Nothing Special   »   [go: up one dir, main page]

JP3933006B2 - Cold-rolled steel sheet with small in-plane anisotropy and method for producing the same - Google Patents

Cold-rolled steel sheet with small in-plane anisotropy and method for producing the same Download PDF

Info

Publication number
JP3933006B2
JP3933006B2 JP2002235804A JP2002235804A JP3933006B2 JP 3933006 B2 JP3933006 B2 JP 3933006B2 JP 2002235804 A JP2002235804 A JP 2002235804A JP 2002235804 A JP2002235804 A JP 2002235804A JP 3933006 B2 JP3933006 B2 JP 3933006B2
Authority
JP
Japan
Prior art keywords
cold
steel sheet
rolled steel
rolling
plane anisotropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002235804A
Other languages
Japanese (ja)
Other versions
JP2004076060A (en
Inventor
勝己 中島
康伸 長滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002235804A priority Critical patent/JP3933006B2/en
Publication of JP2004076060A publication Critical patent/JP2004076060A/en
Application granted granted Critical
Publication of JP3933006B2 publication Critical patent/JP3933006B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車、家電製品等に適用可能な面内異方性が小さい冷延鋼板およびその製造方法に関する。
【0002】
【従来の技術】
一般に、自動車、家電製品等で回転対称形状の部品では、面内異方性が小さい鋼板が要望されている。面内異方性を小さくすることにより、深絞り成形後の耳形成が小さくなり、板厚分布等の品質が均一化するとともに、耳切り作業による作業コストの増加および材料歩留りの低下を抑制することができる。また、材料の板取り方向が任意に可能となり、ユーザーの使い勝手も向上する。
【0003】
この場合、面内異方性としては、特に塑性歪比r値の面内異方性が大きく影響しており、そのパラメータとして、圧延方向に対し0゜、45°、90°方向のr値r0、r45、r90を使って計算されるΔr=(r0+r90-2r45)/2が知られている。通常、冷延鋼板のΔrの絶対値は、冷圧率の増加に伴い低下して最小値となった後、更に冷圧率が高くなると再度増加することが知られている。
【0004】
冷延鋼板の面内異方性の低減については、例えば、特公昭61-7455号公報には、熱延における仕上圧延板厚比(圧下比)を13以上、熱延終了後は冷却速度20〜65℃/secの強制冷却を行い、その際、仕上圧延入口温度と熱延終了後の強制冷却の温度域をC,Mn,P含有量の式で規定することで、深絞り性、面内異方性を改善する方法が提案されている。
【0005】
一方、缶用材料の分野では、近年、缶体軽量化、工程省略、材料コスト低減の観点から、2ピース缶への移行、缶体薄肉化が進められている。缶体の薄肉化については、熱延板の板厚を薄くすることと、冷圧率を上げることが考えられるが、前者は熱延の生産性を著しく阻害し、後者はイヤリングを増加させる。
【0006】
このような冷圧率が高い場合にΔrの絶対値を低下させるため、例えば、特開平8-3638号公報には、製缶工程で鋼板歩留り、生産性の向上に有利な耳発生の小さい鋼板、及びそれを高生産性にて製造する方法が提案されている。この技術は、必要に応じてTi,Nb,Bを添加した低炭素鋼を、熱間圧延、酸洗した後、冷延圧下率90%以上の冷間圧延を行い、そのうちの50%以上を100〜500℃の温間で圧延し、焼鈍を行うというものである。
【0007】
また、特開平10-330845号公報には、飲料缶で用いられる底と胴の部分を深絞りとしごき加工により一体成形する2ピース缶のイヤリングを小さくする容器用鋼板の製造方法が提案されている。その技術は、熱間圧延の際、先行材の後端に後行材の先端を接合して仕上圧延に供し、さらに、合計圧下率が50%以上の仕上圧延を潤滑を施して行い、冷間圧延、再結晶焼鈍、スキンパス圧延を、冷間圧延とスキンパス圧延の全圧下率が90〜95%となる条件で、行うことを特徴とする低イヤリング容器用鋼板の製造方法というものである。
【0008】
冷延鋼板のプレス成形性に関しては、従来より主として深絞り性と張出し成形性の観点から検討されている。深絞り性に関しては、r値を高めることに主眼が置かれ、例えば、特開平8-92656号公報には、高いr値を示す極低炭素鋼板が提案されている。この技術は、熱延のα域で熱間潤滑を施して圧延された熱延鋼板を、再結晶処理して冷間圧延および焼鈍することにより、r値が3.0以上の冷延鋼板が得られるというものである。
【0009】
張出し成形性に関しては、例えば、「薄板のプレス加工」(実教出版)には、全伸び測定や荷重-伸び曲線から求めた高歪域のn値(例えば、10%,20%の2点法により測定されたn値)を高めることが重要であると記載されている。
【0010】
【発明が解決しようとする課題】
しかしながら、上記の従来技術には次の問題点がある。例えば、特公昭61-7455号公報記載の技術では、結局のところC,Mn,P量等を規定した一般的な低炭素冷延鋼板の製造方法にすぎず、得られるΔrは、その実施例(第2表発明例)に見られるように0.15〜0.25であり、これでは面内異方性が十分に改善されているとは言えない。
【0011】
一般に、缶用材料の従来技術では、板厚0.3mm以下の板厚の薄い鋼板を対象としており、いずれも冷圧率の高い領域における技術である。例えば、特開平8-3638号公報記載の技術では、冷圧率90%以上の冷間圧延を行う必要があり、これを板厚0.5mm以上の冷延鋼板に適用すると、熱延鋼板の板厚が5mm以上となり、通常のタンデム圧延機では圧延荷重、ミルパワー等の限界から、営業生産が困難となる場合が多い。
【0012】
また、一般に、缶用材料は冷間圧延-焼鈍後、強スキンパス圧延(2次冷間圧延)を施して製造される。特開平10-330845号公報記載の技術も、冷間圧延とスキンパス圧延を組み合わせて板厚の薄い缶用材料を製造している。しかし、この従来技術では、熱延の仕上圧延において潤滑を施しているため、材料のロールバイトへの噛み込み不良やスリップなどが起こる可能性が高くなる。
【0013】
そこで、粗圧延後、(粗バーの)先行材の後端に後行材の先端を接合して仕上圧延を行っているが、このような潤滑圧延および連続熱延は、いずれも潤滑用および粗バー接続用の特別な設備を必要とする。また、操業上も潤滑条件の調整や粗バーの接合等の作業を必要とする。従って、通常の熱延の設備および操業では実施困難である。
【0014】
さらに、通常、自動車、家電製品用冷延鋼板は、焼鈍後、軽スキンパス圧延により製造され、缶用材料とは根本的に製造方法が異なる。
【0015】
以上のように、冷延鋼板の従来技術では面内異方性が十分に改善されておらず、缶用材料の従来技術では冷圧率が高すぎるか、強スキンパスや特殊な熱延方法を採用する必要があり、本発明が目的とする面内異方性が小さい自動車、家電製品用の冷延鋼板(好ましくは板厚0.5mm以上)の製造に適用することはできない。
【0016】
さらに、冷延鋼板の従来技術では、n値を高めることにより張出し成形性が向上するとしているが、例えば、自動車の外板パネルをプレスする場合、圧延方向あるいは板幅方向のn値というように、単に一方向のn値を高くするだけでは十分ではないことがわかった。
【0017】
本発明は以上の問題点を解決し、自動車、家電製品等に適用可能なr値の面内異方性が小さい冷延鋼板およびその製造方法を提供することを目的とする。
【0018】
【課題を解決するための手段】
上記の課題は次の発明により解決される。その発明は、化学成分が、mass%で、C:0.01〜0.1%、Si:0.5%以下、Mn:1.0%以下、P:0.05%以下、S:0.03%以下、Al:0.01〜0.1%、N:0.01%以下で、残部が鉄および不可避的不純物からなり、|Δr|<0.15である面内異方性の小さい板厚が0.5mm以上の冷延鋼板である。
【0019】
この発明はさらに、n値の面内平均値n*が次の関係式(1)を満たし、張出し成形性に優れていることを特徴とする面内異方性の小さい板厚が0.5mm以上の冷延鋼板とすることもできる。
【0020】
n*≧0.1×|Δr|+0.175 (1)
これらの発明は、従来技術では極めて困難であった板厚0.5mm以上で面内異方性が小さい(|Δr|<0.15)冷延鋼板を製造するため、特に化学成分、熱延条件に着目して詳細な検討を行った結果なされた。検討の過程で、仕上圧延後の冷却条件が、冷延鋼板の面内異方性に影響を及ぼす極めて重要なファクターであり、最適な条件の範囲を見出すことにより、目的が達成されている。
【0021】
以下、発明の個々の限定理由について説明する。
【0022】
C: 0.1%以下
Cは、鋼の引張強度を確保するために必要な元素であるが、0.1%を超えると延性の低下が著しくなる。一方、C量が0.01%未満では面内異方性が大きくなる傾向を示す。従って、C量を0.1%以下、好ましくは0.01〜0.1%の範囲内とする。
【0023】
Si: 0.5%以下
Siは、強度確保に有効な元素であるが、0.5%を超えると、表面性状が劣化し、めっき鋼板とした場合にめっき密着性が著しく劣化する。従って、Si量を0.5%以下とする。
【0024】
Mn: 1.0%以下
Mnは、鋼中のSをMnSとして析出させてスラブの熱間割れを防止し、また、めっき密着性を劣化させることなく強度を高くするために有効な元素である。しかし、Mn量が1.0%を超えると、スラブコストが著しく上昇するだけでなく、加工性の劣化を招く。従って、Mn量は1.0%以下とする。
【0025】
P: 0.05%以下
Pは、強度確保に有効な元素であるが、0.05%を超えて添加するとプレス成形後の耐二次加工脆性を劣化させ、亜鉛めっき鋼板とした場合に合金化処理性の低下を引き起こす。従って、P量を0.05%以下とする。
【0026】
S: 0.03%以下
Sは、熱間加工性を低下させ、スラブの熱間割れ感受性を高め、0.03%を超えると微細なMnSの析出により加工性を劣化させる。従って、S量を0.03%以下とする。
【0027】
Al: 0.01〜0.1%
Alは鋼の脱酸に寄与するとともに、鋼中の不要な固溶Nを窒化物として固定する役割がある。この効果は、Alが0.01%未満では十分ではなく、0.1%を超えても添加量に見合う効果が得られない。従って、Al量を0.01〜0.1%の範囲内とする。
【0028】
N: 0.005%以下
Nは、時効性の観点から固溶状態で残存させることはできず、その含有量は少ないほどよい。N量が0.005%を超えると、過剰な窒化物の存在により延性、靭性が劣化する。従って、N量を0.005%以下とする。
【0029】
板厚: 好ましくは0.5mm以上
本発明は、自動車および家電製品用の冷延鋼板を対象としている。通常これらの冷延鋼板の板厚としては、パネル剛性等の部品強度の観点から0.5mm以上であることが好ましい。従って、好ましくは板厚を0.5mm以上に限定する。
【0030】
面内異方性Δr: 絶対値で0.15未満
r値の面内異方性指数Δrの絶対値|Δr|を小さくすることにより、回転対称形状の部品を均一に成形することができる。この|Δr|が0.15以上となると、深絞り成形後の耳形成が大きくなり、板厚分布等の品質が不均一となる。さらに、耳切り作業による作業コストの増加と、材料歩留りの低下を招く。従って、|Δr|を0.15未満とする。
【0031】
n値の面内平均値n*とΔrの関係: n*≧0.1×|Δr|+0.175
n値とr値について、張出し成形性に及ぼす影響を検討したところ、n値の面内平均値n*とr値の面内異方性の絶対値|Δr|が、張出し成形性に大きく影響することがわかった。そこで、板厚1mmで400mm×400mmの試験片について、直径160mmの球頭ポンチを用いた球頭張出し試験を行い、張出し成形性(限界張出し高さ)を調査した。その結果、単にn値が高いだけでは十分な張出し成形性は得られず、同時に面内異方性を低減する必要があることがわかった。結果の解析により、前述の関係式(1)を満足することにより、非常に良好な張出し成形性が得られることを解明した。図1に、上記n*および|Δr|と張出し成形性の関係を示す。
【0032】
上述の冷延鋼板を得ることが可能な製造方法の発明は、次のようになる。その発明は、上述の発明の化学成分を有する鋼を、Ar変態点以上の仕上温度で熱間圧延を行い、仕上圧延終了後2秒以内に冷却を開始し、その冷却を70℃/s以上の冷却速度で100℃以上の温度域にわたって行い、得られた熱延鋼板を冷間圧延して焼鈍することにより、|Δr|<0.15とすることを特徴とする面内異方性の小さい板厚が0.5mm以上の冷延鋼板の製造方法である。
【0033】
この発明は、上記の発明の冷延鋼板を得ることが可能な製造条件について検討した結果なされたものであり、以下、その詳細を説明する。
【0034】
仕上温度: Ar3変態点以上
熱間圧延の仕上圧延は、板温度がAr3変態点以上となる温度で行う。仕上温度がAr3変態点未満になると、材料の変形抵抗の不連続性(オーステナイトとフェライトの変形抵抗の違い)により圧延荷重が大きく変動し、安定した通板ができなくなる。それに伴い、均一かつ良好な材質および板形状も得られなくなる。従って、熱延鋼板の粒径の均一化および細粒化の観点から、仕上温度をAr3変態点以上とする。
【0035】
圧延後の冷却開始時間: 仕上圧延終了後2秒以内
仕上圧延終了後、冷却開始までの時間は、変態前のオーステナイト結晶粒の粒成長を抑制するために特に重要であり、この時間が2秒を超えると粒成長が顕著となる。従って、仕上圧延終了後2秒以内に冷却を開始する。また、面内異方性を低減するためには、さらに冷却開始までの時間を短縮することが効果的であり、1秒以内とすることが望ましい。
【0036】
圧延後の冷却条件: 100℃以上の温度域を冷却速度70℃/s以上
熱間圧延後の冷却においては、冷却を行う温度域の温度幅ΔTおよび冷却速度の制御が、極めて重要である。これは、本発明の化学成分を有する鋼から、実機を用いて種々の冷却条件で熱延鋼板を製造し、それらの冷延鋼板について詳細に検討した結果得られた知見である。
【0037】
図2および図3は、冷延鋼板の面内異方性|Δr|および張出し成形性(限界張出し高さ)に及ぼす冷却温度幅ΔTの影響を示す図である。これらの図より、冷却温度幅ΔTが100℃以上になると、面内異方性|Δr|および張出し成形性が顕著に低下していることがわかる。
【0038】
図4および図5は、冷延鋼板の面内異方性|Δr|および張出し成形性(限界張出し高さ)に及ぼす冷却速度の影響を示す図である。これらの図より、冷却速度が70℃/s以上になると、|Δr|および張出し成形性が顕著に低下しており、これは、熱延鋼板の組織が微細化したためと考えられる。
【0039】
以上より、本発明では、圧延後の冷却条件として、100℃以上の温度域について冷却速度70℃/s以上とする。
【0040】
また、以上の発明の冷延鋼板は、電気亜鉛系めっき鋼板あるいは溶融亜鉛系めっき鋼板としても、目的の効果が得られることは言うまでもない。これらの本発明の亜鉛系めっき鋼板においては、めっき後にさらに有機被膜処理を施してもよい。本発明では、SiとPを低く抑えているので、亜鉛系めっき鋼板の表面性状への悪影響もなく、自動車の外板パネル等へも適用可能である。
【0041】
なお、これらの発明において「残部が実質的に鉄である」とは、発明の作用・効果を損なわない限り、不可避的不純物をはじめ、他の微量元素を含有するものが本発明の範囲に含まれることを意味する。
【0042】
【発明の実施の形態】
本発明においては、スラブを熱間圧延するにあたって、加熱炉で加熱後に圧延するか、または加熱することなく直接圧延することができる。熱延の巻取温度については、冷間圧延後の焼鈍工程が連続焼鈍かバッチ焼鈍かにより、それぞれの適正温度を採用する。
【0043】
冷延鋼板の冷圧率および焼鈍温度については、よく知られているように化学成分に応じて適正な範囲が存在する。前述の製造方法の発明により熱延鋼板を製造すれば、冷圧率は通常の範囲内(90%未満)でよく、焼鈍温度も連続焼鈍あるいはバッチ焼鈍の通常の温度でよい。但し、鋼板の組織をフェライト単相組織とするために、焼鈍温度はAc3変態点以下の温度とすることが望ましい。
【0044】
なお、圧延方向に対し90°方向のr値r90については、1.3以下であることが望ましい。これは、r0<r45<r90の大小関係となった場合、Δrは計算上減少するが、r0とr90の差(LC差)が拡大するので、r90に上限を設けることによりLC差を低く抑えるためである。実用上は、r90を1.3以下とすれば、このLC差も考慮した面内異方性が十分に小さくなったと言える。
【0045】
【実施例】
[実施例1]
表1に示す鋼を溶製し、連続鋳造によりスラブを製造した。
【0046】
【表1】

Figure 0003933006
【0047】
この表1に示すように、本発明例の鋼番1〜6は、いずれも化学成分が本発明の範囲内の本発明鋼であるが、鋼番7〜10は、本発明の範囲から外れた比較鋼である。すなわち、鋼番7はN量が上限超え、鋼番8はC量が上限超え、鋼番9はAl量が下限未満、鋼番10は発明範囲外のBが添加されている。
【0048】
このスラブを1200℃に加熱後、熱間圧延を行い、その後、種々の冷却条件により冷却し、通常の巻取温度の範囲内で巻取ることにより熱延鋼板を製造した。この熱延鋼板に酸洗、冷間圧延を行い、連続焼鈍もしくは箱焼鈍により冷延鋼板、又は溶融亜鉛めっき鋼板もしくは電気亜鉛めっき鋼板とした。これらの冷延鋼板および亜鉛めっき鋼板に、圧下率0.5〜2.0%の調質圧延を施した。以上の熱延条件(仕上温度、冷却速度、冷却温度域の温度幅ΔT)および焼鈍(めっき)条件を表2に示す。
【0049】
【表2】
Figure 0003933006
【0050】
これらの冷延鋼板および亜鉛めっき鋼板について、圧延方向に対して0゜45°、90°方向のr値を測定し、Δrを求めた。試験結果を表2に併せて示す。
【0051】
表2に示すように、化学成分および製造条件が発明範囲内である本発明例No.1〜3,7,8,10では、いずれも|Δr|<0.15を満足し、発明の目的が達成されている。一方、化学成分あるいは製造条件が発明範囲を外れている比較例では、面内異方性が増加し、本発明の目標とするΔrの抑制効果が得られない。
【0052】
例えば、比較例No.4〜6,9は、化学成分は発明範囲内(鋼番3,5)であるが、製造条件が発明範囲から外れているため、Δrが目標範囲を超えている。No.4,5はそれぞれ圧延後の冷却速度、冷却温度幅ΔTが発明範囲から外れており、No.6は仕上温度が、またNo.9は冷却速度および冷却温度幅ΔTが、それぞれ発明範囲から外れている。
【0053】
また、比較例No.11〜14は、化学成分が発明範囲を外れている(鋼番7〜10)ため、異方性が大きくなっている。No.11,13(鋼番7,9)は、N量又はAlが発明範囲外のため、固溶Nにより耐時効性が劣化し、本発明が対象とする自動車用あるいは家電製品用鋼板としては使用できない。No.12(鋼番8)は、面内異方性は目標範囲を少し外れた程度であるが、C量が過剰なため延性に劣り、やはり本発明が対象とする自動車用・家電用鋼板としては使用できない。No.14(鋼番10)は、添加されたBが再結晶集合組織の形成に悪影響を及ぼし、面内異方性が非常に悪化している。
【0054】
[実施例2]
表3に示す化学成分を有する鋼を溶製し、連続鋳造によりスラブを製造した。
【0055】
【表3】
Figure 0003933006
【0056】
この表3に示すように、本発明例の鋼番11〜16は、いずれも化学成分が本発明の範囲内の本発明鋼であるが、鋼番17〜20は、本発明の範囲から外れた比較鋼である。すなわち、鋼番17はN量が上限超過、鋼番18はC量が上限超過、鋼番19はAl量が下限未満、鋼番20は発明範囲外のBが添加されている。
【0057】
このスラブを1200℃に加熱後、熱間圧延を行い、その後、種々の冷却条件により冷却し、通常の巻取温度の範囲内で巻取ることにより熱延鋼板を製造した。この熱延鋼板に酸洗、冷間圧延を行い、連続焼鈍もしくは箱焼鈍により冷延鋼板、又は溶融亜鉛めっきもしくは電気亜鉛めっきにより亜鉛めっき鋼板を製造した。これらの冷延鋼板および亜鉛めっき鋼板に、圧下率0.5〜2.0%の調質圧延を施した。以上の熱延条件(仕上温度、冷却速度、冷却温度域の温度幅ΔT)および焼鈍(めっき)条件を表4に示す。
【0058】
【表4】
Figure 0003933006
【0059】
これらの冷延鋼板および亜鉛めっき鋼板について、圧延方向に対して0゜45°、90°方向のn値とr値を測定し、n値の面内平均値n*と面内異方性Δrを求めた。さらに、400mm×400mmの試験片について、直径160mmの球頭ポンチを用いた球頭張出し試験を行い、張出し成形性(限界張出し高さ)を調査した。試験結果を表4に併せて示す。
【0060】
表4に示すように、化学成分および製造条件が発明範囲内である本発明例No.21〜23,27,28,30では、いずれも|Δr|<0.15およびn*とΔrの関係式(1)を満足し、発明の目的が達成されている。
【0061】
一方、化学成分あるいは製造条件が発明範囲を外れている比較例では、面内異方性が増大し、本発明の目標とするΔrの抑制効果が得られず、n値の面内平均値n*とΔrの関係式(1)を満足していない。
【0062】
例えば、比較例No. 24〜26, 29は、化学成分は発明範囲内(鋼番13, 15)であるが、製造条件が発明範囲から外れているため、n*とΔrの関係式(1)を満足せず、Δrが目標範囲を超えている。No.24,25はそれぞれ圧延後の冷却速度、冷却温度幅ΔTが発明範囲から外れており、No.26は仕上温度が、またNo.29は冷却速度と冷却温度幅ΔTが、それぞれ発明範囲から外れている。
【0063】
また、比較例No.31〜34は、化学成分が発明範囲を外れている(鋼番17〜20)ため、n*とΔrの関係式(1)を満足せず、面内異方性が大きくなっている。ここで、No.31(鋼番17)はN量が上限超過、No.32(鋼番18)はC量が上限超過、No.33(鋼番19)はAl量が下限未満である。また、No.34(鋼番20)は、添加されたBが再結晶集合組織の形成に悪影響を及ぼし、面内異方性が非常に悪化しており、関係式(1)も満足していない。
【0064】
【発明の効果】
この発明は、化学成分を特定の範囲内に制御するとともに、熱延仕上圧延およびその後の冷却条件を制御することにより、板厚0.5mm以上で面内異方性が小さい冷延鋼板あるいは亜鉛めっき鋼板を製造することに成功した。その結果、この発明の鋼板は、自動車用鋼板を始め、家庭用電器製品等に広く活用することが可能となる。
【図面の簡単な説明】
【図1】 n値の面内平均値n*および面内異方性|Δr|と張出し成形性の関係を示す図。
【図2】冷延鋼板の面内異方性に及ぼす冷却温度幅ΔTの影響を示す図。
【図3】冷延鋼板の張出し成形性に及ぼす冷却温度幅ΔTの影響を示す図。
【図4】冷延鋼板の面内異方性に及ぼす冷却速度の影響を示す図。
【図5】冷延鋼板の張出し成形性に及ぼす冷却速度の影響を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cold-rolled steel sheet having a small in-plane anisotropy applicable to automobiles, home appliances, and the like, and a method for manufacturing the same.
[0002]
[Prior art]
In general, a steel plate having small in-plane anisotropy is desired for rotationally symmetric parts such as automobiles and home appliances. By reducing the in-plane anisotropy, the ear formation after deep drawing is reduced, the quality of the plate thickness distribution and the like is made uniform, and the increase in the work cost and the decrease in the material yield due to the ear cutting work are suppressed. be able to. In addition, the direction of cutting the material can be arbitrarily selected, and the usability of the user is improved.
[0003]
In this case, as the in-plane anisotropy, the in-plane anisotropy of the plastic strain ratio r value has a great influence, and the r value in the 0 °, 45 °, and 90 ° directions with respect to the rolling direction is used as the parameter. Δr = (r 0 + r 90 −2r 45 ) / 2 calculated using r 0 , r 45 , and r 90 is known. In general, it is known that the absolute value of Δr of a cold-rolled steel sheet decreases as the cold pressure ratio increases and reaches a minimum value, and then increases again when the cold pressure ratio further increases.
[0004]
Regarding the reduction of in-plane anisotropy of cold-rolled steel sheets, for example, Japanese Patent Publication No. 61-7455 discloses a finish rolled sheet thickness ratio (rolling ratio) of 13 or more in hot rolling, and a cooling rate of 20 after hot rolling is completed. By performing forced cooling at ~ 65 ° C / sec, and defining the finish rolling inlet temperature and the temperature range of forced cooling after the end of hot rolling by the formula of C, Mn, P content, deep drawability, surface A method for improving the internal anisotropy has been proposed.
[0005]
On the other hand, in the field of can materials, in recent years, from the viewpoint of reducing the weight of the can body, omitting the process, and reducing the material cost, the transition to a two-piece can and the thinning of the can body have been promoted. Regarding the thinning of the can body, it is conceivable to reduce the thickness of the hot-rolled plate and raise the cold pressure ratio, but the former significantly inhibits the productivity of hot-rolling, and the latter increases the earrings.
[0006]
In order to reduce the absolute value of Δr when such a cold pressure ratio is high, for example, Japanese Patent Laid-Open No. 8-3638 discloses a steel plate with a small ear generation that is advantageous in improving the productivity and yield of the steel plate in the can manufacturing process. And a method for manufacturing the same with high productivity. In this technology, low-carbon steel with Ti, Nb, B added as needed is hot-rolled, pickled, and then cold-rolled with a cold rolling reduction of 90% or more, of which 50% or more It is rolled at a temperature of 100 to 500 ° C. and annealed.
[0007]
Japanese Patent Laid-Open No. 10-330845 proposes a method for producing a steel plate for containers in which the bottom and body parts used in beverage cans are deep drawn and the two-piece can earrings are integrally formed by ironing. Yes. In this technology, during hot rolling, the leading edge of the succeeding material is joined to the trailing edge of the preceding material and used for finish rolling, and finish rolling with a total rolling reduction of 50% or more is lubricated and cooled. This is a method for producing a steel plate for a low earring container, characterized in that the hot rolling, recrystallization annealing, and skin pass rolling are performed under the condition that the total rolling reduction of cold rolling and skin pass rolling is 90 to 95%.
[0008]
Conventionally, the press formability of cold-rolled steel sheets has been studied mainly from the viewpoints of deep drawability and stretch formability. With regard to deep drawability, the main focus is on increasing the r value. For example, JP-A-8-92656 proposes an ultra-low carbon steel sheet exhibiting a high r value. In this technology, a cold rolled steel sheet having an r value of 3.0 or more can be obtained by recrystallizing a hot rolled steel sheet rolled by hot lubrication in the α region of hot rolled and then cold rolling and annealing. That's it.
[0009]
With regard to stretch formability, for example, in “press processing of thin plates” (Jikkyo Shuppan), n values (for example, 10% and 20%) in the high strain range obtained from total elongation measurements and load-elongation curves It is described that it is important to increase the n value measured by the method.
[0010]
[Problems to be solved by the invention]
However, the above prior art has the following problems. For example, in the technique described in Japanese Patent Publication No. 61-7455, after all, it is merely a general method for producing a low-carbon cold-rolled steel sheet that defines the amount of C, Mn, P, etc. As seen in (Table 2 invention examples), it is 0.15 to 0.25, and it cannot be said that the in-plane anisotropy is sufficiently improved.
[0011]
In general, the conventional technologies for can materials target thin steel plates with a thickness of 0.3 mm or less, and all are technologies in a region with a high cold pressure ratio. For example, in the technique described in JP-A-8-3638, it is necessary to perform cold rolling with a cold pressure ratio of 90% or more. When this is applied to a cold-rolled steel sheet having a thickness of 0.5 mm or more, a hot-rolled steel sheet is obtained. Thickness is 5mm or more, and ordinary tandem rolling mills often have difficulty in commercial production due to limitations such as rolling load and mill power.
[0012]
In general, can materials are manufactured by cold rolling-annealing followed by strong skin pass rolling (secondary cold rolling). The technique described in Japanese Patent Application Laid-Open No. 10-330845 also produces a thin can material by combining cold rolling and skin pass rolling. However, in this conventional technique, since lubrication is performed in hot rolling finish rolling, there is a high possibility that a material will not be caught in a roll bite or slip.
[0013]
Therefore, after rough rolling, finish rolling is performed by joining the leading end of the succeeding material to the trailing end of the preceding material (of the rough bar). Such lubrication rolling and continuous hot rolling are both for lubrication and Requires special equipment for coarse bar connection. Also, operations such as adjustment of lubrication conditions and joining of rough bars are required for operation. Therefore, it is difficult to carry out with normal hot rolling equipment and operation.
[0014]
Furthermore, cold rolled steel sheets for automobiles and home appliances are usually manufactured by light skin pass rolling after annealing, and the manufacturing method is fundamentally different from that for cans.
[0015]
As described above, the in-plane anisotropy is not sufficiently improved in the conventional technology of cold-rolled steel sheets, and the cold pressure ratio is too high in the conventional technology of can materials, or a strong skin pass or a special hot-rolling method is used. Therefore, the present invention is not applicable to the production of cold-rolled steel sheets (preferably having a thickness of 0.5 mm or more) for automobiles and home appliances with small in-plane anisotropy.
[0016]
Furthermore, in the conventional technology of cold-rolled steel sheet, the stretchability is improved by increasing the n value. For example, when pressing an outer panel of an automobile, the n value in the rolling direction or the sheet width direction is used. It was found that simply increasing the n value in one direction is not enough.
[0017]
An object of the present invention is to solve the above problems and to provide a cold-rolled steel sheet having a small in-plane anisotropy of r value applicable to automobiles, home appliances, and the like, and a method for manufacturing the same.
[0018]
[Means for Solving the Problems]
The above problems are solved by the following invention. In the invention, the chemical components are mass%, C: 0.01 to 0.1%, Si: 0.5% or less, Mn: 1.0% or less, P: 0.05% or less, S: 0 0.03% or less, Al: 0.01 to 0.1%, N: 0.01% or less, the balance being iron and inevitable impurities, and | Δr | <0.15 A cold-rolled steel sheet having a small thickness of 0.5 mm or more .
[0019]
In the present invention, the in-plane average value n * of the n value satisfies the following relational expression (1), and the sheet thickness with small in-plane anisotropy is 0.5 mm , characterized by excellent stretch formability. It can also be set as the above cold-rolled steel plate.
[0020]
n * ≧ 0.1 × | Δr | +0.175 (1)
Since these inventions produce cold-rolled steel sheets with a thickness of 0.5 mm or more and small in-plane anisotropy (| Δr | <0.15), which was extremely difficult with the prior art, pay particular attention to chemical composition and hot-rolling conditions. As a result of detailed examination. In the course of the study, the cooling condition after finish rolling is a very important factor affecting the in-plane anisotropy of the cold-rolled steel sheet, and the object has been achieved by finding the optimum condition range.
[0021]
Hereinafter, each reason for limitation of the invention will be described.
[0022]
C: 0.1% or less
C is an element necessary for securing the tensile strength of the steel, but when it exceeds 0.1%, the ductility is significantly reduced. On the other hand, when the C content is less than 0.01%, the in-plane anisotropy tends to increase. Therefore, the C content is 0.1% or less, preferably 0.01 to 0.1%.
[0023]
Si: 0.5% or less
Si is an element effective for securing the strength. However, when the content exceeds 0.5%, the surface properties deteriorate, and when the plated steel sheet is used, the plating adhesion is remarkably deteriorated. Therefore, the Si content is 0.5% or less.
[0024]
Mn: 1.0% or less
Mn is an effective element for precipitating S in steel as MnS to prevent hot cracking of the slab and for increasing the strength without deteriorating the plating adhesion. However, when the amount of Mn exceeds 1.0%, not only the slab cost is remarkably increased, but also the workability is deteriorated. Therefore, the Mn content is 1.0% or less.
[0025]
P: 0.05% or less
P is an element effective for ensuring the strength, but if added over 0.05%, the secondary work embrittlement resistance after press forming is deteriorated, and in the case of a galvanized steel sheet, the alloying processability is lowered. Therefore, the P content is 0.05% or less.
[0026]
S: 0.03% or less
S decreases the hot workability and increases the hot cracking susceptibility of the slab, and if it exceeds 0.03%, the workability deteriorates due to the precipitation of fine MnS. Therefore, the S content is 0.03% or less.
[0027]
Al: 0.01-0.1%
Al contributes to deoxidation of steel and also has a role of fixing unnecessary solid solution N in the steel as nitrides. This effect is not sufficient if Al is less than 0.01%, and even if it exceeds 0.1%, an effect commensurate with the amount added cannot be obtained. Therefore, the Al content is set within a range of 0.01 to 0.1%.
[0028]
N: 0.005% or less
N cannot remain in a solid solution state from the viewpoint of aging, and the smaller the content, the better. If the N content exceeds 0.005%, ductility and toughness deteriorate due to the presence of excess nitride. Therefore, the N content is 0.005% or less.
[0029]
Sheet thickness: Preferably 0.5 mm or more The present invention is directed to cold rolled steel sheets for automobiles and home appliances. Usually, the thickness of these cold-rolled steel plates is preferably 0.5 mm or more from the viewpoint of component strength such as panel rigidity. Therefore, the plate thickness is preferably limited to 0.5 mm or more.
[0030]
In-plane anisotropy Δr: Absolute value less than 0.15
By reducing the absolute value | Δr | of the in-plane anisotropy index Δr of the r value, it is possible to uniformly mold a rotationally symmetric part. When this | Δr | is 0.15 or more, the ear formation after deep drawing becomes large, and the quality such as the plate thickness distribution becomes non-uniform. Furthermore, the work cost due to the ear-cutting operation is increased and the material yield is reduced. Therefore, | Δr | is less than 0.15.
[0031]
Relationship between n-value average n * and Δr: n * ≧ 0.1 × | Δr | +0.175
When the influence of n value and r value on stretch formability was examined, the in-plane average n * of n value and the absolute value of the in-plane anisotropy of r value | Δr | I found out that Therefore, a ball head overhang test using a ball head punch with a diameter of 160 mm was performed on a test piece of 400 mm × 400 mm with a plate thickness of 1 mm, and the overhang formability (limit overhang height) was investigated. As a result, it was found that if the n value was simply high, sufficient stretch formability could not be obtained, and at the same time, it was necessary to reduce the in-plane anisotropy. Analysis of the results revealed that very good stretch formability can be obtained by satisfying the above-mentioned relational expression (1). FIG. 1 shows the relationship between the above n * and | Δr | and the stretch formability.
[0032]
Invention of the manufacturing method which can obtain the above-mentioned cold-rolled steel sheet is as follows. In the invention, the steel having the chemical component of the invention described above is hot-rolled at a finishing temperature not lower than the Ar 3 transformation point, and cooling is started within 2 seconds after finishing rolling, and the cooling is performed at 70 ° C./s. In-plane anisotropy, characterized in that | Δr | <0.15 is achieved by performing cold rolling on the obtained hot-rolled steel sheet at a cooling rate of 100 ° C. or higher and annealing. Is a method for producing a cold-rolled steel sheet having a small thickness of 0.5 mm or more .
[0033]
The present invention has been made as a result of studying production conditions capable of obtaining the cold-rolled steel sheet of the above invention, and the details thereof will be described below.
[0034]
Finishing Temperature: finish rolling Ar 3 between transformation point or more hot rolling is conducted at a temperature at which the plate temperature is Ar 3 transformation point or more. If the finishing temperature is lower than the Ar 3 transformation point, the rolling load fluctuates greatly due to discontinuity in the deformation resistance of the material (difference in the deformation resistance between austenite and ferrite), and a stable threading cannot be performed. As a result, uniform and good materials and plate shapes cannot be obtained. Therefore, the finishing temperature is set to be equal to or higher than the Ar 3 transformation point from the viewpoint of uniformizing and refining the grain size of the hot-rolled steel sheet.
[0035]
Cooling start time after rolling: within 2 seconds after finishing rolling The time from finishing finishing to cooling starts is particularly important for suppressing grain growth of austenite grains before transformation, and this time is 2 seconds. Above this, grain growth becomes remarkable. Therefore, cooling is started within 2 seconds after finishing rolling. Moreover, in order to reduce the in-plane anisotropy, it is effective to further shorten the time until the start of cooling, and it is desirable to make it within 1 second.
[0036]
Cooling conditions after rolling: In cooling after hot rolling in a temperature range of 100 ° C. or higher at a cooling rate of 70 ° C./s or more, it is extremely important to control the temperature range ΔT of the temperature range in which cooling is performed and the cooling rate. This is a knowledge obtained as a result of manufacturing hot-rolled steel sheets under various cooling conditions using a real machine from the steel having the chemical components of the present invention and examining these cold-rolled steel sheets in detail.
[0037]
2 and 3 are diagrams showing the influence of the cooling temperature width ΔT on the in-plane anisotropy | Δr | and the stretch formability (limit projecting height) of the cold-rolled steel sheet. From these figures, it can be seen that when the cooling temperature width ΔT is 100 ° C. or more, the in-plane anisotropy | Δr | and the stretch formability are significantly reduced.
[0038]
4 and 5 are diagrams showing the influence of the cooling rate on the in-plane anisotropy | Δr | and the stretch formability (limit projecting height) of the cold-rolled steel sheet. From these figures, when the cooling rate is 70 ° C./s or more, | Δr | and the stretch formability are remarkably lowered, which is considered to be because the microstructure of the hot-rolled steel sheet is refined.
[0039]
As described above, in the present invention, the cooling condition after rolling is set to a cooling rate of 70 ° C./s or more in a temperature range of 100 ° C. or more.
[0040]
Moreover, it goes without saying that the cold rolled steel sheet of the above invention can achieve the intended effect even when it is an electrogalvanized steel sheet or a hot dip galvanized steel sheet. In these zinc-based plated steel sheets of the present invention, an organic coating treatment may be further performed after plating. In the present invention, since Si and P are kept low, there is no adverse effect on the surface properties of the galvanized steel sheet, and it can be applied to an outer panel of an automobile.
[0041]
In these inventions, “the balance is substantially iron” means that the elements containing other trace elements including inevitable impurities are included in the scope of the present invention as long as the effects and effects of the invention are not impaired. Means that
[0042]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, when the slab is hot-rolled, it can be rolled after being heated in a heating furnace or directly without being heated. About the coiling temperature of hot rolling, each appropriate temperature is employ | adopted according to whether the annealing process after cold rolling is continuous annealing or batch annealing.
[0043]
About the cold pressure rate and annealing temperature of a cold-rolled steel plate, there exists an appropriate range according to a chemical component, as is well known. If a hot-rolled steel sheet is manufactured according to the above-described manufacturing method, the cold pressure ratio may be within a normal range (less than 90%), and the annealing temperature may be a normal temperature for continuous annealing or batch annealing. However, in order to make the structure of the steel sheet a ferrite single phase structure, it is desirable that the annealing temperature be a temperature equal to or lower than the Ac 3 transformation point.
[0044]
The r value r 90 in the 90 ° direction with respect to the rolling direction is preferably 1.3 or less. If r 0 <r 45 <r 90 , Δr decreases in calculation, but the difference between r 0 and r 90 (LC difference) increases, so an upper limit is set for r 90. This is to keep the LC difference low. In practice, it can be said that when r 90 is 1.3 or less, the in-plane anisotropy considering this LC difference is sufficiently small.
[0045]
【Example】
[Example 1]
Steels shown in Table 1 were melted and slabs were produced by continuous casting.
[0046]
[Table 1]
Figure 0003933006
[0047]
As shown in Table 1, the steel numbers 1 to 6 of the examples of the present invention are all steels of the present invention whose chemical components are within the scope of the present invention, but the steel numbers 7 to 10 are out of the scope of the present invention. It is a comparative steel. That is, Steel No. 7 has an N amount exceeding the upper limit, Steel No. 8 has an C amount exceeding the upper limit, Steel No. 9 has an Al amount less than the lower limit, and Steel No. 10 has B outside the scope of the invention added.
[0048]
The slab was heated to 1200 ° C., hot-rolled, then cooled under various cooling conditions, and rolled into a normal winding temperature range to produce a hot-rolled steel sheet. The hot-rolled steel sheet was pickled and cold-rolled to obtain a cold-rolled steel sheet, a hot-dip galvanized steel sheet, or an electrogalvanized steel sheet by continuous annealing or box annealing. These cold-rolled steel sheets and galvanized steel sheets were subjected to temper rolling with a rolling reduction of 0.5 to 2.0%. Table 2 shows the above hot rolling conditions (finishing temperature, cooling rate, temperature range ΔT of the cooling temperature range) and annealing (plating) conditions.
[0049]
[Table 2]
Figure 0003933006
[0050]
With respect to these cold-rolled steel sheets and galvanized steel sheets, r values of 0 ° 45 ° and 90 ° directions with respect to the rolling direction were measured to obtain Δr. The test results are also shown in Table 2.
[0051]
As shown in Table 2, in the present invention examples Nos. 1 to 3, 7, 8, and 10 whose chemical components and production conditions are within the scope of the invention, all satisfy | Δr | <0.15 and the object of the invention is achieved. Has been. On the other hand, in the comparative example in which the chemical composition or the manufacturing conditions are out of the scope of the invention, the in-plane anisotropy increases, and the target Δr suppression effect of the present invention cannot be obtained.
[0052]
For example, in Comparative Examples Nos. 4 to 6 and 9, the chemical components are within the invention range (steel numbers 3 and 5), but the manufacturing conditions are out of the invention range, so Δr exceeds the target range. For No. 4 and 5, the cooling rate after rolling and the cooling temperature range ΔT are outside the scope of the invention, No. 6 is the finishing temperature, and No. 9 is the cooling rate and the cooling temperature range ΔT, respectively. It is out of the range.
[0053]
In Comparative Examples Nos. 11 to 14, the chemical components are outside the scope of the invention (steel numbers 7 to 10), so the anisotropy is large. Nos. 11 and 13 (steel numbers 7 and 9) are N and Al are out of the scope of the invention, so aging resistance deteriorates due to solute N. As steel plates for automobiles and home appliances targeted by the present invention Cannot be used. In No. 12 (steel No. 8), the in-plane anisotropy is a little outside the target range, but the C content is excessive, so the ductility is inferior. Cannot be used. In No. 14 (steel No. 10), the added B has an adverse effect on the formation of the recrystallized texture, and the in-plane anisotropy is very deteriorated.
[0054]
[Example 2]
Steels having chemical components shown in Table 3 were melted and slabs were produced by continuous casting.
[0055]
[Table 3]
Figure 0003933006
[0056]
As shown in Table 3, steel numbers 11 to 16 in the inventive examples are all steels of the present invention whose chemical components are within the scope of the present invention, but steel numbers 17 to 20 are outside the scope of the present invention. Comparison steel. That is, Steel No. 17 has an N amount exceeding the upper limit, Steel No. 18 has an C amount exceeding the upper limit, Steel No. 19 has an Al amount less than the lower limit, and Steel No. 20 has B outside the scope of the invention added.
[0057]
The slab was heated to 1200 ° C., hot-rolled, then cooled under various cooling conditions, and rolled into a normal winding temperature range to produce a hot-rolled steel sheet. This hot-rolled steel sheet was pickled and cold-rolled to produce a cold-rolled steel sheet by continuous annealing or box annealing, or a galvanized steel sheet by hot-dip galvanizing or electrogalvanizing. These cold-rolled steel sheets and galvanized steel sheets were subjected to temper rolling with a rolling reduction of 0.5 to 2.0%. Table 4 shows the above hot rolling conditions (finishing temperature, cooling rate, temperature range ΔT in the cooling temperature range) and annealing (plating) conditions.
[0058]
[Table 4]
Figure 0003933006
[0059]
For these cold-rolled steel sheets and galvanized steel sheets, the n and r values in the 0 ° 45 ° and 90 ° directions with respect to the rolling direction were measured, and the in-plane average value n * and the in-plane anisotropy Δr Asked. Further, a 400 mm × 400 mm test piece was subjected to a ball head overhang test using a ball head punch having a diameter of 160 mm, and the overhang formability (limit overhang height) was investigated. The test results are also shown in Table 4.
[0060]
As shown in Table 4, in the present invention examples No. 21 to 23, 27, 28, and 30 in which the chemical components and the production conditions are within the scope of the invention, | Δr | <0.15 and the relational expression of n * and Δr ( The object of the invention is achieved by satisfying 1).
[0061]
On the other hand, in the comparative example in which the chemical composition or the manufacturing conditions are out of the scope of the invention, the in-plane anisotropy increases, the effect of suppressing Δr targeted by the present invention cannot be obtained, and the in-plane average value n of n values is obtained. The relational expression (1) between * and Δr is not satisfied.
[0062]
For example, in Comparative Examples Nos. 24 to 26 and 29, the chemical composition is within the scope of the invention (steel numbers 13 and 15), but the manufacturing conditions are out of the scope of the invention, so the relational expression of n * and Δr (1 ) Is not satisfied, and Δr exceeds the target range. No.24 and No.25 have the cooling rate after rolling and the cooling temperature range ΔT are outside the scope of the invention, No.26 has the finishing temperature, and No.29 has the cooling rate and the cooling temperature range ΔT, respectively. It is out of the range.
[0063]
In Comparative Examples No. 31 to 34, the chemical composition is out of the scope of the invention (steel numbers 17 to 20), so the relational expression (1) between n * and Δr is not satisfied, and the in-plane anisotropy is It is getting bigger. Here, No. 31 (steel No. 17) has the N amount exceeding the upper limit, No. 32 (steel No. 18) has the C amount exceeding the upper limit, and No. 33 (steel No. 19) has the Al amount less than the lower limit. In No. 34 (steel No. 20), the added B had an adverse effect on the formation of the recrystallized texture, and the in-plane anisotropy was greatly deteriorated, and the relational expression (1) was also satisfied. Absent.
[0064]
【The invention's effect】
The present invention controls cold rolled steel sheet or galvanized steel with a thickness of 0.5 mm or more and low in-plane anisotropy by controlling the chemical composition within a specific range and controlling hot rolling finish rolling and subsequent cooling conditions. Succeeded in producing steel sheets. As a result, the steel sheet according to the present invention can be widely used for automobile electrical steel products as well as automobile steel sheets.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the in-plane average value n * and in-plane anisotropy | Δr |
FIG. 2 is a diagram showing an influence of a cooling temperature width ΔT on in-plane anisotropy of a cold-rolled steel sheet.
FIG. 3 is a view showing the influence of a cooling temperature width ΔT on the stretch formability of a cold rolled steel sheet.
FIG. 4 is a diagram showing the influence of the cooling rate on the in-plane anisotropy of a cold-rolled steel sheet.
FIG. 5 is a graph showing the influence of the cooling rate on the stretch formability of a cold rolled steel sheet.

Claims (3)

化学成分が、mass%で、C:0.01〜0.1%、Si:0.5%以下、Mn:1.0%以下、P:0.05%以下、S:0.03%以下、Al:0.01〜0.1%、N:0.005%以下で、残部が鉄および不可避的不純物からなり、|Δr|<0.15である面内異方性の小さい板厚が0.5mm以上の冷延鋼板。Chemical component is mass%, C: 0.01 to 0.1%, Si: 0.5% or less, Mn: 1.0% or less, P: 0.05% or less, S: 0.03% or less Al: 0.01 to 0.1%, N: 0.005% or less, the balance being iron and inevitable impurities, and a plate thickness with small in-plane anisotropy where | Δr | <0.15. Cold rolled steel sheet of 0.5 mm or more . n値の面内平均値n*が次の関係式を満たし、張出し成形性に優れていることを特徴とする請求項1記載の面内異方性の小さい板厚が0.5mm以上の冷延鋼板。
n*≧0.1×|Δr|+0.175
The in-plane average value n * of the n value satisfies the following relational expression and is excellent in stretch formability, and the sheet thickness with small in-plane anisotropy is 0.5 mm or more. Rolled steel sheet.
n * ≧ 0.1 × | Δr | +0.175
請求項1記載の化学成分からなる鋼を、Ar変態点以上の仕上温度で熱間圧延を行い、仕上圧延終了後2秒以内に冷却を開始し、その冷却を70℃/s以上の冷却速度で100℃以上の温度域にわたって行い、得られた熱延鋼板を冷間圧延して焼鈍することにより、|Δr|<0.15を満たす範囲に制御することを特徴とする面内異方性の小さい板厚が0.5mm以上の冷延鋼板の製造方法。The steel comprising the chemical component according to claim 1 is hot-rolled at a finishing temperature not lower than the Ar 3 transformation point, and cooling is started within 2 seconds after finishing rolling, and the cooling is performed at 70 ° C./s or higher. In-plane anisotropy characterized in that it is controlled in a range satisfying | Δr | <0.15 by performing cold rolling on the obtained hot-rolled steel sheet at a rate of 100 ° C. or higher and annealing. A method for producing a cold-rolled steel sheet having a small thickness of 0.5 mm or more .
JP2002235804A 2002-08-13 2002-08-13 Cold-rolled steel sheet with small in-plane anisotropy and method for producing the same Expired - Fee Related JP3933006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002235804A JP3933006B2 (en) 2002-08-13 2002-08-13 Cold-rolled steel sheet with small in-plane anisotropy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002235804A JP3933006B2 (en) 2002-08-13 2002-08-13 Cold-rolled steel sheet with small in-plane anisotropy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004076060A JP2004076060A (en) 2004-03-11
JP3933006B2 true JP3933006B2 (en) 2007-06-20

Family

ID=32020189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002235804A Expired - Fee Related JP3933006B2 (en) 2002-08-13 2002-08-13 Cold-rolled steel sheet with small in-plane anisotropy and method for producing the same

Country Status (1)

Country Link
JP (1) JP3933006B2 (en)

Also Published As

Publication number Publication date
JP2004076060A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
WO2011118421A1 (en) Method for producing high-strength steel plate having superior deep drawing characteristics
JP6606905B2 (en) Alloyed hot-dip galvanized steel sheet for outer panel of automobile and manufacturing method thereof
JPH024657B2 (en)
JP3826442B2 (en) Manufacturing method of steel plate for can making with good workability and no rough skin
JP3864663B2 (en) Manufacturing method of high strength steel sheet
JP5381154B2 (en) Cold-rolled steel sheet excellent in strength-ductility balance after press working and paint baking and method for producing the same
CN108570603A (en) A kind of aerosol can ferrostan and its production method
JP5903884B2 (en) Manufacturing method of high-strength thin steel sheet with excellent resistance to folding back
JP3840901B2 (en) Cold-rolled steel sheet, plated steel sheet, and method for producing cold-rolled steel sheet having excellent strength increasing ability by heat treatment after forming
JP3108330B2 (en) Manufacturing method of steel sheet for high strength cans
JP3551878B2 (en) High-ductility, high-hole-expansion high-tensile steel sheet and method for producing the same
JP4273646B2 (en) High-strength thin steel sheet with excellent workability and manufacturing method thereof
JP3933006B2 (en) Cold-rolled steel sheet with small in-plane anisotropy and method for producing the same
JP2005290485A (en) Strain aging treatment method for steel plate and method for manufacturing high-strength structural member
JP4380353B2 (en) High-strength steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof
JP4045602B2 (en) Manufacturing method of steel sheet for cans with excellent drawability
JP3997692B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing with excellent press-formability and less fluctuation of press-formability in the coil
JP2004076061A (en) Cold rolled steel sheet having reduced plane anisotropy and method for producing the same
JP3204101B2 (en) Deep drawing steel sheet and method for producing the same
JP5682356B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JPH0466653A (en) Manufacture of hot-dip galvanized steel sheet for high working excellent in surface property
US20230407429A1 (en) Plated steel sheet having excellent strength, formability and surface quality, and manufacturing method therefor
JP5245948B2 (en) Cold rolled steel strip manufacturing method
JP5682357B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP3593728B2 (en) Manufacturing method of ultra low carbon cold rolled steel sheet with excellent formability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060706

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060706

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

R150 Certificate of patent or registration of utility model

Ref document number: 3933006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees