Nothing Special   »   [go: up one dir, main page]

JP3912488B2 - Air-fuel ratio control device for multi-cylinder internal combustion engine - Google Patents

Air-fuel ratio control device for multi-cylinder internal combustion engine Download PDF

Info

Publication number
JP3912488B2
JP3912488B2 JP2001331271A JP2001331271A JP3912488B2 JP 3912488 B2 JP3912488 B2 JP 3912488B2 JP 2001331271 A JP2001331271 A JP 2001331271A JP 2001331271 A JP2001331271 A JP 2001331271A JP 3912488 B2 JP3912488 B2 JP 3912488B2
Authority
JP
Japan
Prior art keywords
cylinder
fuel ratio
exhaust
air
cylinder group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001331271A
Other languages
Japanese (ja)
Other versions
JP2003138963A (en
Inventor
保樹 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2001331271A priority Critical patent/JP3912488B2/en
Publication of JP2003138963A publication Critical patent/JP2003138963A/en
Application granted granted Critical
Publication of JP3912488B2 publication Critical patent/JP3912488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多気筒内燃機関の空燃比制御装置に係り、詳しくは、デュアルエキマニシステムに複数の触媒コンバータを並列に設ける場合の空燃比フィードバック制御技術に関する。
【0002】
【関連する背景技術】
内燃機関(エンジン)では、排気干渉を小さくし、排気脈動を利用することにより、出力を向上させることが可能である。そこで、例えば、4気筒エンジンにおいて、4本からなる排気通路を燃焼順序が連続しない気筒群からの排気通路を纏めて2本とし、これら2本の排気通路をさらに1本に纏めるようにした4−2−1型の排気マニホールドシステム、即ち4−2−1デュアルエキマニシステムが知られている。
【0003】
また一方、排気中の有害物質(HC、CO、NOx等)を低減させることを目的として触媒コンバータを利用した排気浄化技術が知られている。かかる触媒コンバータは、一定の活性温度に達しないと十分に機能しないことから、極力エンジン近傍に配置することが要求されており、例えば、触媒コンバータ(マニホールドキャタライザコンバータまたはフロントキャタライザコンバータ、以下それぞれMCC、FCCと略す)を排気マニホールドに介装した排気浄化システムが採用されている。
【0004】
そして、上記4−2−1デュアルエキマニシステムにおいてMCC或いはFCCを配設する場合、極力エンジン近傍に配置することを考慮すれば、MCC等を例えば上記2本の排気通路部分にそれぞれ個別に2個配設することが望ましい。
【0005】
【発明が解決しようとする課題】
ところで、触媒コンバータにおいて排気中の有害物質を効果的に触媒反応させるためには、触媒コンバータに流入する排気空燃比を所定空燃比近傍に制御する必要があり、通常は、触媒コンバータの上流側に排気センサ(λセンサ等)を設け、当該排気センサからの空燃比情報に基づいて内燃機関の燃焼空燃比、即ち吸入空気量と燃料噴射量を適正なものに調節する空燃比フィードバック制御を行うようにしている。
【0006】
しかしながら、このように排気センサを触媒コンバータの上流側に配設するようにすると、上記の如く4−2−1デュアルエキマニシステムにMCCを2個設ける場合には、各MCCの上流にそれぞれ排気センサを設けることになり、コストアップに繋がり好ましいことではない。
そこで、空燃比センサをMCCの下流の排気通路が集合して1本となる部分に1個だけ設けることが考えられるが、単一の空燃比センサで如何にして気筒群毎の燃焼空燃比の適正化を図り、各触媒コンバータに流入する排気空燃比の平準化を図るかが課題となる。
【0007】
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、デュアルエキマニシステムに複数の触媒コンバータを並列に設ける場合において、単一の空燃比センサでコストアップなく各触媒コンバータに流入する排気空燃比の平準化を図り、適正に空燃比フィードバック制御を実施可能な多気筒内燃機関の空燃比制御装置を提供することにある。
【0008】
【課題を解決するための手段】
上記した目的を達成するために、請求項1の発明では、多気筒内燃機関の各気筒のうち燃焼の連続しない複数の気筒からなる気筒群毎に設けられた複数の排気通路と、前記複数の排気通路にそれぞれ配設された複数の触媒コンバータと、排気流方向でみて前記複数の触媒コンバータよりも下流の前記複数の排気通路の集合部に設けられ、排気空燃比を検出する排気センサと、前記排気センサにより検出される排気空燃比情報に基づき、平均排気空燃比が所定空燃比となるよう燃焼空燃比をフィードバック補正する燃焼空燃比制御手段と、運転状態に応じて前記気筒群毎に前記複数の気筒の少なくとも排気弁を閉弁するとともに燃料供給を停止して休筒運転を行う休筒手段と、前記休筒手段により休筒運転を行う気筒群を順次切り換える休筒気筒群切換手段と、前記燃焼空燃比制御手段によりフィードバック補正を行い且つ前記休筒手段により休筒運転を行うとき、該燃焼空燃比制御手段によりフィードバック補正した燃焼気筒群の燃焼空燃比を気筒群毎に記憶し学習する燃焼空燃比学習手段とを備えることを特徴としている。
【0009】
つまり、多気筒内燃機関(例えば、4気筒エンジン)に例えばデュアルエキマニシステムを採用するとともに当該デュアルエキマニシステムの複数の排気通路にそれぞれ触媒コンバータを並列に設け、複数の排気通路毎、即ち気筒群毎に休筒運転可能な多気筒内燃機関の空燃比制御装置において、複数の排気通路の集合部に排気センサを1つだけ設け、該1つの排気センサからの排気空燃比情報に基づき燃焼空燃比のフィードバック補正を行うとともに休筒運転する気筒群を切り換えながら運転状態に応じて気筒群毎に休筒運転を行い、この際、上記1つの排気センサからの排気空燃比情報によりフィードバック補正される燃焼気筒群の燃焼空燃比に基づき、燃焼空燃比を気筒群毎に学習するようにしている。
【0010】
これにより、複数の排気通路にそれぞれ触媒コンバータを並列に有したデュアルエキマニシステムにおいて、複数の排気通路の集合部に排気センサを1つだけ設けた場合であっても、気筒群毎の燃焼空燃比の適正化を図り、確実に各触媒コンバータに流入する排気空燃比の平準化を図ることができ、全体として空燃比フィードバック制御を適正に実施可能である。
【0011】
【発明の実施の形態】
以下、本発明の実施例を添付図面に基づいて説明する。
図1を参照すると、本発明に係る多気筒内燃機関の空燃比制御装置の概略構成図が示されており、以下、当該空燃比制御装置の構成を説明する。
同図に示すように、多気筒内燃機関であるエンジン本体(以下、単にエンジンという)1としては、例えば、燃料噴射モードを切り換えることで吸気行程での燃料噴射(吸気行程噴射)とともに圧縮行程での燃料噴射(圧縮行程噴射)を実施可能な筒内噴射型火花点火式4サイクル4気筒ガソリンエンジンが採用される。この筒内噴射型のエンジン1は、理論空燃比(ストイキオ)での運転の他、リッチ空燃比での運転(リッチ空燃比運転)やリーン空燃比での運転(リーン空燃比運転)を実現可能である。
【0012】
同図に示すように、エンジン1のシリンダヘッド2には、各気筒毎に点火プラグ4とともに電磁式の燃料噴射弁6が取り付けられており、これにより、燃料を燃焼室内に直接噴射可能である。
点火プラグ4には高電圧を出力する点火コイル8が接続されている。また、燃料噴射弁6には、燃料パイプ7を介して燃料タンクを擁した燃料供給装置(図示せず)が接続されている。より詳しくは、燃料供給装置には、低圧燃料ポンプと高圧燃料ポンプとが設けられており、これにより、燃料タンク内の燃料を燃料噴射弁6に対し低燃圧或いは高燃圧で供給し、該燃料を燃料噴射弁6から燃焼室内に向けて所望の燃圧で噴射可能である。
【0013】
シリンダヘッド2には、各気筒毎に略直立方向に吸気ポートが形成されており、各吸気ポートと連通するようにして吸気マニホールド10の一端がそれぞれ接続されている。なお、吸気マニホールド10には吸入空気量を調節する電磁式のスロットル弁14が設けられている。
また、シリンダヘッド2には、各気筒毎に略水平方向に排気ポートが形成されており、各排気ポートと連通するようにして排気マニホールド20の一端がそれぞれ接続されている。排気マニホールド20としては、ここでは、図2に示すようなデュアル型エキゾーストマニホールドシステムが採用される。
【0014】
デュアル型エキゾーストマニホールドシステムからなる排気マニホールド20では、#1気筒からの排気通路20aと#4気筒からの排気通路20d及び#2気筒からの排気通路20bと#3気筒からの排気通路20cがそれぞれ合流するように構成されている(燃焼順序が#1→#3→#4→#2の場合)。つまり、燃焼が連続しない#1気筒と#4気筒を一の気筒群(#1、#4気筒群)としてまとめ、やはり燃焼が連続しない#2気筒と#3気筒を他の気筒群(#2、#3気筒群)としてまとめるようにしている。これにより、当該排気マニホールド20では、上述したように、排気干渉が少なくされ、排気慣性或いは排気脈動の大きな効果が得られる。
【0015】
排気マニホールド20の他端には、集合管22を介して排気管28が接続されており、集合管22は、排気通路20a及び排気通路20dからの排ガスが流通する集合管22aと排気通路20b及び排気通路20cからの排ガスが流通する集合管22bの2本の管路(デュアル管路)から構成されている。つまり、集合管22は、#1気筒と#4気筒からなる一の気筒群からの排ガスが集合管22aを流れ、#2気筒と#3気筒からなる他の気筒群からの排ガスが集合管22bを流れるように構成されている。
【0016】
そして、集合管22aには、前段触媒コンバータとして三元触媒(マニホールドキャタライザコンバータ、以下MCCと略す)24が介装され、同様に、集合管22bには、前段触媒として三元触媒(以下MCCと略す)26が介装されている。このようにMCC24、26が集合管22a及び集合管22bに介装されていると、エンジン1に近い位置であることから、エンジン1が冷態状態であってもMCC24、26の早期活性化が図られ、運転状態に拘わらず排気中の有害物質(HC、CO、NOx等)を良好に浄化可能である。
【0017】
また、集合管22から排気管28への移行部分、即ち集合管22aと集合管22bとの集合部27には、排気センサとして、リニア空燃比センサ(λセンサ、以下LAFSと略す)29が1つ設けられている。
排気管28には、さらに、後段触媒コンバータとして三元触媒(アンダーフロアキャタライザコンバータ、以下UCCと略す)30が介装されている。このように上記MCC24、26の下流にさらにUCC30が介装されていると、排気中の有害物質(HC、CO、NOx等)をより一層良好に浄化可能である。
【0018】
また、エンジン1は、気筒群毎(#1、#4気筒群及び#2、#3気筒群毎)に休筒運転を実施可能に構成されている。つまり、エンジン1は、気筒群毎に各気筒の排気弁を閉弁状態に維持するとともに燃料噴射弁6からの燃料供給を停止可能に構成されている(休筒手段)。具体的には、エンジン1は排気弁を閉弁状態に維持すべく例えば可変カム機構を有しているが、当該可変カム機構は公知であり、その詳細についてはここでは説明を省略する。これにより、それほど高い出力の要求されない低中負荷運転時において、一部の気筒への燃料供給を停止して燃費の向上を図ることができる。
【0019】
電子コントロールユニット(ECU)60は、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央処理装置(CPU)、タイマカウンタ等を備えており、当該ECU60により、エンジン1を含めた空燃比制御装置の総合的な制御が行われる。
ECU60の入力側には、上述したLAFS29の他、クランク角センサ62等の各種センサ類が接続されており、これらセンサ類からの検出情報が入力される。なお、クランク角センサ62によってクランク角が検出されると、当該クランク角に基づいて、現在の燃焼気筒が判別され、また、エンジン回転速度Neが検出される。
【0020】
一方、ECU60の出力側には、上述の燃料噴射弁6、点火コイル8、スロットル弁14等の各種出力デバイスが接続されており、これら各種出力デバイスには各種センサ類からの検出情報に基づき演算された燃料噴射量、燃料噴射時期、点火時期等がそれぞれ出力され、これにより、燃料噴射弁6から適正量の燃料が適正なタイミングで噴射され、点火プラグ4により適正なタイミングで火花点火が実施される。
【0021】
そして、当該エンジン1では、理論空燃比(ストイキオ)で運転しているときには、排気空燃比が理論空燃比(所定空燃比)となるように燃焼空燃比のフィードバック補正(以下F/B補正という)を行うようにしている(燃焼空燃比制御手段)。詳しくは、通常当該F/B補正では、LAFS29からの排気空燃比情報に基づき、排気空燃比が所定空燃比(例えば、理論空燃比)となるように、燃焼空燃比を燃焼気筒順(#1→#3→#4→#2)に補正するようにしている(後述の図4参照)。なお、目標となる所定空燃比は理論空燃比でなくてもよく、例えばスライトリーン或いはスライトリッチ空燃比であってもよい。
【0022】
ところで、当該F/B補正は、全体として平均排気空燃比を理論空燃比に制御することはできるが、実際には各気筒毎に燃焼空燃比はばらついており、故にMCC24、26を有する集合管22a及び集合管22b内の排気空燃比も正確には理論空燃比とはなっておらず、ばらついている場合が多い。このように、集合管22a及び集合管22b内の排気空燃比がばらついていると、上述したように、MCC24、26において排気中の有害物質を効果的に触媒反応させることができず好ましいことではない。
【0023】
そこで、本発明に係る空燃比制御装置では、F/B補正に加え、さらに、集合管22a及び集合管22b内の排気空燃比のばらつきを抑制し、一の気筒群と他の気筒群から排出される排ガスの空燃比の平準化を図るようにしている。
図3を参照すると、本発明に係る燃焼空燃比の気筒群別学習制御、即ち気筒群別A/F学習制御の制御ルーチンがフローチャートで示されており、以下当該フローチャートに沿い説明する。
【0024】
先ず、ステップS1では、F/B補正を実施している状況か否かを判別する。判別結果が偽(No)で、F/B補正を実施している状況ではないと判定された場合には、何もせず当該ルーチンを抜け、一方判別結果が真(Yes)で、F/B補正中と判定された場合には、次にステップS10に進む。
ステップS10では、現在休筒制御モードであるか否か、即ち一の気筒群(#1、#4気筒群)及び他の気筒群(#2、#3気筒群)のいずれか一方について排気弁を閉弁し且つ燃料供給を停止しているか否かを判別する。実際には、エンジン負荷が比較的小さいときには休筒運転を実施するようにしており、ここでは、例えば、アクセル開度等に基づき、エンジン負荷が所定値以下であるか否かを判別する。判別結果が偽(No)の場合には、そのまま当該ルーチンを抜ける。なお、この場合には、通常通りF/B補正が実施される。一方、判別結果が真(Yes)で、現在休筒制御モード中と判定された場合には、次にステップS12に進む。
【0025】
ステップS12では、前回実施された休筒運転における休筒気筒群が一の気筒群(#1、#4気筒群)であるか否かを判別する。判別結果が真(Yes)で、前回の休筒気筒群が#1、#4気筒群であると判定された場合には、次にステップS14に進む。一方、判別結果が偽(No)で、前回の休筒気筒群が#1、#4気筒群ではなく#2、#3気筒群であると判定された場合には、次にステップS20に進む。
【0026】
つまり、ステップS12では、休筒運転する気筒群を交互に切り換えるようにしている(休筒気筒群切換手段)。
ステップS14では、他の気筒群(#2、#3気筒群)について休筒運転を行う。つまり、前回休筒した気筒群と異なる#2、#3気筒群について休筒運転を行い、#1、#4気筒群についてのみ燃焼運転を行う。
【0027】
ステップS16では、F/B補正の上記目標となる所定空燃比(理論空燃比)と現在の平均排気空燃比、即ち#1、#4気筒群についての現在の平均排気空燃比との誤差e#1,4を検出する。
そして、ステップS18では、このように検出した誤差e#1,4に基づいて、#1、#4気筒群(#1気筒及び#4気筒)の供給燃料量を補正し、当該補正した供給燃料量、即ち燃焼空燃比を記憶し学習する(燃焼空燃比学習手段)。
【0028】
一方、ステップS20では、一の気筒群(#1、#4気筒群)について休筒運転を行う。つまり、前回休筒した気筒群と異なる#1、#4気筒群について休筒運転を行い、#2、#3気筒群についてのみ燃焼運転を行う。
ステップS22では、F/B補正の上記目標となる所定空燃比と現在の平均排気空燃比、即ち#2、#3気筒群についての現在の平均排気空燃比との誤差e#2,3を検出する。
【0029】
そして、ステップS24では、このように検出した誤差e#2,3に基づいて、#2、#3気筒群(#2気筒及び#3気筒)の供給燃料量を補正し、当該補正した供給燃料量、即ち燃焼空燃比を記憶し学習する(燃焼空燃比学習手段)。
つまり、図4を参照すると、F/B補正を実施し且つ休筒運転を実施したときの燃焼気筒順(例えば、#1→#4或いは#2→#3)のLAFS29の出力値(即ち、排気空燃比)の時間変化がタイムチャートで示されており、同図には、目標となる所定空燃比(理論空燃比)が実線で示され、学習前の平均排気空燃比が破線で示されているが、これら所定空燃比(実線)と平均排気空燃比(破線)との差を誤差e#1,4(または誤差e#2,3)として求めるようにし、当該誤差e#1,4(または誤差e#2,3)に基づいて気筒群毎(#1、#4気筒群及び#2、#3気筒群毎)に供給燃料量を補正する。そして、当該補正した供給燃料量、即ち燃焼空燃比を気筒群毎に記憶し学習する。
【0030】
