Nothing Special   »   [go: up one dir, main page]

JP3930748B2 - Microwave circuit and manufacturing method thereof - Google Patents

Microwave circuit and manufacturing method thereof Download PDF

Info

Publication number
JP3930748B2
JP3930748B2 JP2002056333A JP2002056333A JP3930748B2 JP 3930748 B2 JP3930748 B2 JP 3930748B2 JP 2002056333 A JP2002056333 A JP 2002056333A JP 2002056333 A JP2002056333 A JP 2002056333A JP 3930748 B2 JP3930748 B2 JP 3930748B2
Authority
JP
Japan
Prior art keywords
microwave
dielectric substrate
circuit
electric field
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002056333A
Other languages
Japanese (ja)
Other versions
JP2003258506A (en
JP2003258506A5 (en
Inventor
直樹 辻
康次郎 南谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2002056333A priority Critical patent/JP3930748B2/en
Publication of JP2003258506A publication Critical patent/JP2003258506A/en
Publication of JP2003258506A5 publication Critical patent/JP2003258506A5/ja
Application granted granted Critical
Publication of JP3930748B2 publication Critical patent/JP3930748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Connection Structure (AREA)
  • Non-Reversible Transmitting Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は導体で空間を囲んだマイクロ波伝送路内に半導体素子を固定したマイクロ波回路に関し、特に組立工数が少なく耐電圧に優れ、パルスレーダ等の大きなピーク電力を扱う装置のダイオードリミッタ等に好適なマイクロ波回路に関するものである。
【0002】
【従来の技術】
ピーク電力の大きなパルスレーダ装置等に用いられるマイクロ波回路には、従来から導波管が用いられている。これは、導波管は大きな電力に耐えることができ、かつ伝送損失が小さいといった長所を持っているからである。この導波管内に半導体素子を取り付けたマイクロ波回路として、例えばダイオードリミッタがある。導波管を用いたダイオードリミッタとして、導波管から突き出したポストにダイオードを固定する図5に示した構造、リッジ導波管を用いる構造のもの等が知られている。
【0003】
図5に示した構造のダイオードリミッタにおいて、そこに使用されるPINダイオード60A,60Bはピルパッケージと呼ばれるもので、ポスト70A,70Bで導波管80内に押さえつけた構造となっている。しかし、この構造は組立工数が多くかかり、大量生産やコストダウンを行なうには不向きである。また、ピルパッケージはダイオードチップをパッケージ化する工程の自動化が難しく、組立工数が多くかかり、この点もコストダウンに向かない原因の一つとなっている。
【0004】
そこで、大量生産に好適なマイクロ波回路として平面回路、例えばマイクロストリップ線路等が考えられる。しかし、マイクロストリップ線路は回路を構成する誘電体基板表面の耐電圧が小さく、パルスレーダ用のダイオードリミッタ等に適用すると、回路表面で放電が生じる可能性が高く、信頼性の観点から使用に耐えない。
【0005】
また、マイクロ波回路として、導波管90と平面回路100を組合せた図6に示した構造のフィンラインも考えられるが、これもPINダイオード110A,110Bを取り付ける部分は電極間隔が狭くなり、平面回路100の誘電体基板120としてエポキシ等の樹脂を用いたものでは耐電圧が小さく放電を生じる可能性があり、信頼性が低い。平面回路100の基板材料としてセラミックを用いたものは、耐電圧では問題はないが、当該基板を導波管90に固定する際に基板の割れ等の損傷が生じ易く、使用は困難である。
【0006】
【発明が解決しようとする課題】
上記のように、導波管を使用したマイクロ波回路はコストダウンに不向きであり、大量生産に好適な平面回路を使用したマイクロ波回路は耐電圧に劣り信頼性に欠けるといった問題点があった。
【0007】
本発明は上記問題点を解消し組立工数が比較的少なくてすみ、かつ耐電圧に優れたマイクロ波回路およびその製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1にかかる発明は、導体で空間を囲んだマイクロ波伝送路内に半導体素子を固定したマイクロ波回路において、前記半導体素子は誘電体基板の導体回路表面に固定され、前記誘電体基板の前記導体回路を形成した面はマイクロ波の進行方向に平行に、かつマイクロ波の高周波電界方向と平行に、かつマイクロ波の高周波電界が最大となる付近に設置され、前記誘電体基板は前記半導体素子の直下部分にくり抜き孔が形成されていることを特徴とするマイクロ波回路とした。
【0009】
請求項2にかかる発明は、請求項1記載のマイクロ波回路の製造方法であって、くり抜き孔を持った誘電体基板を作成する工程と、前記誘電体基板の前記くり抜き孔にまたがるように前記誘電体基板の導体回路表面に前記半導体素子を半田付けする工程と、前記半導体素子が半田付けされた前記誘電体基板を、導体の筺体内に、前記導体回路表面が、マイクロ波の進行方向と平行になり、かつマイクロ波の高周波電界方向と平行になり、かつマイクロ波の高周波電界が最大となる位置に取り付ける工程と、を少なくとも含むことを特徴とするマイクロ波回路の製造方法とした。
【0013】
【発明の実施の形態】
参考例
図1〜図3は参考例のマイクロ波回路をレーダ装置のダイオードリミッタに適用した説明図である。10は中央部分にくり抜き孔11が形成され4隅に取付孔12が形成される形状にパターニングされた導電性の金属板、20A,20Bは表面実装型で耐電圧の良好なセラミック又はガラス等でパッケージ化されたPINダイオード、30A,30Bは導波管を構成する導電性材料からなる筺体、40は取付ネジである。
【0014】
金属板10のくり抜き孔11は、図1(a)、(b)に示すように、上下2分割するよう形成され、PINダイオード20Aを実装するための対向する対の突起111,112、PINダイオード20Bを実装するための対向する対の突起113,114、後で切除するつなぎ部115,116、一方のつなぎ部115の両端に形成された切欠部117、他方のつなぎ部116の両端に形成された切欠部118が設けられている。
【0015】
筺体30A,30Bは、図2に示すように、導波管用空間を形成するための凹部31、金属板10が位置決めされる凹部32、ネジ止め用の取付孔33がそれぞれに形成されている。
【0016】
組立工程を図1〜図3に沿って説明する。まず、所望の特性が得られるような図1に示すようなパターンのくり抜き孔11が形成されるよう金属板をくり抜き、パターニングされた金属板10を作成する。このくり抜きは、エッチングの手法やプレスによる打ち抜き等を用いることで、低コストでパターン精度良く実行可能である。
【0017】
次に、この金属板10の突起111,112の間にまたがるようにPINダイオード20Aを、突起113,114の間にまたがるようにPINダイオード20Bを、図1(b)に示すように各々半田付けする。この半田付けは、従来から用いられている半田印刷機、プリント基板上に部品を搭載するマウンター、半田を溶かし固定するリフロー炉等用いて実行可能である。
【0018】
次に、PINダイオード20A,20Bを半田付けした金属板10を図2に示すように筐体30A,30Bの凹部32に位置決めしてから両筺体30A,30Bではさみ込み、図3(a)に示すように、取付ネジ40を筺体30A,30Bの取付孔33および金属板10の取付孔12に取り付けて、金属板10を筺体30A,30Bに固定する。
【0019】
次に、金属板10の切欠部117,118を切断することで、つなぎ部115,116を金属板10から切り離すと、金属板10は上下に2分割され、図3(b)の状態に組み立て上がる。なお、金属板10の切欠部117,118は、PINダイオード20A,20Bを半田付けする工程および筐体30A,30Bに金属板10をはさみ込む工程で金属板10の形状が崩れず、かつ切り取る際に簡単に切り取ることのできる寸法に設定されている。
【0020】
以上の結果、筺体30A,30Bの凹部31が相対向してそこに導波管が形成され、その導波管内において上下に2分割された金属板間にPINダイオード20A,20Bが搭載されて、ダイオードリミッタが構成されることになる。
【0021】
このダイオードリミッタは、導波管中の金属板10がマイクロ波(TE10波)の高周波電界が最大となる位置(中央)に設置されており、高周波電界は上下2分割された金属板間に印加されることになる。従って、上下2分割された金属板の間の沿面はPINダイオード20A,20Bのパッケージ沿面のみとなり、パッケージにセラミック等の耐電圧の大きなものを用いることで放電等の不具合を防ぐことが可能である。
【0022】
以上から、本参考例のダイオードリミッタは、高周波電界が集中し放電が生じ易いPINダイオード電極間に基板が無いので、その基板沿面で放電することが無く、高い信頼性が得られる。また、その組立においては、PINダイオードを金属板に実装する際に、平面回路の組立と同様に従来からの自動機で表面実装ができ、大量生産に好適である。
【0023】
施形態]
図4に本発明のマイクロ波回路をレーダ装置のダイオードリミッタに適用した実施形態を示す。50は誘電体基板、51,52はその誘電体基板50の導体パターン、53はくり抜き孔、54は取付孔である。くり抜き孔53には、図4(a)に示すように、PINダイオード20A,20Bを実装するための対向する対の突起531,532、つなぎ部532,533が設けられ、一方の導体パターン51は突起531の先端まで2本に分岐して伸び、他方の導体パターン52は突起532の先端まで2本に分岐して伸びている。
【0024】
本実施形態では、PINダイオード20A,20Bを、突起531,532間にまたがり導体パターン51,52に接続されるように、半田付けし実装する。PINダイオード20A,20Bを実装した誘電体基板50は、図2,図3で説明した前記参考例と同様に、筐体30A,30Bで挟み込み、取付ネジ40で固定することにより、導体パターン51は筺体30A,30Bの上部分に接続され、導体パターン52は下部分に接続され、図4(b)に示すようなダイオードリミッタとなる。
【0025】
本実施形態の誘電体基板50は、その導体パターン51,52の面が筐体30A,30Bの凹部31が作る導波管のマイクロ波(TE10波)の進行方向に平行に、かつ高周波電界方向に平行に、かつ高周波電界が最大すなわち筐体と誘電体基板の取り付け部分で高周波電流が最小となる位置に設置している。従って、これらの取り付け部分が軟接触で僅かな隙間があったとしても、この部分からのマイクロ波の漏洩が最小限に抑えられる構成となっている。
【0026】
本実施形態では誘電体基板50は上下2つに分割すること無く、そのままで所定の特性を満足できる設計となっている。もちろん、図3(b)と同様に誘電体基板50のつなぎ部532,533の両端に切欠部を設け組立の最終段階でその切欠部を切断して2分割することも可能である。
【0027】
本実施形態では誘電体基板50の沿面はPINダイオード20A,20Bの電極間ではなく、図4(a)で示した寸法L(導体パターン51,52の外側の離間距離)であり、耐電圧に支障が無い程度にこの寸法Lを設定する。2分割すれば、前記第1の実施形態と同様に沿面はPINダイオード20A,20Bのパッケージ沿面のみとなり、さらに信頼性の良いダイオードリミッタが得られる。
【0028】
また、ダイオードリミッタではPINダイオード部分に大きな高周波電界が印加されるが、図6に示した従来のフィンライン構造ではPINダイオード110A,110Bの付近に誘電体基板120が存在する為、その基板120による高周波電界でのマイクロ波の電力ロスも大きくなる。これに対し、本実施形態の図4のダイオードリミッタでは、電力ロスの原因となる誘電体基板50がPINダイオード20A,20Bの電極取り付け部分のみの最小限にとどめられている為、フィンライン構造よりもマイクロ波のロスを小さくできる。
【0029】
[その他の実施形態]
なお、以上の実施形態ではPINダイオード20A,20Bの実装を半田付けで行ったが、フリップチップボンダーを用いた実装も可能である。
【0030】
【発明の効果】
以上説明したように本発明のマイクロ波回路によれば、PINダイオード等の半導体素子の周囲には必要最小限の誘電体基板が存在するのみであるので、ピーク電力の大きなマイクロ波を扱うレーダ装置のダイオードリミッタ等として信頼性の良い製品が低コストで提供可能となる。また、半導体素子をインパットダイオードとした発振器への適用も可能であり、この場合も少ない組立工数でインパット発振器が生産可能となる。
【図面の簡単な説明】
【図1】 本発明の参考例のダイオードリミッタに使用する金属板を示す図であり、(a)はPINダイオードを取り付ける前の斜視図、(b)はPINダイオードを取り付けた後の斜視図である。
【図2】 本発明の参考例のダイオードリミッタの組立工程を示す斜視図である。
【図3】 本発明の参考例のダイオードリミッタの全体を示す図であり、(a)はPINダイオードを取り付けた金属板を筐体に組込んだ斜視図、(b)は金属板の一部を切り取った斜視図である。
【図4】 本発明の実施形態のダイオードリミッタを示す図であり、(a)は誘電体基板にPINダイオードを取り付けた斜視図、(b)はPINダイオードを取り付けた誘電体基板を筐体に組込んだ斜視図である。
【図5】 ポストを用いた従来のダイオードリミッタを示す一部切り欠きの斜視図である。
【図6】 フィンライン構造の従来のダイオードリミッタを示す一部切り欠きの斜視図である。
【符号の説明】
10:金属板、11:くり抜き孔、12:取付孔、111〜114:突起、115,116:つなぎ部、117,118:切欠部
20A,20B:PINダイオード
30A,30B:筺体、31:凹部、32:凹部、33:取付孔
40:取付ネジ
50:誘電体基板、51、52:導体パターン、53:くり抜き孔、531,532:突起、54:取付孔
60A,60B:PINダイオード
70A,70B:ポスト
80:導波管
90:導波管
100:平面回路
110A,110B:PINダイオード
120:誘電体基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a microwave circuit in which a semiconductor element is fixed in a microwave transmission path surrounded by a conductor. Particularly, the invention has a small number of assembly steps, is excellent in withstand voltage, and is used as a diode limiter of a device that handles a large peak power such as a pulse radar. It relates to a suitable microwave circuit.
[0002]
[Prior art]
Conventionally, a waveguide is used in a microwave circuit used in a pulse radar device having a high peak power. This is because the waveguide has an advantage that it can withstand a large electric power and has a small transmission loss. As a microwave circuit in which a semiconductor element is mounted in the waveguide, for example, there is a diode limiter. As a diode limiter using a waveguide, a structure shown in FIG. 5 in which a diode is fixed to a post protruding from the waveguide, a structure using a ridge waveguide, and the like are known.
[0003]
In the diode limiter having the structure shown in FIG. 5, the PIN diodes 60A and 60B used therein are called pill packages, and have a structure in which they are pressed into the waveguide 80 by posts 70A and 70B. However, this structure requires many assembly steps and is not suitable for mass production or cost reduction. In addition, the pill package is difficult to automate the process of packaging the diode chip, requires a large number of assembly steps, and this is also one of the causes that is not suitable for cost reduction.
[0004]
Therefore, a planar circuit such as a microstrip line can be considered as a microwave circuit suitable for mass production. However, the microstrip line has a low withstand voltage on the surface of the dielectric substrate that constitutes the circuit, and when applied to a pulse limiter diode limiter, etc., there is a high possibility that discharge will occur on the circuit surface, and it can be used from the viewpoint of reliability. Absent.
[0005]
As a microwave circuit, a fin line having the structure shown in FIG. 6 in which the waveguide 90 and the planar circuit 100 are combined can be considered. In the case where a resin such as epoxy is used as the dielectric substrate 120 of the circuit 100, the withstand voltage is small and a discharge may occur, and the reliability is low. A material using ceramic as the substrate material of the planar circuit 100 is not problematic in terms of withstand voltage, but when the substrate is fixed to the waveguide 90, damage such as cracking of the substrate is likely to occur, and it is difficult to use.
[0006]
[Problems to be solved by the invention]
As described above, a microwave circuit using a waveguide is not suitable for cost reduction, and a microwave circuit using a planar circuit suitable for mass production has a problem that it has poor withstand voltage and lacks reliability. .
[0007]
SUMMARY OF THE INVENTION An object of the present invention is to provide a microwave circuit that eliminates the above-described problems, requires a relatively small number of assembly steps, and has an excellent withstand voltage, and a method for manufacturing the same.
[0008]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a microwave circuit in which a semiconductor element is fixed in a microwave transmission path surrounded by a conductor. The semiconductor element is fixed to a conductor circuit surface of a dielectric substrate. in parallel to the advance direction of the surface formed with said conductor circuit is a microwave, and in parallel with the high-frequency electric field direction of the microwave, and a high frequency electric field of the microwaves is disposed in the vicinity of maximum, the dielectric substrate prior Symbol The microwave circuit is characterized in that a hole is formed in a portion immediately below the semiconductor element.
[0009]
The invention according to claim 2 is the method of manufacturing a microwave circuit according to claim 1, wherein the dielectric substrate having a cut-out hole is formed, and the microwave substrate extends over the cut-out hole of the dielectric substrate. Soldering the semiconductor element to the conductor circuit surface of the dielectric substrate; and the dielectric substrate to which the semiconductor element is soldered; the conductor circuit surface having a microwave traveling direction; A method of manufacturing a microwave circuit including at least a step of being parallel and parallel to the direction of the high-frequency electric field of the microwave and attaching to a position where the high-frequency electric field of the microwave is maximized.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
[ Reference example ]
1 to 3 is a explanation view of applying the microwave circuit of the reference example to the diode limiter radar device. 10 is a conductive metal plate patterned in a shape in which a hollow hole 11 is formed in the central portion and mounting holes 12 are formed in four corners, and 20A and 20B are surface mount type ceramics or glass having a high withstand voltage. Packaged PIN diodes, 30A and 30B are housings made of a conductive material constituting the waveguide, and 40 is a mounting screw.
[0014]
As shown in FIGS. 1 (a) and 1 (b), the cut-out hole 11 of the metal plate 10 is formed so as to be divided into upper and lower parts, and a pair of opposing protrusions 111 and 112 for mounting the PIN diode 20A. A pair of opposing projections 113 and 114 for mounting 20B, joint portions 115 and 116 to be cut later, cutout portions 117 formed at both ends of one joint portion 115, and formed at both ends of the other joint portion 116. A notch 118 is provided.
[0015]
As shown in FIG. 2, the housings 30 </ b> A and 30 </ b> B are respectively formed with a recess 31 for forming a waveguide space, a recess 32 for positioning the metal plate 10, and a mounting hole 33 for screwing.
[0016]
The assembly process will be described with reference to FIGS. First, the metal plate is cut out to form a patterned metal plate 10 so that a hole 11 having a pattern as shown in FIG. This cut-out can be performed at a low cost and with high pattern accuracy by using an etching method, punching by a press, or the like.
[0017]
Next, the PIN diode 20A is straddled between the protrusions 111 and 112 of the metal plate 10, and the PIN diode 20B is straddled between the protrusions 113 and 114, respectively, as shown in FIG. To do. This soldering can be performed using a conventional solder printer, a mounter for mounting components on a printed circuit board, a reflow furnace for melting and fixing solder, and the like.
[0018]
Next, the metal plate 10 to which the PIN diodes 20A and 20B are soldered is positioned in the recesses 32 of the casings 30A and 30B as shown in FIG. 2, and then sandwiched between the two housings 30A and 30B, as shown in FIG. As shown, the attachment screw 40 is attached to the attachment holes 33 of the housings 30A and 30B and the attachment holes 12 of the metal plate 10 to fix the metal plate 10 to the housings 30A and 30B.
[0019]
Next, when the cut portions 117 and 118 of the metal plate 10 are cut so that the connecting portions 115 and 116 are separated from the metal plate 10, the metal plate 10 is divided into two parts in the vertical direction and assembled in the state shown in FIG. Go up. Note that the notches 117 and 118 of the metal plate 10 are formed when the shape of the metal plate 10 is not collapsed in the process of soldering the PIN diodes 20A and 20B and the process of inserting the metal plate 10 into the housings 30A and 30B. It is set to a dimension that can be easily cut out.
[0020]
As a result, the recesses 31 of the housings 30A and 30B face each other, and a waveguide is formed there, and the PIN diodes 20A and 20B are mounted between the metal plates divided into two vertically in the waveguide, A diode limiter is formed.
[0021]
In this diode limiter, the metal plate 10 in the waveguide is installed at a position (center) where the microwave (TE 10 wave) high-frequency electric field is maximized, and the high-frequency electric field is placed between the metal plates divided into two vertically. Will be applied. Accordingly, the creeping surface between the metal plates divided into the upper and lower parts is only the creeping surface of the package of the PIN diodes 20A and 20B, and it is possible to prevent problems such as discharge by using a ceramic or the like having a high withstand voltage.
[0022]
From the above, the diode limiter of the present reference example has no substrate between the PIN diode electrodes where the high-frequency electric field is concentrated and discharge is likely to occur. Therefore, there is no discharge along the substrate surface and high reliability is obtained. Further, in the assembly, when mounting the PIN diode on the metal plate, it can be surface-mounted by a conventional automatic machine like the assembly of the planar circuit, which is suitable for mass production.
[0023]
[Implementation form]
Figure 4 shows the implementation form of the microwave circuit is applied to the diode limiter of the radar apparatus of the present invention. 50 is a dielectric substrate, 51 and 52 are conductor patterns of the dielectric substrate 50, 53 is a hollow, and 54 is a mounting hole. As shown in FIG. 4A, the cutout hole 53 is provided with a pair of opposing protrusions 531 and 532 and connecting portions 532 and 533 for mounting the PIN diodes 20A and 20B. The other conductor pattern 52 extends in two branches up to the tip of the protrusion 532.
[0024]
In this embodiment, the PIN diodes 20A and 20B are soldered and mounted so as to be connected to the conductor patterns 51 and 52 across the protrusions 531 and 532. The dielectric substrate 50 on which the PIN diodes 20A and 20B are mounted is sandwiched between the casings 30A and 30B and fixed with the mounting screws 40, as in the reference example described with reference to FIGS. The conductor patterns 52 are connected to the lower portions of the housings 30A and 30B, and the diode patterns are formed as shown in FIG. 4B.
[0025]
In the dielectric substrate 50 of the present embodiment, the surfaces of the conductor patterns 51 and 52 are parallel to the traveling direction of the microwaves (TE 10 waves) of the waveguide formed by the recesses 31 of the housings 30A and 30B, and a high-frequency electric field. Parallel to the direction and at a position where the high-frequency electric field is maximum, that is, the high-frequency current is minimum at the mounting portion of the housing and the dielectric substrate. Therefore, even if these attachment portions are in soft contact and there is a slight gap, microwave leakage from this portion can be minimized.
[0026]
In the present embodiment, the dielectric substrate 50 is designed to satisfy predetermined characteristics as it is without being divided into upper and lower parts. Of course, similarly to FIG. 3B, it is possible to provide notches at both ends of the connecting portions 532 and 533 of the dielectric substrate 50, and cut the notches at the final stage of assembly to divide them into two.
[0027]
In the present embodiment, the creeping surface of the dielectric substrate 50 is not between the electrodes of the PIN diodes 20A and 20B, but is the dimension L shown in FIG. 4A (the separation distance outside the conductor patterns 51 and 52). This dimension L is set to the extent that there is no hindrance. If it is divided into two, the creeping surface is only the creeping surface of the package of the PIN diodes 20A and 20B as in the first embodiment, and a diode limiter with higher reliability can be obtained.
[0028]
In the diode limiter, a large high-frequency electric field is applied to the PIN diode portion. In the conventional fin line structure shown in FIG. 6, the dielectric substrate 120 exists in the vicinity of the PIN diodes 110A and 110B. Microwave power loss in a high-frequency electric field also increases. On the other hand, in the diode limiter of FIG. 4 of the present embodiment, the dielectric substrate 50 that causes power loss is limited to the minimum of the electrode mounting portions of the PIN diodes 20A and 20B. Can also reduce the loss of microwaves.
[0029]
[Other Embodiments]
In the above embodiment, the PIN diodes 20A and 20B are mounted by soldering, but mounting using a flip chip bonder is also possible.
[0030]
【The invention's effect】
According to the microwave circuit of the present invention as described above, since it is only necessary minimum dielectric base plate around the semiconductor element such as a PIN diode is present, radar to handle the large microwave peak power As a device diode limiter or the like, a reliable product can be provided at a low cost. Also, the present invention can be applied to an oscillator in which a semiconductor element is an impatt diode. In this case, an impatt oscillator can be produced with a small number of assembly steps.
[Brief description of the drawings]
FIG. 1 is a view showing a metal plate used in a diode limiter of a reference example of the present invention, (a) is a perspective view before attaching a PIN diode, and (b) is a perspective view after attaching the PIN diode. is there.
FIG. 2 is a perspective view showing an assembling process of a diode limiter according to a reference example of the present invention.
FIGS. 3A and 3B are diagrams showing an entire diode limiter according to a reference example of the present invention, in which FIG. 3A is a perspective view in which a metal plate with a PIN diode attached is incorporated in a housing, and FIG. 3B is a part of the metal plate. It is the perspective view which cut off.
[Figure 4] is a diagram showing a diode limiter implementation form of the present invention, (a) is a perspective view of attaching the PIN diodes on the dielectric substrate, the dielectric substrate fitted with (b) is a PIN diode housing It is the perspective view integrated in.
FIG. 5 is a partially cutaway perspective view showing a conventional diode limiter using a post.
FIG. 6 is a partially cutaway perspective view showing a conventional diode limiter having a fin line structure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10: Metal plate, 11: Hollow hole, 12: Mounting hole, 111-114: Protrusion, 115,116: Connection part, 117,118: Notch part 20A, 20B: PIN diode 30A, 30B: Housing, 31: Recessed part, 32: recess, 33: mounting hole 40: mounting screw 50: dielectric substrate, 51, 52: conductor pattern, 53: hollow hole, 531, 532: protrusion, 54: mounting hole 60A, 60B: PIN diodes 70A, 70B: Post 80: Waveguide 90: Waveguide 100: Planar circuit 110A, 110B: PIN diode 120: Dielectric substrate

Claims (2)

導体で空間を囲んだマイクロ波伝送路内に半導体素子を固定したマイクロ波回路において、
前記半導体素子は誘電体基板の導体回路表面に固定され、前記誘電体基板の前記導体回路を形成した面はマイクロ波の進行方向に平行に、かつマイクロ波の高周波電界方向と平行に、かつマイクロ波の高周波電界が最大となる付近に設置され、前記誘電体基板は前記半導体素子の直下部分にくり抜き孔が形成されていることを特徴とするマイクロ波回路。
In a microwave circuit in which a semiconductor element is fixed in a microwave transmission path surrounded by a conductor,
The semiconductor element is fixed to a conductor circuit surface of a dielectric substrate, and a surface of the dielectric substrate on which the conductor circuit is formed is parallel to a microwave traveling direction, parallel to a microwave high-frequency electric field direction, and microscopic. installed near the high-frequency electric field of the wave is maximum, the microwave circuit, characterized in that the dielectric substrate is formed is hollowed hole just below the part before Symbol semiconductor device.
請求項1記載のマイクロ波回路の製造方法であって、A method of manufacturing a microwave circuit according to claim 1,
くり抜き孔を持った誘電体基板を作成する工程と、  Creating a dielectric substrate with cutout holes;
前記誘電体基板の前記くり抜き孔にまたがるように前記誘電体基板の導体回路表面に前記半導体素子を半田付けする工程と、  Soldering the semiconductor element to the conductor circuit surface of the dielectric substrate so as to straddle the cutout hole of the dielectric substrate;
前記半導体素子が半田付けされた前記誘電体基板を、導体の筺体内に、前記導体回路表面が、マイクロ波の進行方向と平行になり、かつマイクロ波の高周波電界方向と平行になり、かつマイクロ波の高周波電界が最大となる位置に取り付ける工程と、  The dielectric substrate to which the semiconductor element is soldered is placed in a conductor housing, and the surface of the conductor circuit is parallel to the microwave traveling direction and parallel to the microwave high-frequency electric field direction. Attaching to the position where the high-frequency electric field of the wave is maximum,
を少なくとも含むことを特徴とするマイクロ波回路の製造方法。  A method for manufacturing a microwave circuit, comprising:
JP2002056333A 2002-03-01 2002-03-01 Microwave circuit and manufacturing method thereof Expired - Fee Related JP3930748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002056333A JP3930748B2 (en) 2002-03-01 2002-03-01 Microwave circuit and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002056333A JP3930748B2 (en) 2002-03-01 2002-03-01 Microwave circuit and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2003258506A JP2003258506A (en) 2003-09-12
JP2003258506A5 JP2003258506A5 (en) 2005-07-21
JP3930748B2 true JP3930748B2 (en) 2007-06-13

Family

ID=28666935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002056333A Expired - Fee Related JP3930748B2 (en) 2002-03-01 2002-03-01 Microwave circuit and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3930748B2 (en)

Also Published As

Publication number Publication date
JP2003258506A (en) 2003-09-12

Similar Documents

Publication Publication Date Title
EP0796038B1 (en) High-frequency module
US11895769B2 (en) Module, terminal assembly, and method for producing module
EP1058306B1 (en) Electronic component to be mounted on a circuit board having electronic circuit device sealed therein and method of manufacturing the same
KR950001142B1 (en) Power semiconductor device for surface mounting
JP3663898B2 (en) High frequency module
JPH09186270A (en) Resin package semiconductor device and electronic circuit board mounting the device thereon
JP3930748B2 (en) Microwave circuit and manufacturing method thereof
JPH11214908A (en) Dielectric resonator and dielectric resonator device
JP3715120B2 (en) Hybrid module
JPH09298344A (en) Wiring board with connecting terminals
JPS61203606A (en) Chip inductor
KR102648997B1 (en) Guide type flange package and method of manufacturing the same
EP3376537A1 (en) Electronic component package
JP2002190565A (en) Hybrid ic and its manufacturing method
JP2000278041A (en) Voltage controlled oscillator
JP3687769B2 (en) Manufacturing method for case exterior type electronic components
JPH02182003A (en) Chip shaped inductor
JP2840293B2 (en) TAB tape and semiconductor device using the same
JP2000150690A (en) Hybrid module
EP0620594A2 (en) Semiconductor device having mounting terminals
JP2004031744A (en) Electronic part device
JP2006179523A (en) High-frequency module
JPH10189378A (en) Method for manufacturing printed circuit board inductance element
JPH10209742A (en) Small-sized antenna
JPH098435A (en) Packaging base board of can-sealed element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees