JP3903899B2 - Method for producing copper alloy conductor for train line and copper alloy conductor for train line - Google Patents
Method for producing copper alloy conductor for train line and copper alloy conductor for train line Download PDFInfo
- Publication number
- JP3903899B2 JP3903899B2 JP2002302786A JP2002302786A JP3903899B2 JP 3903899 B2 JP3903899 B2 JP 3903899B2 JP 2002302786 A JP2002302786 A JP 2002302786A JP 2002302786 A JP2002302786 A JP 2002302786A JP 3903899 B2 JP3903899 B2 JP 3903899B2
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- wire
- train
- alloy conductor
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Metal Extraction Processes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、パンタグラフ等を介して電車に給電を行う電車線(トロリ線)用銅合金導体の製造方法及び電車線用銅合金導体に関するものである。
【0002】
【従来の技術】
電車線(トロリ線)用銅合金導体には、導電率が高い硬銅線または耐摩耗性、耐熱性を有する銅合金材(銅合金線)が使用されている。銅合金材としては、銅母材に錫(Sn)を添加し、そのSnの含有量を0.3重量%に調整したものが主流であり、新幹線を始めとする架線に採用されている。
【0003】
近年では、電車の高速化が進められており、電車線の架線張力を高める必要があるので、電車線は1.5t張力架線から2.0t張力架線に変更されている。そこで、これらの高張力架線に耐えうる高強度の電車線用銅合金導体が求められてきている。
【0004】
高強度の電車線用銅合金導体としては、析出強化型合金を使用したものが製品化されている。また、Cu−Sn合金系のような固溶強化型合金を使用したものがある。
【0005】
固溶強化型合金を使用した従来のトロリ線の製造方法としては、Snを0.4乃至0.7重量%含有した銅合金の鋳造材を、700℃以上の温度で熱間圧延して圧延材とし、この圧延材を500℃以下の温度で仕上げ圧延して荒引線とし、この荒引線を伸線加工してトロリ線を製造する方法がある(例えば、特許文献1参照。)。
【0006】
【特許文献1】
特開平6−240426号公報(表1)
【0007】
【発明が解決しようとする課題】
しかしながら、析出強化型合金を使用したものは、材料ロットが小さく、しかも中間工程において熱処理を行うなど、作業性が悪いばかりか製造コストが高いなどのデメリットがある。したがって、電車線のように5年寿命の消耗製品には不向きである。
【0008】
また、固溶強化型合金を使用したものは、Sn含有量を多くすればするほど強度向上を図ることができるが、その反面、極端に導電率が低下してしまい、電流容量の低下が避けられないので、やはり電車線としては不向きである。現状のSn合金系でSn含有量を多くして、必要な導電性を損なうことなく、高張力架線に必要な強度を有するものを製造することは非常に困難である。
【0009】
特許文献1に記載された高強度銅合金トロリ線の製造方法では、添加元素がSnだけなので、仕上げ圧延を500℃以下の圧延温度で行って必要な強度を得ているが、Snの含有量が0.4乃至0.7重量%と多いので、強度は高いものの導電率は低くなってしまう。
【0010】
高強度かつ高導電率の電車線を得るためには、Snと共にさらに別の元素を添加することが考えられる。この場合、仕上げ圧延(最終圧延)を500℃以下の温度で行うと、圧延時に圧延材の割れが多くなるので、荒引線の外観品質が極端に低下し、延いては電車線の強度が極端に低下するという問題がある。
【0011】
そこで、本発明の目的は、上記課題を解決し、高導電率かつ高強度の電車線用銅合金導体を提供することにある。
【0012】
【課題を解決するための手段】
本発明は上記目的を達成するために創案されたものであり、請求項1の発明は銅母材に対し、錫及びインジウムを添加して溶解を行い、銅合金は、錫及びインジウムとを合計で0.15〜0.8重量%含有し、残部が銅及び不可避的不純物からなる銅合金の溶湯を形成し、前記溶湯を所定の温度で鋳造した鋳造材に熱間圧延加工を多段に施して荒引線にし、その荒引線に冷間加工を施して電車線用銅合金導体を製造する方法において、上記鋳造温度を800℃〜900℃とし、かつ、上記熱間圧延加工の最終圧延を、500℃を超え600℃以下の圧延温度で行うことを特徴とする電車線用銅合金導体の製造方法である。
【0013】
請求項2の発明は、上記銅母材は、酸素含有量が0.01〜0.1重量%である請求項1記載の電車線用銅合金導体の製造方法である。
【0014】
請求項3の発明は、上記銅母材に、上記添加元素と共にさらにリンを添加し、そのリンの含有量を2〜40ppmに調整した請求項2記載の電車線用銅合金導体の製造方法である。
【0015】
請求項4の発明は、上記銅合金材に、上記荒引線の線径が8〜30mmとなるように熱間圧延加工を多段に施す請求項1〜3いずれかに記載の電車線用銅合金導体の製造方法である。
【0016】
請求項5の発明は、上記冷間加工は、加工度を50%以上とし、かつ線材温度が100℃以下となるように冷間加工装置の冷却を行う請求項1〜4いずれかに記載の電車線用銅合金導体の製造方法である。
【0017】
請求項6の発明は、請求項1〜5のいずれかに記載された製造方法を用いて作製した電車線用銅合金導体である。
【0018】
【発明の実施の形態】
以下、本発明の好適実施の形態を添付図面にしたがって説明する。
【0019】
図1は、本発明の好適実施の形態である電車線用銅合金導体の製造方法の工程を示すフローチャートである。
【0020】
図1に示すように本発明に係る電車線(トロリ線)用銅合金導体の製造方法は、銅母材に添加元素を添加して溶解し、銅合金の溶湯にする溶解工程(F1)と、銅合金の溶湯を鋳造して鋳造材にする鋳造工程(F2)と、その鋳造材に熱間圧延加工を多段に施して圧延材にする熱間圧延工程(F3)と、その圧延材を洗浄し巻取って荒引線にする洗浄・巻取り工程(F4)と、巻き取った荒引線を送り出し、その荒引線に冷間加工を施して電車線用銅合金導体にする冷間(伸線)加工工程(F5)とを有している。電車線用銅合金導体は、その後用途に応じた所望形状の電車線に加工される。
【0021】
溶解工程(F1)から洗浄・巻取り工程(F4)までは、既存または慣用の連続鋳造圧延設備を用いて行う。また、冷間加工工程(F5)は、既存または慣用の冷間加工装置を用いて行う。
【0022】
より詳細に説明すると、溶解工程(F1)は、酸素含有量が0.01〜0.1重量%の銅母材に、錫(Sn)、インジウム(In)の二種を添加し、その添加元素の含有量を0.15〜0.8重量%に調整して溶解し、銅合金の溶湯にする工程である。
【0023】
添加元素のInとAgは、Snと同じように強度を向上させる元素であり、Snよりも導電率の低下が少ない特徴がある。よって、本実施の形態では、Snの含有量を0.4重量%未満とし、Inの含有量を増やし、導電率の低下を避けるようにしている。
【0024】
例えば、SnとInの総含有量が0.15重量%未満では、製造条件を変えても強度向上の効果は認められない。また、SnとInの総含有量が0.8重量%を超えると、材料の変形抵抗が高くなるので、連続鋳造圧延設備における負荷が大きくなるばかりか、電車線としての最低導電率である60%を確保できなくなる。したがって、本実施の形態では、SnとInの総含有量を0.15〜0.8重量%の範囲で適切に調整することにより、実施例で後述するように、強度を向上させると共に導電率を60%IACS〜90%IACSの範囲で自在に調整することが可能である。
【0025】
また、添加元素の含有量が多くなると熱間圧延加工時における銅線表面傷が多くなる傾向にある。よって、添加元素の含有量が多い場合(例えば0.5重量%以上)には、その熱間圧延加工時の銅線表面傷を減少させるため、銅母材に、上記添加元素(例えばSnとIn)と共にさらにリン(P)を添加し、そのPの含有量を2〜40ppmに調整して溶解し、銅合金の溶湯にする。Pの含有量が2ppm未満では銅線表面傷を低減させる効果はあまり認められず、Pの含有量が40ppmを超えると導電率が低下してしまう。
【0026】
鋳造工程(F2)は、銅合金の溶湯を、通常の鋳造温度(900℃を超え1100℃未満)よりも低い800℃〜900℃の鋳造温度で鋳造して鋳造材にする工程である。
【0027】
熱間圧延工程(F3)は、鋳造材に、圧延初期は700℃〜800℃の圧延温度で熱間圧延加工を施し、最終圧延は500℃を超え600℃以下の圧延温度で熱間加工を施して圧延材にする工程である。熱間圧延加工は、荒引線の強度を高めるために、加工度を80%〜90%となるようにしている。
【0028】
銅合金の溶湯を800℃〜900℃の低温で鋳造し、しかも最終圧延を500℃を超え600℃以下の低温条件で熱間圧延加工することにより、荒引線の組織を微細化することができ、線材強度を向上させることが可能である。
【0029】
例えば、低温鋳造で最終圧延が620℃の圧延温度では、荒引線の組織の微細化が認められず、大幅な機械的強度の向上は認められなかった。これに対し、最終圧延の圧延温度が500℃以下の低温では、Sn、Inの含有量が多く、しかも含有元素が三元素になると、圧延時の割れが多くなり、荒引線の外観品質が極端に低下する。よって、最終圧延の圧延温度は500℃を超え〜600℃以下が最適である。
【0030】
洗浄・巻取り工程(F4)は、圧延材を洗浄し巻き取って荒引線にする工程である。巻き取った荒引線の線径φは、例えば、8〜30mmとなるように、より好ましくは22〜25mmとなるようにしている。
【0031】
冷間加工工程(F5)は、巻き取った荒引線を送り出し、その荒引線に、加工度を50%以上とし、かつ連続伸線時における加工熱による強度低下の影響をより少なくするため、線材温度が100℃以下となるようにダイスなどの冷間加工装置の冷却を行う冷間加工を施して、電車線用銅合金導体にする工程である。
【0032】
電車線の強度を向上させるためには、熱間圧延加工での加工度を高めて荒引線の強度を向上させる必要があると共に、冷間加工における加工度も50%以上を確保する必要がある。
【0033】
これらの条件を満たす荒引線の線径φは、上述したように22〜25mmが最適である。線径φが25mmを超えると、つまり熱間圧延加工での加工度が小さいと、電車線に加工した際の大きな強度向上が得られなくなると共に、冷間加工時の加工硬化によって伸び特性が低下するためである。
【0034】
電車線用銅合金導体は、その後用途に応じた所望形状の電車線、例えば、図2に示すような電車線21に加工される。電車線21は、電車線本体22の両側部にハンガイヤー取付用のイヤ溝23a,23bが形成されている。電車線本体22の下側の外周面は、電車のパンタグラフが摺動する部位である大弧面24である。電車線本体22の上側の外周面は小弧面25である。電車線21の断面積は110mm2 〜170mm2 である。
【0035】
以上説明した本発明に係る電車線用銅合金導体の製造方法を用いれば、後述する実施例で明らかになるように、導電率が60%IACS以上の高導電率であり、かつ高張力架線で必要とされる引張強度が420MPa以上の高強度の電車線を製造できる。
【0036】
このように、本発明に係る電車線用銅合金導体の製造方法は、銅母材に、Sn、Inの二種を添加し、その添加元素の含有量を0.15〜0.8重量%に調整して銅合金の溶湯にし、その溶湯を低温鋳造(鋳造温度が800〜900℃)と、低温圧延加工(最終圧延温度が500℃を超え600℃以下)とによって高強度の荒引線にし、その荒引線に加工熱を抑えた冷間加工を施しているので、導電率の大幅な低下を招くことなく高い引張強度を有する電車線を得ることができる。
【0037】
また、本発明に係る製造方法は、既存あるいは慣用の製造コストが低い連続鋳造圧延設備や冷間加工装置を使用できるので、高導電率かつ高強度の電車線を低コストで製造できる。
【0038】
本発明に係る製造方法の特徴の一つは、実施例で後述するように、銅母材に添加するSnの含有量を、現状と同じあるいは特許文献1に記載された高強度銅合金トロリー線の製造方法よりも少ない値(0.3重量%)に調整したにもかかわらず、低温鋳造と低温圧延加工によって荒引線の組織を微細化することで、高導電率かつ高強度の電車線用銅合金導体を低コストで製造することにある。これは、銅母材に添加するSnの含有量を多くすると、強度が高くなるものの、導電率が低下したりコストが高くなったりする点を考慮したからである。
【0039】
【実施例】
本発明の効果を検証するために、添加元素の含有率を様々に変え、図2で説明した数種の電車線21を作製し、その引張強度(MPa)と、導電率(%IACS)と、外観との三つの特性を調べた。電車線21に加工する前の荒引線の線径φは23mmとし、電車線21の断面積は170mm2 (170SQ)とした。目標の導電率は60%IACS以上、かつ引張強度は420MPa以上とした。
(試料1〜12)
試料1〜12は、いずれも銅母材に添加するSn含有量を0.3重量%に固定した。これは、現状のCu−Sn系合金を用いた電車線と同じである。
【0040】
試料1〜4は、いずれも銅母材に添加するIn含有量を0.1重量%とし、銅母材の酸素(O2 )含有量をそれぞれ10,50,340,1000ppmとした。重量%は、ほぼ1/10000ppmである。試料5,6は、いずれもIn含有量を0.2重量%とし、銅母材にSn,Inと共に添加するP含有量をそれぞれ0,2ppmとし、銅母材の酸素含有量をそれぞれ400,320ppmとした。試料7は、In含有量を0.3重量%、P含有量を10ppm、O2 含有量を380ppmとした。試料8は、In含有量を0.4重量%、P含有量を21ppm、O2 含有量を380ppmとした。試料9〜11は、いずれもIn含有量を0.5重量%とし、P含有量をそれぞれ38,51ppm,1ppm以下とし、O2 含有量をそれぞれ400,387,410ppmとした。試料12は、In含有量を0.6重量%とした。その特性結果を表1に示す。
【0041】
【表1】
【0042】
表1に示すように、試料1〜11は、In含有量が0.1〜0.5重量%なので、In含有量が多いほど引張強度(438〜507MPa)が高く、導電率(84〜62%IACS)が低くなることがわかる。特に、試料8〜11は、Sn含有量が0.3重量%、In含有量が0.4重量%以上なので、高張力架線として最適な500MPa以上となっている。試料9〜11は、SnとInの総含有量が0.8重量%になっているが、導電率が60%IACS以上を確保している。したがって、銅母材にSnと共にInを添加すると、導電率の低下を抑えつつ強度を向上できることがわかる。試料12は、SnとInの総含有量が0.9重量%なので、連続鋳造圧延設備における負荷が大きく、荒引線および電車線の製造は困難あるいは不可であった。
【0043】
また、試料1,2は、銅母材のO2 含有量が低酸素銅ベースと同様の50ppm以下なので、荒引線および電車線の外観に細かな傷が認められた。一方、試料4においては、銅母材のO2 含有量が1000ppmと多くなっているが、荒引線および電車線の外観に細かな傷が若干認められた。したがって、O2 含有量が100〜1000ppm(0.01〜0.1重量%)の銅母材を使用するとよい。
【0044】
さらに、試料5と試料6を比較すると、P含有量が0ppmの試料5は外観が可であったのに対し、P含有量が2ppmの試料6は良となったので、銅母材にSn、Inと共にPを添加すると外観を向上できることがわかる。一方、P含有量が50ppmの試料10は、外観は良となるものの導電率の低下が大きくなった。したがって、銅母材にSn、Inと共にPを添加する場合は、P含有量を2〜40ppmに調整するとよい。
【0045】
次に、鋳造温度と最終圧延温度を様々に変えて線径の異なる荒引線を作製し、その荒引線に冷間加工を施して製造した電車線21の引張強度(MPa)と伸び(%)の特性を調べた。電車線21の断面積は170mm2 (170SQ)とした。目標の引張強度は420MPa以上とした。
【0046】
(参考例1〜3)
参考例1〜3は、いずれも、銅母材に添加するSn含有量を0.3重量%、鋳造温度を通常よりも低温の880℃、最終圧延温度を560℃に固定した。また、参考例1〜3は、荒引線径をそれぞれ23,25,30mmとし、O2 含有量をそれぞれ320,380,410ppmとした。
【0047】
(比較例1〜4)
比較例1〜4は、いずれも銅母材に添加するSn含有量を0.3重量%とした。また、比較例1〜4は、荒引線径をそれぞれ23,23,25,30mmとし、O2 含有量をそれぞれ400,380,380,400ppmとした。比較例2は、鋳造温度を880℃とし、最終圧延温度を380℃とした。比較例1,3,4は、いずれも鋳造温度を通常温度の920℃とし、最終圧延温度を620℃とした。
【0048】
参考例1〜3と比較例1〜4の特性結果を表2に示す。
【0049】
【表2】
【0050】
表2に示すように、荒引線径が23mmの参考例1と比較例1を比較すると、参考例1は、鋳造温度が通常よりも低温の880℃、かつ最終圧延温度が500℃を超え600℃以下の560℃なので、鋳造温度が通常温度の920℃、かつ最終圧延温度が600℃を超える620℃の比較例1よりも、電車線の引張強度が15MPa向上したことがわかる。電車線の伸びは、参考例1と比較例1でほぼ同等である。
【0051】
同様に、荒引線径が同じ参考例2と比較例3、参考例3と比較例4を比較すると、参考例2,3は、比較例3,4よりも電車線の引張強度がそれぞれ18,15MPa向上したことがわかる。電車線の伸びは、参考例2と比較例3、参考例3と比較例4でほぼ同等である。
【0052】
また、参考例1〜3の引張強度を比較するとわかるように、荒引線径を23mmから25mm,30mmと大径化すると、伸線加工の加工度を高めても、引張強度および伸びが徐々に低下する傾向にある。これは、上述したように、荒引線径が25mmを超えると、熱間圧延加工での加工度が小さいことから、電車線に加工した際の大きな強度向上が得られなくなると共に、冷間加工時の加工硬化によって伸び特性が低下するためである。したがって、荒引線の線径は22〜25mmが最適である。
【0053】
比較例2は、鋳造温度が880℃、かつ最終圧延温度が500℃以下の380℃なので、連続鋳造圧延設備の鋳造、圧延加工時の負荷が大きく、電車線の製造が不可能となる。
【0054】
参考例で明らかになったように、本発明に係る電車線用銅合金導体の製造方法は、現状の電車線に使用されているCu−Sn系合金を主体として、銅母材に、Snと共にSnと同等の強度を有するInを適宜添加することで、導電率を高く保ちながら高い引張強度を有する電車線用銅合金導体を低コストで製造できる点に特徴がある。
【0055】
電車線としてのCu−Sn系合金は、高い耐摩耗性能を有しているので、その性能を損なわないために、銅母材に添加するSn含有量は、少なくとも現状と同じ0.15重量%以上が必要である。
【0056】
高張力架線に必要不可欠な引張強度は電車線の摩耗限度を考慮すると420MPa以上、より好ましくは500MPa以上であるので、銅母材にSnと共に添加するIn含有量は0.4重量%以上が最適である。しかし、Inは希少金属であるために高価であり、コストメリットを出すためには、その含有量を最小限にする必要がある。
【0057】
また、銅母材に添加するSnとInの総含有量が0.8重量%を超えると、連続鋳造材の硬度が高くなり、連続鋳造圧延設備の圧延ロールに対する負荷が極端に大きくなってしまい、製品化することが難しくなる。
【0058】
したがって、高導電率かつ高強度の電車線を製造するためには、実施例で言えば試料8,9のように、Sn含有量が0.3重量%、In含有量が0.4重量%もしくは0.5重量%が最適である。
【0059】
連続鋳造圧延加工工程においては、低温鋳造、低温圧延加工を施すことにより、荒引線の組織を微細化することができる。しかし、鋳造圧延時の極端な低温化を図ると、材料の変形抵抗が高くなることによって設備への負荷が大きくなり量産化が困難になる。
【0060】
したがって、参考例で言えば、参考例1,2のように、880℃の低温鋳造とし、最終圧延温度は560℃が最適である。
【0061】
また、銅母材に添加すると、InやAgと同じように高い導電率を保ちつつ強度向上を図れる添加元素としては、例えば、マグネシウム(Mg)、ホウ素(B)がある。例えば、銅合金材として、酸素含有量が0.01〜0.1重量%の銅母材に、Sn、In、Mg、Bのいずれか一種あるいは二種を添加し、その添加元素の含有量を0.15〜0.8重量%に調整したものを使用してもよい。上述した実施例におけるInをMgに置き換えた場合、MgがInよりも安価なので、ほぼ同じ効果が得られると共に、製造コストをさらに低減することが可能となる。
【0062】
上記実施の形態では、鋳造温度を通常の温度よりも低くしたが、鋳造温度を極端に下げた場合、鋳造材に外傷が発生する可能性が高くなるので、鋳造温度を通常の温度で行うようにしてもよい。
【0063】
【発明の効果】
以上説明したことから明らかなように、本発明によれば、次のような優れた効果を発揮する。
【0064】
(1)銅母材に対し、錫及びインジウムを添加して溶解を行い、銅合金は、錫及びインジウムとを合計で0.15〜0.8重量%含有し、残部が銅及び不可避的不純物からなる銅合金の溶湯を形成し、溶湯を所定の温度で鋳造した鋳造材に熱間圧延加工を多段に施して荒引線にし、その荒引線に冷間加工を施して電車線用銅合金導体を製造する方法において、鋳造温度を800℃〜900℃とし、かつ、熱間圧延加工の最終圧延を、500℃を超え600℃以下の圧延温度で行い、低温鋳造、低温圧延加工によって高強度の荒引線にし、その荒引線に加工熱を抑えた冷間加工を施しているので、導電率の大幅な低下を招くことなく高い引張強度を有する電車線を得ることができる。
【0065】
(2)既存あるいは慣用の製造コストが低い連続鋳造圧延設備や冷間加工装置を使用できるので、高導電率かつ高強度の電車線を低コストで製造できる。
【図面の簡単な説明】
【図1】 本発明の好適実施の形態を示すフローチャートである。
【図2】 本発明に係る電車線用銅合金導体の製造方法を用いて作製した電車線の一例を示す断面図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a copper alloy conductor for a train line (trolley wire) that supplies power to a train via a pantograph or the like, and a copper alloy conductor for a train line.
[0002]
[Prior art]
As the copper alloy conductor for train wires (trolley wires), a hard copper wire having high conductivity or a copper alloy material (copper alloy wire) having wear resistance and heat resistance is used. As a copper alloy material, tin (Sn) is added to a copper base material, and the Sn content is adjusted to 0.3% by weight, which is mainly used for an overhead wire including a Shinkansen.
[0003]
In recent years, speeding up of trains has been promoted, and it is necessary to increase the overhead wire tension, so the train wire has been changed from a 1.5 t tension overhead wire to a 2.0 t tension overhead wire. Therefore, there is a demand for a copper alloy conductor for high-strength electric wires that can withstand these high tension overhead wires.
[0004]
As high-strength copper alloy conductors for train wires, products using precipitation-strengthened alloys have been commercialized. There are also those using a solid solution strengthened alloy such as a Cu-Sn alloy system.
[0005]
As a conventional method for producing a trolley wire using a solid solution strengthened alloy, a copper alloy casting material containing 0.4 to 0.7% by weight of Sn is hot-rolled at a temperature of 700 ° C. or more and rolled. There is a method of producing a trolley wire by finishing and rolling the rolled material at a temperature of 500 ° C. or less to obtain a rough drawn wire, and drawing the rough drawn wire.
[0006]
[Patent Document 1]
JP-A-6-240426 (Table 1)
[0007]
[Problems to be solved by the invention]
However, the use of a precipitation strengthened alloy has disadvantages such as a small material lot and heat treatment in an intermediate process, as well as poor workability and high manufacturing costs. Therefore, it is not suitable for a consumable product having a life span of 5 years such as a train line.
[0008]
In addition, in the case of using a solid solution strengthened alloy, the strength can be improved as the Sn content is increased. However, on the other hand, the conductivity is extremely lowered, and the current capacity is not reduced. It is not suitable as a train line because it is not possible. It is very difficult to manufacture a current Sn alloy system having the necessary strength for a high-strength overhead wire without increasing the Sn content and impairing the necessary conductivity.
[0009]
In the manufacturing method of the high-strength copper alloy trolley wire described in
[0010]
In order to obtain a high-strength and high-conductivity train wire, it is conceivable to add another element together with Sn. In this case, if the finish rolling (final rolling) is performed at a temperature of 500 ° C. or less, cracks of the rolled material increase during rolling, so that the appearance quality of the rough drawn wire is extremely lowered, and the strength of the train line is extremely extreme. There is a problem that it drops.
[0011]
Then, the objective of this invention is providing the copper alloy conductor for train wires which solves the said subject and has high electrical conductivity and high intensity | strength.
[0012]
[Means for Solving the Problems]
The present invention was devised in order to achieve the above object, and the invention of
[0013]
The invention of
[0014]
The invention of
[0015]
The invention according to
[0016]
According to a fifth aspect of the present invention, in the cold working, the cold working apparatus is cooled so that the degree of work is 50% or more and the wire temperature is 100 ° C. or lower. It is a manufacturing method of the copper alloy conductor for train lines.
[0017]
The invention of claim 6 is a copper alloy conductor for a train wire produced by using the manufacturing method according to any one of
[0018]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings.
[0019]
FIG. 1 is a flowchart showing the steps of a method for producing a copper alloy conductor for a train line according to a preferred embodiment of the present invention.
[0020]
As shown in FIG. 1, the manufacturing method of the copper alloy conductor for train wires (trolley wires) according to the present invention includes a melting step (F1) of adding an additive element to a copper base material and melting it to form a molten copper alloy. A casting step (F2) for casting a molten copper alloy to form a cast material, a hot rolling step (F3) for subjecting the cast material to hot rolling in multiple stages, and a rolling material, Cleaning and winding process (F4) for cleaning and winding into a rough wire, and sending out the rough wire that has been wound, and cold processing the wire into a copper alloy conductor for train lines (drawn) ) Processing step (F5). The copper alloy conductor for the train line is then processed into a desired shape of the train line according to the application.
[0021]
From the melting step (F1) to the washing / winding step (F4), the existing or conventional continuous casting and rolling equipment is used. The cold working step (F5) is performed using an existing or conventional cold working apparatus.
[0022]
More specifically, in the melting step (F1) , two types of tin (Sn) and indium (In) are added to a copper base material having an oxygen content of 0.01 to 0.1% by weight. In this step, the content of the element is adjusted to 0.15 to 0.8% by weight and dissolved to form a molten copper alloy.
[0023]
The additive elements In and Ag are elements that improve the strength in the same way as Sn, and are characterized by a lower decrease in conductivity than Sn. Therefore, in this embodiment, the Sn content is less than 0.4% by weight, the In content is increased, and a decrease in conductivity is avoided.
[0024]
For example, when the total content of Sn and In is less than 0.15% by weight, the effect of improving the strength is not recognized even if the production conditions are changed. Further, if the total content of Sn and In exceeds 0.8% by weight, the deformation resistance of the material is increased, so that the load in the continuous casting and rolling equipment is increased, and the minimum conductivity as a train line is 60. % Cannot be secured. Therefore, in the present embodiment, by appropriately adjusting the total content of Sn and In within the range of 0.15 to 0.8% by weight, as will be described later in the examples, the strength is improved and the conductivity is increased. Can be freely adjusted in the range of 60% IACS to 90% IACS.
[0025]
Moreover, when the content of the additive element increases, the copper wire surface flaws tend to increase during hot rolling. Therefore, when the content of the additive element is large (for example, 0.5% by weight or more), in order to reduce the surface damage of the copper wire during the hot rolling, the additive element (for example, Sn and Further, phosphorus (P) is added together with In), and the content of P is adjusted to 2 to 40 ppm and dissolved to obtain a molten copper alloy. If the content of P is less than 2 ppm, the effect of reducing the surface scratches on the copper wire is not recognized so much, and if the content of P exceeds 40 ppm, the conductivity decreases.
[0026]
The casting step (F2) is a step of casting a molten copper alloy at a casting temperature of 800 ° C. to 900 ° C. lower than a normal casting temperature (above 900 ° C. and less than 1100 ° C.) to obtain a cast material.
[0027]
In the hot rolling step (F3), the cast material is hot rolled at a rolling temperature of 700 ° C. to 800 ° C. at the initial stage of rolling, and the final rolling is performed at a rolling temperature of over 500 ° C. and 600 ° C. or lower. It is a process of applying to a rolled material. In hot rolling, the degree of work is set to 80% to 90% in order to increase the strength of the rough drawn wire.
[0028]
The structure of the rough drawn wire can be refined by casting a molten copper alloy at a low temperature of 800 ° C. to 900 ° C. and hot-rolling the final rolling under a low temperature condition exceeding 500 ° C. and 600 ° C. or less. It is possible to improve the wire strength.
[0029]
For example, when the final rolling is performed at a low rolling temperature of 620 ° C. in the low-temperature casting, the structure of the rough drawn wire is not refined, and the mechanical strength is not significantly improved. On the other hand, when the rolling temperature of the final rolling is as low as 500 ° C. or less, the content of Sn and In is large, and when the contained elements are three elements, cracks during rolling increase, and the appearance quality of the rough drawn wire is extremely high. To drop. Therefore, the rolling temperature of the final rolling is optimally over 500 ° C to ≦ 600 ° C.
[0030]
The cleaning / winding step (F4) is a step of cleaning and rolling up the rolled material to form a rough drawing line. The wire diameter φ of the wound rough wire is, for example, 8 to 30 mm, more preferably 22 to 25 mm.
[0031]
In the cold working step (F5), the wound wire is sent out, the degree of work is set to 50% or more on the wire, and the influence of strength reduction due to processing heat during continuous wire drawing is reduced. This is a step of performing a cold working for cooling a cold working device such as a die so that the temperature becomes 100 ° C. or lower to obtain a copper alloy conductor for a train line.
[0032]
In order to improve the strength of the train line, it is necessary to increase the workability in the hot rolling process to improve the strength of the rough drawing line, and it is also necessary to ensure the workability in the cold work to be 50% or more. .
[0033]
As described above, the optimum wire diameter φ of the rough drawn wire that satisfies these conditions is 22 to 25 mm. If the wire diameter φ exceeds 25 mm, that is, if the degree of processing in hot rolling is small, it will not be possible to obtain a great improvement in strength when processed into a train wire, and elongation characteristics will deteriorate due to work hardening during cold working. It is to do.
[0034]
Thereafter, the copper alloy conductor for the train line is processed into a train line having a desired shape according to the application, for example, a train line 21 as shown in FIG. In the train line 21, ear grooves 23 a and 23 b for attaching hanger ears are formed on both sides of the
[0035]
If the method for manufacturing a copper alloy conductor for a train wire according to the present invention described above is used, as will be apparent from the examples described later, the conductivity is a high conductivity of 60% IACS or more, and a high tension overhead wire is used. A high-strength electric wire with a required tensile strength of 420 MPa or more can be manufactured.
[0036]
Thus, in the method for producing a copper alloy conductor for train wires according to the present invention, two types of Sn and In are added to the copper base material, and the content of the additive element is 0.15 to 0.8% by weight. It is made into a molten copper alloy, and the molten metal is made into a high strength rough drawn wire by low temperature casting (casting temperature is 800-900 ° C) and low temperature rolling (final rolling temperature is over 500 ° C and below 600 ° C). Since the rough drawing wire is subjected to cold working with reduced processing heat, a train wire having high tensile strength can be obtained without causing a significant decrease in conductivity.
[0037]
In addition, since the production method according to the present invention can use existing or conventional continuous casting and rolling equipment and cold working equipment with low production costs, a high-conductivity and high-strength train line can be produced at low cost.
[0038]
One of the features of the production method according to the present invention is that the content of Sn added to the copper base material is the same as the current state or the high-strength copper alloy trolley wire described in
[0039]
【Example】
In order to verify the effect of the present invention, the content of the additive element was changed in various ways to produce several types of electric wires 21 described with reference to FIG. 2, and the tensile strength (MPa), conductivity (% IACS) The three characteristics of appearance and appearance were examined. The wire diameter φ of the rough wire before being processed into the train line 21 was 23 mm, and the cross-sectional area of the train line 21 was 170 mm 2 (170SQ). The target conductivity was 60% IACS or higher, and the tensile strength was 420 MPa or higher.
(Samples 1-12)
In
[0040]
In each of
[0041]
[Table 1]
[0042]
As shown in Table 1,
[0043]
In
[0044]
Further, when comparing the
[0045]
Next, the drawing wire and the final rolling temperature are changed in various ways to produce rough drawn wires having different wire diameters, and the tensile strength (MPa) and elongation (%) of the train wire 21 manufactured by cold working the rough drawn wire. The characteristics of were investigated. The cross-sectional area of the train line 21 was 170 mm 2 (170SQ). The target tensile strength was 420 MPa or more.
[0046]
( Reference Examples 1-3)
In all of Reference Examples 1 to 3, the Sn content added to the copper base material was fixed at 0.3% by weight, the casting temperature was fixed at 880 ° C., which was lower than usual, and the final rolling temperature was fixed at 560 ° C. In Reference Examples 1 to 3, the rough wire diameters were 23, 25, and 30 mm, respectively, and the O 2 contents were 320, 380, and 410 ppm, respectively.
[0047]
(Comparative Examples 1-4)
In Comparative Examples 1 to 4, the Sn content added to the copper base material was 0.3% by weight. In Comparative Examples 1 to 4, the rough wire diameters were 23, 23, 25, and 30 mm, respectively, and the O 2 contents were 400, 380, 380, and 400 ppm, respectively. In Comparative Example 2, the casting temperature was 880 ° C., and the final rolling temperature was 380 ° C. In Comparative Examples 1, 3 and 4, the casting temperature was 920 ° C., the normal temperature, and the final rolling temperature was 620 ° C.
[0048]
Table 2 shows the characteristic results of Reference Examples 1 to 3 and Comparative Examples 1 to 4.
[0049]
[Table 2]
[0050]
As shown in Table 2, when Reference Example 1 having a rough wire diameter of 23 mm and Comparative Example 1 are compared, Reference Example 1 has a casting temperature of 880 ° C., which is lower than usual, and a final rolling temperature exceeding 500 ° C. and 600 ° C. It can be seen that the tensile strength of the train line is improved by 15 MPa compared to Comparative Example 1 in which the casting temperature is 920 ° C., which is the normal temperature, and the final rolling temperature is 600 ° C., which is 560 ° C., which is 560 ° C. or less. The elongation of the train line is almost the same in Reference Example 1 and Comparative Example 1.
[0051]
Similarly, Comparative Example wire rod diameter the same Reference Example 2 3, Reference Example 3 and a comparison of Comparative Example 4, Reference Examples 2 and 3, the tensile strength of the contact line than Comparative Examples 3 and 4, respectively 18, It turns out that it improved by 15 MPa. The extension of the train line is almost the same in Reference Example 2 and Comparative Example 3, and in Reference Example 3 and Comparative Example 4.
[0052]
In addition, as can be seen by comparing the tensile strengths of Reference Examples 1 to 3, when the diameter of the rough drawing wire is increased from 23 mm to 25 mm and 30 mm, the tensile strength and elongation gradually increase even when the degree of drawing is increased. It tends to decrease. This is because, as described above, if the diameter of the rough wire exceeds 25 mm, the degree of processing in the hot rolling process is small, so that a large strength improvement when processed into a train line cannot be obtained, and at the time of cold processing This is because the elongation characteristics are lowered by the work hardening of the material. Accordingly, the wire diameter of the rough drawn wire is optimally 22 to 25 mm.
[0053]
Since Comparative Example 2 has a casting temperature of 880 ° C. and a final rolling temperature of 380 ° C., which is 500 ° C. or less, the load during casting and rolling of the continuous casting and rolling equipment is large, and it becomes impossible to manufacture a train line.
[0054]
As has been clarified in the reference example, the method for producing a copper alloy conductor for a train line according to the present invention is mainly composed of a Cu-Sn alloy used in a current train line, with a copper base material, together with Sn. It is characterized in that a copper alloy conductor for a train wire having a high tensile strength can be manufactured at a low cost while keeping the conductivity high by appropriately adding In having a strength equivalent to Sn.
[0055]
Since the Cu-Sn alloy as a train wire has high wear resistance, the Sn content added to the copper base material is at least 0.15% by weight as in the current state in order not to impair the performance. The above is necessary.
[0056]
The tensile strength that is indispensable for high-strength overhead wires is 420 MPa or more, more preferably 500 MPa or more, considering the wear limit of train wires. Therefore, the optimum content of In added to the copper base material together with Sn is 0.4% by weight or more. It is. However, since In is a rare metal, it is expensive, and in order to obtain cost merit, it is necessary to minimize its content.
[0057]
Moreover, if the total content of Sn and In added to the copper base material exceeds 0.8% by weight, the hardness of the continuous casting material increases, and the load on the rolling roll of the continuous casting rolling equipment becomes extremely large. , Making it difficult to commercialize.
[0058]
Therefore, in order to produce a high-conductivity and high-strength electric wire, the Sn content is 0.3% by weight and the In content is 0.4% by weight as in the samples 8 and 9 in the examples. Alternatively, 0.5% by weight is optimal.
[0059]
In the continuous casting and rolling process, the structure of the rough drawn wire can be refined by performing low temperature casting and low temperature rolling. However, when the temperature is lowered extremely at the time of casting and rolling, the deformation resistance of the material increases, so that the load on the equipment increases and mass production becomes difficult.
[0060]
Therefore, in the reference example, as in Reference Examples 1 and 2, low temperature casting at 880 ° C. and the final rolling temperature of 560 ° C. is optimal.
[0061]
In addition, when added to a copper base material, examples of additive elements that can improve strength while maintaining high conductivity like In and Ag include magnesium (Mg) and boron (B). For example, as a copper alloy material, one or two of Sn, In, Mg, and B are added to a copper base material having an oxygen content of 0.01 to 0.1% by weight, and the content of the added element You may use what adjusted 0.15 to 0.8 weight%. When In is replaced with Mg in the above-described embodiment, since Mg is less expensive than In, almost the same effect can be obtained and the manufacturing cost can be further reduced.
[0062]
In the above embodiment, the casting temperature is set lower than the normal temperature. However, if the casting temperature is extremely lowered, the casting material is more likely to be damaged. Therefore, the casting temperature is set to the normal temperature. It may be.
[0063]
【The invention's effect】
As is apparent from the above description, according to the present invention, the following excellent effects are exhibited.
[0064]
(1) The copper base material is dissolved by adding tin and indium, and the copper alloy contains 0.15 to 0.8% by weight of tin and indium in total, the balance being copper and inevitable impurities Copper alloy conductors for train wires by forming a copper alloy melt consisting of the above , casting the molten metal at a predetermined temperature, subjecting it to hot rolling in multiple stages to form a rough drawn wire, and subjecting the rough drawn wire to a cold work In this method, the casting temperature is set to 800 ° C. to 900 ° C., and the final rolling of the hot rolling process is performed at a rolling temperature of more than 500 ° C. and not more than 600 ° C., and high strength is achieved by low temperature casting and low temperature rolling process. Since the rough drawn wire is subjected to cold working with reduced processing heat, a train wire having high tensile strength can be obtained without causing a significant decrease in conductivity.
[0065]
(2) Since existing or conventional continuous casting and rolling equipment and cold work equipment with low production costs can be used, high-conductivity and high-strength electric train lines can be produced at low cost.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a preferred embodiment of the present invention.
FIG. 2 is a cross-sectional view showing an example of a train line produced by using the method for producing a copper alloy conductor for a train line according to the present invention.
Claims (6)
上記鋳造温度を800℃〜900℃とし、かつ、上記熱間圧延加工の最終圧延を、500℃を超え600℃以下の圧延温度で行うことを特徴とする電車線用銅合金導体の製造方法。The copper base material is melted by adding tin and indium, and the copper alloy contains 0.15 to 0.8% by weight of tin and indium in total, with the balance being copper and inevitable impurities. A molten alloy is formed, and the cast material obtained by casting the molten metal at a predetermined temperature is subjected to hot rolling in multiple stages to form a rough drawn wire, and the rough drawn wire is subjected to cold working to produce a copper alloy conductor for a train line. In the way to
A method for producing a copper alloy conductor for train wires, wherein the casting temperature is set to 800 ° C to 900 ° C, and the final rolling of the hot rolling process is performed at a rolling temperature of more than 500 ° C and not more than 600 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002302786A JP3903899B2 (en) | 2002-10-17 | 2002-10-17 | Method for producing copper alloy conductor for train line and copper alloy conductor for train line |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002302786A JP3903899B2 (en) | 2002-10-17 | 2002-10-17 | Method for producing copper alloy conductor for train line and copper alloy conductor for train line |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006256608A Division JP4525653B2 (en) | 2006-09-22 | 2006-09-22 | Method for producing copper alloy conductor for train line and copper alloy conductor for train line |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004137551A JP2004137551A (en) | 2004-05-13 |
JP3903899B2 true JP3903899B2 (en) | 2007-04-11 |
Family
ID=32450754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002302786A Expired - Lifetime JP3903899B2 (en) | 2002-10-17 | 2002-10-17 | Method for producing copper alloy conductor for train line and copper alloy conductor for train line |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3903899B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100576141B1 (en) | 2003-03-03 | 2006-05-03 | 삼보신도고교 가부기키가이샤 | Heat Resistant Copper Alloy Material and Manufacturing Method Thereof |
US20050161129A1 (en) | 2003-10-24 | 2005-07-28 | Hitachi Cable, Ltd. | Cu alloy material, method of manufacturing Cu alloy conductor using the same, Cu alloy conductor obtained by the method, and cable or trolley wire using the Cu alloy conductor |
JP5147040B2 (en) * | 2006-06-21 | 2013-02-20 | 日立電線株式会社 | Method for producing copper alloy conductor |
WO2009081664A1 (en) | 2007-12-21 | 2009-07-02 | Mitsubishi Shindoh Co., Ltd. | High-strength highly heat-conductive copper alloy pipe and process for producing the same |
WO2009107586A1 (en) | 2008-02-26 | 2009-09-03 | 三菱伸銅株式会社 | High-strength high-conductive copper wire rod |
US9163300B2 (en) | 2008-03-28 | 2015-10-20 | Mitsubishi Shindoh Co., Ltd. | High strength and high conductivity copper alloy pipe, rod, or wire |
WO2010079707A1 (en) | 2009-01-09 | 2010-07-15 | 三菱伸銅株式会社 | High-strength high-conductivity copper alloy rolled sheet and method for producing same |
WO2010079708A1 (en) | 2009-01-09 | 2010-07-15 | 三菱伸銅株式会社 | High-strength high-conductivity copper alloy rolled sheet and method for producing same |
JP5608993B2 (en) * | 2009-03-18 | 2014-10-22 | 株式会社オートネットワーク技術研究所 | Automotive wire conductors and automotive wires |
JP6549852B2 (en) * | 2015-02-04 | 2019-07-24 | 日立金属株式会社 | Trolley wire |
JP6217874B1 (en) * | 2017-02-14 | 2017-10-25 | 日立金属株式会社 | Trolley wire and overhead wire |
CN111957755B (en) * | 2020-07-20 | 2022-01-11 | 华东交通大学 | Drawing process for dispersion copper alloy |
-
2002
- 2002-10-17 JP JP2002302786A patent/JP3903899B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004137551A (en) | 2004-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5147040B2 (en) | Method for producing copper alloy conductor | |
US9255311B2 (en) | Copper alloy conductor, and trolley wire and cable using same, and copper alloy conductor fabrication method | |
JP5247584B2 (en) | Al alloy and Al alloy conductive wire | |
JP3903899B2 (en) | Method for producing copper alloy conductor for train line and copper alloy conductor for train line | |
JP2006193807A5 (en) | ||
JP4497164B2 (en) | Copper alloy conductor and cable using the same | |
JP4380441B2 (en) | Trolley wire manufacturing method | |
US4861388A (en) | Method for contact conductor for electric vehicles | |
JP3948451B2 (en) | Copper alloy material, method for producing copper alloy conductor using the same, copper alloy conductor obtained by the method, and cable using the same | |
WO2011071097A1 (en) | Power feed body and method for manufacturing same | |
JP2007023305A (en) | Conductor element wire for electric wire for automobile, and its manufacturing method | |
JP4525653B2 (en) | Method for producing copper alloy conductor for train line and copper alloy conductor for train line | |
JP2006307307A (en) | Wiring cable for moving part in robot | |
JP4214394B2 (en) | Abrasion-resistant trolley wire and its manufacturing method | |
JP5659845B2 (en) | Manufacturing method of high conductivity and high strength trolley wire | |
JPH08277447A (en) | Production of conductive aluminum alloy wire | |
JP2007056370A5 (en) | ||
JP4171907B2 (en) | Trolley wire and its manufacturing method | |
JP2006283181A (en) | Contact wire made from abrasion-resistant copper alloy and manufacturing method therefor | |
JP3768899B2 (en) | Precipitation strengthened copper alloy trolley wire and manufacturing method thereof | |
JP2007197764A (en) | Trolley wire of copper alloy and manufacturing method therefor | |
JPH06240426A (en) | Production of high strength copper alloy trolley wire | |
JP2883495B2 (en) | Method of manufacturing copper alloy conductor for electric train wire | |
JPH1096036A (en) | High strength and high conductivity copper alloy wire rod | |
JP7398315B2 (en) | Aluminum alloy wire and electric wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060706 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060725 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060922 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061017 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070101 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3903899 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100119 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110119 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120119 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130119 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140119 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |