Nothing Special   »   [go: up one dir, main page]

JP3913300B2 - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit Download PDF

Info

Publication number
JP3913300B2
JP3913300B2 JP31093496A JP31093496A JP3913300B2 JP 3913300 B2 JP3913300 B2 JP 3913300B2 JP 31093496 A JP31093496 A JP 31093496A JP 31093496 A JP31093496 A JP 31093496A JP 3913300 B2 JP3913300 B2 JP 3913300B2
Authority
JP
Japan
Prior art keywords
pattern
integrated circuit
buried layer
semiconductor integrated
alignment mark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31093496A
Other languages
Japanese (ja)
Other versions
JPH10154642A (en
Inventor
好朗 松本
利正 定方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP31093496A priority Critical patent/JP3913300B2/en
Publication of JPH10154642A publication Critical patent/JPH10154642A/en
Application granted granted Critical
Publication of JP3913300B2 publication Critical patent/JP3913300B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/5442Marks applied to semiconductor devices or parts comprising non digital, non alphanumeric information, e.g. symbols

Description

【0001】
【発明の属する技術分野】
本発明は、エピタキシャル層形成に伴うパターンシフトによる弊害を解消した半導体集積回路に関する。
【0002】
【従来の技術】
バイポーラ型の半導体集積回路では、P型の半導体基板の表面にN+型の埋め込み層を形成し、基板上にN型のエピタキシャル層を形成し、該エピタキシャル層を分離して島領域を形成し、該島領域の各々に各回路素子を形成している。
ところで、エピタキシャル成長法でエピタキシャル層を形成すると、例えば特開平04−307729号に記載されているように、基板の面方位によってはパターンシフトを生じることが知られている。
【0003】
図4(A)を参照して、基板1表面にアンチモン(Sb)を拡散して埋め込み層2を形成し、その上にエピタキシャル層3を成長させると、基板1表面の埋め込み層2の段差4とエピタキシャル層3表面での埋め込み層2の段差5とで図示Xの距離だけパターンがずれるのである。通常は埋め込み層2の形成と同時にチップの余白部分に位置合わせマークを形成し、該マークを基準にして次の拡散工程を行うのであるが、位置あわせマークも同様にパターンシフトによりずれるので、そのずれ量によっては図4(B)に示すように素子分離用の拡散領域6、7がずれて素子分離が完成せず、耐圧不良となるような事態にまで発展する可能性がある。
【0004】
上記のパターンシフトは、図5に示すように結晶軸[100]の方向に対してオフセットしたウェハ10を用いると発生する。オフセット方向11は結晶軸[100]に対して3〜5度傾いている。これはエピタキシャル層3の結晶が基板1表面に露出した結晶軸に沿って垂直に成長することに起因する。従ってオフセット方向11を零にすればパターンシフトは生じないが、エピタキシャル層3表面の段差5が明確にならない、エピタキシャル成長温度に制限が生じる等の不都合が生じる。
【0005】
【発明が解決しようとする課題】
上記のように、ウェハ10にオフセット方向11を持たせるとパターンシフト量が増大し、場合によっては分離耐圧の劣化・不良を伴うという欠点がある。エピタキシャル成長温度を高精度に制御してシフト量を制御する方法もあるが、工程管理が厳しくなり、また装置上の制約が生じるという欠点がある。パターン的に余裕を持たせるという対策もできるが、チップサイズが大きくなると言う欠点がある。また、露光装置あるいはパターン設計上であらかじめパターンシフトをキャンセルするような設計を行うことも考えられるが、完全にキャンセルすることは不可能である。
【0006】
【課題を解決するための手段】
本発明はかかる従来の課題に鑑みなされたもので、埋め込み層の形成と同時的に形成する位置あわせマークの形状を、[001]軸に対して約45゜傾斜した直線で構成することにより、パターンシフトが生じても正確な位置あわせができる半導体集積回路を提供するものである。
【0007】
本発明によれば、[001]軸に水平垂直の形状から成るパターンに対し、約45度傾かせたパターンであるとパターンシフト量が極めて小さい。従ってずれ量の少ない位置あわせ膜により位置あわせを行うことで、耐圧不良等のない集積回路を得ることができる。
【0008】
【発明の実施の形態】
以下に本発明を図面を参照しながら詳細に説明する。
図1は本発明による半導体集積回路のチップ周辺部分を示し、各工程毎の位置あわせマークを形成した領域を示す平面図である。
図5に示したように半導体ウェハー10の表面は[100]軸に対して3〜5度オフセットされており、[010]軸方向にオリエンテーションフラット(以下オリフラと称す)12が設けられている。半導体チップ13はオリフラ12に対して垂直・水平方向の直線から成る矩形の形状で描画されており、半導体チップ13内部に描画されるN+埋め込み層2もオリフラ12の方向と垂直・水平方向の直線から成る矩形の形状で描画されている。各工程の合わせマークは半導体チップ13の周辺部の余白部分に配置されている。
【0009】
図1を参照して、各合わせマーク14は各拡散工程毎に1つ追加されるようになっており、前工程でチップ13表面に形成した外側パターン15に対しその直後の拡散工程を行うホトレジスト工程で内側パターン16が外側パターン15の中心に位置するように調整することでホトマスクの位置あわせを行っている。
工程を順に追うと、先ずチップ表面にN+埋め込み層2を形成すると同時に合わせマーク14の外側パターン15aとその隣に外側パターン15bを形成し、P+分離領域6を形成を行う際に外側パターン15aに対して内側パターン16aが中心にくるようにして位置あわせを行う。P+分離領域6形成後、エピタキシャル層3を成長するとエピタキシャル層3表面に外側パターン15bがそのままの形状で出現する。次の拡散工程、例えばP+拡散領域7の形成時に、外側パターン15bに対してP+拡散領域7の内側パターン16bが中心に位置するようにMPA(ミラープロジェクションアライナ)装置にて位置あわせを行う。同時に隣に外側パターン15cを形成しておく。以下、同様にして各工程毎に合わせマーク14を形成する。
【0010】
そして本発明の特徴とするところは、N+埋め込み層2形成用の合わせマークとなる外側パターン15bを、[010]軸あるいは[001]軸に対して約45度傾けた形状にすることにある。つまり外側パター15b、内側パターン16b共に菱形の形状としてある。なお、図2は従来の位置あわせパターンを示し、埋め込み層2の位置あわせパターン15b、16bが[010]軸方向または[001]方向に平行垂直な正方形のパターンで構成してある。
【0011】
図3を参照して、外側パターン15bのパターンシフト量を測定する方法として、下側の分離領域6のパターンに対し、上側の分離領域7の形成位置を、[010]方向に意図的にー10%から+10%まで段階的にずらしたパターンを準備し、該パターンにより形成した分離領域6、7の分離耐圧を測定した。P型基板1のオフセット量は4度であり、その表面に埋め込み層2、分離領域6および位置あわせマーク14を形成した後、その上にシラン(SiHCl3)を用い成長温度1100℃で約8μ成長させた。位置あわせ方法は、図1に示したように、外側パターン15bの中心に内側パターン16bを合致させたものである。
【0012】
図3から明らかなように、埋め込み層2の位置あわせ用のパターン15b、16bを従来の正方形形状に加工した装置では、分離耐圧のピークがマイナス側にずれていることが伺える。このずれ量がパターンシフト量であり、具体的には[010]方向に約5μずれていると判断できる。
これに対し、本発明の菱形形状の位置あわせパターン14を用いて位置あわせを行うと、分離耐圧のピークがほぼ中心に位置しており、これにより、基板1表面のパターン位置とエピタキシャル層3表面でのパターン位置とのずれ量が殆どないことが判断できる。
【0013】
従って本発明によれば、位置あわせマーク14の形状を変更するだけで、基板1表面とエピタキシャル層3表面とで正確に位置あわせを行うことができ、分離耐圧不良などの事故を未然に防止することができる。また、露光工程およびパターン設計に余計な作業条件を付加することがない。さらに、エピタキシャル層3表面に出現する段差5の「だれ」が無く、形状が明確となるので、位置あわせ工程において作業が容易である。
【0014】
【発明の効果】
以上に説明したとおり、本発明によれば、位置あわせマークの形状を工夫するだけで正確な位置あわせを行うことができ、これにより、耐圧不良など不良発生を防止できる利点を有する。
また、露光工程およびパターン設計に余計な負担を掛けずに済むという利点をも有する。
【図面の簡単な説明】
【図1】本発明の半導体集積回路装置を説明するための平面図である。
【図2】従来の位置あわせパターンを示す平面図である。
【図3】本発明を説明するための断面図である。
【図4】従来例を説明するための断面図である。
【図5】従来例を説明するための斜視図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor integrated circuit in which adverse effects due to pattern shifts associated with epitaxial layer formation are eliminated.
[0002]
[Prior art]
In a bipolar type semiconductor integrated circuit, an N + type buried layer is formed on the surface of a P type semiconductor substrate, an N type epitaxial layer is formed on the substrate, and the epitaxial layer is separated to form an island region, Each circuit element is formed in each of the island regions.
By the way, it is known that when an epitaxial layer is formed by an epitaxial growth method, a pattern shift occurs depending on the plane orientation of the substrate as described in, for example, Japanese Patent Laid-Open No. 04-307729.
[0003]
Referring to FIG. 4A, when antimony (Sb) is diffused on the surface of substrate 1 to form buried layer 2 and epitaxial layer 3 is grown thereon, step 4 of buried layer 2 on the surface of substrate 1 is formed. The pattern is shifted by a distance of X in the drawing between the step 5 of the buried layer 2 on the surface of the epitaxial layer 3. Usually, an alignment mark is formed in the blank portion of the chip simultaneously with the formation of the buried layer 2, and the next diffusion process is performed with reference to the mark. Depending on the amount of deviation, as shown in FIG. 4B, the element isolation diffusion regions 6 and 7 may be displaced to complete the element isolation, leading to a situation where the breakdown voltage is poor.
[0004]
The above pattern shift occurs when a wafer 10 offset with respect to the direction of the crystal axis [100] is used as shown in FIG. The offset direction 11 is inclined 3 to 5 degrees with respect to the crystal axis [100]. This is because the crystal of the epitaxial layer 3 grows vertically along the crystal axis exposed on the surface of the substrate 1. Accordingly, if the offset direction 11 is set to zero, the pattern shift does not occur, but inconveniences such as the step 5 on the surface of the epitaxial layer 3 not becoming clear and the epitaxial growth temperature being restricted occur.
[0005]
[Problems to be solved by the invention]
As described above, when the wafer 10 has the offset direction 11, the pattern shift amount increases, and in some cases, there is a disadvantage that the breakdown voltage is deteriorated or defective. Although there is a method of controlling the shift amount by controlling the epitaxial growth temperature with high accuracy, there are drawbacks in that process management becomes strict and restrictions on the apparatus arise. Although it is possible to provide a pattern with a margin, there is a drawback that the chip size is increased. It is also conceivable to perform a design that cancels the pattern shift in advance on the exposure apparatus or pattern design, but it is impossible to cancel it completely.
[0006]
[Means for Solving the Problems]
The present invention has been made in view of such a conventional problem. By forming the alignment mark formed simultaneously with the formation of the buried layer by a straight line inclined by about 45 ° with respect to the [001] axis, A semiconductor integrated circuit capable of accurate alignment even when a pattern shift occurs is provided.
[0007]
According to the present invention, the pattern shift amount is extremely small when the pattern is inclined by about 45 degrees with respect to the pattern having a horizontal and vertical shape on the [001] axis. Therefore, by performing alignment using an alignment film with a small amount of deviation, an integrated circuit free from defective breakdown voltage can be obtained.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a plan view showing a peripheral portion of a chip of a semiconductor integrated circuit according to the present invention and showing a region where an alignment mark is formed for each process.
As shown in FIG. 5, the surface of the semiconductor wafer 10 is offset by 3 to 5 degrees with respect to the [100] axis, and an orientation flat (hereinafter referred to as orientation flat) 12 is provided in the [010] axis direction. The semiconductor chip 13 is drawn with a rectangular shape composed of straight lines in the vertical and horizontal directions with respect to the orientation flat 12, and the N + buried layer 2 drawn in the semiconductor chip 13 is also a straight line in the vertical and horizontal directions with respect to the orientation flat 12. It is drawn in a rectangular shape consisting of The alignment marks for each process are arranged in the margin of the periphery of the semiconductor chip 13.
[0009]
Referring to FIG. 1, one alignment mark 14 is added for each diffusion process, and a photoresist for performing a diffusion process immediately after the outer pattern 15 formed on the surface of the chip 13 in the previous process. The photomask is aligned by adjusting the inner pattern 16 to be positioned at the center of the outer pattern 15 in the process.
When the process is followed in order, first, the N + buried layer 2 is formed on the chip surface, and at the same time, the outer pattern 15a of the alignment mark 14 and the outer pattern 15b are formed next thereto, and the P + separation region 6 is formed in the outer pattern 15a. The alignment is performed so that the inner pattern 16a is at the center. When the epitaxial layer 3 is grown after the P + isolation region 6 is formed, the outer pattern 15b appears as it is on the surface of the epitaxial layer 3. In the next diffusion step, for example, when the P + diffusion region 7 is formed, alignment is performed by an MPA (mirror projection aligner) device so that the inner pattern 16b of the P + diffusion region 7 is positioned at the center with respect to the outer pattern 15b. At the same time, an outer pattern 15c is formed adjacently. Thereafter, the alignment mark 14 is formed for each process in the same manner.
[0010]
A feature of the present invention lies in that the outer pattern 15b serving as an alignment mark for forming the N + buried layer 2 is inclined by about 45 degrees with respect to the [010] axis or the [001] axis. That is, both the outer pattern 15b and the inner pattern 16b have a rhombus shape. FIG. 2 shows a conventional alignment pattern, in which the alignment patterns 15b and 16b of the buried layer 2 are formed as square patterns perpendicular to the [010] axis direction or the [001] direction.
[0011]
With reference to FIG. 3, as a method of measuring the pattern shift amount of the outer pattern 15b, the formation position of the upper separation region 7 is intentionally in the [010] direction with respect to the pattern of the lower separation region 6. A pattern shifted in stages from 10% to + 10% was prepared, and the isolation breakdown voltage of the isolation regions 6 and 7 formed by the pattern was measured. The offset amount of the P-type substrate 1 is 4 degrees. After the buried layer 2, the isolation region 6 and the alignment mark 14 are formed on the surface of the P-type substrate 1, growth is about 8 μm at a growth temperature of 1100 ° C. using silane (SiHCl 3). I let you. In the alignment method, as shown in FIG. 1, the inner pattern 16b is matched with the center of the outer pattern 15b.
[0012]
As is apparent from FIG. 3, it can be seen that the peak of the separation breakdown voltage is shifted to the minus side in the apparatus in which the alignment patterns 15b and 16b for the buried layer 2 are processed into the conventional square shape. This shift amount is the pattern shift amount, and specifically, it can be determined that the shift is about 5 μ in the [010] direction.
On the other hand, when the alignment is performed using the rhombus-shaped alignment pattern 14 of the present invention, the peak of the isolation breakdown voltage is located at the center, whereby the pattern position on the surface of the substrate 1 and the surface of the epitaxial layer 3 are obtained. It can be determined that there is almost no deviation from the pattern position at.
[0013]
Therefore, according to the present invention, it is possible to accurately perform alignment between the surface of the substrate 1 and the surface of the epitaxial layer 3 only by changing the shape of the alignment mark 14 and to prevent an accident such as a poor breakdown voltage. be able to. Further, unnecessary work conditions are not added to the exposure process and pattern design. Further, since there is no “sag” of the step 5 appearing on the surface of the epitaxial layer 3 and the shape becomes clear, the work is easy in the alignment step.
[0014]
【The invention's effect】
As described above, according to the present invention, it is possible to perform accurate alignment only by devising the shape of the alignment mark, and this has the advantage of preventing the occurrence of defects such as defective breakdown voltage.
In addition, there is an advantage that an extra burden is not applied to the exposure process and pattern design.
[Brief description of the drawings]
FIG. 1 is a plan view for explaining a semiconductor integrated circuit device of the present invention.
FIG. 2 is a plan view showing a conventional alignment pattern.
FIG. 3 is a cross-sectional view for explaining the present invention.
FIG. 4 is a cross-sectional view for explaining a conventional example.
FIG. 5 is a perspective view for explaining a conventional example.

Claims (3)

面方位100に対してウェハ面がオフセットされた一導電型単結晶半導体基板の表面に、逆導電型の高濃度埋め込み層と前記埋め込み層のパターンの位置あわせを行う合わせマークとを形成し、前記基板上に逆導電型のエピタキシャル層を形成した半導体集積回路装置であって、
前記埋め込み層のパターンを001軸に対して実質的に平行となるようなパターンで構成し、且つ前記埋め込み層の合わせマークを前記001軸に対して実質的に45度またはその近傍の角度となるようなパターンで構成したことを特徴とする半導体集積回路。
Forming a reverse-conductivity type high-concentration buried layer and an alignment mark for aligning the pattern of the buried layer on the surface of the one-conductivity-type single crystal semiconductor substrate whose wafer surface is offset with respect to the plane orientation 100; A semiconductor integrated circuit device having a reverse conductivity type epitaxial layer formed on a substrate,
The pattern of the buried layer is configured to be substantially parallel to the 001 axis, and the alignment mark of the buried layer is substantially 45 degrees or near the 001 axis . A semiconductor integrated circuit comprising such a pattern.
前記埋め込み層以外の拡散領域の合わせマークが前記001軸に対して実質的に平行となるようなパターンで構成されていることを特徴とする請求項1記載の半導体集積回路。  2. The semiconductor integrated circuit according to claim 1, wherein the alignment mark of the diffusion region other than the buried layer is formed in a pattern that is substantially parallel to the 001 axis. 前記合わせマークが半導体チップの周辺部空き領域に配置されていることを特徴とする請求項1記載の半導体集積回路。  2. The semiconductor integrated circuit according to claim 1, wherein the alignment mark is arranged in a peripheral area free area of the semiconductor chip.
JP31093496A 1996-11-21 1996-11-21 Semiconductor integrated circuit Expired - Lifetime JP3913300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31093496A JP3913300B2 (en) 1996-11-21 1996-11-21 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31093496A JP3913300B2 (en) 1996-11-21 1996-11-21 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPH10154642A JPH10154642A (en) 1998-06-09
JP3913300B2 true JP3913300B2 (en) 2007-05-09

Family

ID=18011151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31093496A Expired - Lifetime JP3913300B2 (en) 1996-11-21 1996-11-21 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP3913300B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123279A (en) * 2003-10-15 2005-05-12 Mitsumi Electric Co Ltd Manufacturing method for semiconductor device
JP2007311669A (en) * 2006-05-22 2007-11-29 Toshiba Corp Semiconductor device and manufacturing method thereof
CN111413847A (en) * 2019-01-08 2020-07-14 长鑫存储技术有限公司 Photomask and photoetching optical type overlay mark measuring method

Also Published As

Publication number Publication date
JPH10154642A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
JP3634505B2 (en) Alignment mark placement method
JP2918299B2 (en) Semiconductor pressure sensor and method of manufacturing semiconductor device having the same
JP3913300B2 (en) Semiconductor integrated circuit
US6259164B1 (en) Offset alignment marks method and apparatus
JPH05198644A (en) Manufacture of calibration structure
JPH04171979A (en) Semiconductor device and manufacture thereof
JPS62155532A (en) Formation of positioning mark for semiconductor wafer
JP2001291648A (en) Structure for positioning dielectric separation wafer, and inspection method using the same
US6358814B1 (en) Method for manufacturing semiconductor devices having an epitaxial layer and wafer alignment marks
JPS62128118A (en) Semiconductor device
CN112366200B (en) Alignment process method
JPH01140624A (en) Manufacture of semiconductor device
JPS6153856B2 (en)
JPH0114694B2 (en)
JPH06103715B2 (en) Pattern shift measurement method
JPH0515299B2 (en)
JPH0354814A (en) Manufacture of semiconductor device
JPS6127630A (en) Manufacture of semiconductor device
JPH01310552A (en) Semiconductor substrate
JPH0286116A (en) Mask alignment
JPS63108717A (en) Manufacture of semiconductor device
JPH0269925A (en) Manufacture of semiconductor element
JPH0250414A (en) Manufacture of semiconductor element
JPH0555111A (en) Manufacture of semiconductor device
JP3129014B2 (en) Method for manufacturing bidirectional semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050520

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term