これにより、#1、#4気筒群に対応する集合管22a内の排気空燃比と#2、#3気筒群に対応する集合管22b内の排気空燃比がそれぞれ適正なものとなり、気筒群間の排気空燃比のばらつきが抑制され、一つのLAFS29によってコスト低減を図りながら、MCC24、26に流入する排気空燃比の平準化を図ることができる。故に、MCC24、26において排気中の有害物質を常に効果的に触媒反応させ、浄化させることができる。また、全体として空燃比フィードバック制御を常に適正に実施することができることにもなるので、エンジン出力の安定化及び燃費の向上を図ることができる。
【0031】
図5を参照すると、本発明の他の実施形態に係る気筒群別A/F学習制御の制御ルーチンがフローチャートで示されており、以下当該フローチャートに沿い他の実施形態について説明する。なお、図3と同一のステップについては同一の符号を付して説明を省略し、ここでは上記実施形態と異なる部分についてのみ説明する。
【0032】
ステップS1及びステップS10を経てステップS12aでは、他の気筒群(#2、#3気筒群)についての休筒継続時間t#2,3が所定時間t1以下であるか否かを判別する。判別結果が真(Yes)、即ち休筒気筒群が#2、#3気筒群であって、休筒継続時間t#2,3が所定時間t1以下である場合には、ステップS14’に進む。一方、判別結果が偽(No)、即ち休筒気筒群が#2、#3気筒群ではない場合、或いは休筒気筒群が#2、#3気筒群であっても休筒継続時間t#2,3が所定時間t1を越えている場合には、ステップS12bに進む。
【0033】
ステップS12bでは、一の気筒群(#1、#4気筒群)についての休筒継続時間t#1,4が所定時間t1以下であるか否かを判別する。判別結果が真(Yes)、即ち休筒気筒群が#1、#4気筒群であって、休筒継続時間t#1,4が所定時間t1以下である場合には、ステップS20’に進む。一方、判別結果が偽(No)の場合には、上記ステップS14’に進む。
【0034】
つまり、これらステップS12a及びステップS12bでは、休筒運転する気筒群を所定時間t1毎に#1、#4気筒群と#2、#3気筒群との間で切り換えるようにしている(休筒気筒群切換手段)。
そして、ステップS14’では、他の気筒群(#2、#3気筒群)について休筒運転を行い、以下上記同様に、ステップS16においてF/B補正の上記目標となる所定空燃比(理論空燃比)と#1、#4気筒群についての学習前の平均排気空燃比との誤差e#1,4を検出し、ステップS18において、当該誤差e#1,4に基づき、#1、#4気筒群(#1気筒及び#4気筒)の供給燃料量を補正し、当該補正した供給燃料量、即ち燃焼空燃比を記憶し学習する(燃焼空燃比学習手段)。なお、ステップS14’において、最初の実行時(t#1,4=t1となった直後)には#1、#4気筒群の休筒継続時間t#1,4をリセットし、次回の#1、#4気筒群の休筒運転に備える。
【0035】
一方、ステップS20’では、一の気筒群(#1、#4気筒群)について休筒運転を行い、以下上記同様に、ステップS22においてF/B補正の上記目標となる所定空燃比と#2、#3気筒群についての学習前の平均排気空燃比との誤差e#2,3を検出し、ステップS24において、当該誤差e#2,3に基づき、#2、#3気筒群(#2気筒及び#3気筒)の供給燃料量を補正し、当該補正した供給燃料量、即ち燃焼空燃比を記憶し学習する(燃焼空燃比学習手段)。なお、ステップS14’と同様、ステップS20’において、最初の実行時(t#2,3=t1となった直後)には#2、#3気筒群の休筒継続時間t#2,3をリセットし、次回の#2、#3気筒群の休筒運転に備える。
【0036】
即ち、当該他の実施形態では、#1、#4気筒群の休筒期間と#2、#3気筒群の休筒期間、即ち#1、#4気筒群と#2、#3気筒群の各学習期間がバランスよく確保される。
これにより、上記同様、#1、#4気筒群に対応する集合管22a内の排気空燃比と#2、#3気筒群に対応する集合管22b内の排気空燃比がそれぞれ適正なものとなり、気筒群間の排気空燃比のばらつきが抑制され、一つのLAFS29によってコスト低減を図りながら、MCC24、26に流入する排気空燃比の平準化を図ることができ、MCC24、26において排気中の有害物質を常に効果的に触媒反応させ、浄化させることができる。
【0037】
以上で実施形態の説明を終えるが、本発明は上記実施形態に限定されるものではない。
例えば、上記実施形態では、排気センサとしてLAFS29を用いるようにしたが、O2センサを用いるようにしてもよい。
また、上記実施形態では、エンジン1として筒内噴射型火花点火式4サイクル4気筒ガソリンエンジンを用いるようにしたが、吸気管噴射型ガソリンエンジン、2サイクルガソリンエンジン、4気筒以外の多気筒エンジン等であっても本発明を良好に適用可能である。
【0038】
また、上記実施形態では、#1、#4気筒群と#2、#3気筒群を交互に休筒させるようにしたが、いずれか一方のみを休筒させるようにしてもよい。この場合、学習精度は低下するものの休筒システムが1種類のみでよくなり、コスト低減というメリットが得られる。
【0039】
【発明の効果】
以上詳細に説明したように、本発明の請求項1の多気筒内燃機関の空燃比制御装置によれば、多気筒内燃機関(例えば、4気筒エンジン)に例えばデュアルエキマニシステムを採用するとともに当該デュアルエキマニシステムの複数の排気通路にそれぞれ触媒コンバータを並列に設け、当該複数の排気通路毎、即ち気筒群毎に休筒運転可能な多気筒内燃機関の空燃比制御装置において、複数の排気通路の集合部に排気センサを1つだけ設け、該1つの排気センサからの排気空燃比情報に基づき燃焼空燃比のフィードバック補正を行うとともに休筒運転する気筒群を切り換えながら運転状態に応じて気筒群毎に休筒運転を行い、この際、上記1つの排気センサからの排気空燃比情報によりフィードバック補正される燃焼気筒群の燃焼空燃比に基づき燃焼空燃比を気筒群毎に学習するようにしたので、複数の排気通路の集合部に排気センサを1つだけ設けた場合であっても、気筒群毎の燃焼空燃比の適正化を図り、確実に各触媒コンバータに流入する排気空燃比の平準化を図ることができ、全体として空燃比フィードバック制御を適正に実施することができる。これにより、デュアルエキマニシステムの複数の排気通路に設けた各触媒コンバータにおいて排気中の有害物質を常に効果的に触媒反応させることができる。
【図面の簡単な説明】
【図1】本発明に係る多気筒内燃機関の空燃比制御装置の概略構成図である。
【図2】本発明に係るデュアル型エキゾーストマニホールドシステムを示す図である。
【図3】本発明に係る気筒群別A/F学習制御の制御ルーチンを示すフローチャートである。
【図4】F/B補正を実施し且つ休筒運転を実施したときの燃焼気筒順(例えば、#1→#4或いは#2→#3)のLAFSの出力値(即ち、排気空燃比)の時間変化を示すタイムチャートである。
【図5】本発明の他の実施形態に係る気筒群別A/F学習制御の制御ルーチンを示すフローチャートである。
【符号の説明】
1 エンジン
6 燃料噴射弁
20 排気マニホールド
22a、22b 集合管(複数の排気通路)
24、26 三元触媒(MCC)
27 集合部
29 リニア空燃比センサ(排気センサ、LAFS)
30 三元触媒(UCC)
60 電子コントロールユニット(ECU)
62 クランク角センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air-fuel ratio control apparatus for a multi-cylinder internal combustion engine, and more particularly to an air-fuel ratio feedback control technique when a plurality of catalytic converters are provided in parallel in a dual exhaust manifold system.
[0002]
[Related background]
In an internal combustion engine (engine), output can be improved by reducing exhaust interference and utilizing exhaust pulsation. Therefore, for example, in a four-cylinder engine, four exhaust passages are combined into two exhaust passages from a group of cylinders whose combustion order is not continuous, and these two exhaust passages are further combined into one. A 2-1 type exhaust manifold system, that is, a 4-2-1 dual exhaust manifold system is known.
[0003]
On the other hand, exhaust purification technology using a catalytic converter is known for the purpose of reducing harmful substances (HC, CO, NOx, etc.) in the exhaust. Since such a catalytic converter does not function sufficiently unless a certain activation temperature is reached, it is required to be disposed as close to the engine as possible. For example, a catalytic converter (manifold catalyzer converter or front catalyzer converter, hereinafter referred to as MCC, An exhaust purification system in which FCC is abbreviated to the exhaust manifold is employed.
[0004]
When arranging the MCC or FCC in the 4-2-1 dual exhaust manifold system, considering that the MCC or the FCC is arranged in the vicinity of the engine as much as possible, for example, two MCCs are individually provided in the two exhaust passage portions. It is desirable to arrange.
[0005]
[Problems to be solved by the invention]
By the way, in order for the catalytic converter to effectively catalyze harmful substances in the exhaust gas, it is necessary to control the exhaust air-fuel ratio flowing into the catalytic converter in the vicinity of a predetermined air-fuel ratio. An exhaust sensor (λ sensor or the like) is provided, and air-fuel ratio feedback control is performed to adjust the combustion air-fuel ratio of the internal combustion engine, that is, the intake air amount and the fuel injection amount to an appropriate one based on the air-fuel ratio information from the exhaust sensor. I have to.
[0006]
However, when the exhaust sensors are arranged upstream of the catalytic converter in this way, when two MCCs are provided in the 4-2-1 dual exhaust system as described above, the exhaust sensors are arranged upstream of each MCC. This is not preferable because it leads to cost increase.
Therefore, it is conceivable that only one air-fuel ratio sensor is provided in a portion where the exhaust passages downstream of the MCC are gathered. However, the single air-fuel ratio sensor can be used to determine the combustion air-fuel ratio for each cylinder group. The challenge is to optimize the exhaust air-fuel ratio flowing into each catalytic converter.
[0007]
The present invention has been made to solve such problems, and the object of the present invention is to reduce the cost with a single air-fuel ratio sensor when a plurality of catalytic converters are provided in parallel in a dual exhaust manifold system. An object of the present invention is to provide an air-fuel ratio control device for a multi-cylinder internal combustion engine capable of leveling the exhaust air-fuel ratio flowing into each catalytic converter and appropriately performing air-fuel ratio feedback control.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a plurality of exhaust passages provided for each cylinder group consisting of a plurality of cylinders in which combustion does not continue among the cylinders of the multi-cylinder internal combustion engine, A plurality of catalytic converters respectively disposed in the exhaust passage; and an exhaust sensor that detects an exhaust air-fuel ratio provided at a collection portion of the plurality of exhaust passages downstream of the plurality of catalytic converters in the exhaust flow direction; Based on the exhaust air / fuel ratio information detected by the exhaust sensor, combustion air / fuel ratio control means for feedback correcting the combustion air / fuel ratio so that the average exhaust air / fuel ratio becomes a predetermined air / fuel ratio, and for each cylinder group according to the operating state, A cylinder resting means for closing the at least the exhaust valves of the plurality of cylinders and stopping the fuel supply to perform a cylinder resting operation, and a cylinder resting air for sequentially switching a cylinder group performing the cylinder resting operation by the cylinder resting means. When a feedback correction is performed by the group switching means and the combustion air-fuel ratio control means and a cylinder resting operation is performed by the cylinder resting means, the combustion air-fuel ratio of the combustion cylinder group feedback-corrected by the combustion air-fuel ratio control means is determined for each cylinder group. And a combustion air-fuel ratio learning means for storing and learning.
[0009]
That is, for example, a dual exhaust system is adopted for a multi-cylinder internal combustion engine (for example, a four cylinder engine), and a catalytic converter is provided in parallel in each of a plurality of exhaust passages of the dual exhaust system, so that a plurality of exhaust passages, that is, a cylinder group is provided. In the air-fuel ratio control apparatus for a multi-cylinder internal combustion engine that can be operated in a cylinder-free manner, only one exhaust sensor is provided at a collection portion of a plurality of exhaust passages, and the combustion air-fuel ratio is determined based on the exhaust air-fuel ratio information from the one exhaust sensor. Combustion cylinders that are feedback-corrected based on exhaust air-fuel ratio information from the one exhaust sensor while performing feedback correction and performing cylinder-cylinder operation for each cylinder group according to the operating state while switching the cylinder group that performs cylinder-cylinder operation The combustion air-fuel ratio is learned for each cylinder group based on the combustion air-fuel ratio of the group.
[0010]
As a result, in a dual exhaust system having a plurality of exhaust passages each having a catalytic converter in parallel, even if only one exhaust sensor is provided at a collection portion of the plurality of exhaust passages, the combustion air-fuel ratio for each cylinder group The exhaust air-fuel ratio flowing into each catalytic converter can be leveled reliably, and the air-fuel ratio feedback control can be properly performed as a whole.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
Referring to FIG. 1, there is shown a schematic configuration diagram of an air-fuel ratio control apparatus for a multi-cylinder internal combustion engine according to the present invention. The configuration of the air-fuel ratio control apparatus will be described below.
As shown in the figure, an engine main body (hereinafter simply referred to as an engine) 1 that is a multi-cylinder internal combustion engine, for example, in a compression stroke together with fuel injection in an intake stroke (intake stroke injection) by switching a fuel injection mode. An in-cylinder injection type spark ignition type 4-cycle 4-cylinder gasoline engine capable of performing the fuel injection (compression stroke injection) is employed. The in-cylinder injection type engine 1 can be operated at a rich air-fuel ratio (rich air-fuel ratio operation) or a lean air-fuel ratio operation (lean air-fuel ratio operation) in addition to the operation at the stoichiometric air-fuel ratio (stoichio). It is.
[0012]
As shown in the figure, the cylinder head 2 of the engine 1 is provided with an electromagnetic fuel injection valve 6 together with a spark plug 4 for each cylinder, so that fuel can be directly injected into the combustion chamber. .
An ignition coil 8 that outputs a high voltage is connected to the spark plug 4. Further, a fuel supply device (not shown) having a fuel tank is connected to the fuel injection valve 6 via a fuel pipe 7. More specifically, the fuel supply device is provided with a low pressure fuel pump and a high pressure fuel pump, whereby fuel in the fuel tank is supplied to the fuel injection valve 6 at a low fuel pressure or a high fuel pressure. Can be injected from the fuel injection valve 6 into the combustion chamber at a desired fuel pressure.
[0013]
An intake port is formed in the cylinder head 2 in a substantially upright direction for each cylinder, and one end of an intake manifold 10 is connected so as to communicate with each intake port. The intake manifold 10 is provided with an electromagnetic throttle valve 14 for adjusting the intake air amount.
Further, an exhaust port is formed in the cylinder head 2 in a substantially horizontal direction for each cylinder, and one end of the exhaust manifold 20 is connected to communicate with each exhaust port. Here, as the exhaust manifold 20, a dual type exhaust manifold system as shown in FIG. 2 is employed.
[0014]
In the exhaust manifold 20 including the dual type exhaust manifold system, the exhaust passage 20a from the # 1 cylinder, the exhaust passage 20d from the # 4 cylinder, the exhaust passage 20b from the # 2 cylinder, and the exhaust passage 20c from the # 3 cylinder merge. (When the combustion order is # 1 → # 3 → # 4 → # 2). That is, the # 1 and # 4 cylinders that do not continue combustion are combined into one cylinder group (# 1, # 4 cylinder group), and the # 2 and # 3 cylinders that also do not continue combustion are combined with another cylinder group (# 2). , # 3 cylinder group). Thereby, in the exhaust manifold 20, as described above, the exhaust interference is reduced, and a large effect of exhaust inertia or exhaust pulsation can be obtained.
[0015]
An exhaust pipe 28 is connected to the other end of the exhaust manifold 20 via a collecting pipe 22, and the collecting pipe 22 is connected to the collecting pipe 22a and the exhaust passage 20b through which exhaust gas from the exhaust passage 20a and the exhaust passage 20d flows. It consists of two pipe lines (dual pipe lines) of the collecting pipe 22b through which the exhaust gas from the exhaust passage 20c flows. That is, in the collecting pipe 22, exhaust gas from one cylinder group consisting of # 1 cylinder and # 4 cylinder flows through the collecting pipe 22a, and exhaust gas from another cylinder group consisting of # 2 cylinder and # 3 cylinder is collected in the collecting pipe 22b. It is configured to flow through.
[0016]
The collecting pipe 22a is provided with a three-way catalyst (manifold catalyzer converter, hereinafter abbreviated as MCC) 24 as a front-stage catalytic converter. Similarly, the collecting pipe 22b has a three-way catalyst (hereinafter referred to as MCC) as a front-stage catalyst. (Not shown) 26 is interposed. When the MCCs 24 and 26 are interposed in the collecting pipe 22a and the collecting pipe 22b as described above, the MCCs 24 and 26 can be activated early even if the engine 1 is in a cold state because the MCCs 24 and 26 are located close to the engine 1. Therefore, it is possible to satisfactorily purify harmful substances (HC, CO, NOx, etc.) in the exhaust gas regardless of the operating state.
[0017]
A transition portion from the collecting pipe 22 to the exhaust pipe 28, that is, a collecting section 27 of the collecting pipe 22a and the collecting pipe 22b has a linear air-fuel ratio sensor (λ sensor, hereinafter abbreviated as LAFS) 29 as an exhaust sensor. One is provided.
Further, a three-way catalyst (underfloor catalyzer converter, hereinafter abbreviated as UCC) 30 is interposed in the exhaust pipe 28 as a post-stage catalytic converter. As described above, when the UCC 30 is further provided downstream of the MCCs 24 and 26, harmful substances (HC, CO, NOx, etc.) in the exhaust gas can be further purified.
[0018]
Further, the engine 1 is configured to be able to perform a cylinder resting operation for each cylinder group (# 1, # 4 cylinder group and # 2, # 3 cylinder group). That is, the engine 1 is configured to be able to stop the fuel supply from the fuel injection valve 6 while maintaining the exhaust valve of each cylinder in the closed state for each cylinder group (cylinder resting means). Specifically, the engine 1 has, for example, a variable cam mechanism in order to keep the exhaust valve in a closed state. However, the variable cam mechanism is well known, and the details thereof are omitted here. As a result, the fuel consumption can be improved by stopping the fuel supply to some of the cylinders at the time of low and medium load operation where a high output is not required.
[0019]
The electronic control unit (ECU) 60 includes an input / output device, a storage device (ROM, RAM, non-volatile RAM, etc.), a central processing unit (CPU), a timer counter, and the like. Comprehensive control of the air-fuel ratio control device is performed.
In addition to the LAFS 29 described above, various sensors such as a crank angle sensor 62 are connected to the input side of the ECU 60, and detection information from these sensors is input. When the crank angle is detected by the crank angle sensor 62, the current combustion cylinder is determined based on the crank angle, and the engine speed Ne is detected.
[0020]
On the other hand, various output devices such as the fuel injection valve 6, the ignition coil 8, and the throttle valve 14 are connected to the output side of the ECU 60, and these various output devices are operated based on detection information from various sensors. The fuel injection amount, the fuel injection timing, the ignition timing, etc., are output, respectively, whereby an appropriate amount of fuel is injected from the fuel injection valve 6 at an appropriate timing, and spark ignition is carried out at an appropriate timing by the spark plug 4 Is done.
[0021]
When the engine 1 is operating at the stoichiometric air-fuel ratio (stoichio), the combustion air-fuel ratio feedback correction (hereinafter referred to as F / B correction) is performed so that the exhaust air-fuel ratio becomes the stoichiometric air-fuel ratio (predetermined air-fuel ratio). (Combustion air-fuel ratio control means). Specifically, in the normal F / B correction, based on the exhaust air / fuel ratio information from the LAFS 29, the combustion air / fuel ratio is set in the order of the combustion cylinders (# 1) so that the exhaust air / fuel ratio becomes a predetermined air / fuel ratio (for example, the theoretical air / fuel ratio). → # 3 → # 4 → # 2) (see FIG. 4 described later). Note that the target predetermined air-fuel ratio may not be the stoichiometric air-fuel ratio, and may be, for example, a light lean or a light rich air-fuel ratio.
[0022]
By the way, the F / B correction can control the average exhaust air-fuel ratio to the stoichiometric air-fuel ratio as a whole, but actually the combustion air-fuel ratio varies for each cylinder, and therefore the collecting pipe having the MCCs 24 and 26 is provided. Exhaust air / fuel ratios in 22a and collecting pipe 22b are not exactly stoichiometric, but often vary. As described above, if the exhaust air-fuel ratio in the collecting pipe 22a and the collecting pipe 22b varies as described above, harmful substances in the exhaust cannot be effectively catalyzed in the MCCs 24 and 26, which is preferable. Absent.
[0023]
Therefore, in the air-fuel ratio control apparatus according to the present invention, in addition to the F / B correction, furthermore, variation in the exhaust air-fuel ratio in the collecting pipe 22a and the collecting pipe 22b is suppressed, and exhaust is performed from one cylinder group and another cylinder group. The air-fuel ratio of the exhaust gas is leveled.
Referring to FIG. 3, the control routine of the combustion group-by-cylinder group learning control of the combustion air-fuel ratio, that is, the cylinder group-by-cylinder group A / F learning control according to the present invention is shown in a flowchart, and will be described along the flowchart.
[0024]
First, in step S1, it is determined whether or not the F / B correction is being performed. If the determination result is false (No) and it is determined that the F / B correction is not being performed, the routine exits without doing anything, while the determination result is true (Yes) and the F / B If it is determined that correction is in progress, the process proceeds to step S10.
In step S10, it is determined whether the current mode is the cylinder deactivation control mode, that is, the exhaust valve for one of the one cylinder group (# 1, # 4 cylinder group) and the other cylinder group (# 2, # 3 cylinder group). Is closed and it is determined whether or not the fuel supply is stopped. Actually, when the engine load is relatively small, the cylinder resting operation is performed. Here, based on, for example, the accelerator opening degree, it is determined whether or not the engine load is equal to or less than a predetermined value. If the determination result is false (No), the routine is exited as it is. In this case, F / B correction is performed as usual. On the other hand, if the determination result is true (Yes) and it is determined that the cylinder resting control mode is currently in progress, the process proceeds to step S12.
[0025]
In step S12, it is determined whether or not the cylinder deactivation cylinder group in the cylinder deactivation operation performed last time is one cylinder group (# 1, # 4 cylinder group). If the determination result is true (Yes) and it is determined that the previous cylinder resting cylinder group is the # 1, # 4 cylinder group, the process proceeds to step S14. On the other hand, if the determination result is false (No) and it is determined that the previous cylinder-cylinder group is not # 1, # 4 cylinder group but # 2, # 3 cylinder group, the process proceeds to step S20. .
[0026]
That is, in step S12, the cylinder group in which the cylinder is deactivated is switched alternately (cylinderless cylinder group switching means).
In step S14, the cylinder resting operation is performed for the other cylinder groups (# 2, # 3 cylinder group). That is, the cylinder resting operation is performed for the # 2 and # 3 cylinder groups different from the cylinder group that has been previously deactivated, and the combustion operation is performed only for the # 1 and # 4 cylinder groups.
[0027]
In step S16, an error e # between the predetermined air-fuel ratio (theoretical air-fuel ratio) that is the target of the F / B correction and the current average exhaust air-fuel ratio, that is, the current average exhaust air-fuel ratio for the # 1 and # 4 cylinder groups. 1 and 4 are detected.
In step S18, the supplied fuel amount of the # 1, # 4 cylinder group (# 1 cylinder and # 4 cylinder) is corrected based on the error e # 1, 4 thus detected, and the corrected supplied fuel is corrected. The quantity, that is, the combustion air-fuel ratio is stored and learned (combustion air-fuel ratio learning means).
[0028]
On the other hand, in step S20, the cylinder resting operation is performed for one cylinder group (# 1, # 4 cylinder group). That is, the cylinder resting operation is performed for the # 1 and # 4 cylinder groups that are different from the cylinder group that was previously deactivated, and the combustion operation is performed only for the # 2 and # 3 cylinder groups.
In step S22, an error e # 2, 3 between the predetermined air-fuel ratio that is the target of F / B correction and the current average exhaust air-fuel ratio, that is, the current average exhaust air-fuel ratio for the # 2 and # 3 cylinder groups is detected. To do.
[0029]
In step S24, the supplied fuel amount of the # 2, # 3 cylinder group (# 2 cylinder and # 3 cylinder) is corrected based on the error e # 2, 3 detected in this way, and the corrected supplied fuel is corrected. The quantity, that is, the combustion air-fuel ratio is stored and learned (combustion air-fuel ratio learning means).
That is, referring to FIG. 4, the output value of LAFS 29 in the order of combustion cylinders (for example, # 1 → # 4 or # 2 → # 3) when F / B correction is performed and cylinder resting operation is performed (ie, The time variation of the exhaust air / fuel ratio is shown in a time chart, in which the target predetermined air / fuel ratio (theoretical air / fuel ratio) is indicated by a solid line, and the average exhaust air / fuel ratio before learning is indicated by a broken line. However, the difference between the predetermined air-fuel ratio (solid line) and the average exhaust air-fuel ratio (broken line) is obtained as an error e # 1, 4 (or error e # 2, 3), and the error e # 1,4 Based on (or error e # 2, 3), the amount of supplied fuel is corrected for each cylinder group (# 1, # 4 cylinder group and # 2, # 3 cylinder group). Then, the corrected supplied fuel amount, that is, the combustion air-fuel ratio is stored and learned for each cylinder group.
[0030]
As a result, the exhaust air-fuel ratio in the collecting pipe 22a corresponding to the # 1, # 4 cylinder group and the exhaust air-fuel ratio in the collecting pipe 22b corresponding to the # 2, # 3 cylinder group become appropriate, and the cylinder groups The exhaust air-fuel ratio flowing into the MCCs 24 and 26 can be leveled while reducing the cost by one LAFS 29. Therefore, in the MCCs 24 and 26, the harmful substances in the exhaust can always be effectively catalyzed and purified. In addition, since the air-fuel ratio feedback control can be always properly performed as a whole, the engine output can be stabilized and the fuel consumption can be improved.
[0031]
Referring to FIG. 5, a control routine for cylinder group-specific A / F learning control according to another embodiment of the present invention is shown in a flowchart, and the other embodiments will be described below along the flowchart. Note that the same steps as those in FIG. 3 are denoted by the same reference numerals and description thereof is omitted, and only portions different from the above embodiment are described here.
[0032]
In step S12a through step S1 and step S10, it is determined whether or not the cylinder rest duration t # 2, 3 for the other cylinder groups (# 2, # 3 cylinder group) is equal to or shorter than a predetermined time t1. If the determination result is true (Yes), that is, if the idle cylinder group is the # 2, # 3 cylinder group and the idle cylinder continuation time t # 2, 3 is equal to or shorter than the predetermined time t1, the process proceeds to step S14 '. . On the other hand, when the determination result is false (No), that is, when the idle cylinder group is not the # 2, # 3 cylinder group, or when the idle cylinder group is the # 2, # 3 cylinder group, the idle cylinder continuing time t # If 2, 3 exceeds the predetermined time t1, the process proceeds to step S12b.
[0033]
In step S12b, it is determined whether or not the cylinder deactivation duration t # 1,4 for one cylinder group (# 1, # 4 cylinder group) is equal to or shorter than a predetermined time t1. If the determination result is true (Yes), that is, if the idle cylinder group is # 1, # 4 cylinder group, and the idle cylinder continuation time t # 1, 4 is equal to or less than the predetermined time t1, the process proceeds to step S20 ′. . On the other hand, if the determination result is false (No), the process proceeds to step S14 ′.
[0034]
That is, in these steps S12a and S12b, the cylinder group in which the cylinder is idled is switched between the # 1, # 4 cylinder group, and the # 2, # 3 cylinder group at every predetermined time t1 (the cylinder cylinder is deactivated). Group switching means).
In step S14 ′, the cylinder resting operation is performed for the other cylinder groups (# 2 and # 3 cylinder groups). Thereafter, in the same manner as described above, in step S16, the predetermined air-fuel ratio (theoretical Fuel ratio) and the average exhaust air-fuel ratio before learning for the # 1, # 4 cylinder group is detected, and in step S18, # 1, # 4 are determined based on the error e # 1,4. The supply fuel amount of the cylinder group (# 1 cylinder and # 4 cylinder) is corrected, and the corrected supply fuel amount, that is, the combustion air-fuel ratio is stored and learned (combustion air-fuel ratio learning means). In step S14 ', at the first execution (immediately after t # 1,4 = t1), the cylinder resting durations t # 1,4 of the # 1 and # 4 cylinder groups are reset, and the next ## 1. Prepare for cylinder deactivation in the # 4 cylinder group.
[0035]
On the other hand, in step S20 ′, the cylinder resting operation is performed for one cylinder group (# 1, # 4 cylinder group), and thereafter, in the same manner as described above, in step S22, the predetermined air-fuel ratio which is the target of F / B correction and # 2 , The error e # 2,3 with respect to the average exhaust air-fuel ratio before learning for the # 3 cylinder group is detected, and in step S24, based on the error e # 2,3, the # 2, # 3 cylinder group (# 2 Cylinder and # 3 cylinder) are corrected, and the corrected supply fuel amount, that is, the combustion air-fuel ratio is stored and learned (combustion air-fuel ratio learning means). As in step S14 ′, in step S20 ′, when the first execution is performed (immediately after t # 2,3 = t1), the cylinder suspension durations t # 2,3 of the # 2, # 3 cylinder groups are set. Reset to prepare for the next cylinder suspension operation of the # 2, # 3 cylinder group.
[0036]
That is, in the other embodiment, the dead cylinder period of the # 1, # 4 cylinder group and the dead cylinder period of the # 2, # 3 cylinder group, that is, the # 1, # 4 cylinder group and the # 2, # 3 cylinder group. Each learning period is secured in a balanced manner.
As a result, as described above, the exhaust air-fuel ratio in the collecting pipe 22a corresponding to the # 1, # 4 cylinder group and the exhaust air-fuel ratio in the collecting pipe 22b corresponding to the # 2, # 3 cylinder group become appropriate. The variation in the exhaust air-fuel ratio among the cylinder groups is suppressed, and the exhaust air-fuel ratio flowing into the MCCs 24, 26 can be leveled while reducing the cost by one LAFS 29. The harmful substances in the exhaust gas in the MCCs 24, 26 can be achieved. Can always be effectively catalyzed and purified.
[0037]
The description of the embodiment is finished as above, but the present invention is not limited to the above embodiment.
For example, in the above embodiment, the LAFS 29 is used as the exhaust sensor, but an O 2 sensor may be used.
In the above embodiment, a cylinder injection type spark ignition type four-cycle four-cylinder gasoline engine is used as the engine 1, but an intake pipe injection type gasoline engine, a two-cycle gasoline engine, a multi-cylinder engine other than the four-cylinder engine, etc. Even so, the present invention can be applied satisfactorily.
[0038]
In the above-described embodiment, the # 1, # 4 cylinder group and the # 2, # 3 cylinder group are alternately rested, but only one of them may be rested. In this case, although the learning accuracy is lowered, only one type of cylinder resting system is required, and an advantage of cost reduction is obtained.
[0039]
【The invention's effect】
As described above in detail, according to the air-fuel ratio control apparatus for a multi-cylinder internal combustion engine according to claim 1 of the present invention, for example, a dual exhaust manifold system is adopted for a multi-cylinder internal combustion engine (for example, a 4-cylinder engine). In an air-fuel ratio control apparatus for a multi-cylinder internal combustion engine in which a catalytic converter is provided in parallel in each of a plurality of exhaust passages of an exhaust manifold system and a cylinder-cylinder operation can be performed for each of the plurality of exhaust passages, that is, for each cylinder group, a set of a plurality of exhaust passages A single exhaust sensor is provided in the unit, and the feedback correction of the combustion air-fuel ratio is performed based on the exhaust air-fuel ratio information from the one exhaust sensor, and the cylinder group that performs the cylinder resting operation is switched for each cylinder group according to the operating state. A cylinder idle operation is performed, and at this time, based on the combustion air-fuel ratio of the combustion cylinder group that is feedback-corrected by the exhaust air-fuel ratio information from the one exhaust sensor. Since the combustion air-fuel ratio is learned for each cylinder group, the combustion air-fuel ratio for each cylinder group is optimized even if only one exhaust sensor is provided in the aggregate portion of the plurality of exhaust passages. Thus, the exhaust air / fuel ratio flowing into each catalytic converter can be leveled reliably, and the air / fuel ratio feedback control can be properly performed as a whole. As a result, in each catalytic converter provided in the plurality of exhaust passages of the dual exhaust manifold system, harmful substances in the exhaust can always be effectively catalyzed.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an air-fuel ratio control apparatus for a multi-cylinder internal combustion engine according to the present invention.
FIG. 2 is a diagram showing a dual type exhaust manifold system according to the present invention.
FIG. 3 is a flowchart showing a control routine of A / F learning control by cylinder group according to the present invention.
FIG. 4 shows LAFS output values (ie, exhaust air-fuel ratio) in the order of combustion cylinders (for example, # 1 → # 4 or # 2 → # 3) when F / B correction is performed and cylinder resting operation is performed. It is a time chart which shows the time change of.
FIG. 5 is a flowchart showing a control routine of A / F learning control by cylinder group according to another embodiment of the present invention.
[Explanation of symbols]
1 Engine 6 Fuel Injection Valve 20 Exhaust Manifolds 22a and 22b Collecting Pipes (Multiple Exhaust Paths)
24, 26 Three-way catalyst (MCC)
27 Aggregation part 29 Linear air-fuel ratio sensor (exhaust sensor, LAFS)
30 Three-way catalyst (UCC)
60 Electronic control unit (ECU)
62 Crank angle sensor

Claims (1)

多気筒内燃機関の各気筒のうち燃焼の連続しない複数の気筒からなる気筒群毎に設けられた複数の排気通路と、
前記複数の排気通路にそれぞれ配設された複数の触媒コンバータと、
排気流方向でみて前記複数の触媒コンバータよりも下流の前記複数の排気通路の集合部に設けられ、排気空燃比を検出する排気センサと、
前記排気センサにより検出される排気空燃比情報に基づき、平均排気空燃比が所定空燃比となるよう燃焼空燃比をフィードバック補正する燃焼空燃比制御手段と、
運転状態に応じて前記気筒群毎に前記複数の気筒の少なくとも排気弁を閉弁するとともに燃料供給を停止して休筒運転を行う休筒手段と、
前記休筒手段により休筒運転を行う気筒群を順次切り換える休筒気筒群切換手段と、
前記燃焼空燃比制御手段によりフィードバック補正を行い且つ前記休筒手段により休筒運転を行うとき、該燃焼空燃比制御手段によりフィードバック補正した燃焼気筒群の燃焼空燃比を気筒群毎に記憶し学習する燃焼空燃比学習手段と、
を備えることを特徴とする多気筒内燃機関の空燃比制御装置。
A plurality of exhaust passages provided for each cylinder group consisting of a plurality of cylinders in which combustion does not continue among the cylinders of the multi-cylinder internal combustion engine;
A plurality of catalytic converters respectively disposed in the plurality of exhaust passages;
An exhaust sensor that detects an exhaust air-fuel ratio, provided in a collective portion of the plurality of exhaust passages downstream from the plurality of catalytic converters in the exhaust flow direction;
Combustion air-fuel ratio control means for feedback correcting the combustion air-fuel ratio based on the exhaust air-fuel ratio information detected by the exhaust sensor so that the average exhaust air-fuel ratio becomes a predetermined air-fuel ratio;
A cylinder resting means for closing the at least the exhaust valves of the plurality of cylinders for each cylinder group according to the operating state and stopping the fuel supply to perform the cylinder resting operation;
A cylinder-cylinder group switching unit that sequentially switches cylinder groups that perform cylinder-cylinder operation by the cylinder-stopping unit;
When the feedback correction is performed by the combustion air-fuel ratio control means and the cylinder resting operation is performed by the cylinder resting means, the combustion air-fuel ratio of the combustion cylinder group feedback-corrected by the combustion air-fuel ratio control means is stored and learned for each cylinder group. Combustion air-fuel ratio learning means;
An air-fuel ratio control apparatus for a multi-cylinder internal combustion engine.
JP2001331271A 2001-10-29 2001-10-29 Air-fuel ratio control device for multi-cylinder internal combustion engine Expired - Fee Related JP3912488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001331271A JP3912488B2 (en) 2001-10-29 2001-10-29 Air-fuel ratio control device for multi-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001331271A JP3912488B2 (en) 2001-10-29 2001-10-29 Air-fuel ratio control device for multi-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003138963A JP2003138963A (en) 2003-05-14
JP3912488B2 true JP3912488B2 (en) 2007-05-09

Family

ID=19146878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001331271A Expired - Fee Related JP3912488B2 (en) 2001-10-29 2001-10-29 Air-fuel ratio control device for multi-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP3912488B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250034A (en) * 2008-04-01 2009-10-29 Honda Motor Co Ltd Fuel pressure control device of internal combustion engine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128110A (en) * 2006-11-21 2008-06-05 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP6206653B2 (en) * 2013-08-12 2017-10-04 スズキ株式会社 Engine control device
KR101704206B1 (en) * 2015-06-02 2017-02-07 현대오트론 주식회사 Method and apparatus for controlling cylinder deactivation pattern of engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250034A (en) * 2008-04-01 2009-10-29 Honda Motor Co Ltd Fuel pressure control device of internal combustion engine

Also Published As

Publication number Publication date
JP2003138963A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
US8620564B2 (en) Abnormality detection apparatus and abnormality detection method for multi-cylinder internal combustion engine
CN108240265B (en) Control device for internal combustion engine
JP4106529B2 (en) Exhaust purification device for multi-cylinder internal combustion engine
JP3912488B2 (en) Air-fuel ratio control device for multi-cylinder internal combustion engine
US8448425B2 (en) Engine system and a method for a regeneration of an exhaust gas treatment device in such a system
EP1043490B1 (en) Direct-injection internal combustion engine and method for controlling the engine
JP2000097088A (en) Fuel injection amount control device of internal- combustion engine
JP2003138962A (en) Air/fuel ratio control device of multi-cylinder internal combustion engine
US8833150B2 (en) Apparatus and method for detecting abnormality of imbalance of air-fuel ratios among cylinders
JP2005140041A (en) Air/fuel ratio control device for internal combustion engine
JP2000170560A (en) Intake and exhaust controller for cylinder stop engine
JP2013002299A (en) Device for detecting abnormal air-fuel ratio variation between cylinders of multi-cylinder internal combustion engine
JP4240083B2 (en) In-cylinder injection spark ignition internal combustion engine control device
JP2910513B2 (en) Exhaust purification system for multi-cylinder engine
JP2011012687A (en) Engine torque control device
JP3161248B2 (en) Air-fuel ratio control device for internal combustion engine with EGR device
JPS62178740A (en) Exhaust gas purifying device for multicylinder engine
JP2017150457A (en) Control device of internal combustion engine
JP3951852B2 (en) Engine control device
JP4123093B2 (en) Fuel injection control device for internal combustion engine
JPH077568Y2 (en) Engine controller
JP2002155738A (en) Exhaust emission control device of internal combustion engine
JP2024005172A (en) Method and device for controlling warming-up of three-way catalyst
JP5625758B2 (en) Control device for multi-cylinder internal combustion engine
JP3951855B2 (en) Control device for spark ignition engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees