (NMP). To this system, 41.05 g (0.10 mol) of 2,2-bis [4,4 ′-(4-aminophenoxy) phenyl] propane was charged from the raw material inlet, and the temperature of the system was maintained at 10 ° C. Stirring was continued for 5 hours under nitrogen flow. The temperature of the system was returned to room temperature, and stirring was further continued for 3 hours to obtain an NMP solution of polyamic acid. Add 60 g of toluene to the system, remove the dropping funnel and replace it with a Dean starch reflux condenser to raise the temperature of the system. Toluene is refluxed to carry out dehydration and imidization reaction. When the generation of moisture is completed, the temperature of the system is returned to room temperature, and dropped into 20 times amount of methanol to recover the solid content of polyimide. The solid content was dried by a vacuum dryer for 24 hours, and then dissolved in γ-butyrolactone so that the resin component concentration was 10% to obtain a polyimide solution (5).
[0035]
(Example 1) The polyimide solution obtained in Synthesis Example 1 was applied to an aluminum plate having a thickness of 100 µm by spin coating and baked at 250 ° C to form a 10 µm polyimide film. Thereafter, the dielectric constant of this aluminum plate was measured according to JIS-K6911. As a result, the dielectric constant at 1 MHz was 2.91, and the transmittance at 400 nm was 90%.
[0036]
(Example 2) The polyimide solution obtained in Synthesis Example 2 was applied to an aluminum plate having a thickness of 100 µm by spin coating and baked at 250 ° C to form a 10 µm polyimide film. Thereafter, the dielectric constant of this aluminum plate was measured according to JIS-K6911. As a result, the dielectric constant at 1 MHz was 2.68, and the transmittance at 400 nm was 88%.
[0037]
(Comparative Example 1) The polyimide solution obtained in Synthesis Example 3 was applied to an aluminum plate having a thickness of 100 μm by spin coating and baked at 250 ° C. to form a 10 μm polyimide film. Thereafter, the dielectric constant of this aluminum plate was measured according to JIS-K6911. As a result, the dielectric constant at 1 MHz was 3.40, and the transmittance at 400 nm was 36%.
[0038]
(Comparative Example 2) The polyimide solution obtained in Synthesis Example 4 was applied to an aluminum plate having a thickness of 100 μm by spin coating and baked at 250 ° C. to form a 10 μm polyimide film. Thereafter, the dielectric constant of this aluminum plate was measured according to JIS-K6911. As a result, the dielectric constant at 1 MHz was 3.10, and the transmittance at 400 nm was 95%.
[0039]
Comparative Example 3 The polyimide solution obtained in Synthesis Example 5 was applied to an aluminum plate having a thickness of 100 μm by spin coating and baked at 250 ° C. to form a 10 μm polyimide film. Thereafter, the dielectric constant of this aluminum plate was measured according to JIS-K6911. As a result, the dielectric constant at 1 MHz was 3.4, and the transmittance at 400 nm was 26.6%.
[0040]
In Examples 1 and 2, the dielectric constant at 1 MHz was low, and the transmittance at 400 nm was high.
[0041]
In Comparative Example 1, since no fluorine was introduced into the acid anhydride, the dielectric constant at 1 MHz was high. Further, the fired film was colored deeply, and the transmittance at 400 nm was low.
In Comparative Example 2, since the firing temperature was too low, the dielectric constant at 1 MHz was high.
In Comparative Example 3, the dielectric constant was high because fluorine was not introduced in both the acid anhydride and diamine. Further, the fired film was colored deeply, and the transmittance at 400 nm was low.
[0042]
【The invention's effect】
The polyimide resin composition of the present invention is an insulating agent for active matrix liquid crystal display elements that has excellent insulation at a low baking temperature of 250 ° C. or less and has high transmittance.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33567597A JP3933773B2 (en) | 1997-12-05 | 1997-12-05 | Insulating agent for active matrix liquid crystal display elements |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33567597A JP3933773B2 (en) | 1997-12-05 | 1997-12-05 | Insulating agent for active matrix liquid crystal display elements |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11167101A JPH11167101A (en) | 1999-06-22 |
JP3933773B2 true JP3933773B2 (en) | 2007-06-20 |
Family
ID=18291261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33567597A Expired - Fee Related JP3933773B2 (en) | 1997-12-05 | 1997-12-05 | Insulating agent for active matrix liquid crystal display elements |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3933773B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1235099A1 (en) * | 1999-11-30 | 2002-08-28 | Hitachi, Ltd. | Liquid-crystal display and resin composition |
-
1997
- 1997-12-05 JP JP33567597A patent/JP3933773B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11167101A (en) | 1999-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100381761B1 (en) | Liquid crystal alignment treatment agent | |
JP2839967B2 (en) | Liquid crystal cell alignment agent | |
KR100940471B1 (en) | Aligning agent for liquid crystal and liquid-crystal display element | |
JP2743460B2 (en) | Liquid crystal cell alignment agent | |
TWI468415B (en) | Siloxane dianhydride, polymer, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device | |
KR20000069964A (en) | Liquid alligning agent | |
JP4171851B2 (en) | Liquid crystal alignment treatment agent | |
JP3056645B2 (en) | Liquid crystal alignment agent and liquid crystal display device using the same | |
JP3933773B2 (en) | Insulating agent for active matrix liquid crystal display elements | |
JP3882327B2 (en) | Alignment agent for antiferroelectric liquid crystal display element, alignment film using the alignment agent, and antiferroelectric liquid crystal display element having the alignment film | |
JP3203626B2 (en) | Liquid crystal cell alignment agent | |
JP3780534B2 (en) | Polyimide varnish | |
JP3681083B2 (en) | Liquid crystal alignment agent | |
JP5467712B2 (en) | Alignment film material containing polyimide resin polymer and the resin for liquid crystal display | |
JPH11125812A (en) | Insulating agent for active matrix liquid crystal display element | |
JPH05117587A (en) | Polyimide varnish composition and its use | |
JP2001064388A (en) | Polyimide, polyimide solution and method for forming polyimide film | |
JP2000180861A (en) | Liquid crystal aligning agent | |
CN114524938B (en) | Polymer, photosensitive resin composition, cured film prepared from polymer and photosensitive resin composition, and electronic element | |
JP2000206509A (en) | Tft type liquid crystal display device | |
JP4071307B2 (en) | Liquid crystal display element | |
JP2000284293A (en) | Liquid crystal alignment agent and liquid crystal display device using the same | |
JP3681086B2 (en) | Liquid crystal alignment agent | |
JP3681084B2 (en) | Liquid crystal alignment agent | |
JPH10111514A (en) | Forming method of liquid crystal orienting film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040913 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061205 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070313 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070314 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110330 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |