Nothing Special   »   [go: up one dir, main page]

JP3925897B2 - Ultraviolet absorbing glass and glass tube for fluorescent lamp using the same - Google Patents

Ultraviolet absorbing glass and glass tube for fluorescent lamp using the same Download PDF

Info

Publication number
JP3925897B2
JP3925897B2 JP2000206562A JP2000206562A JP3925897B2 JP 3925897 B2 JP3925897 B2 JP 3925897B2 JP 2000206562 A JP2000206562 A JP 2000206562A JP 2000206562 A JP2000206562 A JP 2000206562A JP 3925897 B2 JP3925897 B2 JP 3925897B2
Authority
JP
Japan
Prior art keywords
glass
content
ultraviolet
fluorescent lamp
glass tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000206562A
Other languages
Japanese (ja)
Other versions
JP2002029778A (en
Inventor
信夫 犬塚
真 佐野
Original Assignee
旭テクノグラス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭テクノグラス株式会社 filed Critical 旭テクノグラス株式会社
Priority to JP2000206562A priority Critical patent/JP3925897B2/en
Publication of JP2002029778A publication Critical patent/JP2002029778A/en
Application granted granted Critical
Publication of JP3925897B2 publication Critical patent/JP3925897B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、紫外線吸収ガラスに関し、紫外線放射を伴う光源の外囲器、特に液晶ディスプレイ(以下LCDと称すことがある)等の表示デバイスのバックライトに用いられる蛍光ランプ用ガラス管に適したガラス及びこのガラスを用いた蛍光ランプ用ガラス管に関する。
【0002】
【従来の技術】
近年、マルチメディア関連機器のキーデバイスとしてLCDは広く用いられているが、その用途の拡大とともに軽量化、薄型化、高輝度化、低消費電力化などが求められるようになっている。特にパソコン用ディスプレイ、車載用表示装置、携帯情報端末等では高品位な表示品質が要求されている。一方、液晶表示素子自体は非発光であるため、上記のような用途では、蛍光ランプを光源とするバックライトを用いた透過型液晶表示素子が使用されている。
【0003】
上述のようにLCDに軽量化、薄型化、高輝度化、低消費電力化などが求められていることから、同様にバックライトにも一層の小型軽量化、高輝度化、低消費電力化が求められ、バックライト用蛍光ランプにおいては細管化、薄肉化が進展している。
【0004】
しかし、蛍光ランプの細管化、薄肉化は、機械的強度の低下、発熱量増大による電極部の温度上昇をもたらす。このため、バックライト用の蛍光ランプに使用されるガラス管には、より高強度で低膨張性であるガラスが必要とされている。
【0005】
従来、この種の蛍光ランプのガラス管には、照明用ガラスとしての実績があり加工性に優れた鉛ソーダ系の軟質ガラスが使用されてきた。ところが、バックライト用途で管径、肉厚が小さくなるに連れて、製品の信頼性において十分な強度や耐熱性を確保することが困難となり、鉛ソーダ系の軟質ガラスよりも熱的、機械的強度が高い硼珪酸系硬質ガラスを用いて蛍光ランプを作製することが検討され、気密封止可能な金属と硬質ガラスの組合せとして、従来からよく知られているコバール合金とコバール封着用ガラスを用いた蛍光ランプが開発され、商品化されている。ここで「コバール」とは、Fe−Ni−Co系合金を指すWestinghouse Ele.Corp.社の商標名であり、東芝社製KOV(商品名)など同等の他社製品を包含する意味で用いる。
【0006】
【発明が解決しようとする課題】
バックライト用蛍光ランプの発光原理は、一般照明用蛍光ランプと同様、蛍光管内の電極間放電により励起された水銀蒸気やキセノンガスが253.7nmの紫外線を放出し、管内壁面に塗布されている蛍光体が発光することによるものである。しかし、紫外線にはガラスに変色を引き起こす作用があることが知られており、紫外線に対して何の対策も取っていないガラスでは、紫外線照射によりソラリゼーションと呼ばれる変色作用を生ずる。蛍光管ガラスでソラリゼーションが起こると、結果としてランプ輝度の低下、発光色の変色となり、バックライトではLCDの表示が暗くなったり表示色が不鮮明になったりするなど表示品質の低下を招く。また、紫外線がバックライト用ガラス管を透過して管外に放出されると、LCD表示装置内部の樹脂部品等の材質劣化を促進させる問題がある。
【0007】
特に表示デバイスの薄型軽量化に有利なバックライト方式として、透明導光体の側端面に光源を配し、導光体の一面を反射・拡散処理して、光を多重反射させることにより面光源とするエッジライト方式が知られているが、この方式では構造上、導光体が必要なこと、軽量化のため導光体にはアクリル系樹脂等の樹脂部品が使用されることから、バックライト用光源からの紫外線漏洩は、導光体の劣化・着色による光透過率の低下をもたらし、光源近傍で樹脂の劣化が生ずると表示面全体の明るさが低下するため、上記蛍光管ガラスでのソラリゼーションとともに表示品質に与える影響が大きい。
【0008】
上記した鉛ソーダ系ガラスでは、ガラス成分として含有されている鉛が耐紫外線ソラリゼーション性、紫外線カット性能を有していたため、これらが問題となることはなかったが、硼珪酸系のコバール封着用ガラスは元来電子管や電子部品の封止に用いられていたもので、紫外線による作用に対してはガラス材質としての対策は取られておらず、紫外線ソラリゼーション、紫外線透過の問題が避けられなかった。
【0009】
このため、従来のコバール封着用ガラスを蛍光ランプ用外管に使用する場合、ガラス管内面に紫外線を反射又は吸収する成分であるAl23 やTiO2 のコーティングを行い、その上に蛍光体を塗布して多層膜を形成し、ガラスに達する紫外線の強度を弱めるといった措置も取られている。しかし、このような方法は、ガラス管の細径化にともなう塗布の困難化や塗布工程の増加によるコスト上昇が避けられない。
【0010】
以上のような背景から、コバール合金と封着可能な熱膨張係数を持ち、耐紫外線ソラリゼーション性を有するガラスとして特開平8−333132号公報、特開平9−110467号公報に開示のガラスが提案されている。これらのガラスはいずれも硼珪酸系ガラスにPbO,TiO2,Sb23の少なくとも1種以上を添加することにより耐紫外線ソラリゼーション性を持たせたものである。
【0011】
これらのガラスにより紫外線によるソラリゼーションの問題は解消されるが、いずれのガラスも環境有害物質であるPbOの含有を許容しており、環境保護の観点からは好ましいとは言えない。また、蛍光ランプとして使用する場合の紫外線カットに対する配慮が十分とはいえず、前記した耐紫外線ソラリゼーション性付与成分の組合せ、含有量によっては励起された水銀等が発する253.7nmの有害紫外線を透過し、内装部品を劣化させるおそれがある。
【0012】
本発明は以上のような諸事情を考慮してなされたものであり、コバール合金との封着が可能で十分な耐紫外線ソラリゼーション性を持ち、かつ有害紫外線を透過しない紫外線吸収ガラス及びそれを用いた蛍光ランプ用ガラス管を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するために、本発明は質量%で、SiO 2 55〜75%、B 2 3 10〜25%、Fe0.001〜0.05%、Sb0.05〜3%、ZrO0.01〜3%を含有し、50℃〜ガラス転移点(Tg)までの温度範囲における平均線膨張係数が46〜57×10−7/℃である硼珪酸系ガラスからなり、波長253.7nmにおける肉厚1mmでの透過率が1%以下であり、以下の紫外線照射試験における劣化度が3%以下であることを特徴とする。ここで、前記紫外線照射試験における劣化度は、両面を光学研磨した肉厚1mmのガラス研摩面を主波長253.7nmの400W高圧水銀ランプから20cmの位置に対向させて配置し、300時間紫外線を照射した後、波長400nmにおける透過率(T)を測定し、紫外線照射前の波長400nmにおける初期透過率(T)からの劣化度を次式により求めたものである。劣化度(%)=[(T−T)/T]×100
【0014】
本発明において、上記構成を規定した理由を以下に説明する。まず、硼珪酸系ガラスは、従来の鉛ソーダ系軟質ガラスに比べて機械的強度、耐熱性に優れており、蛍光管の細径・薄肉化に有利であるため、基本組成として硼珪酸系のガラスを使用する。
【0015】
次に、50℃〜ガラス転移点(Tg)までの温度範囲における平均線膨張係数を46〜57×10−7/℃としたのは、この範囲であれば、コバールの平均熱膨張係数60.9×10−7/℃と比較的近い値で、かつコバール合金よりもやや低めの値となり、ガラスの固着点以下での膨張・収縮挙動が類似していることからコバール合金との良好かつ信頼性の高い封着性が得られる。コバール合金は400℃台後半で膨張曲線が屈曲するため、ガラスの転移点を低下させて膨張曲線をコバール合金に近似させることが必要であり、ガラスのコバール合金との封着性を評価するためにはこの温度域までの熱膨張係数を評価する必要がある。平均線膨張係数が前記範囲を外れると、コバールとの整合性が悪く、封着部でのクラックやリークの原因となって蛍光ランプとして信頼性のあるものが得られない。
【0016】
また以上のような硼珪酸系ガラスにFe0.001〜0.05%、Sb23 0.05〜3%、ZrO 0.01〜3%を必須成分として含有させた理由は以下のとおりである。Feは紫外線吸収が顕著であるため添加するが、前記下限値未満では紫外線カット効果が認めらず、前記上限値を越えると耐紫外線ソラリゼーション性にマイナスの影響が現れるので好ましくない。より好ましくは0.003〜0.03%である。
【0017】
Sb23は耐紫外線ソラリゼーション性を付与する目的で添加するが、前記下限値未満では紫外線照射に対する着色防止効果が認めらず、前記上限値を越えると失透傾向が強くなるので好ましくない。また、Sb23はその含有量が多くなると、コバール封着等の熱加工時にガラスが黒化する原因となり、蛍光ランプの輝度低下、発光色の変色、色むらを引き起こすので、注意が必要である。より好ましい含有量は0.1〜1%である。
【0018】
ZrO は、ガラスの化学的耐久性の改善及び分相抑制に効果が期待できるが、その含有量が0.01%未満ではその効果が十分でなく、3%を越えるとガラスが不均一になりやすく、細管に成形した際に肉厚や寸法の精度がばらつく原因になるので好ましくない。特に硼珪酸系ガラスにおいて、Fe、WO、Nb、Bi、CeO等のガラスに着色を与えることのある成分を含有している場合、溶融成形工程でガラスに分相が生じると、分相部分が起点となって着色が現れることがあるため、本発明においてはガラスの着色防止のためにも必要な成分である。
【0019】
また、上述のように本発明のガラスをLCD表示装置等のバックライト用蛍光ランプに使用した場合、紫外線がガラス管を透過して管外に放出されると、LCD表示装置内部の樹脂部品等の材質劣化を促進させ、製品寿命や信頼性を低下させる原因になるため、本発明では上記成分により紫外線カット特性を持たせ、ガラスを肉厚1mmに光学研磨した状態で、波長253.7nmにおける紫外線透過率を1%以下としている。実際の蛍光ランプにおけるガラス肉厚はさらに薄いが、この程度まで紫外線透過が抑えられていれば、実用上問題は生じない。可視光の透過に影響を及ぼさず、より好ましい品質レベルを求めるのであれば、肉厚1mmで0.1%以下にすることができる。
【0020】
また、本発明において、紫外線照射試験における劣化度を上記のように定めた理由は次のとおりである。普通、強紫外線源の近傍にガラスを曝す促進試験では、1時間〜数時間で着色傾向(着色し易いガラスか否か)は確認できるが、100時間を越えるとその程度は次第に緩やかになり、300時間経過時点ではほぼソラリゼーションによる着色限界に近い状態を確認することができる。このため、実製品における長期間使用時の透過率低下の影響をより正確に把握できる。このときの透過率評価波長400nmは、明るさに最も影響を与え易いと考えられる波長を選択した。このような条件の試験における透過率の劣化度が3%以下であれば、蛍光ランプ用ガラス管に起因するLCD表示の暗化を使用者が認識し得ない程度に抑えることができ、実用的な表示品質を維持できる。
【0021】
また、本発明は、前記硼珪酸系ガラスが、質量%で、SiO2 55〜75%、Al23 1〜10%、B23 10〜25%、Li2 O+Na2 O+K2 O 5〜15%、Fe 0.001〜0.03%、Sb23 0.1〜2%、ZrO 0.01〜3%を含有することを特徴とする。ここで、各成分の含有量を上記のように限定した理由を以下に説明する。
【0022】
SiO2は、はガラスの網目形成成分であるが、75%を超えるとガラスの溶融性、加工性が悪化し、55%未満ではガラスの化学的耐久性が低下する。化学的耐久性の低下はウェザリング、ヤケ等の原因となり蛍光ランプの輝度低下、色むら発生の原因となる。好ましくは60〜73%である。
【0023】
Al23はガラスの化学的耐久性を改善する作用があるが、10%を超えると脈理の発生など溶融性に問題が生じ、ダンナー方による管成形の際スリーブ部分での失透の原因となる。また1%未満では分相が発生し成形性に問題を生じるとともにガラスの化学的耐久性の低下をもたらす。好ましくは1〜7%の範囲である。
【0024】
23は溶融性向上および粘度調整の目的で用いられる成分であるが、25%を超えるとガラスの化学的耐久性が低下し、長期間の使用によりウェザリングを生じる。またB23が10%未満では溶融性の悪化、粘度上昇によるコバールとの封着性悪化等の問題を生じる。好ましくは13〜24%である。
【0025】
Li2 O、Na2 O、K2 Oは、融剤として作用し、ガラスの溶融性を改善するとともに粘度、熱膨張係数の調整に用いられる成分であるが、これら成分の合量が15%を超える場合は熱膨張係数が大きくなりすぎ、また化学的耐久性が悪化する。他方、5%未満では膨張係数の大幅な低下、粘度の大幅な上昇を伴いコバールとの封着が困難となる。また、各成分の含有量は、Li2 Oを0〜5%、Na2 Oを0〜8%、K2 Oを 2〜12%とすることが好ましい。それぞれの含有量が各上限値を超える場合は熱膨張係数が大きくなりすぎたり、化学的耐久性を悪化させたりする。また蛍光ランプの点灯中Na2 Oは水銀と反応しアマルガムを形成することが知られており、ガラス中の過剰なNa2 Oは蛍光ランプ中で有効に作用する水銀量を結果として減らすことになるため、水銀使用量削減の環境的観点からもNa2 Oの上記上限値を超える添加は好ましくなく、より好ましくは0〜4.5%である。また各下限値未満では膨張係数が大幅に低下し、粘度の大幅な上昇によりコバール封着ができなくなる。なお、Fe、Sb23、ZrOについては上述のとおりである。
【0026】
上記成分以外に、耐紫外線ソラリゼーション性、紫外線カット性能を付与する目的でWO、Nbのいずれか1種以上を少量添加することも可能である。これら成分を添加する場合、これらの合量が10%を越えるとガラスが失透し易くなって均質性の悪化を生じるるとともに着色傾向が現れ、バッチコストの極端な上昇を伴うため経済的観点からも好ましくない。好ましくは5%まで、より好ましくは3%までの範囲とする。特に、上述のように耐紫外線ソラリゼーション性に配慮してFeの含有量を極少量に抑えた場合には、これら成分のいずれか1種以上を0.05%以上添加することが好ましい。これにより波長253.7nmにおける紫外線透過率を極めて低く保つことができる。
【0027】
また、耐紫外線ソラリゼーション性、紫外線カット性に影響を与える前記Fe、Sb、WO、Nbの含有量とその作用効果には成分ごとの差が存在する。すなわち、Fe、WO、Nbは主として紫外線吸収に効果があるが、その含有量と紫外線吸収効果には差があるため、それぞれの寄与に応じた係数を求めたところ、およそFe:WO:Nb=10:1:2となる。またSb、WO、Nbはソラリゼーション防止に効果があるが、やはりその含有量とソラリゼーション防止効果には差があり、それぞれの寄与に応じた係数を求めたところ、およそSb:WO:Nb =10:6:8となった。他方、Feはソラリゼーションを促進させる成分であり、その影響を前記成分と同様に係数で表わすと−10となる。これら成分の影響を考慮し、可視透過率を高く維持したまま有害紫外線を吸収し、かつソラリゼーション防止を図るためには、これら成分の含有量が次式を満足する範囲内にあることが好ましい。
0.08<[{(Feの含有量)×10+(Nbの含有量)+(WOの含有量)×2}/{(Feの含有量)×(−10)+(Sbの含有量)×10+(Nbの含有量)×8+(WOの含有量)×6}]<0.3
上記式の値が0.08未満では、波長253.7nmにおける紫外線吸収が十分でなく、0.3を越えると可視域にまで吸収が表われ可視透過率を低下させる。
【0028】
また本発明は、上記紫外線吸収ガラスを管状に成形してなる蛍光ランプ用ガラス管である。上述のように本発明に係るガラスは、コバール合金との封着性に優れ、十分な耐紫外線ソラリゼーション性及び紫外線吸収性を有するので、蛍光ランプからの紫外線漏洩がなく、ガラスの紫外線着色によりランプ輝度や演色性が損なわれにくい蛍光ランプ用ガラス管得られる。また、ガラス管の外径が0.7〜5mm、肉厚が0.07〜0.6mmであり、表示デバイスのバックライト用光源に用いられることを特徴とする。外径、肉厚が前記上限値を越えると、現在のバックライト使用製品における薄型・軽量化の要請を満たすことができず、下限値未満になると成形精度の安定性や耐衝撃強度の点で充分な信頼性をもった製品を低廉な価格で供給することが難しくなる。
【0029】
さらに、本発明は導光体を介して表示面を照射するエッジライト方式のバックライト用光源に好適に用いられる。上述のとおり、本発明の蛍光ランプ用ガラス管は、紫外線吸収性能に優れるため、樹脂製導光体を使用するエッジライト方式のバックライト用光源に用いた場合でも、導光体の紫外線による劣化、透過率低下を生じにくく、初期の明るさを長期間維持できる。
【0030】
本発明のガラスを溶融するにあたって使用する清澄剤に特に制限はなく、Sb23以外にも一般的に用いられる、NaCl、NaSO等が使用できる。
【0031】
さらに、ガラスの耐候性、溶融性、失透性などを改善する目的でZnO,CaO,MgO,SrO,P,Fなどの成分を本発明の所期の特性を損なわない範囲で添加することも可能である。
【0032】
【発明の実施の形態】
以下に本発明の実施の形態について説明する。本発明のガラス及び該ガラスを用いた蛍光ランプ用ガラス管は次のようにして作成することができる。まず上記組成範囲、たとえば、SiO2 68%, Al23 3.5%,Li2O 1%,Na2O 0.5%,K2O 8.3%,B23 18%,WO0.2%,Sb0.3%,ZrO 0.2%、Fe0.01%となるように秤量・混合した原料混合物を溶融炉において加熱溶融し、ダンナー法あるいは一度管状に成形されたガラスをリドローする等の既知の管引き成形法によって所望の外径、肉厚を有する蛍光ランプ用ガラス管を得る。
【0033】
【実施例】
次に、本発明の蛍光ランプ用ガラス管につき実施例に基づいて詳細に説明する。表1および表2に本発明の実施例および比較例を示す。試料No.1〜18は本発明の実施例、No.19,20は従来の蛍光ランプ用ガラス管を示す比較例である。なお、表中の組成は質量%で示してある。表中記載のガラスは、表に示す酸化物組成となるよう珪砂、各金属の炭酸塩、硝酸塩、水酸化物等の原料粉末を秤量・混合し、それぞれ含有成分によって選択された清澄方法により白金坩堝もしくは石英坩堝を用いて1450℃で5時間溶融した。その後、充分に攪拌・清澄したガラスを矩形枠内に流出させ、徐冷後に以下に示す評価項目に合せて所望の形状に加工したサンプルを作成した。なお酸化清澄の場合はSb23を、還元清澄の場合はNaClを清澄剤として用いた。
【0034】
表中に示した項目について説明すると、熱膨張係数およびガラスの転移点は、各ガラスを直径4mm、長さ20mmの円柱に加工したサンプルを用い熱機械分析装置(TMA)で測定した。このとき熱膨張係数については、50℃〜各ガラスサンプルの転移点(Tg)までの温度範囲における平均線膨張係数を測定し、合せて同じ温度範囲におけるコバール合金の平均線膨張係数も記載した。ガラスとコバール合金との熱膨張係数差が大きくなると、封着部からのリークやクラックの発生原因となり、蛍光ランプ用としては使用できない。
【0035】
耐紫外線ソラリゼーション性試験による透過率の劣化度は、各ガラスサンプルを一辺30mm角の板状にカットし、厚さが1mmとなるよう両面光学研磨加工した試料を、主波長253.7nmの400W高圧水銀ランプから20cmの位置に研摩面を対向させて配置し、300時間紫外線を照射した後、波長400nmにおける透過率(T)を測定し、紫外線照射前の波長400nmにおける初期透過率(T)からの劣化率を透過率劣化度として、劣化度(%)=[(T−T)/T]×100により求めた値で示した。
【0036】
また、耐紫外線ソラリゼーション性試験に供する前の前記試料で、波長253.7nmの透過率を測定した値を合わせて示した。なお、表中「*」で示した欄の値は、Fe、Sb23、WO、Nbの含有量に関する[{(Feの含有量)×10+(Nbの含有量)+(WOの含有量)×2}/{(Feの含有量)×(−10)+(Sb23の含有量)×10+(Nbの含有量)×8+(WOの含有量)×6}]の計算値である。
【0037】
【表1】

Figure 0003925897
【0038】
【表2】
Figure 0003925897
【0039】
表から明らかなように、本発明の実施例であるNo.1〜18の各試料は、いずれもその熱膨張係数がコバールの平均熱膨張係数60.9×10−7/℃と比較的近い値で、かつコバール合金よりもやや低めの値を示しており、ガラスの固着点以下での膨張・収縮挙動が類似していることからコバール合金との良好かつ信頼性の高い封着性が得られる。また、波長253.7nmの透過率が極めて低く、有害紫外線をほとんど透過しない。さらに、紫外線照射による透過率劣化度も0.2%以下に抑えられており、非常に高い耐紫外線ソラリゼーション性を有していた。
【0040】
これに対し比較例であるNo.19の試料は紫外線照射による透過率劣化が大きく、No.20の試料は波長253.7nmの透過率が高いものであった。
【0041】
なお、上記実施例では、蛍光ランプ用ガラス管について説明したが、本発明に係る紫外線吸収ガラスは、たとえば、バルブ状に吹成して水銀ランプ等の外囲器に使用しても、光源からの有害紫外線を有効にカットし、紫外線によるガラスの着色がない優れた特性を有し、その他にも耐熱性、耐紫外線性を要求される様々な形状・用途に用いることができる。また、本発明に係るガラスは、環境有害物質であるPbOを含有しなくとも充分な紫外線カット特性及び耐紫外線ソラリゼーション性を有するため、環境負荷の低減にも貢献できる。
【0042】
【発明の効果】
以上のように本発明の紫外線吸収ガラスは、紫外線カット特性に優れ、コバール合金との封着に適した熱膨張係数を持ち、しかも優れた耐紫外線ソラリゼーション性を有するため、紫外線発生を伴う光源の外囲器等に好適し、透過率の劣化を小さく抑えることができる。
【0043】
また、本発明の紫外線吸収ガラスを用いた蛍光ランプ用ガラス管は、紫外線カット特性にも優れているため、液晶ディスプレイ等の表示デバイスのバックライト用蛍光ランプに用いた場合でも表示装置内部の樹脂部品等の材質を劣化させることがなく、表示装置の経時特性、信頼性を向上させる。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to an ultraviolet absorbing glass, and is a glass suitable for a glass tube for a fluorescent lamp used for a backlight of a display device such as a liquid crystal display (hereinafter, referred to as LCD). And a glass tube for a fluorescent lamp using the glass.
[0002]
[Prior art]
In recent years, LCDs have been widely used as key devices for multimedia-related equipment, but with the expansion of their applications, there are demands for weight reduction, thickness reduction, high brightness, low power consumption, and the like. In particular, high-quality display quality is required for personal computer displays, in-vehicle display devices, portable information terminals, and the like. On the other hand, since the liquid crystal display element itself does not emit light, a transmissive liquid crystal display element using a backlight using a fluorescent lamp as a light source is used in the above-described applications.
[0003]
As described above, LCDs are required to be lighter, thinner, higher brightness, lower power consumption, etc., so the backlight is also becoming smaller, lighter, higher brightness, and lower power consumption. Accordingly, the fluorescent lamps for backlights are becoming thinner and thinner.
[0004]
However, the thinning and thinning of the fluorescent lamp cause a decrease in mechanical strength and an increase in the temperature of the electrode part due to an increase in the amount of heat generated. For this reason, the glass tube used for the fluorescent lamp for backlights requires glass having higher strength and lower expansion.
[0005]
Conventionally, as a glass tube of this type of fluorescent lamp, lead soda-based soft glass having a track record as illumination glass and excellent workability has been used. However, as the tube diameter and wall thickness become smaller in backlight applications, it becomes difficult to ensure sufficient strength and heat resistance in terms of product reliability, which is more thermal and mechanical than lead soda-based soft glass. The production of fluorescent lamps using high-strength borosilicate hard glass has been studied, and the well-known Kovar alloy and Kovar sealing glass have been used as a combination of hermetically sealable metal and hard glass. Fluorescent lamps have been developed and commercialized. Here, “Kovar” is a trade name of Westinghouse Ele. Corp. indicating an Fe—Ni—Co-based alloy, and is used to include equivalent products of other companies such as KOV (trade name) manufactured by Toshiba.
[0006]
[Problems to be solved by the invention]
The light emission principle of the fluorescent lamp for the backlight is the same as that of the general illumination fluorescent lamp. Mercury vapor or xenon gas excited by the inter-electrode discharge in the fluorescent tube emits 253.7 nm ultraviolet light and is applied to the inner wall surface of the tube. This is because the phosphor emits light. However, it is known that ultraviolet rays have a function of causing discoloration in glass, and in a glass that does not take any measures against ultraviolet rays, a discoloration action called solarization is caused by ultraviolet irradiation. When solarization occurs in the fluorescent tube glass, the result is a decrease in lamp brightness and a discoloration of the emission color, and in the backlight, the display quality is degraded, such as the LCD display becoming dark or the display color becoming unclear. Further, when ultraviolet rays pass through the backlight glass tube and are emitted to the outside of the tube, there is a problem of accelerating material deterioration of resin parts and the like inside the LCD display device.
[0007]
As a backlight system that is particularly advantageous for thin and light display devices, a light source is arranged on the side end face of the transparent light guide, and one surface of the light guide is reflected and diffused to make multiple reflections of light. The edge light method is known, but this method requires a light guide due to its structure, and the light guide uses resin parts such as acrylic resin for weight reduction. Ultraviolet light leakage from the light source for light causes a decrease in light transmittance due to deterioration and coloring of the light guide, and if the resin deteriorates in the vicinity of the light source, the brightness of the entire display surface decreases. The effect on display quality is great along with solarization.
[0008]
In the above lead soda-based glass, lead contained as a glass component had ultraviolet solarization resistance and UV-cutting performance, so these did not pose a problem, but borosilicate Kovar sealing glass Was originally used for sealing electron tubes and electronic components. No countermeasures were taken against the action of ultraviolet rays as a glass material, and the problems of ultraviolet solarization and ultraviolet transmission were inevitable.
[0009]
For this reason, when using a conventional Kovar sealing glass for an outer tube for a fluorescent lamp, the inner surface of the glass tube is coated with Al 2 O 3 or TiO 2 , which is a component that reflects or absorbs ultraviolet rays, and a phosphor is formed thereon. Measures are also taken to reduce the intensity of ultraviolet rays reaching the glass by applying a coating to form a multilayer film. However, such a method inevitably increases the cost due to the difficulty in coating and the increase in the coating process as the diameter of the glass tube is reduced.
[0010]
From the above background, glasses disclosed in JP-A-8-333132 and JP-A-9-110467 have been proposed as glasses having a thermal expansion coefficient that can be sealed with Kovar alloy and having ultraviolet solarization resistance. ing. All of these glasses are provided with ultraviolet solarization resistance by adding at least one of PbO, TiO 2 and Sb 2 O 3 to borosilicate glass.
[0011]
Although these glasses eliminate the problem of solarization due to ultraviolet rays, any glass allows the inclusion of PbO, which is an environmentally hazardous substance, and is not preferable from the viewpoint of environmental protection. In addition, it cannot be said that sufficient consideration is given to UV protection when used as a fluorescent lamp, and it transmits harmful UV rays of 253.7 nm emitted by excited mercury or the like depending on the combination and content of the above-mentioned UV-proof solarization resistance-imparting components. There is a risk of deteriorating interior parts.
[0012]
The present invention has been made in consideration of the above-described circumstances. An ultraviolet absorbing glass that can be sealed with a Kovar alloy, has sufficient ultraviolet solarization resistance, and does not transmit harmful ultraviolet rays. An object of the present invention is to provide a glass tube for a fluorescent lamp.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a mass% of SiO 2 55-75%, B 2 O 3 10~25%, Fe 2 O 3 0.001~0.05%, Sb 2 O 3 0.05~3%, containing ZrO 2 0.01~3%, 50 ℃ ~ glass transition point ( Tg) is made of borosilicate glass having an average linear expansion coefficient of 46 to 57 × 10 −7 / ° C. in the temperature range up to Tg), the transmittance at a thickness of 1 mm at a wavelength of 253.7 nm is 1% or less, The degree of deterioration in the ultraviolet irradiation test is 3% or less. Here, the degree of deterioration in the ultraviolet irradiation test is determined by placing a glass polished surface with a thickness of 1 mm optically polished on both sides facing a position 20 cm from a 400 W high-pressure mercury lamp having a principal wavelength of 253.7 nm, and applying ultraviolet light for 300 hours. After the irradiation, the transmittance (T 1 ) at a wavelength of 400 nm is measured, and the degree of deterioration from the initial transmittance (T 0 ) at a wavelength of 400 nm before ultraviolet irradiation is obtained by the following equation. Degree of degradation (%) = [(T 0 −T 1 ) / T 0 ] × 100
[0014]
The reason why the above configuration is defined in the present invention will be described below. First, borosilicate glass is superior in mechanical strength and heat resistance compared to conventional lead soda-based soft glass, and is advantageous in reducing the diameter and thickness of fluorescent tubes. Use glass.
[0015]
Next, the average linear expansion coefficient in the temperature range from 50 ° C. to the glass transition point (Tg) was set to 46 to 57 × 10 −7 / ° C. within this range, the average thermal expansion coefficient of Kovar 60. Good and reliable with Kovar alloy because it is relatively close to 9 × 10 -7 / ° C and slightly lower than Kovar alloy, and has similar expansion / contraction behavior below the fixing point of glass. High sealing properties can be obtained. In Kovar alloy, the expansion curve bends in the upper 400 ° C range, so it is necessary to lower the glass transition point and approximate the expansion curve to Kovar alloy, in order to evaluate the sealing properties of glass with Kovar alloy. It is necessary to evaluate the coefficient of thermal expansion up to this temperature range. If the average linear expansion coefficient is out of the above range, the consistency with Kovar is poor, and a reliable fluorescent lamp cannot be obtained due to cracks and leaks at the sealing portion.
[0016]
Fe 2 O 3 0.001~0.05% The borosilicate based glass as described above, Sb 2 O 3 0.05~3%, ZrO 2 The reason for containing 0.01 to 3% as an essential component is as follows. Fe 2 O 3 is added because it absorbs significantly ultraviolet rays. However, if it is less than the lower limit, no ultraviolet blocking effect is observed, and if it exceeds the upper limit, a negative effect on ultraviolet solarization resistance appears. More preferably, it is 0.003 to 0.03%.
[0017]
Sb 2 O 3 is added for the purpose of imparting ultraviolet solarization resistance. However, if it is less than the lower limit, an effect of preventing coloring against ultraviolet irradiation is not observed, and if it exceeds the upper limit, devitrification tends to increase, which is not preferable. Also, if Sb 2 O 3 content is high, it will cause the glass to blacken during heat processing such as Kovar sealing, and this will cause a decrease in the brightness of the fluorescent lamp, discoloration of the emission color, and color unevenness. It is. A more preferable content is 0.1 to 1%.
[0018]
ZrO 2 Can be expected to improve the chemical durability of the glass and suppress phase separation, but if its content is less than 0.01%, the effect is not sufficient, and if it exceeds 3%, the glass tends to be non-uniform. This is not preferable because the thickness and dimensional accuracy vary when formed into a thin tube. In particular, when the borosilicate glass contains a component that may give color to the glass, such as Fe 2 O 3 , WO 3 , Nb 2 O 5 , Bi 2 O 3 , CeO 2 , the glass in the melt molding process. When phase separation occurs in the glass, coloring may appear starting from the phase separation portion. Therefore, in the present invention, it is a necessary component for preventing coloration of the glass.
[0019]
In addition, when the glass of the present invention is used for a backlight fluorescent lamp such as an LCD display device as described above, if ultraviolet rays are transmitted through the glass tube and emitted outside the tube, resin parts inside the LCD display device, etc. In the present invention, ultraviolet rays are cut by the above components and the glass is optically polished to a thickness of 1 mm at a wavelength of 253.7 nm. The ultraviolet transmittance is 1% or less. Although the glass thickness in an actual fluorescent lamp is even thinner, there is no practical problem as long as UV transmission is suppressed to this extent. If a more desirable quality level is desired without affecting visible light transmission, the thickness can be reduced to 0.1% or less at a thickness of 1 mm.
[0020]
In the present invention, the reason why the degree of deterioration in the ultraviolet irradiation test is determined as described above is as follows. Usually, in the accelerated test in which the glass is exposed to the vicinity of a strong ultraviolet ray source, the coloring tendency (whether it is easy to color) can be confirmed in 1 hour to several hours, but the degree gradually decreases after 100 hours. When 300 hours have elapsed, it is possible to confirm a state that is almost close to the limit of coloring due to solarization. For this reason, the influence of the transmittance | permeability fall at the time of long-term use in a real product can be grasped | ascertained more correctly. As the transmittance evaluation wavelength 400 nm at this time, a wavelength considered to have the most influence on brightness was selected. If the degree of transmittance deterioration in a test under such conditions is 3% or less, the darkening of the LCD display caused by the glass tube for a fluorescent lamp can be suppressed to a level that the user cannot recognize, which is practical. Display quality can be maintained.
[0021]
Further, according to the present invention, the borosilicate glass is, by mass%, SiO 2 55 to 75%, Al 2 O 3 1 to 10%, B 2 O 3 10 to 25%, Li 2 O + Na 2 O + K 2 O 5. ~15%, Fe 2 O 3 0.001 to 0.03%, Sb 2 O 3 0.1 to 2 %, ZrO 2 It is characterized by containing 0.01 to 3%. Here, the reason which limited content of each component as mentioned above is demonstrated below.
[0022]
SiO 2 is a glass network-forming component. However, if it exceeds 75%, the meltability and workability of the glass deteriorate, and if it is less than 55%, the chemical durability of the glass decreases. A decrease in chemical durability causes weathering, burns, etc., and causes a decrease in luminance and color unevenness of the fluorescent lamp. Preferably it is 60 to 73%.
[0023]
Al 2 O 3 has the effect of improving the chemical durability of the glass. However, if it exceeds 10%, problems such as the occurrence of striae will occur and meltability will occur. Cause. On the other hand, if it is less than 1%, phase separation occurs, which causes a problem in formability and lowers the chemical durability of the glass. Preferably it is 1 to 7% of range.
[0024]
B 2 O 3 is a component used for the purpose of improving the meltability and adjusting the viscosity. However, if it exceeds 25%, the chemical durability of the glass is lowered, and weathering occurs due to long-term use. On the other hand, if the B 2 O 3 content is less than 10%, problems such as poor meltability and poor sealability with Kovar due to increased viscosity are caused. Preferably it is 13 to 24%.
[0025]
Li 2 O, Na 2 O, and K 2 O are components that act as fluxes, improve the meltability of the glass, and are used to adjust the viscosity and thermal expansion coefficient. The total amount of these components is 15%. If it exceeds 1, the thermal expansion coefficient becomes too large and the chemical durability deteriorates. On the other hand, if it is less than 5%, it will be difficult to seal with Kovar with a significant decrease in expansion coefficient and a significant increase in viscosity. The content of each component, 0 to 5% of Li 2 O, 0 to 8% of Na 2 O, it is preferred to 2-12% of K 2 O. When each content exceeds each upper limit, the thermal expansion coefficient becomes too large, or the chemical durability is deteriorated. It is also known that Na 2 O reacts with mercury to form amalgam during the operation of the fluorescent lamp, and excessive Na 2 O in the glass results in a reduction in the amount of mercury that acts effectively in the fluorescent lamp. Therefore, also from the environmental viewpoint of reducing the amount of mercury used, addition of Na 2 O exceeding the above upper limit is not preferable, and more preferably 0 to 4.5%. In addition, if it is less than each lower limit value, the expansion coefficient is significantly reduced, and Kovar sealing cannot be performed due to a significant increase in viscosity. Incidentally, Fe 2 O 3, Sb 2 O 3, for ZrO 2 are as described above.
[0026]
In addition to the above components, a small amount of any one or more of WO 3 and Nb 2 O 5 may be added for the purpose of imparting ultraviolet solarization resistance and ultraviolet cut performance. When these components are added, if the total amount exceeds 10%, the glass tends to be devitrified, resulting in a deterioration in homogeneity and a tendency to coloration, resulting in an extreme increase in batch cost. Is also not preferable. The range is preferably up to 5%, more preferably up to 3%. In particular, when the content of Fe 2 O 3 is suppressed to a very small amount in consideration of the ultraviolet solarization resistance as described above, it is preferable to add at least 0.05% of any one of these components. . Thereby, the ultraviolet transmittance at a wavelength of 253.7 nm can be kept extremely low.
[0027]
In addition, there is a difference for each component in the contents of Fe 2 O 3 , Sb 2 O 3 , WO 3 , and Nb 2 O 5 that affect ultraviolet solarization resistance and ultraviolet cut-off properties and their effects. That is, although Fe 2 O 3 , WO 3 , and Nb 2 O 5 are mainly effective in absorbing ultraviolet rays, the content and the ultraviolet absorbing effect are different, and the coefficient corresponding to each contribution was determined. approximately Fe 2 O 3: WO 3: Nb 2 O 5 = 10: 1: 2 to become. Sb 2 O 3 , WO 3 , and Nb 2 O 5 are effective in preventing solarization, but the content and the effect of preventing solarization are still different, and a coefficient corresponding to each contribution was obtained. 2 O 3: WO 3: Nb 2 O 5 = 10: 6: 8 after. On the other hand, Fe 2 O 3 is a component that promotes solarization, and its effect is expressed as -10 in the same manner as the above component. In consideration of the influence of these components, in order to absorb harmful ultraviolet rays while maintaining high visible transmittance and to prevent solarization, the content of these components is preferably in the range satisfying the following formula.
0.08 <[{(Fe 2 O 3 content) × 10 + (Nb 2 O 5 content) + (WO 3 content) × 2} / {(Fe 2 O 3 content) × ( −10) + (content of Sb 2 O 3 ) × 10 + (content of Nb 2 O 5 ) × 8 + (content of WO 3 ) × 6}] <0.3
If the value of the above formula is less than 0.08, ultraviolet absorption at a wavelength of 253.7 nm is not sufficient, and if it exceeds 0.3, absorption appears in the visible range and the visible transmittance is reduced.
[0028]
Moreover, this invention is a glass tube for fluorescent lamps formed by shape | molding the said ultraviolet absorption glass in the shape of a tube. As described above, the glass according to the present invention is excellent in sealing property with Kovar alloy and has sufficient UV solarization resistance and UV absorption, so that there is no UV leakage from the fluorescent lamp, and the lamp is colored by UV coloring of the glass. A glass tube for a fluorescent lamp is obtained in which the luminance and color rendering are not easily impaired. The glass tube has an outer diameter of 0.7 to 5 mm and a thickness of 0.07 to 0.6 mm, and is used as a light source for a backlight of a display device. If the outer diameter and wall thickness exceed the above upper limits, it will not be possible to meet the demands for reducing the thickness and weight of current products using backlights. If the outer diameter and wall thickness are less than the lower limits, molding accuracy will be stable and impact strength will be reduced. It becomes difficult to supply a product with sufficient reliability at a low price.
[0029]
Furthermore, the present invention is suitably used for an edge light type backlight light source that irradiates a display surface through a light guide. As described above, the glass tube for a fluorescent lamp of the present invention is excellent in ultraviolet absorption performance. Therefore, even when it is used for a light source for an edge-light type backlight using a resin light guide, the light guide is deteriorated by ultraviolet light. It is difficult to cause a decrease in transmittance, and the initial brightness can be maintained for a long time.
[0030]
The fining agent used for melting the glass of the present invention is not particularly limited, and NaCl, Na 2 SO 4 or the like generally used can be used in addition to Sb 2 O 3 .
[0031]
Furthermore, components such as ZnO, CaO, MgO, SrO, P 2 O 5 and F are added within the range not impairing the intended characteristics of the present invention for the purpose of improving the weather resistance, meltability, devitrification, etc. of the glass. It is also possible to add.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. The glass of the present invention and the glass tube for a fluorescent lamp using the glass can be produced as follows. First, the above composition range, for example, SiO 2 68%, Al 2 O 3 3.5%, Li 2 O 1%, Na 2 O 0.5%, K 2 O 8.3%, B 2 O 3 18%, WO 3 0.2%, Sb 2 O 3 0.3%, ZrO 2 Known tube drawing, such as 0.2%, Fe 2 O 3 0.01%, and the raw material mixture weighed and mixed in a melting furnace is heated and melted in a melting furnace to redraw the glass once formed into a tubular shape. A fluorescent tube glass tube having a desired outer diameter and thickness is obtained by a molding method.
[0033]
【Example】
Next, the glass tube for a fluorescent lamp of the present invention will be described in detail based on examples. Tables 1 and 2 show examples and comparative examples of the present invention. Sample No. 1 to 18 are Examples of the present invention, No. 19 and 20 are comparative examples showing a conventional glass tube for a fluorescent lamp. In addition, the composition in a table | surface is shown by the mass%. The glass listed in the table is prepared by weighing and mixing raw materials such as silica sand, carbonates, nitrates, and hydroxides of each metal so that the oxide composition shown in the table is obtained. It was melted at 1450 ° C. for 5 hours using a crucible or a quartz crucible. Thereafter, the sufficiently stirred and clarified glass was allowed to flow out into the rectangular frame, and after slow cooling, a sample processed into a desired shape was prepared according to the evaluation items shown below. In the case of oxidation clarification, Sb 2 O 3 was used as a clarifier, and in the case of reduction clarification, NaCl was used as a clarifier.
[0034]
The items shown in the table will be described. The thermal expansion coefficient and the glass transition point were measured with a thermomechanical analyzer (TMA) using samples obtained by processing each glass into a cylinder having a diameter of 4 mm and a length of 20 mm. At this time, as for the thermal expansion coefficient, the average linear expansion coefficient in the temperature range from 50 ° C. to the transition point (Tg) of each glass sample was measured, and the average linear expansion coefficient of the Kovar alloy in the same temperature range was also described. If the difference in coefficient of thermal expansion between glass and Kovar alloy becomes large, it will cause leaks and cracks from the sealed part and cannot be used for fluorescent lamps.
[0035]
The degree of transmittance deterioration by the ultraviolet solarization resistance test was determined by cutting each glass sample into a 30 mm square plate and performing double-sided optical polishing so that the thickness was 1 mm, and a 400 W high pressure with a main wavelength of 253.7 nm. The polishing surface is placed 20 cm away from the mercury lamp and irradiated with ultraviolet rays for 300 hours, and then the transmittance (T 1 ) at a wavelength of 400 nm is measured, and the initial transmittance (T 0 ) at a wavelength of 400 nm before ultraviolet irradiation. ) As the transmittance deterioration degree, and is indicated by a value obtained by the deterioration degree (%) = [(T 0 −T 1 ) / T 0 ] × 100.
[0036]
In addition, the values obtained by measuring the transmittance at a wavelength of 253.7 nm in the sample before being subjected to the ultraviolet solarization resistance test are also shown. Incidentally, the value of the column indicated by the table "*" (the content of Fe 2 O 3) Fe 2 O 3, Sb 2 O 3, WO 3, Nb content 2 O 5 related to [{× 10 + ( Nb 2 O 5 content) + (WO 3 content) × 2} / {(Fe 2 O 3 content) × (−10) + (Sb 2 O 3 content) × 10 + (Nb 2 O 5 content) × 8 + (WO 3 content) × 6}].
[0037]
[Table 1]
Figure 0003925897
[0038]
[Table 2]
Figure 0003925897
[0039]
As is apparent from the table, No. 1 as an example of the present invention. Each of the samples 1 to 18 has a coefficient of thermal expansion that is relatively close to the average coefficient of thermal expansion of Kovar 60.9 × 10 −7 / ° C. and is slightly lower than that of Kovar alloy. Since the expansion and contraction behaviors below the fixing point of the glass are similar, good and reliable sealing properties with Kovar alloy can be obtained. Moreover, the transmittance | permeability of wavelength 253.7nm is very low, and hardly transmits harmful ultraviolet rays. Furthermore, the degree of transmittance deterioration due to ultraviolet irradiation was also suppressed to 0.2% or less, and it had very high resistance to ultraviolet solarization.
[0040]
On the other hand, No. which is a comparative example. Sample No. 19 has a large transmittance deterioration due to ultraviolet irradiation. Twenty samples had high transmittance at a wavelength of 253.7 nm.
[0041]
In addition, although the glass tube for fluorescent lamps has been described in the above embodiment, the ultraviolet absorbing glass according to the present invention can be used, for example, from a light source even when blown into a bulb shape and used in an envelope such as a mercury lamp. It effectively cuts harmful UV rays, has excellent properties without coloring glass due to UV rays, and can be used in various shapes and applications that require heat resistance and UV resistance. In addition, the glass according to the present invention can contribute to a reduction in environmental load because it has sufficient ultraviolet cut characteristics and ultraviolet solarization resistance even without containing PbO, which is an environmentally hazardous substance.
[0042]
【The invention's effect】
As described above, the UV-absorbing glass of the present invention is excellent in UV-cutting properties, has a thermal expansion coefficient suitable for sealing with Kovar alloy, and has excellent UV solarization resistance. It is suitable for an envelope or the like, and the deterioration of transmittance can be suppressed to a small level.
[0043]
In addition, since the glass tube for a fluorescent lamp using the ultraviolet absorbing glass of the present invention is excellent also in the ultraviolet cut characteristic, even when used in a fluorescent lamp for a backlight of a display device such as a liquid crystal display, the resin inside the display device The time-dependent characteristics and reliability of the display device are improved without deteriorating the material such as parts.

Claims (6)

質量%で、SiO2 55〜75%、B23 10〜25%、Fe0.001〜0.05%、Sb0.05〜3%、ZrO0.01〜3%を含有し、50℃〜ガラス転移点(Tg)までの温度範囲における平均線膨張係数が46〜57×10−7/℃である硼珪酸系ガラスからなり、波長253.7nmにおける肉厚1mmでの透過率が1%以下であり、以下の紫外線照射試験における劣化度が3%以下であることを特徴とする紫外線吸収ガラス。ただし、前記紫外線照射試験における劣化度は、両面を光学研磨した肉厚1mmのガラス研摩面を主波長253.7nmの400W高圧水銀ランプから20cmの位置に対向させて配置し、300時間紫外線を照射した後、波長400nmにおける透過率(T)を測定し、紫外線照射前の波長400nmにおける初期透過率(T)からの劣化度を次式により求めたもの。
劣化度(%)=[(T−T)/T]×100
By mass%, SiO 2 55~75%, B 2 O 3 10~25%, Fe 2 O 3 0.001~0.05%, Sb 2 O 3 0.05~3%, ZrO 2 0.01~ 3%, a borosilicate glass having an average linear expansion coefficient of 46 to 57 × 10 −7 / ° C. in a temperature range from 50 ° C. to the glass transition point (Tg), and a wall thickness at a wavelength of 253.7 nm A UV-absorbing glass having a transmittance of 1% or less at 1 mm and a deterioration degree of 3% or less in the following UV irradiation test. However, the degree of deterioration in the ultraviolet irradiation test was determined by placing a 1 mm thick glass polished surface optically polished on both sides facing a 20 cm position from a 400 W high-pressure mercury lamp having a principal wavelength of 253.7 nm and irradiating with ultraviolet rays for 300 hours. Then, the transmittance (T 1 ) at a wavelength of 400 nm was measured, and the degree of deterioration from the initial transmittance (T 0 ) at a wavelength of 400 nm before ultraviolet irradiation was obtained by the following equation.
Degree of degradation (%) = [(T 0 −T 1 ) / T 0 ] × 100
前記硼珪酸系ガラスが、質量%で、SiO55〜75%、Al1〜10%、B10〜25%、LiO+NaO+KO5〜15%、Fe0.001〜0.03%、Sb0.1〜2%、ZrO0.01〜3%を含有することを特徴とする請求項1記載の紫外線吸収ガラス。The borosilicate glass, in mass%, SiO 2 55~75%, Al 2 O 3 1~10%, B 2 O 3 10~25%, Li 2 O + Na 2 O + K 2 O5~15%, Fe 2 O 3 0.001~0.03%, Sb 2 O 3 0.1~2%, ultraviolet absorbing glass according to claim 1, characterized in that it contains ZrO 2 0.01 to 3%. 前記硼珪酸系ガラスが、WO、Nbから選ばれるいずれか1種以上を0.05〜5質量%含有し、前記Fe、Sb、WO、Nbの含有量が次式を満足する範囲内にあることを特徴とする請求項1又は2に記載の紫外線吸収ガラス。
0.08<[{(Feの含有量)×10+(Nbの含有量)+(WOの含有量)×2}/{(Feの含有量)×(−10)+(Sbの含有量)×10+(Nbの含有量)×8+(WOの含有量)×6}]<0.3
The borosilicate glass contains 0.05 to 5% by mass of any one or more selected from WO 3 and Nb 2 O 5 , and the Fe 2 O 3 , Sb 2 O 3 , WO 3 and Nb 2 O. The ultraviolet absorbing glass according to claim 1 or 2, wherein the content of 5 is in a range satisfying the following formula.
0.08 <[{(Fe 2 O 3 content) × 10 + (Nb 2 O 5 content) + (WO 3 content) × 2} / {(Fe 2 O 3 content) × ( −10) + (content of Sb 2 O 3 ) × 10 + (content of Nb 2 O 5 ) × 8 + (content of WO 3 ) × 6}] <0.3
請求項1ないし3のいずれかに記載の紫外線吸収ガラスを管状に成形してなる蛍光ランプ用ガラス管。  A glass tube for a fluorescent lamp formed by forming the ultraviolet absorbing glass according to any one of claims 1 to 3 into a tubular shape. ガラス管の外径が0.7〜5mm、肉厚が0.07〜0.6mmであり、表示デバイスのバックライト用光源に用いられることを特徴とする請求項4記載の蛍光ランプ用ガラス管。 The glass tube for a fluorescent lamp according to claim 4, wherein the glass tube has an outer diameter of 0.7 to 5 mm and a wall thickness of 0.07 to 0.6 mm, and is used as a light source for a backlight of a display device. . 導光体を介して表示面を照射するエッジライト方式のバックライト用光源に用いられることを特徴とする請求項5記載の蛍光ランプ用ガラス管。 6. The glass tube for a fluorescent lamp according to claim 5, wherein the glass tube is used for a light source for an edge light type backlight that irradiates a display surface through a light guide.
JP2000206562A 2000-07-07 2000-07-07 Ultraviolet absorbing glass and glass tube for fluorescent lamp using the same Expired - Lifetime JP3925897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000206562A JP3925897B2 (en) 2000-07-07 2000-07-07 Ultraviolet absorbing glass and glass tube for fluorescent lamp using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000206562A JP3925897B2 (en) 2000-07-07 2000-07-07 Ultraviolet absorbing glass and glass tube for fluorescent lamp using the same

Publications (2)

Publication Number Publication Date
JP2002029778A JP2002029778A (en) 2002-01-29
JP3925897B2 true JP3925897B2 (en) 2007-06-06

Family

ID=18703468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000206562A Expired - Lifetime JP3925897B2 (en) 2000-07-07 2000-07-07 Ultraviolet absorbing glass and glass tube for fluorescent lamp using the same

Country Status (1)

Country Link
JP (1) JP3925897B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011084543A1 (en) 2011-10-14 2013-04-18 Schott Ag Glass, useful e.g. to prepare fluorescent lamps, comprises e.g. silica, boron trioxide, alumina, lithium oxide, sodium oxide, potassium oxide magnesium oxide, zirconium oxide, cerium oxide, fluoride ion, chloride ion and neodymium oxide

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293571A (en) * 2001-03-30 2002-10-09 Nippon Electric Glass Co Ltd Glass for illumination
DE202005004487U1 (en) * 2004-07-12 2005-11-24 Schott Ag System for backlighting displays or screens
JP4445013B2 (en) * 2005-03-25 2010-04-07 Agcテクノグラス株式会社 Ultraviolet absorbing glass, glass tube for fluorescent lamp using the same, and method for producing ultraviolet absorbing glass for fluorescent lamp

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011084543A1 (en) 2011-10-14 2013-04-18 Schott Ag Glass, useful e.g. to prepare fluorescent lamps, comprises e.g. silica, boron trioxide, alumina, lithium oxide, sodium oxide, potassium oxide magnesium oxide, zirconium oxide, cerium oxide, fluoride ion, chloride ion and neodymium oxide
DE102011084543B4 (en) * 2011-10-14 2017-04-27 Schott Ag Borosilicate glass with high hydrolytic resistance

Also Published As

Publication number Publication date
JP2002029778A (en) 2002-01-29

Similar Documents

Publication Publication Date Title
US6635592B1 (en) Tungsten seal glass for fluorescent lamp
US5747399A (en) Glass for a fluorescent lamp
JP4445013B2 (en) Ultraviolet absorbing glass, glass tube for fluorescent lamp using the same, and method for producing ultraviolet absorbing glass for fluorescent lamp
JP2005320225A (en) Glass for illumination
JP3771429B2 (en) Ultraviolet absorbing glass and glass tube for fluorescent lamp using the same
JP2004315279A (en) Glass for fluorescent lamp
JP3818571B2 (en) Glass suitable for sealing Fe-Ni-Co alloys
JP2006089342A (en) Glass for fluorescent lamp
JP5095620B2 (en) Ultraviolet absorbing glass tube for fluorescent lamp and fluorescent tube glass tube using the same
JP3925897B2 (en) Ultraviolet absorbing glass and glass tube for fluorescent lamp using the same
JP2002068775A (en) Glass envelope for illumination
JP3925898B2 (en) Ultraviolet absorbing glass and glass tube for fluorescent lamp using the same
JP4919399B2 (en) Ultraviolet absorbing glass for fluorescent lamp, glass tube for fluorescent lamp using the same, and method for producing ultraviolet absorbing glass for fluorescent lamp
JP2005041729A (en) Illuminating glass
JP3903490B2 (en) Kovar sealing glass
JP3786397B2 (en) Glass suitable for sealing Fe-Ni-Co alloys
JP2007039281A (en) UV absorbing glass and glass tube for LCD display lighting
JP3575114B2 (en) Kovar sealing glass
JP2002075274A (en) Glass envelope for illumination
JP2004315280A (en) Glass for fluorescent lamp
JP2002060241A (en) Glass for sealing tungsten
JP2002060240A (en) Glass for sealing tungsten
JP2006265068A (en) Ultraviolet absorbing glass and glass tube for fluorescent lamp using the same
JP2001220175A (en) Tungsten sealed glass for fluorescent lamp
JP2002056808A (en) Glass tube for fluorescent lamp and glass suitable for the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6