Nothing Special   »   [go: up one dir, main page]

JP3999434B2 - Reusable room temperature curable aqueous coating composition - Google Patents

Reusable room temperature curable aqueous coating composition Download PDF

Info

Publication number
JP3999434B2
JP3999434B2 JP2000049480A JP2000049480A JP3999434B2 JP 3999434 B2 JP3999434 B2 JP 3999434B2 JP 2000049480 A JP2000049480 A JP 2000049480A JP 2000049480 A JP2000049480 A JP 2000049480A JP 3999434 B2 JP3999434 B2 JP 3999434B2
Authority
JP
Japan
Prior art keywords
weight
epoxy resin
coating composition
room temperature
aqueous coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000049480A
Other languages
Japanese (ja)
Other versions
JP2001240793A (en
Inventor
誠治 横井
毅 別所
進 日比
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Toyota Motor Corp
Nippon Paint Holdings Co Ltd
Original Assignee
Nippon Paint Co Ltd
Toyota Motor Corp
Nippon Paint Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd, Toyota Motor Corp, Nippon Paint Holdings Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP2000049480A priority Critical patent/JP3999434B2/en
Publication of JP2001240793A publication Critical patent/JP2001240793A/en
Application granted granted Critical
Publication of JP3999434B2 publication Critical patent/JP3999434B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、再利用可能な常温硬化型水性塗料組成物に関する。より詳しくは、本発明は、特定組成の塗料安定性、耐水性および耐食性に優れた常温硬化型水性塗料組成物に関する。
【0002】
【従来の技術】
自動車部品、産業用機械、および農機具等には、プライマーとして、防錆性を有する水性塗料が塗装されているものが多い。このような水性塗料は、耐熱性が弱い被塗物や熱容量が大きな被塗物に適用する場合には、通常、80℃以下で乾燥硬化する必要があり、これらは通常、常温硬化型水性塗料と呼ばれている。
【0003】
上記常温硬化型水性塗料を塗装ブース内においてスプレー塗装すると、被塗物に塗着しない塗料のダストが多く発生する。このような塗料スプレーダストは、塗装ブース内のブース水(捕集液とも呼ぶ)に溶解または分散させて捕集する。このようにして捕集された塗料ダストは、非常に多量になるため、これをそのまま廃棄することは、塗料の損失になると共に、環境汚染の問題にも繋がる。
【0004】
そこで、水性塗料組成物のスプレーダストを、水により捕集した塗料希釈水を逆浸透膜や限外濾過膜に通すことにより、塗料組成物を濃縮して回収し、その後、この濃縮された塗料組成物を、元の水性塗料組成物の不揮発分濃度と同程度となるように再調整した後、再使用する方法が知られている。また、上記濃縮の際に濾液として得られる水性液を再度、塗装ブースに戻してスプレーダストの捕集液として再使用することも提案されている。
【0005】
しかしながら、上記の塗料希釈水から分離された濃縮塗料や濾液は再使用すると、様々な不都合を生じることがある。例えば、回収された濃縮塗料では、揮発分濃度が低下することから、揮発分中の中和アミン量および溶剤量が減少し、塗料組成物中の樹脂の水和安定性の低下による塗料の凝集や分離をもたらすことがある。
【0006】
上記のような不都合をなくす方法として、元の水性塗料組成物中の樹脂の親水性を高め、それにより、再使用における樹脂の水和安定性を高める方法も提案されている。しかしながら、このような方法を利用すると、耐食性や耐水性等の塗料の塗膜性能の低下が生じることがある。
【0007】
【発明が解決しようとする課題】
従って,本発明の目的は、塗料の安定性が良い、耐水性および耐食性に優れた常温硬化型水性塗料組成物を提供することである。
【0008】
【課題を解決するための手段】
本発明は、
(a)酸化重合型変性エポキシ樹脂を水性媒体に分散して得られる、200nm以下の平均粒径を有する、酸価25〜60の酸化重合型変性エポキシ樹脂水性媒体分散体、
(b)両性金属の酸化物、および
(c)ドライヤー
を含有する再利用可能な常温硬化型水性塗料組成物であって、前記成分(a)中の酸化重合型変性エポキシ樹脂が、エポキシ樹脂、不飽和脂肪酸成分および酸基含有アクリル成分を原料とし、前記エポキシ樹脂30〜50重量%を、前記不飽和脂肪酸成分25〜40重量%および前記酸基含有アクリル成分10〜45重量%で変性して得られる樹脂であり、かつ中和剤を用いて、110〜250%の中和率で中和する再利用可能な常温硬化型水性塗料組成物を提供する。
【0009】
本発明は、特定の中和剤(例えば、トリエチルアミンまたはジメチルエタノールアミン)の使用、特定の酸化重合型変性エポキシ樹脂(例えば、ヨウ素価30〜100である酸化重合型変性エポキシ樹脂)の使用、不飽和脂肪酸成分中の共役二重結合を有する不飽和脂肪酸を特定の量(例えば、少なくとも50重量%)、および両性金属の酸化物を酸化重合型変性エポキシ樹脂固形分100重量部に対して特定の量(例えば、0.1〜15重量部)で用いることにより、長期的に再利用できる常温硬化型水性塗料組成物を提供する。
【0010】
【発明の実施の形態】
本発明で用いる酸化重合型変性エポキシ樹脂とは、エポキシ樹脂を、不飽和脂肪酸成分および酸基含有アクリル成分と反応させることにより、不飽和基および酸基を導入することで得られる酸化重合可能なエポキシ樹脂をいう。本発明では、この酸化重合型変性エポキシ樹脂中の酸基を中和した後、水性媒体に分散して得られる分散体の内、酸価25〜60であるものを用いる。好ましい酸価の範囲は25〜55である。酸価が60を超えると耐水性が悪くなり、25より下回ると塗料安定性が悪くなる。
【0011】
この酸化重合型変性エポキシ樹脂は水性媒体中で、粒子形状を保持しているものであり、その平均粒径は200nm以下、好ましくは20nm〜100nm、より好ましくは40〜100nmである。平均粒径が200nmを超えると希釈安定性が劣り、濃縮時に凝集を生ずることがある。100nm以下では、耐水性や耐食性が特に良いので好ましい。平均粒径が20nmよりも小さいと、濾過効率が悪くなる可能性がある。もちろん、平均粒径が20nm以下のものでも使用は可能である。平均粒径の測定は一般に光散乱法と言われているものを用いる。具体的には、樹脂水分散液を脱イオン水により100倍〜1000倍程度に希釈した大希釈溶液を、例えば、大塚電子製ELS−800光散乱測定装置等を用いて行うことで平均粒径を自動的に得ることができる。
【0012】
この酸化重合型変性エポキシ樹脂は、エポキシ樹脂と不飽和脂肪酸成分と酸基含有アクリル成分とを原料として得られるものである。前記原料の合計重量100重量%に対し、エポキシ樹脂は30〜50重量%、不飽和脂肪酸成分は25〜40重量%および酸基含有アクリル成分10〜45重量%である。
【0013】
エポキシ樹脂の原料に占める割合が30重量%よりも少ないと、耐食性が不良となることがある。50重量%を超えると塗料の安定性が悪くなる。
【0014】
不飽和脂肪酸成分の原料に占める割合が25重量%よりも少ないと、硬化が不充分となり、40重量%を超えると塗料の貯蔵安定性が低下する。
【0015】
さらに、酸基含有アクリル成分の原料に占める割合が10重量%よりも少ないと、樹脂の水分散が困難となり、45重量%を超えると防食性が低下する。
【0016】
酸化重合型エポキシ樹脂はヨウ素価が30〜100であるものが好ましく、さらにヨウ素価は35〜90であってもよい。ヨウ素価はJIS K−0070の方法で測定する。ヨウ素価が30よりも少ないと、酸化重合能力が不十分になり、硬化性が悪くなる。逆にヨウ素価が100を超えると、塗料の貯蔵安定性が悪くなる。
【0017】
酸化重合型変性エポキシ樹脂は、前述のようにエポキシ樹脂を不飽和脂肪酸成分および酸基含有アクリル成分と反応させて、不飽和基および酸基を導入したものである。使用しうるエポキシ樹脂としては、例えば、「エピコート828」、「エピコート1001」、「エピコート1002」、「エピコート1004」、「エピコート1007」および「エピコート1009」(いずれもシェル社製、ビスフェノールA型エポキシ樹脂);「エポトートYD−128」、「エポトートYD−011」、「エポトートYD−012」、「エポトートYD−014」、「エポトートYD−017」および「エポトートYD−019」(東都化成社製、ビスフェノールA型エポキシ樹脂);「エポトートST−5700」(東都化成社製、水添ビスフェノールA型エポキシ樹脂)および「エポトートYDF−2004」(東都化成社製、ビスフェノールF型エポキシ樹脂)等の市販のエポキシ樹脂が使用できる。上記エポキシ樹脂は、1種または2種以上を同時に使用してよい。
【0018】
不飽和脂肪酸成分としては、天然または合成系の不飽和脂肪酸がいずれも使用でき、例えば、桐油、アマニ油、ヒマシ油、脱水ヒマシ油、サフラワー油、トール油、大豆油、ヤシ油から得られる不飽和脂肪酸が挙げられる。上記不飽和脂肪酸成分として、不飽和脂肪酸を1種または2種以上を同時に使用することもできる。中でも、共役二重結合を有している不飽和脂肪酸を、上記不飽和脂肪酸成分の少なくとも50重量%含有していることが好ましい。50重量%未満であると、防食性を向上させることが困難となる恐れがある。特に、本発明において、不飽和脂肪酸成分は、共役二重結合を有する不飽和脂肪酸を含有する。本発明における、「共役二重結合を有している不飽和脂肪酸」とは、その不飽和脂肪酸中に共役二重結合を有する脂肪酸化合物が30%以上含まれているものを意味する。これを満たす不飽和脂肪酸の具体例としては、脱水ヒマシ油、ハイジエン(高共役リノール酸)を挙げることができる。
【0019】
酸基含有アクリル成分は、具体的には(メタ)アクリル酸、無水マレイン酸あるいはイタコン酸等の酸基含有アクリルモノマーである。ここで(メタ)アクリル酸は、アクリル酸とメタクリル酸の両方を表わす用語として用いる。酸基含有アクリル成分は、重合性の二重結合であるアクリル基(α,β−不飽和基)を通じて、エポキシ樹脂と不飽和脂肪酸との反応物と重合する。重合に際して、上記酸基含有アクリルモノマー以外に、酸基を含有しない一般のアクリルモノマー、例えばスチレン、(メタ)アクリル酸エステル等のモノマーを加えてもよい。酸基を含有しないアクリルモノマーは、得られる塗膜の硬度の観点から、スチレンが好ましい。
【0020】
酸化重合型変性エポキシ樹脂は、以下のようにして得ることができる。
まずエポキシエステル樹脂を形成する。このエポキシエステル樹脂は上記エポキシ樹脂と不飽和脂肪酸成分とから従来公知の方法で得る。例えば、エポキシ樹脂と不飽和脂肪酸成分とを、例えば、トルエン、キシレン等の適当な溶媒中、縮合触媒を用いて、必要に応じて、窒素ガス等の不活性ガス雰囲気下において、150〜250℃で、所望の酸価となるまで反応させることができる。上記縮合触媒としては、ジブチル錫オキサイドやテトラn−ブチルアンモニウムブロマイド等を用いる。
【0021】
次に、得られたエポキシエステル樹脂を、上記酸基含有アクリル成分と反応させて、酸化重合型変性エポキシ樹脂を得る。エポキシエステル樹脂と上記酸基含有アクリル成分との反応は、重合開始剤の存在下、窒素ガス等の不活性ガス雰囲気下において、80〜150℃の温度範囲で行うことができる。
【0022】
上記反応に使用する重合開始剤としては、過酸化物、アゾ化合物等の当該分野に既知のものがいずれも使用でき、例えば、化薬アクゾ製「カヤブチルB(アルキルパーエステル系)」等を、使用するモノマー合計量に対して0.1〜20重量%の量で使用できる。
【0023】
次に、酸化重合型変性エポキシ樹脂中の酸基を中和剤を用いて、110〜250%好ましくは130〜200%の中和率となるように中和して水性媒体中に分散させる。中和率は、理論的に算出されたものである。即ち、上記酸化重合型変性エポキシ樹脂中の酸基の酸当量の1.1〜2.5倍の塩基当量に相当する量の中和剤を加えて中和することになる。中和率が、110%未満であると、塗料の安定性が不十分であり、250%を超えると、耐水性、耐食性が悪化する恐れがある。
【0024】
上記中和剤としては、アンモニア、モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、モノ−n−プロピルアミン、ジメチル−n−プロピルアミン、モノエタノールアミン、ジメタノールアミン、トリエタノールアミン、N−メチルエタノールアミン、N−メチルジエタノールアミン、ジメチルエタノールアミン、イソプロパノールアミン、ジイソプロパノールアミン等が挙げられる。特にトリエチルアミン、ジメチルエタノールアミン等が好ましい。
【0025】
本発明に用いる両性金属の酸化物は、塩基に対しては酸性、酸に対しては塩基性を示すような酸化物である。具体的には、酸化アルミニウム、酸化亜鉛などが挙げられる。もっとも好ましいのは酸化亜鉛である。この両性金属の酸化物は、好ましくは導電率600μS/cm以下、より好ましくは30μS/cm以下を有する。600μS/cmを超えると塗料の安定性が悪くなる。
【0026】
両性金属の酸化物は基本的に塗膜中で酸基を吸着することで塗膜の耐水性を向上させる。これにより、防錆顔料よりも耐水性や耐食性がよくなる。この両性金属の酸化物の使用量は酸化重合型変性エポキシ樹脂固形分100重量部に対し、0.1〜15重量部、好ましくは1〜15重量部、より好ましくは2〜10重量部である。0.1重量部よりも小さいと、耐水性向上の効果が見られず、15重量部を超えると、塗料の安定性が悪くなる。
【0027】
これら両性金属の酸化物の中には、従来、体質顔料などとして使用されているものも包含するが、体質顔料的な使用をする場合にはその使用量が樹脂固形分100重量部に対し20重量部以上と大きな量で使用するのが一般的であるが、今回のような耐水性や耐食性のための添加剤として用いる場合には、15重量部以下であることが特徴である。
【0028】
本発明の常温硬化型塗料組成物にはドライヤーと言われるものが配合される。ドライヤーとは、常温における酸化乾燥時間を著しく短縮することができる化合物であって、通常は鉛、マンガンまたはコバルトの化合物である。ドライヤーの具体例としては、コバルトドライヤー(例えば、コバルト・ハイドロキュアーII(サン・ノプコ社製)、DICNATE1000W(大日本インキ社製)、Co−NAPHTHENATE5%W(大日本インキ社製)、DICNATE3111(大日本インキ社製))、マンガンドライヤー(例えば、Mn−NAPHTHENATE5%(大日本インキ社製)、Mn−OCTOATE8%(大日本インキ社製))および鉛ドライヤー(例えば、Pb−NAPHTHENATE15%(大日本インキ社製)、Pb−OCTOATE8%(大日本インキ社製))等が挙げられる。ドライヤーの使用量は、従来公知の使用量であってよく、酸化重合型変性エポキシ樹脂固形分100重量部に対し0.01〜5重量部、好ましくは0.01〜2重量部、より好ましくは0.02〜2重量部である。0.01重量部より少ないと、乾燥促進効果が達成されず、5重量部を超えると塗料安定性が悪くなる。
【0029】
本発明の常温硬化型塗料組成物中には他の着色顔料や体質顔料あるいは添加剤として消泡剤、展延剤などを配合することができる。これらの添加剤等の使用量は、特に限定されることはないが、酸化重合型変性エポキシ樹脂固形分100重量部に対し0.01〜200重量部の量で用いることが一般的である。
【0030】
本発明の常温硬化型水性塗料組成物中には水性媒体が含まれている。水性媒体は水を中心とした媒体であるが、水溶性有機溶剤や水溶性有機溶剤と混和可能な有機溶剤、界面活性剤などを使用することができる。
【0031】
本発明の再利用可能な常温硬化型水性塗料組成物は、塗装ブースにおいて通常塗装ガンを用いて塗装される。この時、塗装されなかった塗料は、補集液からなるウオーターカーテンによって回収される。回収された塗料組成物は、限外濾過装置などにより濃縮され、組成や濃度など再調整を行った後に、再び常温硬化型水性塗料組成物として使用される。
【0032】
【実施例】
本発明を実施例によりさらに詳細に説明する。本発明はこれら実施例に限定するものと解してはならない。
【0033】
酸化重合型変性エポキシ樹脂の製造例
エピコートYD−012(東都化成社製、エポキシ樹脂)738.2重量部、脱水ヒマシ油脂肪酸738.2重量部、ジブチル錫オキサイド1.4重量部および循環用キシロール42.0重量部を、反応容器に入れ、窒素ガス雰囲気下において、撹拌しながら、酸価が4.4になるまで、210〜240℃で約6時間縮合反応させた。
【0034】
反応後、ブチルセロソルブを添加して、不揮発分95.7重量%および酸価4.4のエポキシエステル樹脂を得た。
【0035】
上記エポキシエステル樹脂271.2重量部とブチルセロソルブ121.4重量部を反応容器に入れ、140℃に昇温した。この温度において3時間かけて、スチレン54.6重量部、アクリル酸25.2重量部およびカヤブチルB(化薬アクゾ社製、重合開始剤)1.44重量部を滴下した。滴下終了後、0.5時間エージングした。次いで、重合開始剤カヤブチルB(化薬アクゾ社製、重合開始剤)0.16重量部およびブチルセロソルブ91.6重量部を滴下した後、さらに1.5時間エージングすることにより、ヨウ素価60、酸価42.2および不揮発分70重量%の酸化重合型変性エポキシ樹脂を得た。この酸化重合型変性エポキシ樹脂における、各原料の占める割合は、エポキシ樹脂が34重量%、不飽和脂肪酸成分が33重量%、および酸基含有アクリル成分が33重量%であり、不飽和脂肪酸成分中の共役二重結合を有する不飽和脂肪酸の量は100重量%であった。
【0036】
実施例1
上記製造例で得られた酸化重合型変性エポキシ樹脂をトリエチルアミンを用いて理論中和率150%になるように中和した後、水に分散させて不揮発物35重量%のエマルション樹脂を得た。このエマルション樹脂の光散乱粒径は55nmであった。
【0037】
次いで、このエマルション樹脂80.0重量部に、ノプコ8034L(サンノプコ社製、消泡剤)0.1重量部、LMS−300(富士タルク社製、体質顔料)20.0重量部、B−34(堺化学社製、硫酸バリウム)20.0重量部、ミツビシカーボンMA−100(三菱化学社製、カーボンブラック)2.0重量部、ディスパロンNo.501(楠本化成社製、MEKオキシム乾燥防止剤)0.2重量部、DICNATE3111(大日本インキ社製、コバルト系ドライヤー)1.0重量部、酸化亜鉛2.5重量部および水10.0重量部を加えて混合して、常温乾燥型水性塗料組成物を調製した。
【0038】
実施例2および3
上記製造例で得られた酸化重合型変性エポキシ樹脂をトリエチルアミンを用いて、理論中和率200%および250%となるように中和してエマルション樹脂を調製した以外は、実施例1と同様にして、常温乾燥型水性塗料組成物を調製した。ここで得られたエマルション樹脂の光散乱粒径は、中和率200%(実施例2)、250%(実施例3)ともに55nmであった。
【0039】
比較例1および2
製造例で得られた酸化重合型変性エポキシ樹脂をトリエチルアミンを用いて、理論中和率100%および300%となるように中和してエマルション樹脂を調製した以外は、実施例1と同様にして、常温乾燥型水性塗料組成物を調製した。ここで得られたエマルション樹脂の光散乱粒径は、中和率100%(比較例1)のときが、60nm、300%(比較例2)のときが、50nmであった。
【0040】
比較例3
攪拌機、温度制御装置、デカンターを備えた容器に次の原料を仕込み、攪拌しながら加熱した。
大豆油脂肪酸 34重量部
イソフタル酸 25重量部
無水トリメリット酸 9重量部
トリメチロールプロパン 31重量部
キシレン 1重量部
ジブチルスズオキサイド 0.02重量部
【0041】
反応進行に伴って生成する水をキシレンと共沸させて除去し、酸価50、水酸基価125になるまで加熱を継続し、反応を終了させた。得られた樹脂を不揮発分73%となるようにブチルセロソルブで希釈して、アルキドワニスを得た。この樹脂ワニスをジメチルエタノールアミンで理論中和率100%で中和し、脱イオン水にて不揮発分40%になるように調整して水溶性アルキド樹脂ワニスを得た。
【0042】
上記水溶性アルキド樹脂ワニスをイオン交換水で希釈して、不揮発分15重量%の樹脂希釈水に調製し、温度25〜30℃の条件で限外濾過し、ヨウ素価40、不揮発分40重量%の水溶性アルキド樹脂ワニスを得た。この樹脂の光散乱粒径は25nmであった。
【0043】
上記で得た水溶性アルキド樹脂ワニス100重量部に二酸化チタン(CR−97、 石原産業社製)30重量部をラボミキサーを用いて分散し、水性塗料を得た。この塗料に菊地色素社製「LFボウセイCP−Z」を10重量部およびドライヤーDICNATE311を2重量部配合して、水性塗料組成物を得た。
【0044】
<塗料安定性の評価>
実施例及び比較例で得られた各常温硬化型水性塗料組成物を、60℃で5日間静置後、、静置前の初期および5日間静置後の粘度を、ストーマー粘度計(上島製作所社製)により、粘度測定前にディスパーにて回転数900rpmの条件で10分間攪拌した後、塗料の温度を25℃に調整して、測定した。その結果を表1に示す。ここで、粘度変化率は、下記の式により算出し、50%以下を合格とした。
粘度変化率(%)=(60℃5日間静置後の塗料粘度−静置前の初期塗料粘度)×100/静置前の初期塗料粘度
【0045】
<濃縮塗料の調製>
実施例1、2および3および比較例2で得た常温硬化型水性塗料組成物を脱イオン水を用いてNK−2カップで30秒となるよう希釈した。希釈した塗料組成物をブチルセロソルブ5重量%を含有しかつジメチルエタノールアミンでpH9.0に予め調整した捕集水に、エアースプレー法によって固形分10%になるまで吹き込んだ。この塗料を吹き込んだ捕集水を、NK−2カップで30秒となるよう限外濾過濃縮し、濃縮塗料を得た。
【0046】
<塗膜評価>
耐塩水噴霧性試験(JIS K−5400−9)
実施例および比較例で得た各常温硬化型水性塗料組成物、ならびに上記で得られた濃縮塗料をそれぞれダル鋼板上に、膜厚25〜30μmとなるようにスプレー塗布した後、80℃で20分間乾燥し、さらに室温で1週間放置した。その後、このようにして得られた各塗膜を有するダル鋼板について、JIS K−5400に従って、耐塩水噴霧試験を行った。
サビ及びフクレ幅が3mmを超えるまでに要する時間(hour:表中(H)と略す)をそれぞれ耐塩水噴霧性として、表1に示す。
【0047】
耐温水性試験(JIS K−5400−8)
上記耐塩水噴霧試験と同様に調製した、塗膜を有するダル鋼板を、それぞれ40℃の温水に10日間浸漬した後のブリスタの有無を確認した。ブリスタが発生するまでの時間(hour:表中(H)と略す)を表1に示す。
【0048】
【表1】

Figure 0003999434
【0049】
実施例の結果からわかるように、中和率110%以上の一定の範囲に調整して、酸化重合型変性エポキシ樹脂を中和することにより、耐食性と耐水性が向上するとともに塗料の安定性が向上することができた。
【0050】
【発明の効果】
常温硬化型水性塗料組成物に、エポキシ樹脂、不飽和脂肪酸成分、酸基含有アクリル樹脂成分とを反応させてなる酸化重合型変性エポキシ樹脂を、110%以上の特定範囲の中和率で中和したエマルション、両性金属酸化物を配合することにより、形成される塗膜の耐水性、耐食性を向上させるとともに塗料の安定性を向上させることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reusable room temperature curable aqueous coating composition. More specifically, the present invention relates to a room temperature curable aqueous coating composition having a specific composition excellent in coating stability, water resistance and corrosion resistance.
[0002]
[Prior art]
Many automobile parts, industrial machines, agricultural equipment, and the like are coated with a rust-proof water-based paint as a primer. Such water-based paints usually need to be dried and cured at 80 ° C. or lower when applied to an object having low heat resistance or an object having a large heat capacity. is called.
[0003]
When the room temperature curable water-based paint is spray-coated in a painting booth, a lot of paint dust that does not adhere to the object is generated. Such paint spray dust is collected by dissolving or dispersing in booth water (also called collection liquid) in the painting booth. The amount of paint dust collected in this way becomes very large, and discarding it as it is results in a loss of paint and also a problem of environmental pollution.
[0004]
Therefore, the paint composition is concentrated and recovered by passing the paint dilution water collected by water through the reverse osmosis membrane or the ultrafiltration membrane by spraying the spray dust of the aqueous paint composition, and then the concentrated paint. A method is known in which the composition is readjusted so that it has the same concentration as the nonvolatile content of the original aqueous coating composition, and then reused. It has also been proposed to return the aqueous liquid obtained as a filtrate during the concentration to the coating booth and reuse it as a spray dust collection liquid.
[0005]
However, when the concentrated paint or filtrate separated from the paint dilution water is reused, various disadvantages may occur. For example, in the collected concentrated paint, the concentration of volatile matter decreases, so the amount of neutralized amine and solvent in the volatile matter decreases, and the aggregation of the paint due to the decrease in the hydration stability of the resin in the paint composition. And may cause separation.
[0006]
As a method for eliminating the above inconveniences, a method has been proposed in which the hydrophilicity of the resin in the original aqueous coating composition is increased, thereby increasing the hydration stability of the resin in reuse. However, when such a method is used, the coating film performance of the paint such as corrosion resistance and water resistance may be deteriorated.
[0007]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a room temperature curable aqueous coating composition having good coating stability and excellent water resistance and corrosion resistance.
[0008]
[Means for Solving the Problems]
The present invention
(A) an oxidation polymerization modified epoxy resin aqueous medium dispersion having an average particle size of 200 nm or less, obtained by dispersing the oxidation polymerization modified epoxy resin in an aqueous medium, and having an acid value of 25 to 60,
(B) an amphoteric metal oxide, and (c) a reusable room temperature curable aqueous coating composition containing a dryer, wherein the oxidation polymerization modified epoxy resin in the component (a) is an epoxy resin, Using an unsaturated fatty acid component and an acid group-containing acrylic component as raw materials, 30-50% by weight of the epoxy resin is modified with 25-40% by weight of the unsaturated fatty acid component and 10-45% by weight of the acid group-containing acrylic component. Provided is a reusable room temperature curable aqueous coating composition which is a resin obtained and neutralizes with a neutralizer at a neutralization rate of 110 to 250%.
[0009]
The present invention uses a specific neutralizing agent (for example, triethylamine or dimethylethanolamine), a specific oxidation polymerization modified epoxy resin (for example, an oxidation polymerization modified epoxy resin having an iodine value of 30 to 100), A specific amount (for example, at least 50% by weight) of an unsaturated fatty acid having a conjugated double bond in a saturated fatty acid component, and a specific amount of an amphoteric metal oxide based on 100 parts by weight of an oxidation-polymerized modified epoxy resin By using it in an amount (for example, 0.1 to 15 parts by weight), a room temperature curable aqueous coating composition that can be reused for a long period of time is provided.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The oxidative polymerization modified epoxy resin used in the present invention is an oxidatively polymerizable compound obtained by introducing an unsaturated group and an acid group by reacting an epoxy resin with an unsaturated fatty acid component and an acid group-containing acrylic component. Epoxy resin. In this invention, after neutralizing the acid group in this oxidation polymerization type | mold modified epoxy resin, what has an acid value of 25-60 is used among the dispersions obtained by disperse | distributing to an aqueous medium. The preferred acid value range is 25-55. When the acid value exceeds 60, the water resistance is deteriorated, and when it is less than 25, the coating stability is deteriorated.
[0011]
This oxidative polymerization type modified epoxy resin retains its particle shape in an aqueous medium, and its average particle size is 200 nm or less, preferably 20 nm to 100 nm, more preferably 40 to 100 nm. When the average particle diameter exceeds 200 nm, the dilution stability is poor, and aggregation may occur during concentration. A thickness of 100 nm or less is preferable because water resistance and corrosion resistance are particularly good. If the average particle size is smaller than 20 nm, the filtration efficiency may be deteriorated. Of course, even those having an average particle diameter of 20 nm or less can be used. For the measurement of the average particle diameter, a so-called light scattering method is generally used. Specifically, the average particle diameter is obtained by performing a large dilution solution obtained by diluting the resin water dispersion with deionized water about 100 to 1000 times using, for example, an ELS-800 light scattering measuring device manufactured by Otsuka Electronics Co., Ltd. Can be obtained automatically.
[0012]
This oxidation polymerization type modified epoxy resin is obtained using an epoxy resin, an unsaturated fatty acid component, and an acid group-containing acrylic component as raw materials. The epoxy resin is 30 to 50% by weight, the unsaturated fatty acid component is 25 to 40% by weight, and the acid group-containing acrylic component is 10 to 45% by weight with respect to 100% by weight of the total weight of the raw materials.
[0013]
If the proportion of the epoxy resin in the raw material is less than 30% by weight, the corrosion resistance may be poor. If it exceeds 50% by weight, the stability of the coating becomes worse.
[0014]
When the proportion of the unsaturated fatty acid component in the raw material is less than 25% by weight, curing becomes insufficient, and when it exceeds 40% by weight, the storage stability of the paint is lowered.
[0015]
Furthermore, if the ratio of the acid group-containing acrylic component to the raw material is less than 10% by weight, it is difficult to disperse the resin in water, and if it exceeds 45% by weight, the anticorrosion property is lowered.
[0016]
The oxidative polymerization type epoxy resin preferably has an iodine value of 30 to 100, and may further have an iodine value of 35 to 90. The iodine value is measured by the method of JIS K-0070. When the iodine value is less than 30, the oxidative polymerization ability becomes insufficient and the curability is deteriorated. On the other hand, when the iodine value exceeds 100, the storage stability of the paint deteriorates.
[0017]
As described above, the oxidation polymerization type modified epoxy resin is obtained by introducing an unsaturated group and an acid group by reacting an epoxy resin with an unsaturated fatty acid component and an acid group-containing acrylic component. Examples of the epoxy resin that can be used include “Epicoat 828”, “Epicoat 1001”, “Epicoat 1002”, “Epicoat 1004”, “Epicoat 1007”, and “Epicoat 1009” (all manufactured by Shell, bisphenol A type epoxy) Resin); “Epototo YD-128”, “Epototo YD-011”, “Epototo YD-012”, “Epototo YD-014”, “Epototo YD-017” and “Epototo YD-019” (manufactured by Toto Kasei Co., Ltd.) Bisphenol A type epoxy resin); “Epototo ST-5700” (manufactured by Toto Kasei Co., Ltd., hydrogenated bisphenol A type epoxy resin) and “Epototo YDF-2004” (manufactured by Toto Kasei Co., Ltd., bisphenol F type epoxy resin) Epoxy resin can be used. The said epoxy resin may use 1 type (s) or 2 or more types simultaneously.
[0018]
As the unsaturated fatty acid component, any natural or synthetic unsaturated fatty acid can be used. For example, it can be obtained from tung oil, linseed oil, castor oil, dehydrated castor oil, safflower oil, tall oil, soybean oil, coconut oil. Examples include unsaturated fatty acids. As the unsaturated fatty acid component, one or more unsaturated fatty acids can be used at the same time. Among them, it is preferable that the unsaturated fatty acid having a conjugated double bond is contained at least 50% by weight of the unsaturated fatty acid component. If it is less than 50% by weight, it may be difficult to improve the corrosion resistance. In particular, in the present invention, the unsaturated fatty acid component contains an unsaturated fatty acid having a conjugated double bond. In the present invention, the “unsaturated fatty acid having a conjugated double bond” means that the unsaturated fatty acid contains 30% or more of a fatty acid compound having a conjugated double bond. Specific examples of the unsaturated fatty acid satisfying this include dehydrated castor oil and hydrene (high conjugated linoleic acid).
[0019]
The acid group-containing acrylic component is specifically an acid group-containing acrylic monomer such as (meth) acrylic acid, maleic anhydride or itaconic acid. Here, (meth) acrylic acid is used as a term representing both acrylic acid and methacrylic acid. The acid group-containing acrylic component is polymerized with a reaction product of an epoxy resin and an unsaturated fatty acid through an acrylic group (α, β-unsaturated group) which is a polymerizable double bond. In the polymerization, in addition to the acid group-containing acrylic monomer, a general acrylic monomer containing no acid group, for example, a monomer such as styrene or (meth) acrylic acid ester may be added. The acrylic monomer containing no acid group is preferably styrene from the viewpoint of the hardness of the resulting coating film.
[0020]
The oxidation polymerization modified epoxy resin can be obtained as follows.
First, an epoxy ester resin is formed. This epoxy ester resin is obtained from the above epoxy resin and an unsaturated fatty acid component by a conventionally known method. For example, the epoxy resin and the unsaturated fatty acid component are mixed at 150 to 250 ° C. in an appropriate solvent such as toluene and xylene using a condensation catalyst, if necessary, under an inert gas atmosphere such as nitrogen gas. The reaction can be continued until the desired acid value is obtained. As the condensation catalyst, dibutyltin oxide, tetra n-butylammonium bromide, or the like is used.
[0021]
Next, the obtained epoxy ester resin is reacted with the acid group-containing acrylic component to obtain an oxidation polymerization type modified epoxy resin. The reaction between the epoxy ester resin and the acid group-containing acrylic component can be carried out in the temperature range of 80 to 150 ° C. in the presence of a polymerization initiator and in an inert gas atmosphere such as nitrogen gas.
[0022]
As the polymerization initiator used in the above reaction, those known in the art such as peroxides and azo compounds can be used. For example, “Kayabutyl B (alkyl perester type)” manufactured by Kayaku Akzo, It can be used in an amount of 0.1 to 20% by weight based on the total amount of monomers used.
[0023]
Next, the acid groups in the oxidative polymerization type modified epoxy resin are neutralized with a neutralizing agent so as to have a neutralization rate of 110 to 250%, preferably 130 to 200%, and dispersed in an aqueous medium. The neutralization rate is calculated theoretically. That is, the neutralizing agent is added in an amount corresponding to a base equivalent of 1.1 to 2.5 times the acid equivalent of the acid group in the oxidative polymerization type modified epoxy resin. If the neutralization rate is less than 110%, the stability of the paint is insufficient, and if it exceeds 250%, the water resistance and corrosion resistance may be deteriorated.
[0024]
Examples of the neutralizing agent include ammonia, monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, mono-n-propylamine, dimethyl-n-propylamine, monoethanolamine, dimethanolamine, triethanolamine, N-methylethanolamine, N-methyldiethanolamine, dimethylethanolamine, isopropanolamine, diisopropanolamine and the like can be mentioned. Triethylamine, dimethylethanolamine and the like are particularly preferable.
[0025]
The amphoteric metal oxide used in the present invention is an oxide that is acidic to a base and basic to an acid. Specific examples include aluminum oxide and zinc oxide. Most preferred is zinc oxide. This amphoteric metal oxide preferably has a conductivity of 600 μS / cm or less, more preferably 30 μS / cm or less. If it exceeds 600 μS / cm, the stability of the coating is deteriorated.
[0026]
The amphoteric metal oxide basically improves the water resistance of the coating film by adsorbing acid groups in the coating film. Thereby, water resistance and corrosion resistance become better than a rust preventive pigment. The amount of the amphoteric metal oxide used is 0.1 to 15 parts by weight, preferably 1 to 15 parts by weight, more preferably 2 to 10 parts by weight, based on 100 parts by weight of the oxidative polymerization modified epoxy resin solid content. . If the amount is less than 0.1 parts by weight, the effect of improving water resistance is not observed, and if it exceeds 15 parts by weight, the stability of the coating is deteriorated.
[0027]
These oxides of amphoteric metals include those conventionally used as extender pigments, but when used as extender pigments, the amount used is 20 parts per 100 parts by weight of resin solids. In general, it is used in an amount as large as part by weight or more, but when used as an additive for water resistance and corrosion resistance as in this case, it is characterized by being 15 parts by weight or less.
[0028]
What is called a dryer is mix | blended with the normal temperature curable coating composition of this invention. A drier is a compound that can significantly shorten the oxidation drying time at room temperature, and is usually a lead, manganese, or cobalt compound. Specific examples of the dryer include a cobalt dryer (for example, Cobalt Hydrocure II (manufactured by San Nopco), DICnate 1000W (manufactured by Dainippon Ink), Co-NAPHTHENATE 5% W (manufactured by Dainippon Ink), DICATE 3111 (large Nippon Ink Co., Ltd.), manganese dryer (for example, Mn-NAPHTHENATE 5% (Dainippon Ink Co., Ltd.), Mn-OCTOATE 8% (Dainippon Ink Co., Ltd.)) and lead dryer (eg, Pb-NAPHTHENATE 15% (Dainippon Ink, Inc.) And Pb-OCTOATE 8% (Dainippon Ink Co., Ltd.)). The amount of the dryer used may be a conventionally known amount, 0.01 to 5 parts by weight, preferably 0.01 to 2 parts by weight, more preferably 100 parts by weight of the solid content of the oxidation-polymerized modified epoxy resin. 0.02 to 2 parts by weight. When the amount is less than 0.01 part by weight, the drying accelerating effect is not achieved, and when it exceeds 5 parts by weight, the coating stability is deteriorated.
[0029]
In the room temperature curable coating composition of the present invention, an antifoaming agent, a spreading agent, or the like can be blended as another coloring pigment, extender pigment or additive. Although the usage-amount of these additives etc. is not specifically limited, It is common to use in the quantity of 0.01-200 weight part with respect to 100 weight part of oxidation polymerization type modified epoxy resin solid content.
[0030]
The room temperature curable aqueous coating composition of the present invention contains an aqueous medium. The aqueous medium is a medium centered on water, but a water-soluble organic solvent, an organic solvent miscible with the water-soluble organic solvent, a surfactant and the like can be used.
[0031]
The reusable room-temperature curable aqueous coating composition of the present invention is usually applied using a coating gun in a coating booth. At this time, the unpainted paint is collected by a water curtain made of a collecting liquid. The recovered coating composition is concentrated by an ultrafiltration device or the like, readjusted with respect to composition or concentration, and then used again as a room temperature curable aqueous coating composition.
[0032]
【Example】
The invention is explained in more detail by means of examples. The present invention should not be construed as limited to these examples.
[0033]
Example of production of oxidation-polymerized modified epoxy resin Epicoat YD-012 (manufactured by Tohto Kasei Co., Ltd., epoxy resin) 738.2 parts by weight, dehydrated castor oil fatty acid 738.2 parts by weight, dibutyltin oxide 1.4 parts by weight And 42.0 parts by weight of circulating xylol was placed in a reaction vessel and subjected to a condensation reaction at 210 to 240 ° C. for about 6 hours while stirring under a nitrogen gas atmosphere until the acid value became 4.4.
[0034]
After the reaction, butyl cellosolve was added to obtain an epoxy ester resin having a nonvolatile content of 95.7% by weight and an acid value of 4.4.
[0035]
271.2 parts by weight of the epoxy ester resin and 121.4 parts by weight of butyl cellosolve were placed in a reaction vessel and heated to 140 ° C. At this temperature, 54.6 parts by weight of styrene, 25.2 parts by weight of acrylic acid and 1.44 parts by weight of Kayabutyl B (manufactured by Kayaku Akzo, polymerization initiator) were added dropwise over 3 hours. After completion of the dropping, aging was performed for 0.5 hour. Next, 0.16 parts by weight of a polymerization initiator Kayabutyl B (manufactured by Kayaku Akzo Co., Ltd., polymerization initiator) and 91.6 parts by weight of butyl cellosolve were added dropwise, followed by further aging for 1.5 hours, whereby iodine value 60, acid An oxidation polymerization modified epoxy resin having a valence of 42.2 and a nonvolatile content of 70% by weight was obtained. The proportion of each raw material in this oxidation polymerization modified epoxy resin is as follows: epoxy resin is 34% by weight, unsaturated fatty acid component is 33% by weight, and acid group-containing acrylic component is 33% by weight. The amount of unsaturated fatty acid having a conjugated double bond was 100% by weight.
[0036]
Example 1
The oxidative polymerization modified epoxy resin obtained in the above production example was neutralized with triethylamine so that the theoretical neutralization rate was 150%, and then dispersed in water to obtain an emulsion resin having a nonvolatile content of 35% by weight. The light scattering particle diameter of this emulsion resin was 55 nm.
[0037]
Next, 80.0 parts by weight of this emulsion resin, 0.1 part by weight of Nopco 8034L (manufactured by San Nopco, antifoaming agent), 20.0 parts by weight of LMS-300 (manufactured by Fuji Talc, extender pigment), B-34 (Tsubaki Chemical Co., barium sulfate) 20.0 parts by weight, Mitsubishi Carbon MA-100 (Mitsubishi Chemical Co., carbon black) 2.0 parts by weight, Disparon No. 501 (Enomoto Kasei Co., Ltd., MEK oxime anti-drying agent) 0.2 parts by weight, DICNATE 3111 (Dainippon Ink Co., Ltd., cobalt-based dryer) 1.0 parts by weight, zinc oxide 2.5 parts by weight and water 10.0 parts by weight A part was added and mixed to prepare a room temperature dry aqueous coating composition.
[0038]
Examples 2 and 3
Except that the emulsion polymerization resin was prepared by neutralizing the oxidative polymerization type modified epoxy resin obtained in the above production example with triethylamine so as to have a theoretical neutralization rate of 200% and 250%, as in Example 1. Thus, a room temperature dry-type water-based coating composition was prepared. The light-scattering particle size of the emulsion resin obtained here was 55 nm for both the neutralization rates of 200% (Example 2) and 250% (Example 3).
[0039]
Comparative Examples 1 and 2
Except that the emulsion polymerization resin was prepared by neutralizing the oxidative polymerization type modified epoxy resin obtained in the production example with triethylamine so as to have a theoretical neutralization rate of 100% and 300%, in the same manner as in Example 1. A room temperature dry-type water-based coating composition was prepared. The emulsion resin obtained had a light scattering particle size of 60 nm when the neutralization rate was 100% (Comparative Example 1) and 50 nm when it was 300% (Comparative Example 2).
[0040]
Comparative Example 3
The following raw materials were charged into a container equipped with a stirrer, a temperature controller, and a decanter, and heated while stirring.
Soybean fatty acid 34 parts by weight Isophthalic acid 25 parts by weight Trimellitic anhydride 9 parts by weight Trimethylolpropane 31 parts by weight Xylene 1 part by weight Dibutyltin oxide 0.02 parts by weight
Water produced as the reaction progressed was removed by azeotropy with xylene, and heating was continued until the acid value reached 50 and the hydroxyl value reached 125 to complete the reaction. The obtained resin was diluted with butyl cellosolve so as to have a nonvolatile content of 73% to obtain an alkyd varnish. The resin varnish was neutralized with dimethylethanolamine at a theoretical neutralization rate of 100%, and adjusted with deionized water so as to have a nonvolatile content of 40% to obtain a water-soluble alkyd resin varnish.
[0042]
The water-soluble alkyd resin varnish is diluted with ion-exchanged water to prepare a resin-diluted water having a nonvolatile content of 15% by weight, and ultrafiltered at a temperature of 25 to 30 ° C. to give an iodine value of 40 and a nonvolatile content of 40% by weight. Water-soluble alkyd resin varnish was obtained. The resin had a light scattering particle size of 25 nm.
[0043]
30 parts by weight of titanium dioxide (CR-97, manufactured by Ishihara Sangyo Co., Ltd.) was dispersed in 100 parts by weight of the water-soluble alkyd resin varnish obtained above to obtain an aqueous paint. To this paint, 10 parts by weight of “LF Bowsei CP-Z” manufactured by Kikuchi Dye Co., Ltd. and 2 parts by weight of the dryer DICnate 311 were blended to obtain an aqueous paint composition.
[0044]
<Evaluation of paint stability>
Each room temperature curable aqueous coating composition obtained in Examples and Comparative Examples was allowed to stand at 60 ° C. for 5 days, then the viscosity before standing and after standing for 5 days was measured using a Stormer viscometer (Ueshima Seisakusho). The product was stirred for 10 minutes with a disper at a rotation speed of 900 rpm before measuring the viscosity, and the temperature of the paint was adjusted to 25 ° C. and measured. The results are shown in Table 1. Here, the viscosity change rate was calculated by the following formula, and 50% or less was regarded as acceptable.
Viscosity change rate (%) = (paint viscosity after standing at 60 ° C. for 5 days−initial paint viscosity before standing) × 100 / initial paint viscosity before standing
<Preparation of concentrated paint>
The room temperature curable aqueous coating compositions obtained in Examples 1, 2, and 3 and Comparative Example 2 were diluted with deionized water to 30 seconds with NK-2 cup. The diluted coating composition was blown into collected water containing 5% by weight of butyl cellosolve and previously adjusted to pH 9.0 with dimethylethanolamine until the solid content became 10% by the air spray method. The collected water into which this paint was blown was subjected to ultrafiltration concentration in an NK-2 cup so as to be 30 seconds to obtain a concentrated paint.
[0046]
<Evaluation of coating film>
Salt spray resistance test (JIS K-5400-9)
Each room-temperature curable aqueous coating composition obtained in Examples and Comparative Examples and the concentrated coating obtained above were spray-coated on a dull steel plate so as to have a film thickness of 25 to 30 μm, and then 20 ° C. at 80 ° C. It was dried for 1 minute and further left at room temperature for 1 week. Thereafter, the dull steel plate having each coating film thus obtained was subjected to a salt spray resistance test in accordance with JIS K-5400.
Table 1 shows the time required for the rust and swelling width to exceed 3 mm (hour: abbreviated as (H) in the table) as salt spray resistance.
[0047]
Hot water resistance test (JIS K-5400-8)
The presence or absence of blisters after each dull steel plate having a coating film prepared in the same manner as in the above-mentioned salt spray resistance test was immersed in warm water at 40 ° C. for 10 days was confirmed. Table 1 shows the time until the blister occurs (hour: abbreviated as (H) in the table).
[0048]
[Table 1]
Figure 0003999434
[0049]
As can be seen from the results of the examples, the neutralization rate is adjusted to a certain range of 110% or more to neutralize the oxidation polymerization modified epoxy resin, thereby improving the corrosion resistance and water resistance and improving the stability of the coating. I was able to improve.
[0050]
【The invention's effect】
Neutralize the oxidation-polymerized modified epoxy resin obtained by reacting an epoxy resin, an unsaturated fatty acid component, and an acid group-containing acrylic resin component to a room temperature curable aqueous coating composition at a neutralization rate of 110% or more in a specific range. By blending the emulsion and amphoteric metal oxide, the water resistance and corrosion resistance of the coating film to be formed can be improved and the stability of the paint can be improved.

Claims (5)

(a)酸化重合型変性エポキシ樹脂を水性媒体に分散して得られる、200nm以下の平均粒径を有する、酸価25〜60の酸化重合型変性エポキシ樹脂水性媒体分散体、
(b)両性金属の酸化物、および
(c)ドライヤー
を含有する再利用可能な常温硬化型水性塗料組成物であって、
前記成分(a)中の酸化重合型変性エポキシ樹脂が、エポキシ樹脂、不飽和脂肪酸成分および酸基含有アクリル成分を原料とし、前記エポキシ樹脂30〜50重量%を、前記不飽和脂肪酸成分25〜40重量%および前記酸基含有アクリル成分10〜45重量%で変性して得られる樹脂であり、かつ、中和剤を用いて、110〜250%の中和率で中和するものである、再利用可能な常温硬化型水性塗料組成物。
(A) an oxidation polymerization modified epoxy resin aqueous medium dispersion having an average particle size of 200 nm or less, obtained by dispersing the oxidation polymerization modified epoxy resin in an aqueous medium, and having an acid value of 25 to 60,
A reusable room temperature curable aqueous coating composition containing (b) an amphoteric metal oxide and (c) a dryer,
The oxidative polymerization modified epoxy resin in the component (a) is made from an epoxy resin, an unsaturated fatty acid component and an acid group-containing acrylic component as raw materials, and 30 to 50% by weight of the epoxy resin is mixed with the unsaturated fatty acid component 25 to 40. It is a resin obtained by modification with 10% to 45% by weight of the acid group-containing acrylic component and is neutralized at a neutralization rate of 110 to 250% using a neutralizing agent. Usable room temperature curable aqueous coating composition.
前記中和剤が、トリエチルアミンまたはジメチルエタノールアミンである、請求項1記載の再利用可能な常温硬化型水性塗料組成物。The reusable room-temperature-curable aqueous coating composition according to claim 1, wherein the neutralizing agent is triethylamine or dimethylethanolamine. 前記酸化重合型変性エポキシ樹脂がヨウ素価30〜100を有する請求項1または2記載の再利用可能な常温硬化型水性塗料組成物。The reusable room-temperature-curable aqueous coating composition according to claim 1 or 2, wherein the oxidative polymerization modified epoxy resin has an iodine value of 30 to 100. 前記不飽和脂肪酸成分の少なくとも50重量%が共役二重結合を有する不飽和脂肪酸である、請求項1〜3のいずれか1つに記載の再利用可能な常温硬化型水性塗料組成物。The reusable room temperature curable aqueous coating composition according to any one of claims 1 to 3, wherein at least 50% by weight of the unsaturated fatty acid component is an unsaturated fatty acid having a conjugated double bond. 両性金属の酸化物(b)が酸化重合型変性エポキシ樹脂固形分100重量部に対して0.1〜15重量部の量で含まれる請求項1〜4のいずれか1つに記載の再利用可能な常温硬化型水性塗料組成物。The recycle according to any one of claims 1 to 4, wherein the amphoteric metal oxide (b) is contained in an amount of 0.1 to 15 parts by weight with respect to 100 parts by weight of the solid content of the oxidative polymerization modified epoxy resin. Possible room temperature curable water-based paint composition.
JP2000049480A 2000-02-25 2000-02-25 Reusable room temperature curable aqueous coating composition Expired - Fee Related JP3999434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000049480A JP3999434B2 (en) 2000-02-25 2000-02-25 Reusable room temperature curable aqueous coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000049480A JP3999434B2 (en) 2000-02-25 2000-02-25 Reusable room temperature curable aqueous coating composition

Publications (2)

Publication Number Publication Date
JP2001240793A JP2001240793A (en) 2001-09-04
JP3999434B2 true JP3999434B2 (en) 2007-10-31

Family

ID=18571416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000049480A Expired - Fee Related JP3999434B2 (en) 2000-02-25 2000-02-25 Reusable room temperature curable aqueous coating composition

Country Status (1)

Country Link
JP (1) JP3999434B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4812177B2 (en) * 2001-03-02 2011-11-09 日本ペイント株式会社 Water-based paint composition
CN100341965C (en) * 2004-06-24 2007-10-10 徐州正菱涂装有限公司 Epoxy zinc-enriched antiseptic powdery paint and production thereof
WO2006035789A1 (en) * 2004-09-28 2006-04-06 Dainippon Ink And Chemicals, Inc. Resin composition for water-based coating material, water-based coating material, and process for producing resin composition for water-based coating material
JP5654403B2 (en) * 2010-06-18 2015-01-14 株式会社日本触媒 Aqueous resin composition for rust preventive paint

Also Published As

Publication number Publication date
JP2001240793A (en) 2001-09-04

Similar Documents

Publication Publication Date Title
JP5421921B2 (en) Water-based paint composition
WO2002072658A1 (en) Epoxy polyester, its emulsion and its preparation as well as water-base coatings containing the emusion
JP3075710B2 (en) Method for reusing cold-setting aqueous coating composition
JP3392247B2 (en) Aqueous coating composition
JP4880378B2 (en) Method for producing aqueous dispersion of vinyl-modified epoxy ester resin, and aqueous coating composition using the aqueous dispersion
JP3999434B2 (en) Reusable room temperature curable aqueous coating composition
JP4096345B2 (en) Vinyl-modified epoxy ester and aqueous coating agent
JP2001049168A (en) Reusable cold-curable water-based coating composition
JP5150910B2 (en) Method for producing aqueous resin dispersion, aqueous resin dispersion obtained by the production method, and aqueous paint
JPH0319245B2 (en)
JP3025367B2 (en) Resin composition for water-based paint
JPS6081262A (en) Resin composition for cold drying coating material
JPS6038427B2 (en) Aqueous coating composition
JPS6223770B2 (en)
JP4736148B2 (en) Vinyl-modified epoxy ester resin and production method thereof, resin composition and paint
JP7360986B2 (en) Cationic electrodeposition paint composition
JPH07292314A (en) Resin composition for low-temperature drying coating
JP3990738B2 (en) Water dispersant and water dispersion
JP2003253193A (en) Resin composition for aqueous coating and aqueous coating
JPH06279713A (en) Water spot filling agent and use thereof in method for preparation of multilayer coating
JP2001019904A (en) Rustproof paint composition, formation of paint film and painted object
KR19980086955A (en) Reusable Room Temperature Curable Aqueous Coating Composition and Reuse Method thereof
JP3288971B2 (en) Method for reusing cold-setting aqueous coating composition
JP2001261759A (en) Aqueous resin composition and water-based coating composition using the same
JP2009179787A (en) Water-based coating composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees