Nothing Special   »   [go: up one dir, main page]

JP3916407B2 - Manufacturing method of multilayer electronic component mounted component, manufacturing method of electronic component mounted finished product, and electronic component mounted finished product - Google Patents

Manufacturing method of multilayer electronic component mounted component, manufacturing method of electronic component mounted finished product, and electronic component mounted finished product Download PDF

Info

Publication number
JP3916407B2
JP3916407B2 JP2001080441A JP2001080441A JP3916407B2 JP 3916407 B2 JP3916407 B2 JP 3916407B2 JP 2001080441 A JP2001080441 A JP 2001080441A JP 2001080441 A JP2001080441 A JP 2001080441A JP 3916407 B2 JP3916407 B2 JP 3916407B2
Authority
JP
Japan
Prior art keywords
electronic component
component
circuit pattern
base material
finished product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001080441A
Other languages
Japanese (ja)
Other versions
JP2002280744A5 (en
JP2002280744A (en
Inventor
法人 塚原
尚士 秋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001080441A priority Critical patent/JP3916407B2/en
Publication of JP2002280744A publication Critical patent/JP2002280744A/en
Publication of JP2002280744A5 publication Critical patent/JP2002280744A5/ja
Application granted granted Critical
Publication of JP3916407B2 publication Critical patent/JP3916407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor

Landscapes

  • Credit Cards Or The Like (AREA)
  • Ceramic Capacitors (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ICチップ等の電子部品を基材に実装して積層した積層型電子部品実装済部品の製造方法、該製造方法にて製造された上記積層型電子部品実装済部品を有する電子部品実装済完成品の製造方法、及び該電子部品実装済完成品製造方法にて製造される電子部品実装済完成品に関する。上記積層型電子部品実装済部品を構成する電子部品実装済部品は、例えば複数の半導体素子、コンデンサ、抵抗等の受動部品を一つのキャリア基板に実装したMCM(マルチチップモジュール)や、複数個のメモリーチップを多段に重ねてなるスタックICモジュールや、メモリーカード等が相当する。
【0002】
【従来の技術】
従来の電子部品実装済完成品の製造方法について、図22及び図23を参照しながら以下に説明する。従来、複数の半導体素子、受動部品等の電子部品が実装されたMCM(マルチチップモジュール)、スタックICモジュール、メモリーモジュールにおいては、キャリア基板上に半導体素子をワイヤボンディング法により接続し、多層化していく方法がとられている。又、電子部品は、キャリア基板上の所定の回路パターンにクリーム半田を印刷し、リフローする方法により、実装されている。
【0003】
図22に示すように、従来のMCMモジュール10における複数個、本例の場合には3個の半導体素子1は、キャリア基板3上に積層され、キャリア基板3上に形成されている所定の回路パターン4と、ワイヤボンディング法により形成されたAu、Cu、アルミニウムのワイヤ8を介して接続されている。12は、ワイヤ8を含み半導体素子1を保護するための封止剤である。
又、電子部品5は、キャリア基板3上の所定の電極4と電子部品5の電極6とがクリーム半田7を介して接続されている。尚、9は、図示していないマザー基板と、当該MCMモジュール10とを電気的に接続するための外部電極端子である。該外部電極端子9は、MCMモジュール10単体で製品としての機能を果たすモジュールの場合は必要には無い。又、11は、キャリア基板3の実装面側の回路パターンと外部電極端子9との電気的導通を図るためのスルーホールである。
【0004】
その製造工程は、図23に示すように、まずステップ(図内では「S」にて示す)1では、キャリア基板3上の所定の電極4上にクリーム半田を印刷して塗布する。クリーム半田7の印刷は、一般的にスクリーン印刷法により実施される。次のステップ2では、上記印刷により形成したクリーム半田7上に電子部品5を位置合わせして実装する。その次のステップ3では、電子部品5が実装されたキャリア基板3をリフロー炉に通し、クリーム半田7を溶融し、その後、硬化させる。
その次のステップ4では、キャリア基板3の厚み方向に沿って半導体素子1を積み重ねる。尚、図中には示していないが、半導体素子1とキャリア基板3との間、及び各半導体素子1同士の間は、Agペーストで接合されるのが一般的である。
次のステップ5では、半導体素子1の電極2とキャリア基板3の所定の電極4とをAu、Cu、半田等にてなる金属ワイヤ8を用いたワイヤボンディング法により接合する。次のステップ6では、半導体素子1を保護するために、封止樹脂12が塗布される。その次のステップ7では、バッチ炉に投入し封止剤12を硬化させる。
このようにして、電子部品実装済部品を有する電子部品実装済完成品としてのMCMモジュール10が作製される。
【0005】
【発明が解決しようとする課題】
しかし、上述した従来の電子部品実装済部品を有する電子部品実装済完成品の製造方法、及び該電子部品実装済完成品製造方法にて製造される電子部品実装済完成品としてのMCMモジュール、メモリーモジュール等の構成では、以下の問題があった。
キャリア基板3上に半導体素子1等の電子部品を積み上げていくために、モジュールの厚み方向の高さが高くなり、薄型化が要求される最近の製品ニーズに答えられない。又、半導体素子1を積み上げていく際、ワイヤボンディングするため、電極2を半導体素子1の外周部に配置しておく必要があるため、図示するように必然的に積み重ねられる半導体素子1は平面的に順次小さいものを用いる必要があり、使用可能な半導体素子1のサイズが限られる。逆に言うと、電極2が半導体素子1の外周部以外にある、いわゆるエリアパッドと呼ばれる半導体素子では、積み重ねができない。
本発明はこのような問題点を解決するためになされたもので、薄型化が可能であり、使用可能な電子部品の制約が少ない、複数層構造にてなる積層型電子部品実装済部品の製造方法、該製造方法にて作製された積層型電子部品実装済部品を有する電子部品実装済完成品の製造方法、及び該電子部品実装済完成品製造方法にて製造される電子部品実装済完成品を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために本発明は以下のように構成する。
本発明の第1態様の積層型電子部品実装済部品の製造方法は、熱可塑性樹脂材にてなり回路パターン形成面を熱プレス板に接触させて載置された第1基材と、上記回路パターン形成面に対向する上記第1基材の裏面に載置され加熱された電子部品とを相対的に押圧して、上記電子部品の電極と上記回路パターン形成面との間に上記第1基材の残余部分を存在させて上記第1基材内へ上記電子部品を埋設し、さらに上記回路パターン形成面側より露出用部材にて上記残余部分を押し退け上記電極を上記回路パターン形成面に露出させ、さらに、上記電子部品の露出した電極と電気的に接続する回路パターンを、上記第1基材の回路パターン形成面に形成して上記電極と上記回路パターンとの電気的接続を図った第1実装済部品を作製し、
上記第1実装済部品と同様に作製された一又は複数の第2実装済部品、及び上記第1実装済部品について、上記第1実装済部品及び上記第2実装済部品の一方における上記回路パターンと、他方における上記第1基材とを電気的に接続させて互いの厚み方向に沿って重ね合わせる、
ことを特徴とする。
【0008】
又、本発明の第2態様の電子部品実装済完成品の製造方法は、上記第1態様の積層型電子部品実装済部品の製造方法を用いて積層型電子部品実装済部品を製造した後、上記積層型電子部品実装済部品の厚み方向から第2基材及び第3基材にて上記積層型電子部品実装済部品のラミネート処理を行なうことを特徴とする。
【0009】
又、上記第2態様において、上記ラミネート処理前に、上記第2基材及び上記第3基材の少なくとも一方に、上記積層型電子部品実装済部品内の上記回路パターンと電気的に接続される外部通信用電極を設け、上記ラミネート処理の際には上記外部通信用電極と上記回路パターンとを電気的に接続して上記ラミネート処理を行なうこともできる。
【0010】
さらに、上記第2態様において、上記ラミネート処理後、上記外部通信用電極を露出させることもできる。
【0011】
さらに又、本発明の第3態様の電子部品実装済完成品は、上記第2態様における電子部品実装済完成品の製造方法にて製造されたことを特徴とする。
【0012】
【発明の実施の形態】
本発明の実施形態である、積層型電子部品実装済部品の製造方法、電子部品実装済完成品の製造方法、及び電子部品実装済完成品について、図を参照しながら以下に説明する。ここで、上記電子部品実装済完成品の製造方法は、上記積層型電子部品実装済部品の製造方法にて製造された積層型電子部品実装済部品を有する電子部品実装済完成品を製造する方法であり、上記電子部品実装済完成品は、上記電子部品実装済完成品の製造方法にて製造されたものである。尚、各図において同じ構成部分については同じ符号を付している。
又、上記積層型電子部品実装済部品として、本実施形態では多層構造電子部品内蔵コアモジュール部品を例に採るが、勿論これに限定されるものではない。又、第1〜第3の実装済部品の機能を果たす一例として、本実施形態では電子部品内蔵コアモジュールを例に採る。さらに又、上記電子部品実装済完成品の機能を果たす一例として、本実施形態では上記多層構造電子部品内蔵コアモジュール部品を有するMCM(マルチチップモジュール)を例に採るが、勿論これに限定されるものではない。
【0013】
第1実施形態
図1は、本実施形態の上記多層構造電子部品内蔵コアモジュール部品の製造方法を用いて作製された多層構造電子部品内蔵コアモジュール部品300を示している。
該多層構造電子部品内蔵コアモジュール部品300は、3つの上記電子部品内蔵コアモジュール200〜202を、互いの厚み方向に沿って重ね合わせて3層に積層して形成されている。その内の、上記第1実装済部品に相当する電子部品内蔵コアモジュール200を例に採り構造を説明する。尚、電子部品内蔵コアモジュール200〜202の製造方法を含めて多層構造電子部品内蔵コアモジュール部品300の製造方法については以下に詳しくする。
【0014】
電子部品の一例としての半導体素子101及びコンデンサ部品105は、導電性貫通穴としての機能を果たす一例であるスルーホール111を有するシート状の第1熱可塑性樹脂基材50に予め埋め込まれている。尚、第1基材の機能を果たす一例が上記第1熱可塑性樹脂基材50に相当する。該第1熱可塑性樹脂基材50の回路パターン形成面123に露出した、半導体素子101のバンプ113及びコンデンサ部品105の電極106と接触するように、上記回路パターン形成面123に回路パターン104が形成される。多層構造電子部品内蔵コアモジュール部品300は、上述のように構成される電子部品内蔵コアモジュール200と同様の構成を有する電子部品内蔵コアモジュール201、202をそれぞれ重ね合わせることで作製される。各電子部品内蔵コアモジュール200〜202は、スルーホール111により電気的に導通している。
【0015】
図2は、本実施形態の電子部品実装済完成品の製造方法を用いて作製され、上記多層構造電子部品内蔵コアモジュール部品300を備えた上記MCM301を示している。以下にその構造を簡単に説明する。51、52は、第2基材及び第3基材の機能を果たす一例であり、半導体素子101、コンデンサ部品105及び回路パターン104を有する多層構造電子部品内蔵コアモジュール部品300を保護するためにラミネート処理を行なう第2熱可塑性樹脂基材及び第3熱可塑性樹脂基材である。
【0016】
以下に、電子部品内蔵コアモジュール200〜202の製造方法、及び多層構造電子部品内蔵コアモジュール部品300の製造方法を含み、MCM301の製造方法について図3〜図12を参照して説明する。
図3は、半導体部品に相当する半導体素子101を示しており、102は半導体素子101の電極、112は半導体素子101のアクティブ面を保護するパッシベーション膜を示す。
図12に示すステップ(図12では「S」にて示す)101において、半導体素子101の電極102上にAuやCu、半田等にてなる金属ワイヤを用いたワイヤボンディング法により、バンプ113を形成する。尚、バンプ113の形成方法は、上記ワイヤボンディング法に限定されるものではなく、メッキ法でも良い。又、図4は、コンデンサ部品105を示し、106はコンデンサ部品105の外部電極である。
【0017】
次のステップ102では、バンプ113を形成した半導体素子101及びコンデンサ部品105を、ポリエチレンテレフタレート、塩化ビニル、ポリカーボネイト、アクリロニトリルブタジエンスチレン等の電気的絶縁性を有する熱可塑性樹脂で形成されたシート状の第1熱可塑性樹脂基材50上に載置する。半導体素子101及びコンデンサ部品105は、それぞれ複数個搭載する場合もあり、又、コンデンサ部品105は搭載しない場合もある。第1熱可塑性樹脂基材50には、該第1熱可塑性樹脂基材50の厚み方向に沿って該第1熱可塑性樹脂基材50を貫通し、導電性材料を有するスルーホール111が設けてある。尚、スルーホール111は、図7に示すように半導体素子101及びコンデンサ部品105を第1熱可塑性樹脂基材50に埋設した後に設けても良い。又、スルーホール111の形成は、金型によるプレスやNCパンチャーを用いて行う。
【0018】
ここで、第1熱可塑性樹脂基材50の厚みは、本実施形態の場合、後述するようにバンプ113及び外部電極106を第1熱可塑性樹脂基材50の回路パターン形成面123に露出させる必要から、基本的に半導体素子101の厚み以上、半導体素子101の厚みとバンプ113の高さを合わせた厚み以下にすることが望ましい。例えば、半導体素子101の厚みが0.18mm、バンプ113の高さが0.04mmの場合、第1熱可塑性樹脂基材50の厚みは0.2mmが好ましい。又、コンデンサ部品105は、第1熱可塑性樹脂基材50の厚みに対して50μm程度厚い厚みのものを用いることが好適である。少なくとも、コンデンサ部品105の厚みが第1熱可塑性樹脂基材50の厚み以下になることは避ける必要がある。
【0019】
次のステップ103では、図5に示すようにバンプ113付の半導体素子101、及びコンデンサ部品105が載置された第1熱可塑性樹脂基材50を、図6に示すように、熱プレス板171、172間に狭み、バンプ113付半導体素子101及びコンデンサ部品105と、第1熱可塑性樹脂基材50とを加熱装置173にて加熱しながら、押圧装置174にて相対的に押圧して、半導体素子101及びコンデンサ部品105を第1熱可塑性樹脂基材50内に押し込み埋設する。該熱プレス動作の条件は、例えばポリエチレンテレフタレート製の第1熱可塑性樹脂基材50を用いた場合、圧力30×10Pa、温度160℃、プレス時間1分である。尚、上記温度、圧力の各値は、第1熱可塑性樹脂基材50の材質により異ならせる。又、半導体素子101及びコンデンサ部品105の押圧動作は、それぞれ別々の熱プレス板を用いて個別に実施しても良い。
【0020】
次のステップ104に対応する図7は、上記プレス後における半導体素子101、コンデンサ部品105及び第1熱可塑性樹脂基材50の状態を示した断面図である。第1熱可塑性樹脂基材50への半導体素子101、コンデンサ部品105の上記挿入動作により、本実施形態では図7に示すように、バンプ113の端面113a、及びコンデンサ部品105の電極106の端面106a、つまり上記プレス動作によりバンプ113及び電極106が熱プレス板171に接触した面を第1熱可塑性樹脂基材50の回路パターン形成面123に露出させ、該状態で半導体素子101及びコンデンサ部品105は、第1熱可塑性樹脂基材50に埋設される。
このとき、本実施形態では、薄型化を図るため、半導体素子101の上記アクティブ面に対向する裏面101a及びコンデンサ部品105の片面側105aと、上記回路パターン形成面123に対向する第1熱可塑性樹脂基材50の裏面122aとは、図示するように同一面となるようにしているが、これに限定されるものではない。つまり、製造する電子部品内蔵コアモジュール200によっては、上述した第1熱可塑性樹脂基材50の厚みや、熱プレス基板171、172の押圧力等の調整により、例えば、第1熱可塑性樹脂基材50の裏面122aより半導体素子101の裏面101a及びコンデンサ部品105の端面105aを突出させても良い。
【0021】
次のステップ105では、図8に示すように、Ag、Cu等の導電性ペーストを用いて、バンプ113の端面113a、及びコンデンサ部品105の電極106の端面106aに接触するように、半導体素子101及びコンデンサ部品105と電気的に接続される回路パターン104を、第1熱可塑性樹脂基材50の回路パターン形成面123上に形成する。上記導電性ペーストによる回路パターン104の形成は、一般的にスクリーン印刷やオフセット印刷やグラビア印刷等によって行われる。例えばスクリーン印刷の場合、165メッシュ/インチ、乳剤厚み10μmのマスクを介して導電性ペーストを印刷し、導体厚み約30μmの回路パターン104を形成する。又、回路パターン104の形成とともに、スルーホール111内にも導電性ペーストが充填される。
尚、回路パターン104の形成方法は、導電性ペーストの印刷による形成方法に限定されるものではなく、Cu、Ni、アルミニウム等の金属メッキにより形成しても良い。該メッキによる回路パターン104の形成の際にも、スルーホール111内には同時にメッキが施される。
このようにして、回路パターン104への半導体素子101及びコンデンサ部品105の実装が行なわれる。又、図8に示す状態の構成部分を、電子部品内蔵コアモジュール200とする。
以上の動作により、電子部品内蔵コアモジュール200が製造され、これと同様にして電子部品内蔵コアモジュール201,202が製造される。
【0022】
次のステップ106では、上述した電子部品内蔵コアモジュール200〜202について、図9に示すように、隣接する電子部品内蔵コアモジュール同士にて上記回路パターン104と上記スルーホール111とを電気的に接続させて互いの厚み方向に沿って重ね合わせる。次のステップ107にて、これら電子部品内蔵コアモジュール200〜202のラミネート処理を行なう。該ラミネート処理は、加熱装置303にて加熱された平面プレス板301、302により加熱され、押圧装置304にて加圧して実施する。処理条件は、各電子部品内蔵コアモジュール200〜202において、例えばポリエチレンテレフタレート製の熱可塑性樹脂基材50が使用されている場合、圧力30×10Pa、温度160℃、昇圧時間1分、圧力保持時間1分である。
以上の動作により、上記多層構造電子部品内蔵コアモジュール部品が作製される。
【0023】
次に、ステップ108において、図10に示すように、上記多層構造電子部品内蔵コアモジュール部品300をその厚み方向からポリエチレンテレフタレート、塩化ビニル、ポリカーボネイト、アクリロニトリルブタジエンスチレン等の電気的絶縁性を有するシート状の第2熱可塑性樹脂基材51及び第3熱可塑性樹脂基材52にてサンドイッチして、ラミネート処理し、多層構造電子部品内蔵コアモジュール部品300の封止を行なう。該ラミネート処理は、加熱された平面プレス板301、302により加熱、加圧して実施される。処理条件は、例えばポリエチレンテレフタレート製の熱可塑性樹脂基材50を用いた場合、圧力30×10Pa、温度160℃、昇圧時間1分、圧力保持時間1分である。
【0024】
又、該ラミネート処理は、図11に示すロールプレス方式により実施しても良い。図11において、310、311は、加熱装置312にて加熱され、駆動装置313にて回転されるローラーである。多層構造電子部品内蔵コアモジュール部品300をその厚み方向からサンドイッチする形でポリエチレンテレフタレート、塩化ビニル、ポリカーボネイト、アクリロニトリルプタジエンスチレン等の電気的絶縁性を有するシート状の第2熱可塑性樹脂基材321及び第3熱可塑性樹脂基材322をローラー310、311間に供給し、多層構造電子部品内蔵コアモジュール部品300をその厚み方向からラミネート処理していく。処理条件は、例えばポリエチレンテレフタレート製の熱可塑性樹脂基材50を用いた場合、圧力30×10Pa、温度140℃、ラミネート速度0.1m/分である。
【0025】
以上の工程を経て、図2に示すような、半導体素子101及びコンデンサ部品105を実装したモジュールとしての電子部品実装済完成品としての機能を果たす一例に相当するMCM301が完成する。
このように本実施形態によれば、モジュールが半導体素子101やコンデンサ部品105を、基板である熱可塑性樹脂基材50に埋設してなる電子部品内蔵コアモジュール200〜202を積み重ねてMCM301を形成する構造であることから、キャリア基板3上に部品を積み上げていく従来の構造と異なり、キャリア基板3の厚み分、MCMの厚みを薄くすることができる。よって、薄型化が要求される最近の製品ニーズを満足することが可能となる。
【0026】
さらに、半導体素子101のバンプ113やコンデンサ部品105の電極106に直接接触するように回路パターン104を形成することから、ワイヤボンディング用の電極2を半導体素子1の周囲部分に形成する必要がない。よって、半導体素子を積み上げていく際、任意のサイズの半導体素子を用いることができる。さらに、半導体素子の電極位置に制限が無いため、エリアパッドタイプの半導体素子を積み重ねることが可能となる。
【0027】
第2実施形態
上述の第1実施形態では、半導体素子101のバンプ113等が第1熱可塑性樹脂基材50のパターン形成面123に露出可能な場合を例に採ったが、例えば第1熱可塑性樹脂基材50の厚みよりかなり厚みの薄い半導体素子101やコンデンサ部品105を第1熱可塑性樹脂基材50に埋設する場合には、図13に示すように、埋設工程のみでは半導体素子101のバンプ113上やコンデンサ部品105の電極106上には未だ樹脂の残余部分501が存在し、上記パターン形成面123にバンプ113や電極106を露出できないときもある。
【0028】
当該第2実施形態は、このような場合に対応するものである。即ち、上記ステップ104の後、上記ステップ105の前に、図13に示すように、第1熱可塑性樹脂基材50の回路パターン形成面123側より、半導体素子101のバンプ113及びコンデンサ部品105の電極106上を押圧部材500で押圧し、図14に示すように、バンプ113及び電極106上の樹脂の残余部分501を押しのけ、形成された凹部115にてバンプ113及び電極106を露出させる。上記押圧部材500は、加熱装置502にて加熱され、駆動装置503にて第1熱可塑性樹脂基材50の厚み方向に沿って移動する。上記押圧部材500による押圧条件は、例えば、押圧部材500を200℃に加熱し、荷重980mNの力で押圧する。
【0029】
これにより、例えば第1熱可塑性樹脂基材50に比べてかなり厚みの薄い半導体素子101やコンデンサ部品105を第1熱可塑性樹脂基材50に埋設しただけでは、回路パターン形成面123にバンプ113や電極106を露出できない場合であっても、上記ステップ105以降の工程を実行することができる。
したがって、図15に示すように、電極102上にバンプ113を形成していない半導体素子の使用が可能となり、又、電極が突起していないフィルム状のコンデンサ部品が使用可能となる等、電子部品の形状の選択範囲を拡大することができる。
又、上記押圧部材500による押圧工程により、回路パターン形成面123における電極の露出面積をより拡大することもできる。よって、図7に示すように埋設工程により回路パターン形成面123にバンプ113等が既に露出している場合であっても押圧部材500による押圧工程を実行することができる。
【0030】
第3実施形態
第3実施形態では、図16に示すように、上記ステップ108にて使用する第3熱可塑性樹脂基材52には、当該第3熱可塑性樹脂基材52が接触する電子部品内蔵コアモジュール200に形成されている回路パターン104の内、外部との通信に関与する部分に対応して、予め外部電極端子600を埋設しておく。上記外部電極端子600は、MCMと外部との通信を行うための電極であり、例えばCu、ステンレス、アルミニウム等の金属箔や、ガラスエポキシ基板にAuメッキが施されたような、電気的導通が可能な材料で構成される。
又、第3熱可塑性樹脂基材52に対する外部電極端子600の埋設は、半導体素子101やコンデンサ部品105を第1熱可塑性樹脂基材50に埋設したときと同様、熱プレスにより実施する。
又、図17に示すように、外部電極端子600は、第3熱可塑性樹脂基材52に埋設しておくのではなく、多層構造電子部品内蔵コアモジュール部品300の回路パターン104における上記外部との通信に関与する部分に予め配置しておく構成でも良い。
【0031】
図16及び図17における構成にてラミネート処理を実施することで、図18に示すようなMCM331が形成される。尚、上記ラミネート処理は、図10に示す面プレス方式や、図11に示すロールラミネート方式のどちらでも実施することができる。
上記ラミネート処理後、第3熱可塑性樹脂基材52において上記外部電極端子600に対向する露出用部分601の樹脂を除去することで、図19に示すように外部電極端子600が外部通信用窓602にて外部に露出させる。これにて、外部と電気的導通が可能な端子として外部電極端子600は機能する。
尚、本第3実施形態では、外部電極端子600は1箇所にのみ埋設されているが、これに限定されるものではなく、複数個に埋設しても良い。
【0032】
このような構成を有し、電子部品実装済完成品の機能を果たす一例としてのMCM331は、他の電子部品搭載基板と接続が可能になる。又、例えばICカードの一種であるコンビカードにおける接触カード用コンタクト端子として外部電極端子600を用いれば、MCM331内の回路パターン104でコイルを形成することで、MCM331単体でコンビカードを形成することができる。
【0033】
第4実施形態
上述の第3実施形態では、第3熱可塑性樹脂基材52の露出用部分601の樹脂を除去して外部通信用窓602を形成したが、外部通信用窓602の形成方法はこれに限定されない。例えば、当該第4実施形態では、図20に示すように、上記外部通信用窓602を予め形成し、該外部通信用窓602に対向して上記外部電極端子600を埋設した第3熱可塑性樹脂基材53を用い、上記回路パターン104の内、外部との通信に関与する部分に外部電極端子600を対応させて第3熱可塑性樹脂基材53を配置する。外部電極端子600の埋設動作は、本実施形態では、半導体素子101やコンデンサ部品105を第1熱可塑性樹脂基材50に埋設する場合と同様に、第3熱可塑性樹脂基材53に対し、熱プレスにより実施する。
【0034】
さらに又、外部通信用窓602に対向して上記外部電極端子600を予め埋設した第3熱可塑性樹脂基材53を用いるのではなく、図21に示すように、外部電極端子600は、多層構造電子部品内蔵コアモジュール部品300の回路パターン104における上記外部との通信に関与する部分に予め配置しておく構成でも良い。そして、外部通信用窓602を設けた第3熱可塑性樹脂基材54を、外部電極端子600と上記外部通信用窓602とが対向するように配置して、上記ラミネート処理を行うようにすることもできる。
このような第4実施形態のMCMでも、上述の第3実施形態のMCM331の場合と同様の効果を得ることができる。
【0035】
【発明の効果】
以上詳述したように、本発明の第1態様の積層型電子部品実装済部品の製造方法によれば、第1基材内へ電子部品を埋設して構成される第1〜第3実装済部品を重ね合わせることから、キャリア基板上に電子部品を積層してなる従来の積層型電子部品実装済部品に比べて上記キャリア基板の厚さ分、積層型電子部品実装済部品の厚みを薄くすることができる。よって、薄型化が要求される最近の製品ニーズを満足することが可能となる。
又、上記電子部品と上記第1基材上の回路パターンとはワイヤボンディングではなく直接に電気的接続を図ることから、使用される電子部品が従来のように周囲部分に電極を配置した電子部品に限定されることはなく、さらに電子部品の大きさが制限されることもない。
【0036】
又、上記電子部品の第1基材への埋設後、該電子部品の電極を露出させた後、回路パターンの形成を行なうことで、例えば第1基材の厚みよりかなり厚みの薄い電子部品を第1基材に埋設した場合であっても、埋設した電子部品と上記回路パターンとを電気的に接続することができる。よって、種々の形態の電子部品が使用可能となり電子部品の選択範囲を拡大することができる。
【0037】
又、本発明の第2態様の電子部品実装済完成品の製造方法、及び第3態様の電子部品実装済完成品によれば、上述した第1態様の積層型電子部品実装済部品を用いることから、上述のように、電子部品実装済完成品の薄型化、及び使用可能な電子部品の選択範囲の拡大を図ることができる。
【図面の簡単な説明】
【図1】 本発明の実施形態における多層構造電子部品内蔵コアモジュール部品の断面図である。
【図2】 本発明の実施形態における電子部品実装済完成品の断面図である。
【図3】 図1、図2に示す多層構造電子部品内蔵コアモジュール部品に備わる半導体素子を示す図である。
【図4】 図1、図2に示す多層構造電子部品内蔵コアモジュール部品に備わる電子部品の図である。
【図5】 図1、図2に示す多層構造電子部品内蔵コアモジュール部品、電子部品実装済完成品の製造過程を説明するための図であり、図12に示すステップ102における状態を示す図である。
【図6】 図1、図2に示す多層構造電子部品内蔵コアモジュール部品、電子部品実装済完成品の製造過程を説明するための図であり、図12に示すステップ103における状態を示す図である。
【図7】 図1、図2に示す多層構造電子部品内蔵コアモジュール部品、電子部品実装済完成品の製造過程を説明するための図であり、図12に示すステップ104における状態を示す図である。
【図8】 図1、図2に示す多層構造電子部品内蔵コアモジュール部品、電子部品実装済完成品の製造過程を説明するための図であり、図12に示すステップ105における状態を示す図である。
【図9】 図1、図2に示す多層構造電子部品内蔵コアモジュール部品、電子部品実装済完成品の製造過程を説明するための図であり、図12に示すステップ106における状態を示す図である。
【図10】 図1、図2に示す多層構造電子部品内蔵コアモジュール部品、電子部品実装済完成品の製造過程を説明するための図であり、図12に示すステップ107における状態を示す図である。
【図11】 図1、図2に示す多層構造電子部品内蔵コアモジュール部品、電子部品実装済完成品の製造過程を説明するための図であり、図12に示すステップ107における他の実施形態を示す図である。
【図12】 図1、図2に示す多層構造電子部品内蔵コアモジュール部品、電子部品実装済完成品の製造過程を示すフローチャートである。
【図13】 図1、図2に示す多層構造電子部品内蔵コアモジュール部品、電子部品実装済完成品の第2実施形態を示す図であって、図12に示すステップ104後、ステップ105前に実行される押圧動作を示す図である。
【図14】 図13に示す押圧動作後の状態を示す図である。
【図15】 図13に示す押圧動作を実行して形成される多層構造電子部品内蔵コアモジュール部品の変形例における断面図である。
【図16】 図1、図2に示す多層構造電子部品内蔵コアモジュール部品、電子部品実装済完成品の第3実施形態を示す図である。
【図17】 図16に示す第3実施形態の多層構造電子部品内蔵コアモジュール部品、電子部品実装済完成品の変形例を示す図である。
【図18】 図16に示す第3実施形態の電子部品実装済完成品を示す図である。
【図19】 図16に示す第3実施形態の電子部品実装済完成品を示す図である。
【図20】 図1、図2に示す多層構造電子部品内蔵コアモジュール部品、電子部品実装済完成品の第4実施形態を示す図である。
【図21】 図20に示す電子部品実装済完成品の変形例を示す図である。
【図22】 従来のMCMの構造を示す断面図である。
【図23】 従来のMCMの製造工程を示すフローチャートである。
【符号の説明】
50…第1熱可塑性樹脂基材、51…第2熱可塑性樹脂基材、
52…第3熱可塑性樹脂基材、
101…半導体素子、102…電極、104…回路パターン、
105…コンデンサ部品、106…電極、111…スルーホール、
123…回路パターン形成面、
200〜202…電子部品内蔵コアモジュール、
300…多層構造電子部品内蔵コアモジュール、301…MCM、
600…外部通信用電極。
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a method for manufacturing a stacked electronic component mounted component in which an electronic component such as an IC chip is mounted on a substrate and stacked, and an electronic component having the stacked electronic component mounted component manufactured by the manufacturing method The present invention relates to a method for manufacturing a mounted finished product, and an electronic component mounted finished product manufactured by the electronic component mounted finished product manufacturing method. The electronic component mounted component constituting the stacked electronic component mounted component is, for example, an MCM (multichip module) in which passive components such as a plurality of semiconductor elements, capacitors, resistors, etc. are mounted on one carrier substrate, This corresponds to a stack IC module in which memory chips are stacked in multiple stages, a memory card, or the like.
[0002]
[Prior art]
A conventional method for manufacturing a finished product mounted with electronic components will be described below with reference to FIGS. Conventionally, in an MCM (multi-chip module), stack IC module, and memory module on which electronic components such as a plurality of semiconductor elements and passive components are mounted, the semiconductor elements are connected to a carrier substrate by a wire bonding method to be multilayered. There is a way to go. The electronic component is mounted by a method of printing cream solder on a predetermined circuit pattern on the carrier substrate and reflowing it.
[0003]
As shown in FIG. 22, a plurality of semiconductor elements 1 in the conventional MCM module 10, in the case of this example, three semiconductor elements 1 are stacked on a carrier substrate 3, and a predetermined circuit formed on the carrier substrate 3. It is connected to the pattern 4 via Au, Cu, and aluminum wires 8 formed by a wire bonding method. Reference numeral 12 denotes a sealant for protecting the semiconductor element 1 including the wire 8.
In the electronic component 5, a predetermined electrode 4 on the carrier substrate 3 and an electrode 6 of the electronic component 5 are connected via cream solder 7. Reference numeral 9 denotes an external electrode terminal for electrically connecting a mother board (not shown) and the MCM module 10. The external electrode terminal 9 is not necessary in the case of a module that functions as a product with the MCM module 10 alone. Reference numeral 11 denotes a through hole for electrical connection between the circuit pattern on the mounting surface side of the carrier substrate 3 and the external electrode terminal 9.
[0004]
In the manufacturing process, as shown in FIG. 23, first, in step (indicated by “S” in the figure) 1, cream solder is printed on a predetermined electrode 4 on the carrier substrate 3 and applied. The printing of the cream solder 7 is generally performed by a screen printing method. In the next step 2, the electronic component 5 is positioned and mounted on the cream solder 7 formed by the above printing. In the next step 3, the carrier substrate 3 on which the electronic component 5 is mounted is passed through a reflow furnace, the cream solder 7 is melted, and then cured.
In the next step 4, the semiconductor elements 1 are stacked along the thickness direction of the carrier substrate 3. Although not shown in the figure, the semiconductor element 1 and the carrier substrate 3 and between the semiconductor elements 1 are generally joined with an Ag paste.
In the next step 5, the electrode 2 of the semiconductor element 1 and the predetermined electrode 4 of the carrier substrate 3 are joined by a wire bonding method using a metal wire 8 made of Au, Cu, solder or the like. In the next step 6, a sealing resin 12 is applied to protect the semiconductor element 1. In the next step 7, the encapsulant 12 is cured by charging into a batch furnace.
In this way, the MCM module 10 is manufactured as an electronic component mounted finished product having electronic component mounted components.
[0005]
[Problems to be solved by the invention]
However, a manufacturing method of an electronic component mounted finished product having the above-described conventional electronic component mounted component, and an MCM module and memory as an electronic component mounted finished product manufactured by the electronic component mounted finished product manufacturing method The configuration of the module has the following problems.
Since electronic parts such as the semiconductor element 1 are stacked on the carrier substrate 3, the height of the module in the thickness direction is increased, and it is not possible to answer the recent product needs that require a reduction in thickness. Further, when the semiconductor elements 1 are stacked, it is necessary to arrange the electrodes 2 on the outer periphery of the semiconductor element 1 in order to perform wire bonding. Therefore, the semiconductor elements 1 that are necessarily stacked as shown in FIG. It is necessary to use successively smaller ones, and the size of the usable semiconductor element 1 is limited. In other words, a semiconductor element called an area pad in which the electrode 2 is located outside the outer periphery of the semiconductor element 1 cannot be stacked.
The present invention has been made to solve such problems, and is capable of reducing the thickness of the electronic component mounted component having a multilayered structure having a multi-layer structure with few restrictions on usable electronic components. Method, manufacturing method of electronic component mounted finished product having laminated electronic component mounted component produced by the manufacturing method, and electronic component mounted finished product manufactured by the electronic component mounted finished product manufacturing method The purpose is to provide.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is configured as follows.
According to a first aspect of the present invention, there is provided a method of manufacturing a laminated electronic component mounted component, comprising: a first substrate made of a thermoplastic resin material and placed on a circuit pattern forming surface in contact with a hot press plate; Relatively pressing the heated electronic component placed on the back surface of the first base material facing the pattern forming surface, The remaining portion of the first base material is present between the electrode of the electronic component and the circuit pattern forming surface. The electronic component is embedded in the first base material, Furthermore, the electrode is exposed to the circuit pattern forming surface by pushing away the remaining portion with an exposing member from the circuit pattern forming surface side, and Of the above electronic components Exposed electrode A circuit pattern electrically connected to the circuit pattern forming surface of the first base material, electrode And a first mounted component that is electrically connected to the circuit pattern,
The circuit pattern in one of the first mounted component and the second mounted component with respect to one or a plurality of second mounted components manufactured in the same manner as the first mounted component and the first mounted component. And electrically connecting the first base material on the other side and overlapping each other along the thickness direction,
It is characterized by that.
[0008]
Moreover, the manufacturing method of the electronic component mounted finished product of the second aspect of the present invention is the manufacturing method of the stacked electronic component mounted component using the manufacturing method of the stacked electronic component mounted component of the first aspect, The laminated electronic component mounted component is laminated on the second base material and the third base material from the thickness direction of the stacked electronic component mounted component.
[0009]
In the second aspect, prior to the laminating process, the circuit pattern in the multilayer electronic component mounted component is electrically connected to at least one of the second base material and the third base material. An external communication electrode may be provided, and the laminating process may be performed by electrically connecting the external communication electrode and the circuit pattern during the laminating process.
[0010]
Further, in the second aspect, the external communication electrode can be exposed after the laminating process.
[0011]
Furthermore, the electronic component mounted finished product according to the third aspect of the present invention is manufactured by the electronic component mounted finished product manufacturing method according to the second aspect.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
A manufacturing method of a laminated electronic component mounted component, a manufacturing method of an electronic component mounted finished product, and an electronic component mounted finished product, which are embodiments of the present invention, will be described below with reference to the drawings. Here, the manufacturing method of the electronic component mounted finished product is a method of manufacturing an electronic component mounted finished product having the stacked electronic component mounted component manufactured by the manufacturing method of the stacked electronic component mounted component. The electronic component mounted finished product is manufactured by the electronic component mounted finished product manufacturing method. In addition, the same code | symbol is attached | subjected about the same component in each figure.
Further, as the multilayer electronic component mounted component, in this embodiment, a core module component incorporating a multilayer electronic component is taken as an example, but it is of course not limited thereto. In addition, as an example of fulfilling the functions of the first to third mounted components, an electronic component built-in core module is taken as an example in the present embodiment. Furthermore, as an example of fulfilling the function of the electronic component mounted finished product, in the present embodiment, an MCM (multichip module) having the above-described core module component with a built-in multilayer electronic component is taken as an example. It is not a thing.
[0013]
First embodiment
FIG. 1 shows a core module component 300 with a multilayered electronic component built in by using the method for manufacturing a core module component with a multilayered electronic component according to this embodiment.
The multilayer electronic component built-in core module component 300 is formed by stacking the three electronic component built-in core modules 200 to 202 in three layers in the thickness direction. The structure will be described by taking the electronic component built-in core module 200 corresponding to the first mounted component among them as an example. In addition, the manufacturing method of the multilayer module electronic component built-in core module component 300 including the manufacturing method of the electronic component built-in core modules 200 to 202 will be described in detail below.
[0014]
The semiconductor element 101 and the capacitor component 105 as an example of an electronic component are embedded in advance in a sheet-like first thermoplastic resin base material 50 having a through hole 111 that is an example of functioning as a conductive through hole. An example that fulfills the function of the first substrate corresponds to the first thermoplastic resin substrate 50. The circuit pattern 104 is formed on the circuit pattern forming surface 123 so as to be in contact with the bump 113 of the semiconductor element 101 and the electrode 106 of the capacitor component 105 exposed on the circuit pattern forming surface 123 of the first thermoplastic resin substrate 50. Is done. The multilayer electronic component built-in core module component 300 is produced by superposing electronic component built-in core modules 201 and 202 having the same configuration as the electronic component built-in core module 200 configured as described above. Each of the electronic component built-in core modules 200 to 202 is electrically connected through the through hole 111.
[0015]
FIG. 2 shows the MCM 301 that is manufactured by using the manufacturing method of a finished product mounted with an electronic component according to the present embodiment and includes the core module component 300 with a built-in multilayer structure electronic component. The structure will be briefly described below. Reference numerals 51 and 52 are examples that perform the functions of the second base material and the third base material, and are laminated to protect the core module component 300 with a multilayer structure electronic component having the semiconductor element 101, the capacitor component 105, and the circuit pattern 104. It is the 2nd thermoplastic resin base material and 3rd thermoplastic resin base material which process.
[0016]
Below, the manufacturing method of MCM301 is demonstrated with reference to FIGS. 3-12 including the manufacturing method of the core modules 200-202 with a built-in electronic component, and the manufacturing method of the core module component 300 with a multilayer structure electronic component.
FIG. 3 shows a semiconductor element 101 corresponding to a semiconductor component, where 102 is an electrode of the semiconductor element 101, and 112 is a passivation film that protects the active surface of the semiconductor element 101.
In step (shown by “S” in FIG. 12) 101 shown in FIG. 12, bump 113 is formed on electrode 102 of semiconductor element 101 by wire bonding using a metal wire made of Au, Cu, solder or the like. To do. Note that the method of forming the bump 113 is not limited to the above-described wire bonding method, and may be a plating method. FIG. 4 shows a capacitor component 105, and 106 is an external electrode of the capacitor component 105.
[0017]
In the next step 102, the semiconductor element 101 and the capacitor component 105 on which the bump 113 is formed are formed into a sheet-shaped first resin formed of an electrically insulating thermoplastic resin such as polyethylene terephthalate, vinyl chloride, polycarbonate, acrylonitrile butadiene styrene or the like. 1 It mounts on the thermoplastic resin base material 50. A plurality of semiconductor elements 101 and a plurality of capacitor parts 105 may be mounted, respectively, or the capacitor parts 105 may not be mounted. The first thermoplastic resin base material 50 is provided with a through hole 111 having a conductive material that penetrates the first thermoplastic resin base material 50 along the thickness direction of the first thermoplastic resin base material 50. is there. The through hole 111 may be provided after the semiconductor element 101 and the capacitor component 105 are embedded in the first thermoplastic resin base material 50 as shown in FIG. The through hole 111 is formed using a press with a die or an NC puncher.
[0018]
Here, in the case of the present embodiment, the thickness of the first thermoplastic resin substrate 50 is required to expose the bumps 113 and the external electrodes 106 on the circuit pattern forming surface 123 of the first thermoplastic resin substrate 50 as will be described later. Therefore, it is basically desirable that the thickness is not less than the thickness of the semiconductor element 101 and not more than the total thickness of the semiconductor element 101 and the bump 113. For example, when the thickness of the semiconductor element 101 is 0.18 mm and the height of the bump 113 is 0.04 mm, the thickness of the first thermoplastic resin substrate 50 is preferably 0.2 mm. Moreover, it is preferable to use a capacitor component 105 having a thickness about 50 μm thick with respect to the thickness of the first thermoplastic resin substrate 50. At least, it is necessary to avoid that the thickness of the capacitor component 105 is equal to or less than the thickness of the first thermoplastic resin substrate 50.
[0019]
In the next step 103, as shown in FIG. 5, the first thermoplastic resin base material 50 on which the semiconductor element 101 with the bump 113 and the capacitor component 105 are placed, as shown in FIG. , 172, while relatively heating the semiconductor element 101 with the bump 113 and the capacitor component 105 and the first thermoplastic resin substrate 50 with the heating device 173, with the pressing device 174, The semiconductor element 101 and the capacitor component 105 are pushed and embedded in the first thermoplastic resin base material 50. The conditions for the hot press operation are, for example, a pressure of 30 × 10 when a first thermoplastic resin substrate 50 made of polyethylene terephthalate is used. 5 Pa, temperature 160 ° C., press time 1 minute. In addition, each value of the said temperature and pressure changes with the materials of the 1st thermoplastic resin base material 50. FIG. The pressing operation of the semiconductor element 101 and the capacitor component 105 may be performed individually using separate hot press plates.
[0020]
FIG. 7 corresponding to the next step 104 is a cross-sectional view showing the state of the semiconductor element 101, the capacitor component 105, and the first thermoplastic resin substrate 50 after the pressing. By the above-described operation of inserting the semiconductor element 101 and the capacitor component 105 into the first thermoplastic resin base material 50, the end surface 113a of the bump 113 and the end surface 106a of the electrode 106 of the capacitor component 105 in this embodiment as shown in FIG. That is, the surface where the bump 113 and the electrode 106 are in contact with the hot press plate 171 by the pressing operation is exposed to the circuit pattern forming surface 123 of the first thermoplastic resin base material 50, and in this state, the semiconductor element 101 and the capacitor component 105 are The first thermoplastic resin base material 50 is embedded.
At this time, in this embodiment, in order to reduce the thickness, the first thermoplastic resin facing the back surface 101a facing the active surface of the semiconductor element 101 and the one surface 105a of the capacitor component 105 and the circuit pattern forming surface 123 are formed. The back surface 122a of the base material 50 is made to be the same surface as shown in the figure, but is not limited to this. That is, depending on the core module 200 with built-in electronic components, for example, the first thermoplastic resin base material 50 can be adjusted by adjusting the thickness of the first thermoplastic resin base material 50 and the pressing force of the hot press substrates 171 and 172, for example. The back surface 101a of the semiconductor element 101 and the end surface 105a of the capacitor component 105 may protrude from the back surface 122a of 50.
[0021]
In the next step 105, as shown in FIG. 8, the semiconductor element 101 is brought into contact with the end surface 113a of the bump 113 and the end surface 106a of the electrode 106 of the capacitor component 105 using a conductive paste such as Ag or Cu. The circuit pattern 104 electrically connected to the capacitor component 105 is formed on the circuit pattern forming surface 123 of the first thermoplastic resin base material 50. The formation of the circuit pattern 104 by the conductive paste is generally performed by screen printing, offset printing, gravure printing, or the like. For example, in the case of screen printing, a conductive paste is printed through a mask of 165 mesh / inch and an emulsion thickness of 10 μm to form a circuit pattern 104 having a conductor thickness of about 30 μm. In addition to the formation of the circuit pattern 104, the through-hole 111 is filled with a conductive paste.
Note that the method of forming the circuit pattern 104 is not limited to the method of forming the conductive paste by printing, and the circuit pattern 104 may be formed by metal plating such as Cu, Ni, and aluminum. When the circuit pattern 104 is formed by plating, the through hole 111 is also plated at the same time.
In this manner, the semiconductor element 101 and the capacitor component 105 are mounted on the circuit pattern 104. Further, the component in the state shown in FIG. 8 is an electronic component built-in core module 200.
Through the above operation, the electronic component built-in core module 200 is manufactured, and the electronic component built-in core modules 201 and 202 are manufactured in the same manner.
[0022]
In the next step 106, as shown in FIG. 9, the circuit pattern 104 and the through hole 111 are electrically connected to each other between the electronic component built-in core modules 200 to 202 described above. And overlap each other along the thickness direction. In the next step 107, these electronic component built-in core modules 200 to 202 are laminated. The laminating process is performed by heating by the flat press plates 301 and 302 heated by the heating device 303 and applying pressure by the pressing device 304. The processing conditions are as follows. When the thermoplastic resin substrate 50 made of, for example, polyethylene terephthalate is used in each of the electronic component built-in core modules 200 to 202, the pressure is 30 × 10. 5 Pa, temperature 160 ° C., pressurization time 1 minute, pressure holding time 1 minute.
Through the above operation, the core module component with a built-in multilayer electronic component is manufactured.
[0023]
Next, in step 108, as shown in FIG. 10, the core module component 300 with built-in multilayer structure electronic component is sheet-shaped having electrical insulation properties such as polyethylene terephthalate, vinyl chloride, polycarbonate, acrylonitrile butadiene styrene from the thickness direction. The second thermoplastic resin base material 51 and the third thermoplastic resin base material 52 are sandwiched and laminated to seal the core module component 300 with a built-in multilayer structure electronic component. The laminating process is performed by heating and pressing with heated flat press plates 301 and 302. For example, when a thermoplastic resin substrate 50 made of polyethylene terephthalate is used, the processing condition is a pressure of 30 × 10. 5 Pa, temperature 160 ° C., pressurization time 1 minute, pressure holding time 1 minute.
[0024]
Further, the laminating process may be performed by a roll press method shown in FIG. In FIG. 11, reference numerals 310 and 311 denote rollers that are heated by the heating device 312 and rotated by the driving device 313. A second thermoplastic resin base material 321 in the form of a sheet having electrical insulation properties such as polyethylene terephthalate, vinyl chloride, polycarbonate, acrylonitrile butadiene distyrene, etc. in a form of sandwiching the core module component with built-in multilayer structure electronic component 300 from the thickness direction; The third thermoplastic resin substrate 322 is supplied between the rollers 310 and 311, and the multilayer module electronic component built-in core module component 300 is laminated from the thickness direction. For example, when a thermoplastic resin substrate 50 made of polyethylene terephthalate is used, the processing condition is a pressure of 30 × 10. 5 Pa, temperature 140 ° C., laminating speed 0.1 m / min.
[0025]
Through the above-described steps, an MCM 301 corresponding to an example serving as an electronic component mounted finished product as a module on which the semiconductor element 101 and the capacitor component 105 are mounted as shown in FIG. 2 is completed.
As described above, according to this embodiment, the MCM 301 is formed by stacking the electronic component built-in core modules 200 to 202 in which the module embeds the semiconductor element 101 and the capacitor component 105 in the thermoplastic resin base material 50 as a substrate. Because of the structure, unlike the conventional structure in which components are stacked on the carrier substrate 3, the thickness of the MCM can be reduced by the thickness of the carrier substrate 3. Therefore, it is possible to satisfy recent product needs that require thinning.
[0026]
Further, since the circuit pattern 104 is formed so as to be in direct contact with the bump 113 of the semiconductor element 101 and the electrode 106 of the capacitor component 105, it is not necessary to form the wire bonding electrode 2 in the peripheral portion of the semiconductor element 1. Therefore, when stacking semiconductor elements, semiconductor elements of any size can be used. Further, since there is no restriction on the electrode position of the semiconductor element, it is possible to stack area pad type semiconductor elements.
[0027]
Second embodiment
In the first embodiment described above, the case where the bumps 113 and the like of the semiconductor element 101 can be exposed on the pattern formation surface 123 of the first thermoplastic resin base material 50 is taken as an example, but for example, the first thermoplastic resin base material 50 is used. When the semiconductor element 101 and the capacitor component 105 having a thickness much smaller than the thickness of the first thermoplastic resin substrate 50 are embedded in the first thermoplastic resin substrate 50, as shown in FIG. There is still a resin residual portion 501 on the electrode 106 of the component 105, and the bump 113 and the electrode 106 may not be exposed on the pattern forming surface 123.
[0028]
The second embodiment corresponds to such a case. That is, after step 104 and before step 105, as shown in FIG. 13, from the circuit pattern forming surface 123 side of the first thermoplastic resin substrate 50, the bump 113 and the capacitor component 105 of the semiconductor element 101 are formed. As shown in FIG. 14, the electrode 106 is pressed by the pressing member 500, and the bump 113 and the remaining resin portion 501 on the electrode 106 are pushed away, and the bump 113 and the electrode 106 are exposed in the formed recess 115. The pressing member 500 is heated by the heating device 502 and moves along the thickness direction of the first thermoplastic resin base material 50 by the driving device 503. The pressing condition by the pressing member 500 is, for example, that the pressing member 500 is heated to 200 ° C. and pressed with a force of 980 mN.
[0029]
Thus, for example, if the semiconductor element 101 and the capacitor component 105 that are considerably thinner than the first thermoplastic resin substrate 50 are embedded in the first thermoplastic resin substrate 50, the bumps 113 and the like are formed on the circuit pattern formation surface 123. Even when the electrode 106 cannot be exposed, the steps after the step 105 can be executed.
Therefore, as shown in FIG. 15, it is possible to use a semiconductor element in which no bump 113 is formed on the electrode 102, and it is also possible to use a film-like capacitor part in which no electrode protrudes. The selection range of the shape can be expanded.
Further, the exposed area of the electrode on the circuit pattern forming surface 123 can be further increased by the pressing step by the pressing member 500. Therefore, as shown in FIG. 7, even if the bump 113 and the like are already exposed on the circuit pattern forming surface 123 by the embedding process, the pressing process by the pressing member 500 can be executed.
[0030]
Third embodiment
In the third embodiment, as shown in FIG. 16, the third thermoplastic resin base material 52 used in step 108 is connected to the electronic component built-in core module 200 in contact with the third thermoplastic resin base material 52. The external electrode terminal 600 is embedded in advance corresponding to the part involved in communication with the outside in the formed circuit pattern 104. The external electrode terminal 600 is an electrode for performing communication between the MCM and the outside, and has electrical continuity such as Au plating on a metal foil such as Cu, stainless steel, and aluminum, or a glass epoxy substrate. Composed of possible materials.
The external electrode terminal 600 is embedded in the third thermoplastic resin base material 52 by hot pressing as in the case where the semiconductor element 101 and the capacitor component 105 are embedded in the first thermoplastic resin base material 50.
In addition, as shown in FIG. 17, the external electrode terminal 600 is not embedded in the third thermoplastic resin base material 52, but is connected to the outside in the circuit pattern 104 of the core module component 300 incorporating the multilayer electronic component. It may be configured to be arranged in advance in a part related to communication.
[0031]
By performing the laminating process with the configuration shown in FIGS. 16 and 17, an MCM 331 as shown in FIG. 18 is formed. The laminating process can be performed by either the surface pressing method shown in FIG. 10 or the roll laminating method shown in FIG.
After the laminating process, the resin of the exposed portion 601 facing the external electrode terminal 600 in the third thermoplastic resin substrate 52 is removed, so that the external electrode terminal 600 becomes the external communication window 602 as shown in FIG. To expose to the outside. Thus, the external electrode terminal 600 functions as a terminal capable of electrical continuity with the outside.
In the third embodiment, the external electrode terminal 600 is embedded only in one place, but the present invention is not limited to this, and a plurality of external electrode terminals 600 may be embedded.
[0032]
The MCM 331 as an example having such a configuration and fulfilling the function of an electronic component mounted finished product can be connected to another electronic component mounting board. Further, for example, when the external electrode terminal 600 is used as a contact card contact terminal in a combination card which is a kind of IC card, a combination card can be formed by a single MCM331 by forming a coil with the circuit pattern 104 in the MCM331. it can.
[0033]
Fourth embodiment
In the third embodiment described above, the resin for the exposed portion 601 of the third thermoplastic resin substrate 52 is removed to form the external communication window 602. However, the method for forming the external communication window 602 is not limited to this. . For example, in the fourth embodiment, as shown in FIG. 20, the third thermoplastic resin in which the external communication window 602 is formed in advance and the external electrode terminal 600 is embedded facing the external communication window 602. Using the base material 53, the third thermoplastic resin base material 53 is disposed so that the external electrode terminal 600 is made to correspond to the portion of the circuit pattern 104 that is involved in communication with the outside. In the present embodiment, the external electrode terminal 600 is embedded in the third thermoplastic resin base material 53 in the same manner as in the case where the semiconductor element 101 and the capacitor component 105 are embedded in the first thermoplastic resin base material 50. Implement by press.
[0034]
Furthermore, instead of using the third thermoplastic resin substrate 53 in which the external electrode terminal 600 is embedded in advance facing the external communication window 602, the external electrode terminal 600 has a multilayer structure as shown in FIG. The circuit pattern 104 of the electronic component built-in core module component 300 may be arranged in advance in a portion related to communication with the outside. Then, the third thermoplastic resin substrate 54 provided with the external communication window 602 is disposed so that the external electrode terminal 600 and the external communication window 602 face each other, and the laminating process is performed. You can also.
The MCM according to the fourth embodiment can obtain the same effects as those of the MCM 331 according to the third embodiment described above.
[0035]
【The invention's effect】
As described above in detail, according to the manufacturing method of the stacked electronic component mounted component of the first aspect of the present invention, the first to third mounted components configured by embedding the electronic component in the first base material. Since the components are overlapped, the thickness of the mounted electronic component mounted component is reduced by the thickness of the carrier substrate compared to the conventional stacked electronic component mounted component formed by stacking electronic components on the carrier substrate. be able to. Therefore, it is possible to satisfy recent product needs that require thinning.
In addition, since the electronic component and the circuit pattern on the first base material are not directly wire-bonded but directly connected to each other, the electronic component used is an electronic component in which electrodes are arranged in the peripheral portion as in the past. The size of the electronic component is not limited.
[0036]
Further, after embedding the electronic component in the first base material, exposing the electrodes of the electronic component and then forming a circuit pattern, for example, an electronic component that is considerably thinner than the thickness of the first base material. Even when embedded in the first substrate, the embedded electronic component and the circuit pattern can be electrically connected. Therefore, various types of electronic components can be used, and the selection range of electronic components can be expanded.
[0037]
Moreover, according to the manufacturing method of the electronic component mounted finished product of the second aspect of the present invention and the electronic component mounted finished product of the third aspect, the multilayer electronic component mounted component of the first aspect described above is used. Therefore, as described above, it is possible to reduce the thickness of the completed electronic component mounted product and to expand the selection range of usable electronic components.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a core module component with a built-in multilayer electronic component according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of an electronic component mounted finished product in the embodiment of the present invention.
FIG. 3 is a diagram showing a semiconductor element provided in the core module component with a built-in multilayer structure electronic component shown in FIGS. 1 and 2;
4 is a diagram of an electronic component provided in the core module component with a built-in multilayer structure electronic component shown in FIGS. 1 and 2. FIG.
FIG. 5 is a diagram for explaining a manufacturing process of the core module component with built-in multilayer structure shown in FIG. 1 and FIG. 2 and an electronic component mounted finished product, and shows a state in step 102 shown in FIG. 12; is there.
6 is a diagram for explaining a manufacturing process of the core module component with built-in multilayer structure shown in FIG. 1 and FIG. 2 and an electronic component mounted finished product, and shows a state in step 103 shown in FIG. 12; is there.
7 is a diagram for explaining a manufacturing process of the core module component with built-in multilayer structure shown in FIG. 1 and FIG. 2 and an electronic component mounted finished product, and shows a state in step 104 shown in FIG. 12; is there.
8 is a diagram for explaining a manufacturing process of the core module component with built-in multilayer structure shown in FIGS. 1 and 2 and an electronic component mounted finished product, and shows a state in step 105 shown in FIG. 12; is there.
9 is a diagram for explaining a manufacturing process of the core module component with built-in multilayer structure shown in FIG. 1 and FIG. 2 and an electronic component mounted finished product, and shows a state in step 106 shown in FIG. 12; is there.
10 is a diagram for explaining a manufacturing process of the core module component with built-in multilayer structure shown in FIGS. 1 and 2 and an electronic component mounted finished product, and shows a state in step 107 shown in FIG. 12; is there.
11 is a diagram for explaining a manufacturing process of the core module component with built-in multilayer structure shown in FIGS. 1 and 2 and an electronic component mounted finished product, and shows another embodiment in step 107 shown in FIG. 12; FIG.
12 is a flowchart showing a manufacturing process of the core module component with a built-in multilayer electronic component shown in FIGS. 1 and 2 and a finished product mounted with an electronic component. FIG.
13 is a view showing a second embodiment of the core module component with built-in multilayer structure electronic component and the electronic component mounted finished product shown in FIGS. 1 and 2, after step 104 shown in FIG. 12 and before step 105; It is a figure which shows the press operation performed.
14 is a diagram showing a state after the pressing operation shown in FIG.
15 is a cross-sectional view of a modification of the core module component with a built-in multilayer structure electronic component formed by executing the pressing operation shown in FIG.
FIG. 16 is a diagram showing a third embodiment of the core module component with a built-in multilayer structure electronic component and the electronic component mounted finished product shown in FIGS. 1 and 2;
FIG. 17 is a diagram showing a modification of the core module component with a built-in multilayer structure electronic component and the electronic component mounted finished product of the third embodiment shown in FIG. 16;
FIG. 18 is a view showing a finished product mounted with electronic components of the third embodiment shown in FIG. 16;
FIG. 19 is a view showing a finished product mounted with electronic components of the third embodiment shown in FIG. 16;
FIG. 20 is a diagram showing a fourth embodiment of the core module component with built-in multilayer structure electronic component and the electronic component mounted finished product shown in FIGS. 1 and 2;
21 is a view showing a modification of the electronic component mounted finished product shown in FIG.
FIG. 22 is a cross-sectional view showing the structure of a conventional MCM.
FIG. 23 is a flowchart showing a manufacturing process of a conventional MCM.
[Explanation of symbols]
50 ... 1st thermoplastic resin base material, 51 ... 2nd thermoplastic resin base material,
52 ... Third thermoplastic resin substrate,
101 ... Semiconductor element, 102 ... Electrode, 104 ... Circuit pattern,
105 ... Capacitor component, 106 ... Electrode, 111 ... Through hole,
123 ... Circuit pattern forming surface,
200-202 ... Core module with built-in electronic components,
300: Core module with built-in multilayer structure electronic component, 301: MCM,
600: Electrode for external communication.

Claims (5)

熱可塑性樹脂材にてなり回路パターン形成面を熱プレス板に接触させて載置された第1基材と、上記回路パターン形成面に対向する上記第1基材の裏面に載置され加熱された電子部品とを相対的に押圧して、上記電子部品の電極と上記回路パターン形成面との間に上記第1基材の残余部分を存在させて上記第1基材内へ上記電子部品を埋設し、さらに上記回路パターン形成面側より露出用部材にて上記残余部分を押し退け上記電極を上記回路パターン形成面に露出させ、さらに、上記電子部品の露出した電極と電気的に接続する回路パターンを、上記第1基材の回路パターン形成面に形成して上記電極と上記回路パターンとの電気的接続を図った第1実装済部品を作製し、
上記第1実装済部品と同様に作製された一又は複数の第2実装済部品、及び上記第1実装済部品について、上記第1実装済部品及び上記第2実装済部品の一方における上記回路パターンと、他方における上記第1基材とを電気的に接続させて互いの厚み方向に沿って重ね合わせる、
ことを特徴とする積層型電子部品実装済部品の製造方法。
A first substrate made of a thermoplastic resin material and placed on the circuit pattern forming surface in contact with the hot press plate, and placed on the back surface of the first substrate facing the circuit pattern forming surface and heated. The electronic component is relatively pressed against each other so that the remaining portion of the first base material exists between the electrode of the electronic component and the circuit pattern forming surface, and the electronic component is inserted into the first base material. A circuit pattern that is embedded and further pushes away the remaining portion with an exposing member from the circuit pattern forming surface side to expose the electrode to the circuit pattern forming surface, and further electrically connects to the exposed electrode of the electronic component Is formed on the circuit pattern forming surface of the first base material to produce a first mounted component that achieves electrical connection between the electrode and the circuit pattern,
The circuit pattern in one of the first mounted component and the second mounted component with respect to one or a plurality of second mounted components manufactured in the same manner as the first mounted component and the first mounted component. And electrically connecting the first base material on the other side and overlapping each other along the thickness direction,
A method for producing a component mounted with a multilayer electronic component.
請求項1記載の積層型電子部品実装済部品の製造方法を用いて積層型電子部品実装済部品を製造した後、After manufacturing the multilayer electronic component mounted component using the manufacturing method of the multilayer electronic component mounted component according to claim 1,
上記積層型電子部品実装済部品の厚み方向から第2基材及び第3基材にて上記積層型電子部品実装済部品のラミネート処理を行なうことを特徴とする電子部品実装済完成品の製造方法。  A laminated electronic component mounted component is laminated on the second base material and the third base material in the thickness direction of the multilayer electronic component mounted component, and a method for producing a finished electronic component mounted product is provided. .
上記ラミネート処理前に、上記第2基材及び上記第3基材の少なくとも一方に、上記積層型電子部品実装済部品内の上記回路パターンと電気的に接続される外部通信用電極を設け、上記ラミネート処理の際には上記外部通信用電極と上記回路パターンとを電気的に接続して上記ラミネート処理を行なう、請求項2記載の電子部品実装済完成品の製造方法。 Before the laminating process, at least one of the second base material and the third base material is provided with an external communication electrode that is electrically connected to the circuit pattern in the stacked electronic component mounted component, The method for manufacturing a finished product with electronic components mounted thereon according to claim 2, wherein the laminating process is performed by electrically connecting the external communication electrode and the circuit pattern . 上記ラミネート処理後、上記外部通信用電極を露出させる、請求項3記載の電子部品実装済完成品の製造方法。 The method for manufacturing a finished product mounted with an electronic component according to claim 3, wherein the external communication electrode is exposed after the laminating process . 請求項2から4のいずれかに記載の電子部品実装済完成品の製造方法にて製造されたことを特徴とする電子部品実装済完成品。An electronic component mounted finished product manufactured by the method for manufacturing an electronic component mounted finished product according to any one of claims 2 to 4.
JP2001080441A 2001-03-21 2001-03-21 Manufacturing method of multilayer electronic component mounted component, manufacturing method of electronic component mounted finished product, and electronic component mounted finished product Expired - Fee Related JP3916407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001080441A JP3916407B2 (en) 2001-03-21 2001-03-21 Manufacturing method of multilayer electronic component mounted component, manufacturing method of electronic component mounted finished product, and electronic component mounted finished product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001080441A JP3916407B2 (en) 2001-03-21 2001-03-21 Manufacturing method of multilayer electronic component mounted component, manufacturing method of electronic component mounted finished product, and electronic component mounted finished product

Publications (3)

Publication Number Publication Date
JP2002280744A JP2002280744A (en) 2002-09-27
JP2002280744A5 JP2002280744A5 (en) 2005-05-19
JP3916407B2 true JP3916407B2 (en) 2007-05-16

Family

ID=18936726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001080441A Expired - Fee Related JP3916407B2 (en) 2001-03-21 2001-03-21 Manufacturing method of multilayer electronic component mounted component, manufacturing method of electronic component mounted finished product, and electronic component mounted finished product

Country Status (1)

Country Link
JP (1) JP3916407B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332749A (en) 2002-01-11 2003-11-21 Denso Corp Passive device built-in substrate, its fabrication method, and material for building passive device built-in substrate
JP4016810B2 (en) * 2002-11-15 2007-12-05 株式会社デンソー Substrate with speaker and method for manufacturing the same
JP4489411B2 (en) * 2003-01-23 2010-06-23 新光電気工業株式会社 Manufacturing method of electronic component mounting structure
JP4660259B2 (en) * 2004-06-10 2011-03-30 三洋電機株式会社 Manufacturing method of semiconductor device
JP2006332094A (en) 2005-05-23 2006-12-07 Seiko Epson Corp Process for producing electronic substrate, process for manufacturing semiconductor device and process for manufacturing electronic apparatus
JP5147678B2 (en) 2008-12-24 2013-02-20 新光電気工業株式会社 Manufacturing method of fine wiring package
KR101084252B1 (en) * 2010-03-05 2011-11-17 삼성전기주식회사 Electro device embedded printed circuit board and manufacturing method thereof
JP5484532B2 (en) * 2012-08-13 2014-05-07 新光電気工業株式会社 Fine wiring package
DE102021000556A1 (en) 2021-02-03 2022-08-04 Giesecke+Devrient Mobile Security Gmbh Process for producing a chip card, card body for a chip card and chip card

Also Published As

Publication number Publication date
JP2002280744A (en) 2002-09-27

Similar Documents

Publication Publication Date Title
US6780668B1 (en) Package of semiconductor device and method of manufacture thereof
KR100537972B1 (en) Chip scale ball grid array for integrated circuit package
US7514636B2 (en) Circuit component module, electronic circuit device, and method for manufacturing the circuit component module
KR100459971B1 (en) Semiconductor device, method and device for producing the same, circuit board, and electronic equipment
US6977441B2 (en) Interconnect substrate and method of manufacture thereof, electronic component and method of manufacturing thereof, circuit board and electronic instrument
JP3838331B2 (en) Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus
JPH09321439A (en) Lamination circuit board
TW200421960A (en) Semiconductor device, and the manufacturing method of the same
JP3119630B2 (en) Multilayer circuit board for semiconductor chip module and method of manufacturing the same
JP2001024145A (en) Semiconductor device and its manufacture
JP3916407B2 (en) Manufacturing method of multilayer electronic component mounted component, manufacturing method of electronic component mounted finished product, and electronic component mounted finished product
JP2001119147A (en) Multilayer board incorporating electronic device and production method therefor
US20110100549A1 (en) Method for manufacturing component-embedded module
JP3916405B2 (en) Electronic component mounted component manufacturing method, electronic component mounted finished product manufacturing method, and semiconductor component mounted finished product
US20040106288A1 (en) Method for manufacturing circuit devices
JP2003142797A (en) Finished product with electronic component mounted and manufacturing method thereof
JPH11250214A (en) Method for mounting parts, ic card and its manufacture
JP2000151112A (en) Wiring board and its manufacture
JP3881193B2 (en) Electronic component mounted component manufacturing method, electronic component mounted component, electronic component mounted finished product manufacturing method, and electronic component mounted finished product
JP2001118986A (en) Semiconductor device and electronic apparatus
JP3661482B2 (en) Semiconductor device
JP3891743B2 (en) Manufacturing method of semiconductor component mounted component, manufacturing method of semiconductor component mounted finished product, and finished semiconductor component mounted product
JP4638657B2 (en) Electronic component built-in multilayer board
JP3549316B2 (en) Wiring board
JP3710003B2 (en) Mounting board and manufacturing method of mounting board

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees